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A Giambelli formula for the S1-equivariant
cohomology of type A Peterson varieties

Darius Bayegan and Megumi Harada

(Communicated by Ravi Vakil)

We prove a Giambelli formula for the Peterson Schubert classes in the S1-
equivariant cohomology ring of a type A Peterson variety. The proof uses the
Monk formula for the equivariant structure constants for the Peterson Schubert
classes derived by Harada and Tymoczko. In addition, we give proofs of two
facts observed by H. Naruse: firstly, that some constants that appear in the
multiplicative structure of the S1-equivariant cohomology of Peterson varieties
are Stirling numbers of the second kind, and secondly, that the Peterson Schubert
classes satisfy a stability property in a sense analogous to the stability of the
classical equivariant Schubert classes in the T -equivariant cohomology of the
flag variety.

1. Introduction

The main result of this note is a formula of Giambelli type in the S1-equivariant
cohomology1 of type A Peterson varieties. Specifically, we give an explicit formula
that expresses an arbitrary Peterson Schubert class in terms of the degree-2 Peterson
Schubert classes. We call this a “Giambelli formula” by analogy with the standard
Giambelli formula in classical Schubert calculus [Fulton 1997], which expresses an
arbitrary Schubert class in terms of degree-2 Schubert classes.

We briefly recall the setting of our results. Peterson varieties in type A can be
defined as the following subvariety Y of F`ags(Cn):

Y := {V• = (0⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn = Cn) |

N Vi ⊆ Vi+1 for all i = 1, . . . , n− 1}, (1-1)

MSC2010: primary 14N15; secondary 55N91.
Keywords: Giambelli formula, Peterson variety, Schubert calculus, equivariant cohomology.
The second author is partially supported by an NSERC Discovery Grant, an NSERC University
Faculty Award, and an Ontario Ministry of Research and Innovation Early Researcher Award.

1All our cohomology rings are with coefficients in C.
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where N : Cn
→ Cn denotes the principal nilpotent operator. These varieties have

been much studied due to their relation to the quantum cohomology of the flag
variety [Kostant 1996; Rietsch 2003]. Thus it is natural to study their topology,
including the structure of their (equivariant) cohomology rings. We do so through
Schubert calculus techniques. Our results extend techniques initiated and developed
in [Harada and Tymoczko 2010; 2011], to which we refer the reader for further
details and motivation.

There is a natural circle subgroup of U (n,C), recalled in Section 2, that acts
on Y . The inclusion of Y into F`ags(Cn) induces a natural ring homomorphism

H∗T (F`ags(Cn))→ H∗S1(Y ) (1-2)

where T is the subgroup of diagonal matrices of U (n,C) acting in the usual way
on F`ags(Cn). One of the main results of [Harada and Tymoczko 2011] is that
a certain subset of the equivariant Schubert classes {σw}w∈Sn in H∗T (F`ags(Cn))

maps under the projection (1-2) to a computationally convenient module basis
of H∗S1(Y ). We refer to the images via (1-2) of {σw}w∈Sn in H∗S1(Y ) as Peterson
Schubert classes. Theorem 6.12 of the same reference gives a manifestly positive
Monk formula for the product of a degree-2 Peterson Schubert class with an arbitrary
Peterson Schubert class, expressed as a H∗S1(pt)-linear combination of Peterson
Schubert classes. This is an example of equivariant Schubert calculus in the realm
of Hessenberg varieties (of which Peterson varieties are a special case), and we
view the Giambelli formula (Theorem 3.2) as a further development of this theory.
The Giambelli formula for Peterson varieties was also independently observed by
H. Naruse.

Our Giambelli formula also allows us to simplify the presentation of the ring
H∗S1(Y ) given in [Harada and Tymoczko 2011, Section 6]. This is because the
previous presentation used as its generators all of the elements in the module basis
given by Peterson Schubert classes, although the ring H∗S1(Y ) is multiplicatively
generated by only the degree-2 Peterson Schubert classes. Details are explained
starting on page 123 below, where we also give a concrete example in n = 4 to
illustrate our results. We also formulate a conjecture (cf. Remark 3.12), suggested
to us by the referee of this manuscript, that the ideal of defining relations is in fact
generated by the quadratic relations only. If true, this would be a significant further
simplification of the presentation of this ring and would lead to interesting further
questions (both combinatorial and geometric).

In Sections 4 and 5, we present proofs of two facts concerning Peterson Schubert
classes, which we learned from H. Naruse. The results are due to Naruse but the
proofs given here are our own. We chose to include these results because they
do not appear elsewhere in the literature. The first fact is that Stirling numbers of
the second kind (see Section 4 for the definition) appear naturally in the product
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structure of H∗S1(Y ). The second is that the Peterson Schubert classes satisfy a
stability condition with respect to the natural inclusions of Peterson varieties induced
from the inclusions F`ags(Cn) ↪→ F`ags(Cn+1).

2. Peterson varieties and S1-fixed points

In this section we briefly recall the objects under study. For details we refer the
reader to [Harada and Tymoczko 2011]. Since we work exclusively in Lie type A
we henceforth omit it from our terminology.

By the flag variety we mean the homogeneous space GL(n,C)/B, where B is
the standard Borel subgroup of upper-triangular invertible matrices. The flag variety
can also be identified with the space of nested subspaces in Cn , that is,

F`ags(Cn) := {V• = ({0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn = Cn) | dimC(Vi )= i}
∼= GL(n,C)/B.

Let N be the n× n principal nilpotent operator given with respect to the standard
basis of Cn as the matrix with one n× n Jordan block of eigenvalue 0, that is,

N =



0 1 0
0 0 1
0 0 0

. . .

0 1
0 0


. (2-1)

Fix n a positive integer. The main geometric object under study, the Peterson
variety Y , is the subvariety of F`ags(Cn) defined in (1-1) where N is the standard
principal nilpotent in (2-1). The variety Y is a (singular) projective variety of
complex dimension n− 1.

We recall some facts from [Harada and Tymoczko 2011]. The following circle
subgroup of U (n,C) preserves Y :

S1
=




tn 0 · · · 0
0 tn−1 0

0 0
. . . 0

0 0 t


∣∣∣∣∣∣∣∣∣ t ∈ C, ‖t‖ = 1

⊆ T n
⊆U (n,C). (2-2)

Here T n is the standard maximal torus of U (n,C) consisting of diagonal unitary
matrices. The S1-fixed points of Y are isolated and are a subset of the T n-fixed
points of F`ags(Cn). As is standard, we identify the T n-fixed points in F`ags(Cn)

with the permutations Sn . In particular since Y S1
is a subset of F`ags(Cn)T

n
,

we think of the Peterson fixed points as permutations in Sn . There is a natural
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bijective correspondence between the Peterson fixed points Y S1
and subsets of

{1, 2, . . . , n − 1} which we now briefly recall. It is explained in [Harada and
Tymoczko 2011, Section 2.3] that a permutation w ∈ Sn is in Y S1

precisely when
the one-line notation of w−1 is of the form

w−1
= j1 j1− 1 · · · 1︸ ︷︷ ︸

j1 entries

j2 j2− 1 · · · j1+ 1︸ ︷︷ ︸
j2− j1 entries

· · · n n− 1 · · · jm + 1︸ ︷︷ ︸
n− jm entries

(2-3)

where 1 ≤ j1 < j2 < · · ·< jm < n is any sequence of strictly increasing integers.
For example, for n= 9,m = 2 and j1= 3, j2= 7, then the permutation w−1 in (2-3)
has one-line notation 321765498. Thus for each permutation w ∈ Sn satisfying (2-3)
we define

A := {i : w−1(i)= w−1(i + 1)+ 1 for 1≤ i ≤ n− 1} ⊆ {1, 2, . . . , n− 1}.

