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(Communicated by Kenneth S. Berenhaut)

We consider the average multiplicative order of a nonzero element in a finite
field and compute the mean of this statistic for all finite fields of a given degree
over their prime fields.

1. Introduction

For a cyclic group of order n, let α(n) denote the average order of an element. For
each d | n, there are exactly ϕ(d) elements of order d in the group (where ϕ is
Euler’s function), so

α(n)=
1
n

∑
d|n

dϕ(d).

It is known [von zur Gathen 2004] that

1
x

∑
n≤x

α(n)=
3ζ(3)
π2 x + O

(
(log x)2/3(log log x)4/3

)
.

We are interested here in obtaining an analogous result where n runs over the orders
of the multiplicative groups of finite fields. Let p denote a prime number. We know
that up to isomorphism, for each positive integer k, there is a unique finite field of
pk elements. The multiplicative group for this field is cyclic of size pk

−1. We are
concerned with the average order of an element in this cyclic group as p varies.
We show the following results.

Theorem 1. For each positive integer k there is a positive constant Kk such that
the following holds. For each number A> 0, each number x ≥ 2, and each positive
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integer k with k ≤ (log x)/(2 log log x), we have

1
π(x)

∑
p≤x

α(pk
− 1)

pk − 1
= Kk + OA

(
1

logA x

)
.

This theorem in the case k = 1 appears in [Luca 2005]. Using Theorem 1 and a
partial summation argument we are able to show the following consequence.

Corollary 2. For all numbers A > 0, x ≥ 2, and for any positive integer k ≤
(log x)/(2 log log x), we have

1
π(x)

∑
p≤x

α(pk
− 1)= Kk

li(xk+1)

li(x)
+ OA

(
xk

logA x

)
,

where Kk is the constant from Theorem 1 and li(x) :=
∫ x

2 dt/ log t .

Since li(xk+1)/li(x)∼ xk/(k+ 1) as x→∞, Corollary 2 implies that

1
π(x)

∑
p≤x

α(pk
− 1)∼

Kk

k+ 1
xk, as x→∞.

We identify the constants Kk as follows. Let Nk(n) denote the number of solu-
tions to the congruence sk

≡ 1 (mod n).

Proposition 3. For each prime p and positive integer k let

Sk(p)=
∞∑
j=1

Nk(p j )

p3 j−1 .

Then Sk(p) < 1 and
Kk :=

∏
p

(1− Sk(p))

is a real number with 0< Kk < 1.

2. Preliminary results

In this section we prove Proposition 3 and we also prove a lemma concerning the
function Nk(n).

Proof of Proposition 3. We clearly have Nk(n) ≤ ϕ(n) for every n, since Nk(n)
counts the number of elements in the group (Z/nZ)∗ with order dividing k and
there are ϕ(n) elements in all in this group. Thus, we have

Sk(p)≤
∞∑
j=1

ϕ(p j )

p3 j−1 =

(
1−

1
p

) ∞∑
j=1

p
p2 j =

(
1−

1
p

)
p

p2− 1
=

1
p+ 1

.
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This proves the first assertion, but it is not sufficient for the second assertion. For
p an odd prime, the group (Z/p j Z)∗ is cyclic so that the number of elements in
this group of order dividing k is

Nk(p j )= gcd(k, ϕ(p j )). (1)

The same holds for p j
= 2 or 4, or if p = 2 and k is odd. Suppose now that

p= 2, j ≥ 3, and k is even. Since (Z/2 j Z)∗ is the direct product of a cyclic group
of order 2 and a cyclic group of order 2 j−2, we have

Nk(2 j )= 2 · gcd(k, 2 j−2)= gcd(2k, ϕ(2 j )). (2)

Thus, we always have Nk(p j )≤ 2k, and so

Sk(p)≤
∞∑
j=1

2k
p3 j−1 =

2kp
p3− 1

.

In particular, we have Sk(p) = Ok(1/p2), which with our first assertion implies
that the product for Kk converges to a positive real number that is less than 1. This
completes the proof. �

Lemma 4. For every positive integer k and each real number x ≥ 1 we have∑
n≤x

Nk(n)
n
≤ 2(1+ log x)k .

Proof. Let ω(n) denote the number of distinct primes that divide n and let τk(n)
denote the number of ordered factorizations of n into k positive integral factors.
Since kω(n) is the number of ordered factorizations of n into k pairwise coprime
factors, we have kω(n)≤τk(n) for all n. Further, from (1), (2) and the fact that Nk(n)
is multiplicative in the variable n, we have Nk(n)≤ 2kω(n), so that Nk(n)≤ 2τk(n).
Thus, it suffices to show that∑

n≤x

τk(n)
n
≤ (1+ log x)k . (3)

We prove (3) by induction on k. It holds for k = 1 since τ1(n)= 1 for all n, so that∑
n≤x

N1(n)
n
=

∑
n≤x

1
n
≤ 1+

∫ x

1

dt
t
= 1+ log x .