This gives a one-to-one correspondence between the power set of {1, 2, . . . , n− 1}
and Y S1

. We denote the Peterson fixed point corresponding to a subset A ⊆

{1, 2, . . . , n− 1} by wA.

Example 2.1. Let n=5 and suppose A={1, 2, 4}. Then the associated permutation
is wA = 32154.

Indeed, for a fixed n, we can also easily enumerate all the Peterson fixed points
by using this correspondence.

Example 2.2. Let n = 4. Then Y S1
consists of 23

= 8 elements in correspondence
with the subsets of {1, 2, 3}, namely: w∅= 1234, w{1}= 2134, w{2}= 1324, w{3}=
1243, w{1,2} = 3214, w{2,3} = 1432, w{1,3} = 2143, w{1,2,3} = 4321.

Given a choice of subset A⊆ {1, 2, . . . , n− 1}, there is a natural decomposition
of A as follows. We say that a set of consecutive integers

{a, a+ 1, . . . , a+ k} ⊆A

is a maximal consecutive (sub)string of A if a and k are such that neither a − 1
nor a+ k+ 1 is in A. For a1 := a and a2 := a1+ k, we denote the corresponding
maximal consecutive substring by [a1, a2]. It is straightforward to see that any A

uniquely decomposes into a disjoint union of maximal consecutive substrings

A= [a1, a2] ∪ [a3, a4] ∪ · · · ∪ [am−1, am].

For instance, if A= {1, 2, 3, 5, 6, 8}, then its decomposition into maximal consecu-
tive substrings is {1, 2, 3} ∪ {5, 6} ∪ {8} = [1, 3] ∪ [5, 6] ∪ [8, 8].

Suppose A = { j1 < j2 < · · · < jm}. Finally we recall that we can associate to
each wA a permutation vA by the recipe

wA 7→ vA := s j1s j2 · · · s jm (2-4)
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where an si denotes the simple transposition (i, i + 1) in Sn .

3. The Giambelli formula for Peterson varieties

The Giambelli formula. In this section we prove the main result of this note,
namely, a Giambelli formula for Peterson varieties.

As recalled above, the Peterson variety Y is an S1-space for a subtorus S1 of
T n and it can be checked that Y S1

= (F`ags(Cn))T
n
∩ Y. There is a forgetful map

from T n-equivariant cohomology to S1-equivariant cohomology obtained by the
inclusion S1 ↪→ T , so there is a commutative diagram

H∗T n (F`ags(Cn)) //

��

H∗T n ((F`ags(Cn))T
n
)

��
H∗S1(F`ags(Cn)) //

��

H∗S1((F`ags(Cn))T
n
)

��
H∗S1(Y ) // H∗S1(Y S1

).

(3-1)

The equivariant Schubert classes {σw} in H∗T n (F`ags(Cn)) are well-known to form
a H∗T n (pt)-module basis for H∗T n (F`ags(Cn)). We call the image of σw under the
projection map H∗T n (F`ags(Cn)) → H∗S1(Y ) the Peterson Schubert class corre-
sponding to w. For the permutations vA defined in (2-4), we denote by pA the
corresponding Peterson Schubert class, that is the image of σvA . (This is slightly
different notation from that used in [Harada and Tymoczko 2011].) We denote by
pA(w) ∈ H∗S1(pt) ∼= C[t] the restriction of the Peterson Schubert class pA to the
fixed point w ∈ Y S1

.
One of the main results of [Harada and Tymoczko 2011] is that the set of

2n−1 Peterson Schubert classes {pA}A⊆{1,2,...,n−1} form a H∗S1(pt)-module basis for
H∗S1(Y ) where vA is defined in (2-4). (The fact that H∗S1(Y ) is a free module of
rank 2n−1 over H∗S1(pt) fits nicely with the result [Sommers and Tymoczko 2006,
Theorem 10.2] that the Poincaré polynomial of Y is given by (q2

+ 1)n−1.) It
is also shown in [Harada and Tymoczko 2011] that the n − 1 degree-2 classes
{pi := psi }

n−1
i=1 form a multiplicative set of generators for H∗S1(Y ). These classes pi

are also (equivariant) Chern classes of certain line bundles over Y . Moreover, there
is a Monk formula [Harada and Tymoczko 2011, Theorem 6.12] which expresses a
product

pi pA

for any i ∈ {1, 2, . . . , n − 1} and any A ⊆ {1, 2, . . . , n − 1} as a H∗S1(pt)-linear
combination of the additive module basis {pA}. Since the pi multiplicatively
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generate the ring, this Monk formula completely determines the ring structure of
H∗S1(Y ). Furthermore it is in principle possible to express any pA in terms of the pi .
Our Giambelli formula is an explicit formula which achieves this (cf. for example
[Fulton 1997] for the version in classical Schubert calculus).

We begin by recalling the Monk formula, for which we need some terminology.
Fix A⊆ {1, 2, . . . , n− 1}. We define HA :A→A by

HA( j)= the maximal element in the maximal consecutive substring of A

containing j .

Similarly, we define TA :A→A by

TA( j)= the minimal element in the maximal consecutive substring of A

containing j .

We say that the maps HA and TA give the “head” and “tail” of each maximal
consecutive substring of A. For an example see [Harada and Tymoczko 2011,
Example 5.6]. We recall the following.

Theorem 3.1 (Monk formula for Peterson varieties [Harada and Tymoczko 2011,
Theorem 6.12]). Fix a positive integer n. Let Y be the Peterson variety in F`ags(Cn)

with the natural S1-action defined by (2-2). For A⊆ {1, 2, . . . , n− 1}, let vA ∈ Sn

be the permutation in (2-4), and let pA be the corresponding Peterson Schubert
class in H∗S1(Y ). Then

pi · pA = pi (wA) · pA+

∑
A(B and |B|=|A|+1

cB
i,A · pB, (3-2)

where, for a subset B⊆ {1, 2, . . . , n− 1} which is a disjoint union B=A∪ {k},

• if i 6∈B then cB
i,A = 0,

• if i ∈B and i 6∈ [TB(k),HB(k)], then cB
i,A = 0,

• if k ≤ i ≤HB(k), then

cB
i,A = (HB(k)− i + 1) ·

(
HB(k)−TB(k)+ 1

k−TB(k)

)
, (3-3)

• if TB(k)≤ i ≤ k− 1,

cB
i,A = (i −TB(k)+ 1) ·

(
HB(k)−TB(k)+ 1

k−TB(k)+ 1

)
. (3-4)

We also recall that [Harada and Tymoczko 2011, Lemma 6.7] implies that if
B,B′ are two disjoint subsets of {1, 2, . . . , n− 1} such that there is no i in B and
j in B′ with |i − j | = 1, then pB∪B′ = pB pB′ . It follows that for any A we have

pA = p[a1,a2] · p[a3,a4] · · · p[am−1,am ] (3-5)
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where A = [a1, a2] ∪ [a3, a4] ∪ · · · ∪ [am−1, am] is the decomposition of A into
maximal consecutive substrings. In particular, in order to give an expression for pA

in terms of the elements pi , from (3-5) we see that it suffices to give a formula only
for the special case in which A consists of a single maximal consecutive string.

We now state and prove our Giambelli formula.

Theorem 3.2. Fix n a positive integer. Let Y be the Peterson variety in F`ags(Cn)

with the S1-action defined by (2-2). Suppose A= {a, a+1, a+2, . . . , a+k} where
1≤ a ≤ n− 1 and 0≤ k ≤ n− 1− a. Let vA be the permutation corresponding to
A defined in (2-4) and let pA be the associated Peterson Schubert class. Then

pA =
1

(k+ 1)!

∏
j∈A

pj .

We use the following lemma.

Lemma 3.3. Suppose i ∈ {1, 2, . . . , n − 1} and A ⊆ {1, 2, . . . , n − 1}. Suppose
further that i 6∈A. Then the Monk relation

pi · pA = pi (wA) · pA+

∑
A⊂B and |B|=|A|+1

cB
i,A · pB

simplifies to
pi · pA = cA∪{i}

i,A · pA∪{i}. (3-6)

Proof. First observe that the Monk relation simplifies to

pi · pA =

∑
A⊂B and |B|=|A|+1

cB
i,A · pB (3-7)

if i 6∈A, since in that case pi (wA)= 0 by [Harada and Tymoczko 2011, Lemma
6.4]. Moreover, from Theorem 3.1 we also know that cB

i,A = 0 if i 6∈B. Hence the
summands appearing in (3-7) correspond to B satisfying A ⊆ B, |B| = |A| + 1,
and i ∈ B. On the other hand, since i 6∈ A by assumption, this means that there
is only one nonzero summand in the right hand side of (3-7), namely, the term
corresponding to B=A∪ {i}. Then (3-6) follows. �

Proof of Theorem 3.2. We proceed by induction on k. First consider the base
case where k = 0. Then A = {a}, so pvA = pa . On the right hand side, we have

1
(0+1)!

∏
j∈A pj = pa . This verifies the base case.

By induction, suppose the claim holds for k− 1. We now show that the claim
holds for k. Consider A′ := {a, a + 1, . . . , a + k − 1} and consider the product
pa+k · pA′ . From the Monk formula in Theorem 3.1 we know that

pa+k · pA′ = pa+k(wA′) · pA′ +

∑
A′⊆B

|B|=|A′|+1

cB
a+k,A′ · pB. (3-8)
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On the other hand since by definition a+ k 6∈A′, by Lemma 3.3 the equality (3-8)
further simplifies to

pa+k · pA′ = cA
a+k,A′ · pA.

Moreover, since A=A′∪{a+ k}, we have HA(a+ k)= a+ k and TA(a+ k)= a.
Hence, by Theorem 3.1,

cA
a+k,A′ = (HA(a+ k)− (a+ k)+ 1)

(
HA(a+ k)−TA(a+ k)+ 1

(a+ k)−TA(a+ k)

)
= ((a+ k)− (a+ k)+ 1)

(
a+ k− a+ 1
(a+ k)− a

)
= k+ 1. (3-9)

Therefore
pa+k · pA′ = (k+ 1) · pA.

By the inductive hypothesis we have for the set A′ = {a, a+ 1, . . . , a+ k− 1}

pA′ =
1
k!

∏
j∈A′

pj .

Substituting into the above equation yields

pA =
1

(k+ 1)!

∏
j∈A

pj

as desired. This completes the proof. �

Remark 3.4. We thank the referee for the following observation. The formula in
Theorem 3.2 suggests that the classes pi behave like a normal crossings divisor (up
to quotient singularities), with all other classes arising (up to rational coefficients) as
intersections of the components. It would certainly be of interest to understand more
precisely the underlying geometry which gives rise not only to the Giambelli relation
in Theorem 3.2 but also to the original Monk formula [Harada and Tymoczko 2011,
Theorem 6.12].

From Theorem 3.2 it immediately follows that for any subset

A= [a1, a2] ∪ [a3, a4] ∪ · · · ∪ [am−1, am]

with its decomposition into maximal consecutive substrings, we have

pA =
1

(a2− a1+ 1)!
·

1
(a4− a3+ 1)!

· · ·
1

(am − am−1+ 1)!

∏
j∈A

pj . (3-10)
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For the purposes of the next section we introduce the notation

σ(A) :=
1

(a2− a1+ 1)!
·

1
(a4− a3+ 1)!

· · ·
1

(am − am−1+ 1)!
(3-11)

for the rational coefficient appearing in (3-10). The following is an immediate
corollary of this discussion.

Corollary 3.5. Let

A= [a1, a2] ∪ [a3, a4] ∪ · · · ∪ [am−1, am].

Then
pA = σ(A)

∏
j∈A

pj .

Simplification of the Monk relations. In this section we explain how to use the
Giambelli formula to simplify the ring presentation of H∗S1(Y ) given in [Harada
and Tymoczko 2011, Section 6]. Recall that the Peterson Schubert classes {pA}

form an additive module basis for H∗S1(Y ) and the degree-2 classes {pi }
n−1
i=1 form a

multiplicative basis, so the Monk relations give a presentation of the ring H∗S1(Y )
via generators and relations as follows.

Theorem 3.6 [Harada and Tymoczko 2011, Corollary 6.14]. Fix n a positive integer.
Let Y be the Peterson variety in F`ags(Cn) with the S1-action defined by (2-2). For
A⊆ {1, 2, . . . , n− 1}, let vA ∈ Sn be the permutation given in (2-4), and let pA be
the corresponding Peterson Schubert class in H∗S1(Y ). Let t ∈ H∗S1(pt)∼=C[t] denote
both the generator of H∗S1(pt) and its image t ∈ H∗S1(Y ). Then the S1-equivariant
cohomology H∗S1(Y ) is given by

H∗S1(Y )∼= C[t, {pA}A⊆{1,2,...,n−1}]/J

where J is the ideal generated by the relations (3-2).

In order to state the main result of this section we introduce some notation. For
i with 1≤ i ≤ n− 1 and A⊆ {1, 2, . . . , n− 1} define

mi,A := pi · pA− pi (wA) · pA−

∑
A⊆B

|B|=|A|+1

cB
i,A · pB,

thought of as an element in C[t, {pA}A⊆{1,2,...,n−1}], where the cB
i,A ∈ C[t] are the

coefficients computed in Theorem 3.1. Motivated by the Giambelli formula we also
define the following elements in C[t, p1, p2, . . . , pn−1]:

qi,A := pi ·σ(A)·

(∏
j∈A

pj

)
−pi (wA)·σ(A)·

(∏
j∈A

pj

)
−

∑
A⊆B

|B|=|A|+1

cB
i,A·σ(B)

(∏
k∈B

pk

)
,
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where σ(A) ∈Q is the constant defined in (3-11).

Example 3.7. Let n = 4 and i = 1 and A= {1, 2}. Consider

m1,{1,2} = p1 pv{1,2} − 2t pv{1,2} + pv{1,2,3} .

Expanding in terms of the Giambelli formula, we obtain

q1,{1,2} =
1
2 p2

1 p2− 2t ·
( 1

2 p1 p2
)
+

1
6 p1 p2 p3 = t p1 p2+

1
6 p1 p2 p3.

The main theorem of this section gives a ring presentation of H∗S1(Y ) using fewer
generators and fewer relations than that in Theorem 3.6. More specifically let K

denote the ideal in C[t, p1, . . . , pn−1] generated by the qi,A for which i 6∈A, that
is,

K :=
〈
qi,A

∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}, i 6∈A
〉

⊆ C[t, p1, . . . , pn−1]. (3-12)

Theorem 3.8. Fix n a positive integer. Let Y be the Peterson variety in F`ags(Cn)

equipped with the action of the S1 in (2-2). Then the S1-equivariant cohomology
H∗S1(Y ) is isomorphic to the ring

C[t, p1, p2, . . . , pn−1]/K

where K is the ideal in (3-12).