Assume now that k ≥ 1 and that (3) holds for k. Since

τk+1(n)=
∑
d|n

τk(n),

we have
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∑
n≤x

τk+1(n)
n
=

∑
n≤x

1
n

∑
d|n

τk(d)=
∑
d≤x

τk(d)
d

∑
m≤x/d

1
m

≤

∑
d≤x

τk(d)
d

(1+ log x)≤ (1+ log x)k+1,

by the induction hypothesis. This completes the proof. �

Corollary 5. For k a positive integer and y a positive real with k ≤ 1+ log y, we
have ∑

n>y

Nk(n)
n2 ≤ 2(k+ 1)

(1+ log y)k

y
.

Proof. By partial summation, Lemma 4, and integration by parts, we have∑
n>y

Nk(n)
n2 =

∫
∞

y

1
t2

∑
y<n≤t

Nk(n)
n

dt ≤ 2
∫
∞

y

(1+ log t)k

t2 dt

=
2
y

(
(1+ log y)k+k(1+log y)k−1

+k(k−1)(1+log y)k−2
+· · ·+k!

)
≤ 2(k+ 1)

(1+ log y)k

y
,

using k ≤ 1+ log y. This completes the proof. �

3. The main theorem

Proof of Theorem 1. The function

α(m)
m
=

1
m2

∑
n|m

nϕ(n)

is multiplicative and so by Möbius inversion, we may write

α(m)
m
=

∑
n|m

γ (n),

where γ is a multiplicative function. It is easy to compute that

γ (p j )=−
p− 1
p2 j (4)

for every prime p and positive integer j . If rad(n) denotes the largest squarefree
divisor of n, we thus have

γ (n)= (−1)ω(n)
ϕ(rad(n))

n2 (5)

for each positive integer n. Note that (4), (5) are also in [Luca 2005].
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For n a positive integer, label the Nk(n) roots to the congruence sk
≡ 1 (mod n)

as sk,1, sk,2, . . . , sk,Nk(n). We have

∑
p≤x

α(pk
− 1)

pk − 1
=

∑
p≤x

∑
n|pk−1

γ (n)=
∑

n≤xk−1

γ (n)
∑
p≤x

n|pk
−1

1

=

∑
n≤xk−1

γ (n)
Nk(n)∑
i=1

π(x; n, sk,i ),

where π(x; q, a) denotes the number of primes p ≤ x with p ≡ a (mod q).
If q is not too large in comparison to x and if a is coprime to q, we expect

π(x; q, a) to be approximately π(x)/ϕ(q). With this thought in mind, let Eq,a(x)
be defined by the equation

π(x; q, a)=
1

ϕ(q)
π(x)+ Eq,a(x).

Further, let y= x1/2/ logA+4 x , where A is as in the statement of Theorem 1. From
the above, we thus have

∑
p≤x

α(pk
− 1)

pk − 1

=

∑
n≤xk−1

γ (n)
Nk(n)∑
i=1

π(x; n, sk,i )

=

∑
n≤y

γ (n)Nk(n)
ϕ(n)

π(x)+
∑
n≤y

γ (n)
Nk(n)∑
i=1

En,ski
(x)+

∑
y<n≤xk−1

γ (n)
Nk(n)∑
i=1

π(x; n, sk,i )

=: T1+ T2+ T3, say.

We further refine the main term T1 as

T1 = π(x)
∞∑

n=1

γ (n)Nk(n)
ϕ(n)

−π(x)
∑
n>y

γ (n)Nk(n)
ϕ(n)

.

The first sum here has an Euler product as

∞∑
n=1

γ (n)Nk(n)
ϕ(n)

=

∏
p

(
1+

∞∑
j=1

γ (p j )Nk(p j )

ϕ(p j )

)
=

∏
p

(
1−

∞∑
j=1

Nk(p j )

p3 j−1

)
= Kk,
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where we used (4). For the second sum in the expression for T1, we have by (5)
and Corollary 5,∣∣∣∣∣∑

n>y

γ (n)Nk(n)
ϕ(n)

∣∣∣∣∣≤∑
n>y

Nk(n)
n2 ≤ 2(k+ 1)

(1+ log y)k

y
.

Here we have used k ≤ (log x)/(2 log log x) and y = x1/2/ logA+4 x , so that k ≤
1+ log y for all sufficiently large x depending on the choice of A. Further, with
these choices for k, y we have (1+ log y)k < x1/2 for x sufficiently large, so that

π(x)

∣∣∣∣∣∑
n>y

γ (n)Nk(n)
ϕ(n)

∣∣∣∣∣≤ π(x)2(k+ 1)(1+ log y)k

y
≤

π(x)

exp log x
3 log log x

for all sufficiently large values of x depending on A. Thus,

T1 = Kkπ(x)+ OA(π(x)/ logA x).