To prove the theorem we need the following lemma.

Lemma 3.9. Let i ∈ {1, 2, . . . , n− 1} and A ⊆ {1, 2, . . . , n− 1}. Suppose i 6∈ A.
Then qi,A = 0 in C[t, p1, p2, . . . , pn−1].

Proof. Since i 6∈A by assumption, Lemma 3.3 implies that

mi,A = pi · pA− pi (wA) · pA−

∑
A⊆B

|B|=|A|+1

cB
i,A · pB

simplifies to
mi,A = pi · pA− cA∪{i}

i,A · pA∪{i}. (3-13)

Thus in order to compute the corresponding qi,A it remains to compute cA∪{i}
i,A and

apply the Giambelli formula.
Let A = [a1, a2] ∪ [a3, a4] ∪ · · · ∪ [am−1, am] be the decomposition of A into

maximal consecutive substrings. Consider the decomposition of A∪{i} into maximal
consecutive substrings. There are several cases to consider:

(1) The singleton set {i} is a maximal consecutive substring of A∪ {i}, that is,
i − 1 6∈A and i + 1 6∈A.
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(2) The inclusion of i extends a maximal consecutive substring to its right by 1
element, that is, there exists a maximal consecutive string [a`, a`+1] ⊆A such
that i = a`+1+1 and that [a`, i] is a maximal consecutive substring of A∪{i}.

(3) The inclusion of i extends a maximal consecutive substring to its left by 1
element, that is, there exists a maximal consecutive string [a`, a`+1] ⊆A such
that i = a`−1 and that [i, a`+1] is a maximal consecutive substring of A∪{i}.

(4) The inclusion of i glues together two maximal consecutive substrings of A, that
is, there exist two maximal consecutive substrings [a`, a`+1], [a`+2, a`+3] such
that i=a`+1+1=a`+2−1 and hence [a`, a`+3]=[a`, a`+1]∪{i}∪[a`+2, a`+3]

is a maximal consecutive substring of A∪ {i}.

We consider each case separately.

Case (1): Suppose {i} is a maximal consecutive substring in A∪ {i}. In this case,
the coefficient cA∪{i}

i,A is 1. Hence we have

mi,A = pi pA− pvA∪{i} .

Since {i} is a maximal consecutive substring in A∪{i}, we have σ(A)= σ(A∪{i}).
We conclude that

qi,A = pi ·

(
σ(A) ·

(∏
j∈A

pj

))
− σ(A∪ {i}) ·

( ∏
j∈A∪{i}

pj

)
= 0,

as desired.

Cases (2) and (3) are very similar, so we only present the argument for Case (2).
Suppose i extends a maximal consecutive substring [a`, a`+1] of A to its right.
Then

mi,A = pi · pA− (i − a`+ 1)pvA∪{i},

since k = i =HB(i) and TB(i)= a` so cA∪{i}
i,A = i − a`+ 1. We compute

qi,A = pi

(( ∏
1≤s≤m−1

s odd

1
(as+1−as+1)!

)
·

(∏
j∈A

pj

))

− (i−a`+1)·
( ∏

1≤s≤m−1
s odd, s 6=`

1
(as+1−as+1)!

)
·

(
1

(i−a`+1)!

)
·

( ∏
j∈A∪{i}

pj

)
,

where one of the factors in the product in the second expression has changed because
the maximal consecutive string [a`, a`+1] has been extended in A∪ {i}. Since

(i − a`+ 1)
(

1
(i − a`+ 1)!

)
=

1
(a`+1− a`+ 1)!
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by assumption on i , we conclude qi,A = 0 as desired.

Case (4). Here the inclusion of i glues together two maximal consecutive substrings
[a`, a`+1], [a`+2, a`+3] in A. We then have k = i , HB(i) = a`+3, TB(i) = a`.
Hence the coefficient cA∪{i}

i,A is

cA∪{i}
i,A = (a`+3− i + 1)

(
a`+3− a`+ 1

i − a`

)
=

(a`+3− a`+ 1)!
(i − a`)! (a`+3− i)!

.

The expansion of pi ·pA is the same as in the previous cases. The term corresponding
to cA∪{i}

i,A · pA∪{i} is

(a`+3−a`+1)!
(i−a`)! (a`+3−i)!

·

( ∏
1≤s≤m−1

s odd and s 6=`,`+2

1
(as+1−as+1)!

)
·

(
1

(a`+3−a`+1)!

)
·

( ∏
j∈A∪{i}

pj

)
.

Since by assumption on i we have i = a`+1+ 1= a`+2− 1, we obtain the simplifi-
cation

(a`+3− a`+ 1)!
(i − a`)! (a`+3− i)!

(
1

(a`+3− a`+ 1)!

)
=

1
(i − a`)! (a`+3− i)!

=
1

(a`+1− a`+ 1)!
·

1
(a`+3− a`+2+ 1)!

from which it follows that qi,A = 0 also in this case. The result follows. �

Example 3.10. Let n = 5, i = 4 and let A= {1, 2}. Consider

m4,{1,2} = p4 · pv{1,2} − c{1,2,4}4,{1,2} · pv{1,2,4} .

From (3-3) it follows that c{1,2,4}4,{1,2} = 1. The corresponding q4,{1,2} can be computed
to be

q4,{1,2} = p4
( 1

2! p1 p2
)
−
( 1

2! p1 p2
)

p4 = 0.

Proof of Theorem 3.8. By Theorem 3.6 we know that

H∗S1(Y )∼= C[t, {pA}A⊆{1,2,...,n−1}]/J,

where J is the ideal generated by the relations (3-2) so we wish to prove

C[t, p1, . . . , pn−1]/K∼= C[t, {pA}A⊆{1,2,...,n−1}]/J.

The content of the Giambelli formula (Theorem 3.2) is that the expressions

pA− σ(A)
∏
j∈A

pj
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are elements of J. Hence

J=
〈
mi,A

∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}
〉

+
〈
pA− σ(A)

∏
j∈A

pj
∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}

〉
=
〈
qi,A

∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}
〉

+
〈
pA− σ(A)

∏
j∈A

pj
∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}

〉
.

We therefore have

C[t, {pA}A⊆{1,2,...,n−1}]

J
∼=

C[t, p1, . . . , pn−1]〈
qi,A

∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}
〉 ;

but since qi,A = 0 if i 6∈A by Lemma 3.9 we conclude that〈
qi,A

∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1}
〉

=
〈
qi,A

∣∣ 1≤ i ≤ n− 1,A⊆ {1, 2, . . . , n− 1} and i 6∈A
〉
,

from which the result follows. �

Example 3.11. Let n = 4 and Y the Peterson variety in F`ags(C4). The degree-2
multiplicative generators are p1, p2, and p3. Then the statement of Theorem 3.8
yields a presentation of the equivariant cohomology ring of Y as

H∗S1(Y )∼= C[t, p1, p2, p3]/K,

where K is the ideal generated by the following 12 elements:

2 p2
1 − 2t p1− p1 p2,

2 p2
2 − 2t p2− p1 p2− p2 p3,

2 p2
3 − 2t p3− p2 p3,

3 p2
1 p2− 6t p1 p2− p1 p2 p3,

3 p1 p2
2 − 6t p1 p2− 2 p1 p2 p3,

2 p2
1 p3− 2t p1 p3− p1 p2 p3,

2 p1 p2
3 − 2t p1 p3− p1 p2 p3,

3 p2
2 p3− 6t p2 p3− 2 p1 p2 p3,

3 p2 p2
3 − 6t p2 p3− p1 p2 p3,

p2
1 p2 p3− 3t p1 p2 p3,

p1 p2
2 p3− 4t p1 p2 p3,

p1 p2 p2
3 − 3t p1 p2 p3.
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This list is not minimal: for instance, one can immediately see the sixth and seventh
expressions in this list are multiples of the first and third ones, so evidently they are
unnecessary for defining the ideal K. In fact, more is true: a Macaulay 2 computation
shows that the ideal K is in fact generated by just the quadratic relations, that is,
the first three elements in the above list. (We thank the referee for pointing this
out.) Note that the original presentation given in Theorem 3.6 uses 8 generators
and 24 relations, so this discussion shows that our presentation indeed gives a
simplification of the description of the ring.

Remark 3.12. We thank the referee for the following comment. Based on our
Giambelli formula, Theorem 3.8, and the example of n = 4 discussed above, it
seems natural to conjecture that for any value of n, the corresponding ideal K

is generated by just the quadratic relations. Using Macaulay 2, we have verified
that the conjecture holds for a range of small values of n, but we were unable to
give a proof for the general case. If the conjecture is true, then it would be a very
significant simplification of the presentation of this ring and would lead to many
interesting geometric and combinatorial questions.

4. Stirling numbers of the second kind

In this section we prove that Stirling numbers of the second kind appear in the
multiplicative structure of the ring H∗S1(Y ). We learned this result from H. Naruse
and do not claim originality, though the proof given is our own. The Stirling number
of the second kind, which we denote S(n, k), counts the number of ways to partition
a set of n elements into k nonempty subsets (see, e.g., [Knuth 1975, Section 1.2.6]).
For example, S(3, 2) is the number of ways to put balls labeled 1, 2, and 3 into two
identical boxes such that each box contains at least one ball. It is then easily seen
that S(3, 2)= 3.

Theorem 4.1. Fix a positive integern. Let Y be the Peterson variety in F`ags(Cn)

equipped with the action of the S1 in (2-2). For A⊆ {1, 2, . . . , n− 1}, let vA, pA

be as in Theorem 3.6. The following equality holds in H∗S1(Y ) for any k with
1≤ k ≤ n− 1:

pk
1 =

k∑
j=1

S(k, j)tk− j pv[1, j] . (4-1)

Proof. We proceed by induction on k. Consider the base case k = 1. Then (4-1)
becomes the equality

p1 = S(1, 1)p1.

Here S(1, 1) is the number of ways to put 1 ball into 1 box, so S(1, 1)= 1 and the
claim follows.
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Now assume that (4-1) holds for k. We need to show that it also holds for k+ 1,
that is,

pk+1
1 =

k+1∑
j=1

S(k+ 1, j)tk+1− j pv[1, j] .

By the inductive hypothesis this is equivalent to showing that

k∑
i=1

S(k, i)tk−i p1 pv[1,i] =
k+1∑
j=1

S(k+ 1, j)tk+1− j pv[1, j] . (4-2)

We now expand the left-hand side using the Monk formula. For each i it can be
computed that

p1 pv[1,i] = i t pv[1,i] + pv[1,i+1]

where we have used [Harada and Tymoczko 2011, Lemma 6.4] to compute p1(w[1,i]).
Therefore

k∑
i=1

S(k, i)tk−i p1 pv[1,i]

=

k∑
i=1

S(k, i)tk−i (i t pv[1,i] + pv[1,i+1])

=

k∑
i=1

i S(k, i)tk+1−i pv[1,i] +
k∑

i=1

S(k, i)tk−i pv[1,i+1]

= S(k,1)tk p1+

k∑
i=2

i S(k, i)tk+1−i pv[1,i] +
k−1∑
i=1

S(k, i)tk−i pv[1,i+1] + S(k,k)pv[1,k+1]

= S(k,1)tk p1+

k∑
i=2

i S(k, i)tk+1−i pv[1,i]+
k∑

i=2

S(k, i−1)tk+1−i pv[1,i]+S(k,k)pv[1,k+1]

= S(k+1,1)tk p1+

k∑
i=2

(i S(k, i)+ S(k, i−1))tk+1−i pv[1,i]+ S(k+1,k+1)pv[1,k+1]

= S(k+ 1,1)tk p1+

k∑
i=2

S(k+ 1, j)tk+1−i pv[1,i] + S(k+ 1,k+ 1)pv[1,k+1]

=

k+1∑
j=1

S(k+ 1, j)tk+1− j pv[1, j]

where we have used the recurrence relation

S(k+ 1, j)= j S(k, j)+ S(k, j − 1)
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for Stirling numbers and the fact that

S(k, 1)= S(k, k)= S(k+ 1, 1)= S(k+ 1, k+ 1)= 1

for any k. The result follows. �

5. Stability of Peterson Schubert classes

We now observe that the Peterson Schubert classes {pA} for the Peterson varieties
satisfy a stability property for varying n, similar to that satisfied by the classical
equivariant Schubert classes. This is an observation we learned from H. Naruse;
we do not claim originality. For this section only, for a fixed positive integer n we
denote by Yn the Peterson variety in F`ags(Cn).

Let Xw,n ⊆ F`ags(Cn) denote the Schubert variety corresponding to w ∈ Sn in
F`ags(Cn). By the standard inclusion of groups Sn ↪→ Sn+1, we may also consider
w to be an element in Sn+1. Furthermore there is a natural T n-equivariant inclusion
ιn :F`ags(Cn) ↪→F`ags(Cn+1) induced by the inclusion of the coordinate subspace
Cn into Cn+1. Then with respect to ιn the Schubert variety Xw,n maps isomorphically
onto the corresponding Schubert variety Xw,n+1. Since the equivariant Schubert
classes are cohomology classes corresponding to the Schubert varieties, this implies
that for any w ∈ Sn there exists an infinite sequence of Schubert classes {σw,m}∞m=n
which lift the classes σw,n ∈ H∗T n (F`ags(Cn)), that is,

· · · // H∗T n (F`ags(Cn+2)) // H∗T n (F`ags(Cn+1)) // H∗T n (F`ags(Cn))

· · ·
� // σw,n+2

� // σw,n+1
� // σw,n

(5-1)

and furthermore for any v ∈ Sn and any m ≥ n, the restriction σw,m(v) is equal
to σw,n(v). The theorem below asserts that a similar statement holds for Peterson
Schubert classes. Observe that the inclusion ιn : F`ags(Cn) ↪→ F`ags(Cn+1)

mentioned above also induces a natural inclusion jn : Yn ↪→ Yn+1 since the principal
nilpotent operator on Cn+1 preserves the coordinate subspace Cn . Moreover, since
the central circle subgroup of U (n,C) acts trivially on F`ags(Cn) for any n, the
inclusion jn is equivariant with respect to the S1-actions on Yn and Yn+1 given by
the two circle subgroups defined by (2-2) in U (n,C) and U (n+ 1,C) respectively.
Thus there is a pullback homomorphism j∗n : H

∗

S1(Yn+1)→ H∗S1(Yn) analogous to
the map ιn : H∗T n (F`ags(Cn+1))→ H∗T n (F`ags(Cn)) above.