It remains to show that both T2 and T3 are OA(π(x)/ logA x). Using the ele-
mentary estimate π(x; q, a)≤ 1+ x/q , we have

|T3| ≤
∑

y<n≤xk−1

|γ (n)|Nk(n)
(

1+
x
n

)
≤

∑
y<n≤xk−1

Nk(n)
n
+ x

∑
y<n≤xk−1

Nk(n)
n2 ,

by (5). We have seen that the second sum here is negligible, and the first sum is
bounded by 2(1+ k log x)k using Lemma 4. This last expression is smaller than(

log2 x
log log x

)k

≤
x

exp log x log log log x
2 log log x

= OA

(
π(x)

logA x

)

for any fixed choice of A.
To estimate T2, note that

|T2| ≤
∑
n≤y

|γ (n)|Nk(n) max
(a,n)=1

∣∣∣∣π(x; n, a)−
1
ϕ(n)

π(x)
∣∣∣∣

≤

∑
n≤y

max
(a,n)=1

∣∣∣∣π(x; n, a)−
1
ϕ(n)

π(x)
∣∣∣∣ ,

since |γ (n)| ≤ ϕ(n)/n2
≤ 1/n and Nk(n) ≤ ϕ(n) ≤ n. Thus, by the Bombieri–

Vinogradov theorem (see [Davenport 2000, Chapter 28]) we have

|T2| = OA(π(x)/ logA x),

by our choice of y. These estimates conclude our proof of Theorem 1. �
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4. Proof of Corollary 2 and more on the constants Kk

Proof of Corollary 2. By partial summation, we have∑
p≤x

α(pk
− 1)=

∑
p≤x

α(pk
− 1)

pk − 1
(pk
− 1)

= (xk
− 1)

∑
p≤x

α(pk
− 1)

pk − 1
−

∫ x

2
ktk−1

∑
p≤t

α(pk
− 1)

pk − 1
dt.

Thus, by Theorem 1, the prime number theorem, and integration by parts, we have∑
p≤x

α(pk
− 1)= (xk

− 1)Kkπ(x)−
∫ x

2
ktk−1Kkπ(t) dt + O

(
π(x)xk

logA x

)

= (xk
− 1)Kk li(x)−

∫ x

2
ktk−1Kk li(t) dt + O

(
π(x)xk

logA x

)
=

∫ x

2
Kk

tk

log t
dt + O

(
π(x)xk

logA x

)
.

This last integral is Kk li(xk+1)−Kk li(2k+1), so the corollary now follows via one
additional call to the prime number theorem. �

We now examine the constants Kk for k ≤ 4. Since N1(p j ) = 1 for all p j , we
have

K1 =
∏

p

(
1−

∑
j≥1

p
p3 j

)
=

∏
p

(
1−

p
p3− 1

)
= 0.5759599689 . . . .

(This constant is also worked out in [Luca 2005].) For K2 we note that N2(p j )= 2
for all prime powers p j except that N2(2)= 1 and N2(2 j )= 4 for j ≥ 3. Thus,∑

j≥1

N2(2 j )

23 j−1 =
1
4
+

2
32
+

1
56
=

37
112

,

and so

K2 =
75
112

∏
p>2

(
1−

2p
p3− 1

)
= 0.4269891575 . . . .

For K3, we have N3(p j )=3 for p≡1 (mod 3) and for p=3 and j ≥2. Otherwise,
N3(p j )= 1. Thus,

K3 =
205
234

∏
p≡1 (mod 3)

(
1−

3p
p3− 1

) ∏
p≡2 (mod 3)

(
1−

p
p3− 1

)
= 0.6393087751 . . . .
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For K4, we have N4(p j ) = 4 for p ≡ 1 (mod 4), N4(p j ) = 2 for p ≡ 3 (mod 4),
N4(2)= 1, N4(22)= 2, N4(23)= 4, and N4(2 j )= 8 for j ≥ 4. Thus,

K4 =
299
448

∏
p≡1 (mod 4)

(
1−

4p
p3− 1

) ∏
p≡3 (mod 4)

(
1−

2p
p3− 1

)
= 0.3775394971 . . . .

These calculations were done with the aid of Mathematica. With a little effort
other constants Kk may be computed, but if k has many divisors, the calculation
gets more tedious.

We close with the observation that there is an infinite sequence of numbers k on
which Kk→ 0. In particular, if k= km is the least common multiple of all numbers
up to m, then Nk(p)= p− 1 for every prime p ≤ m+ 1, so that

Kk <
∏

p

(
1−

Nk(p)
p2

)
<

∏
p≤m+1

(
1−

p− 1
p2

)
.

Since
∑
(p−1)/p2

=+∞, it follows that as m→∞, Kkm→0. Using the theorem
of Mertens, we in fact have lim inf Kk log log k <+∞.
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