Theorem 5.1. Fix a positive integer n. Let Yn denote the Peterson variety in
F`ags(Cn) equipped with the natural S1-action defined by (2-2). For w ∈ Sn let
pw,n ∈ H∗S1(Yn) denote the Peterson Schubert class corresponding to w. Then
the natural inclusions jm : Ym ↪→ Ym+1 for m ≥ n induce a sequence of homo-
morphisms j∗m : H∗S1(Ym+1) → H∗S1(Ym) such that j∗m(pw,m+1) = pw,m , that is,
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there exists a infinite sequence of Peterson Schubert classes {pw,m}∞m=n that lift
pw,n ∈ H∗T n (F`ags(Cn)):

· · · // H∗S1(Yn+2) // H∗S1(Yn+1) // H∗S1(Yn)

· · ·
� // pw,n+2

� // pw,n+1
� // pw,n

(5-2)

Moreover, for any v ∈ Y S1

n and any m ≥ n, the restriction pw,m(v) equals pw,n(v).

Proof. By naturality and the definition of Peterson Schubert classes pw,n ∈ H∗S1(Yn)

as the images of σw,n , it is immediate that (5-1) can be expanded to a commutative
diagram

· · · // H∗T n (F`ags(Cn+2))
ι∗n+1 //

��

H∗T n (F`ags(Cn+1))
ι∗n //

��

H∗T n (F`ags(Cn))

��
· · · // H∗S1(Yn+2)

j∗n+1

// H∗S1(Yn+1)
j∗n

// H∗S1(Yn)

(5-3)

where the vertical arrows are the projection maps obtained by the composition
of H∗T n (F`ags(Cm))→ H∗S1(F`ags(Cm)) with H∗S1(F`ags(Cm))→ H∗S1(Ym), for
m = n+2, n+1, n. In particular, for any w ∈ Sn and m ≥ n, the vertical maps send
σw,m to pw,m . The result follows. �
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Weak Allee effect, grazing, and S-shaped
bifurcation curves

Emily Poole, Bonnie Roberson and Brittany Stephenson

(Communicated by John Baxley)

We study a one-dimensional reaction-diffusion model arising in population dy-
namics where the growth rate is a weak Allee type. In particular, we consider
the effects of grazing on the steady states and discuss the complete evolution
of the bifurcation curve of positive solutions as the grazing parameter varies.
We obtain our results via the quadrature method and Mathematica computations.
We establish that the bifurcation curve is S-shaped for certain ranges of the
grazing parameter. We also prove this occurrence of an S-shaped bifurcation
curve analytically.

1. Introduction

For a given population, a linear relationship between the population’s size and its
per capita growth rate is often assumed. This correlation is known as logistic type
growth and reflects that as a given population grows, its per capita growth rate
declines linearly. However, it has been observed that for small population densities,
the per capita growth rate increases rather than declines. Logistic growth cannot
account for this initial increase, and an alternate model, dubbed the Allee effect
[Allee 1938] must be invoked.

The general idea behind the Allee effect is that for small population densities,
a variety of factors (such as a shortage of mates or predator saturation) result in
an initial increase in the per capita growth rate. There are two types of Allee
phenomena: strong Allee effect, whose per capita growth rate begins negative, and
weak Allee effect, whose per capita growth rate is initially positive; these are usually
modeled in the literature by quadratic functions of the population size. Thus, the
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mathematical analysis of such models is considerably more challenging since the
per capita growth rates are neither linear nor always nondecreasing.

When considering the long-term stability of a given population, it is insightful
to study other factors affecting the population. By including an additional term
that accounts for these natural phenomena, such as grazing, more accurate models
can be obtained. Grazing is a type of predation in which an herbivore feeds from
plant life. It is also similar to natural predation found in fish populations. The
grazing term used in previous models, cu2/(1+ u2) (see [Van Nes and Scheffer
2005]), is known as the rate of grazing. Since the grazing population is constant, the
term converges to c at high vegetation density levels. The effects of grazing have
previously been studied with logistic growth, as in [Lee et al. 2011]. In the latter
paper it was shown that, for certain ranges of the parameters involved (including c),
the bifurcation curve of positive steady states is S-shaped.

Our primary motivation is to analyze the consequences of grazing on a weak
Allee effect problem and on a strong Allee effect, in order to determine its effect
on the steady state solutions.

Hence, we examine the structure of positive solutions of the steady state equations
obtained from the reaction diffusion model,

ut =
1
λ

uxx + u f̃ (u)−
cu2

1+ u2 in (0, 1),

with Dirichlet boundary conditions, namely

− u′′ = λ
[

u f̃ (u)−
cu2

1+ u2

]
= λ f (u) in (0, 1),

u(0)= 0, u(1)= 0,

where u is the population density, f̃ (u) is the per capita growth rate, 1/λ is the
diffusion coefficient where λ > 0 is a constant, and c ≥ 0 is also a constant.

Previous studies have analyzed positive solutions to Allee effect problems, both
strong and weak (see [Shi and Shivaji 2006], for example), but to our knowledge
no information is known about the combination of grazing with Allee effect. In
this paper, we will analyze how the addition of a grazing term in combination with
a weak Allee and also in combination with a strong Allee type affects the steady
states in the one-dimensional problem. Our analysis is completed via the quadrature
method [Brown et al. 1981; Laetsch 1970], which we will discuss in Section 2. In
Sections 3–5, we provide a detailed analysis on the case when f̃ is weak Allee, i.e.,

f̃ (u)= (u+ 1)(b− u), b > 1.

In Section 3, we present some necessary analysis of the zeros of our nonlinearity,
f , and in Section 4, we provide the complete evolution of the bifurcation curve of
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positive solutions via Mathematica computations. In particular, we obtain S-shaped
bifurcation curves for certain ranges of parameters bifurcating from the nontrivial
branch of solutions. We note here that for all parameter values u ≡ 0 is a solution
of (1-1). In Section 5, we provide various analytical results, including a proof of
the occurrence of such an S-shaped bifurcation curve. In Section 6, we study the
case when f̃ represents a logistic growth rate, that is,

f̃ (u)= (1− bu)

and provide the evolution of the bifurcation curve as c varies. Next, Section 7
provides the evolution of the bifurcation curve for the case when f̃ is of strong
Allee type. That is,

f̃ (u)= (u− 1)(b− u), b > 1. (1-1)

Unlike the weak Allee case and the logistic case, for the strong Allee case, we notice
that the variation of c had little effect on the general structure of the bifurcation
curve. In particular, no S-shaped bifurcation curve occurred for any parameter
values.

Finally, in Section 8, we conclude the paper by considering the biological
implications arising from our results. In particular, the ranges of conditional and
unconditional persistence in terms of the diffusion coefficient as c varies will also
be discussed. Interestingly, our analysis proves that for weak Allee effect growth
models, when grazing is large, there exist no ranges of the diffusion coefficient for
which conditional persistence exists.

2. Quadrature method

In this section, we recall results via the quadrature method developed by Laetsch
[1970] and Brown, Ibrahim, and Shivaji [Brown et al. 1981] to analyze positive
solutions to the boundary value problem

− u′′(x)= λ f (u(x)), x ∈ (0, 1),

u(0)= 0,

u(1)= 0, (2-1)

where f : [0,∞)→ (0,∞) is a C1 function and λ is a nonnegative parameter.

Lemma 2.1 [Laetsch 1970]. Let u be a positive solution to (2-1) with ‖u‖∞ =
u( 1

2)= ρ > 0. Such a solution exists if and only if

G(ρ) :=
∫ ρ

0

dt
√

F(ρ)− F(t)
=

√
λ

2
, (2-2)
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where

F(u)=
∫ u

0
f (s) ds.

Proof. (⇒) Since (2-1) is an autonomous differential equation, if u is a positive
solution to (2-1) such that u′(x0)=0 for some x0∈ (0, 1), then both v(x) :=u(x0+x)
and w(x) := u(x0− x) satisfy the initial value problem

−z′′(x)= λ f (z(x)), x ∈ [0, d),

z(0)= u(x0), z′(0)= 0,

where d = min{x0, 1− x0}. By Picard’s existence and uniqueness theorem, we
can infer that u(x0 + x) ≡ u(x0 − x) for all x ∈ [0, d). Thus, solutions of (2-1)
must be symmetric around x = 1

2 , at which point u attains its maximum ρ := u(1
2).

Multiplying the differential equation in (2-1) by u′(x) gives

−

(
[u′(x)]2

2

)′
= λ[F(u(x))]′, (2-3)

where F(s)=
∫ s

0 f (z) dz.
Integrating both sides, we derive

u′(x)
√

F(ρ)− F(u(x))
=
√

2λ, x ∈
[
0, 1

2

)
. (2-4)

Integrating again, we obtain∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx, x ∈
[
0, 1

2

]
. (2-5)

Substituting x = 1
2 into (2-5) and using u( 1

2)= ρ, we now have

G(ρ) :=
∫ ρ

0

dt
√

F(ρ)− F(t)
=

√
λ

2
. (2-6)

Thus, if u is a solution of (2-1) with ‖u‖∞ = ρ, then ρ must satisfy the equation
G(ρ)=

√
λ/2.

(⇐) Now, if we have such a value for ρ, we can define our solution u through the
equation ∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx, x ∈
[
0, 1

2

]
.

By the implicit function theorem, u is differentiable; therefore,

u′(x)=
√

2λ[F(ρ)− F(u(x))].
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Differentiating again gives us

− u′′(x)= λ f (u(x)).

Also, it is easy to see that u(0) = 0. Finally, defining u(x) to be a symmetric
solution, we have that u is a positive solution to (2-1) with ‖u‖∞ = ρ if and only if
√
λ/2= G(ρ). �

Remark 2.1. For values of ρ satisfying the following two conditions, the improper
integral in (2-2) will be well-defined and convergent:

f (ρ) > 0,

F(ρ) > F(s) for all s ∈ [0, ρ).

The following lemma is taken from [Brown et al. 1981], and the proof makes
critical use of Lebesgue’s dominated convergence theorem to prove the existence
of the integral in (2-7).

Lemma 2.2. G(ρ) is continuous and differentiable on the set

S := {ρ > 0 | f (ρ) > 0 and F(ρ)− F(s) > 0 for all s ∈ [0, ρ)};

moreover,

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv, (2-7)

where

H(s) := F(s)−
s
2

f (s). (2-8)

3. Preliminaries

We consider the following reaction term, which combines weak Allee effect and
grazing:

f (u)= u(u+ 1)(b− u)−
cu2

1+ u2 =
u(u+ 1)(b− u)(1+ u2)− cu2

1+ u2 ,

where b > 1 and c ≥ 0. The numerator of f (u) is a fifth degree polynomial. Study
of the roots of f (u) reveals the existence of one negative root and one root at u = 0,
regardless of the values chosen for b and c. On the contrary, the three remaining
roots are dependent on the value of the constant c. These three roots fluctuate
between real and imaginary values as c changes. Let σ represent the smallest
positive root of f (u) in all cases, and let σ0 and σ1 denote the two remaining roots.
We must also note that a special case occurs for small values of b: for b ∈ (1, b0),
(for some b0 > 1), there is always exactly one positive real root of f (u), σ . In
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0

σ

f(u)

Figure 1. Graph of f (u) with root at σ .

order for G(ρ) to be defined, this variance demands that further analysis of f (u)
be completed case-wise (see Remark 2.1).

Remark 3.1. Based on our computations and aid from Mathematica, we conjecture
that b0 ≈ 2.852.

If b ∈ (b0,∞), the characteristic shape of f (u) varies as the value of c changes.
There exists c0 > 0 so that for c ∈ (0, c0), f (u) has only one real root, σ . In this
case, f (u) resembles Figure 1.

Correspondingly, in this case, F(u) will take the form exemplified in Figure 2.
As you can see, G(ρ) will be well-defined for ρ ∈ (0, σ ). As c increases, the shape
of f (u) changes. There exists c1 > c0 so that for c ∈ (c0, c1), f (u) has exactly 3
real positive roots, (σ , σ0, and σ1). The shape of f (u) is illustrated in Figure 3.

There exists ĉ1 < c1 such that for c ∈ (c0, ĉ1), the graph of F(u) resembles
Figure 4. We let γ ∈ (σ0, σ1), so that F(γ )= F(σ ). Recall from Remark 2.1 that,
to guarantee that G(ρ) is well-defined, we need f (ρ) > 0 as well as F(ρ) > F(u)
whenever 0 ≤ u < ρ. Thus, in this case, G(ρ) will be viable only for ρ ∈ (0, σ )
and ρ ∈ (γ, σ1). (The boxed region in Figure 4 has been magnified in Figure 5.)

0
σ

F(u)

Figure 2. Graph of F(u) for c ∈ (0, c0).
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0

f(u)

σ σ
0 σ

1

Figure 3. Graph of f (u) with roots at σ, σ0, and σ1.

0

γσ

F(u)

σ
1

Figure 4. Graph of F(u) for c ∈ (c0, ĉ1).

0

F(u)

γ
σ

σ
0

Figure 5. Magnified picture of the boxed region in Figure 4.

0

F(u)

σ

σ
1

Figure 6. Graph of F(u) for c ∈ (ĉ1, c1).



140 EMILY POOLE, BONNIE ROBERSON AND BRITTANY STEPHENSON

0

f(u)
σ

Figure 7. Graph of f (u) with root at σ .

0

σ

F(u)

Figure 8. F(u) for c > c1.

The graph of F(u) for c ∈ (ĉ1, c1) is illustrated in Figure 6. Clearly, G(ρ) in
this instance is only well-defined for ρ ∈ (0, σ ). When c exceeds c1, f (u) is pulled
downward and once again has only one real positive root. We will denote this root
as σ while σ0 and σ1 are imaginary in this case. This is portrayed in Figure 7.
Again, G(ρ) is well-defined only for ρ ∈ (0, σ ). For c > c1, F(u) will take the
form illustrated in Figure 8.

For each of these cases, the structure of positive solutions for (1-1) changes; thus,
distinct bifurcation diagrams are obtained, as we now explain.

4. Computational results

In this section, we present the bifurcation diagrams for the weak Allee effect.
Recalling Lemma 2.1, we obtained these results via Mathematica by plotting (2-2)
for a fixed b-value over a range of c-values.

If b ∈ (b0,∞), then there exist c∗0, c∗1, c∗2 > 0 such that:

1. If c ∈ [0, c∗0), there exist λ0 > 0 and 3= π2/ f ′(0) such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0,3), and
• exactly 1 positive solution for λ ∈ [3,∞).
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0

λ

||u||
∞

π
2

f ’(0)

              b=5, c=2

λ
0

Λ

Figure 9. Illustration of Case 1.

(See illustration in Figure 9.)

2. If c ∈ [c∗0, c∗1), there exist λ0, λ1, λ1, λ2,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0, λ1),
• exactly 3 positive solutions for λ= λ1,
• exactly 4 positive solutions for λ ∈ (λ1, λ2),
• exactly 3 positive solutions for λ= λ2,
• exactly 2 positive solutions for λ ∈ (λ2,3), and
• exactly 1 positive solution for λ ∈ [3,∞).

(See illustration in Figure 10.)

0

||u||
∞

              b=5, c=3.93

π
2

f ’(0)

λ
0 Λ

λ

0

λ

||u||
∞

π
2

f ’(0)

λ
1

λ
2

Λ

Figure 10. Illustration of Case 2. The bottom diagram shows the
contents of the small dotted box under magnification.
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0

λ

||u||
∞

b=5, c=3.937

f ’(0)
π

2

λ
0

Λ

0

λ

||u||
∞

π
2

f ’(0)

Λλ
1

Figure 11. Illustration of Case 3, including magnified detail.

3. If c = c∗1 , there exist λ0, λ1,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0, λ1),
• exactly 3 positive solutions for λ= λ1,
• exactly 4 positive solutions for λ ∈ (λ1,3),
• exactly 2 positive solutions for λ=3, and
• exactly 1 positive solution for λ ∈ (3,∞).

(See illustration in Figure 11.)

4. If c = (c∗1, c∗2 = b− 1), there exist λ0, λ1, λ2,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solutions for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0, λ1),
• exactly 3 positive solutions for λ= λ1,
• exactly 4 positive solutions for λ ∈ (λ1,3),
• exactly 3 positive solutions for λ ∈ [3, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 12.)

5. If c = c∗2 = b− 1, there exist λ0,3 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solutions for λ= λ0,
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0

||u||
∞

b=5, c=3.95

λ

Λ

f ’(0)
π

2

λ
0

0

λ

||u||
∞

λ
1 Λ λ

2

π
2

f ’(0)

Figure 12. Illustration of Case 4, including magnified detail.

0

λ
0

λ

||u||
∞

f ’(0)

         b=5,  c=4

Λ

π
2

Figure 13. Illustration of Case 5.

• exactly 2 positive solutions for λ ∈ (λ0,3), and
• exactly 1 positive solutions for λ ∈ [3,∞).

(See illustration in Figure 13.)

6. If c ∈ (c∗2 = b− 1, c∗3), there exist λ0,3, λ2 > 0 such that (2-1) has
• no positive solution for λ ∈ (0, λ0),
• exactly 1 positive solution for λ= λ0,
• exactly 2 positive solutions for λ ∈ (λ0,3],
• exactly 3 positive solutions for λ ∈ (3, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 14.)
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0

||u||
∞

f ’(0)
λ

Λ

π
2

              b=5, c=5

λ
0

λ
2

Figure 14. Illustration of Case 6.

0

||u||
∞

λ

              b=5, c=10.3

Λ λ
2

π
2

f’(0)

Figure 15. Illustration of Case 7.

7. If c = c∗3 , there exist 3, λ2 > 0 such that (2-1) has
• no positive solution for λ ∈ (0,3),
• exactly 1 positive solution for λ=3,
• exactly 3 positive solutions for λ ∈ (3, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 15.)

8. If c ∈ (c∗3, c∗4), there exist 3, λ0, λ2 > 0 such that (2-1) has

0

||u||
∞

λ

λ
2

π
2

              b=5, c=13.9

f’(0)

λ
0Λ

Figure 16. Illustration of Case 8.
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• no positive solution for λ ∈ (0,3],
• exactly 1 positive solution for λ ∈ (3, λ0),
• exactly 2 positive solutions for λ= λ0,
• exactly 3 positive solutions for λ ∈ (λ0, λ2),
• exactly 2 positive solutions for λ= λ2, and
• exactly 1 positive solution for λ ∈ (λ2,∞).

(See illustration in Figure 16.)

9. If c ∈ [c∗4, c∗5), there exist 3, λ0 > 0 such that (2-1) has

• no positive solution for λ ∈ (0,3],
• exactly 1 positive solution for λ ∈ (3, λ0),
• exactly 2 positive solutions for λ= λ0, and
• exactly 3 positive solutions for λ ∈ (λ0,∞).

(See illustration in Figure 17.)

10. If c ∈ [c∗5,∞), there exists 3> 0 such that (1-1) has

• no positive solution for λ ∈ (0,3], and
• exactly 1 positive solution for λ ∈ (3,∞).

(See illustration in Figure 18.)

0

||u||
∞

λ

Λ

π
2

f ’(0)

              b=5, c=18

λ
0

Figure 17. Illustration of Case 9.

0

||u||
∞

λ

Λ

π
2

f ’(0)

              b=5, c=22

Figure 18. Illustration of Case 10.
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5. Analytical results

In this section, we provide analytical proofs of several results that help detail the
global behavior of bifurcation curves and further corroborate our computational
results presented in the previous section. First we state two results on the behavior
of G(ρ) when ρ→ 0+ and when ρ→ σ−, where σ is the smallest positive root
of f (u). The proofs of these results are provided in the Appendix. One may also
refer to [Laetsch 1970], where such results were discussed.

Lemma 5.1. limρ→0+ G(ρ)= π/
√

2b.

Lemma 5.2. limρ→σ− G(ρ)=∞.

Next we establish a precise value of c such that for c smaller than this value, the
bifurcation curve bifurcates to the left near (π/

√
2b, 0) while for c greater than this

value, the bifurcation curve bifurcates to the right near (π/
√

2b, 0). Namely, we
establish the following:

Theorem 5.1. Let c∗2 = b − 1. If 0 ≤ c < c∗2 , then G ′(ρ) < 0 on some interval
(0, ρ1) and if c > c∗2 , then G ′(ρ) > 0 on some interval (0, ρ1).

Proof. Recall

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv (5-1)

where

H(s)= F(s)−
s
2

f (s). (5-2)

Note that H(0) = 0. Thus, showing H ′(s) > 0 for some 0 < s < s0 with s0 ≈ 0
implies G ′(ρ) > 0 on some interval (0, ρ1). We have

H ′(s)= 1
2 [ f (s)− s f ′(s)].

H ′(0)= 0 also. Therefore, we differentiate again.

H ′′(s)=−
s
2

f ′′(s).

Clearly, the sign of H ′′(s) is dependent only on the sign of f ′′(s). We know

f (s)= s(s+ 1)(b− s)− c
s2

1+ s2 (5-3)

=−s3
+ (b− 1)s2

+ bs−
cs2

1+ s2 . (5-4)

By taking the first derivative and simplifying, we get

f ′(s)=−3s2
+ 2(b− 1)s+ b− c

2s
(1+ s2)2

.
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Then, taking the second derivative and simplifying, we obtain

f ′′(s)=−6s+ 2(b− 1)− c
2− 6s2

(1+ s2)3
.

Evaluating f ′′(s) when s = 0 gives

f ′′(0)= 2(b− 1)− 2c. (5-5)

By analysis of (5-5), we see that c < (b− 1) ⇒ f ′′(0) > 0 ⇒ H ′′(s) < 0 ⇒
H ′(s) < 0 for s ∈ (0, s0) for some s0 > 0 ⇒ G ′(ρ) < 0 for ρ ≈ 0. Conversely,
we have c > (b − 1) ⇒ f ′′(0) < 0 ⇒ H ′′(s) > 0 ⇒ H ′(s) > 0 for s ∈
(0, s1) for some s1 > 0 ⇒ G ′(ρ) > 0 for ρ ≈ 0. �

Now we establish our main result of this section, the occurrence of an S-shaped
bifurcation curve.

Theorem 5.2. Let b > 4 and c ∈ (b− 1, 3
2 b− 3). Then the bifurcation curve for

(1-1) is guaranteed to be at least S-shaped. (See Figure 19.)

Proof. The proof is divided into three steps. In Step 1, we establish that if b > 2
and c ∈ (max{0, b− 5}, 3

2 b− 3), then 2 ∈ (0, σ ), for which we must recall that
σ is the smallest positive root of f (u). In Step 2, we prove that if b > 4 and
c ∈ (max{0, b−5}, 3

2 b−3), then H(2) < 0. In Step 3, we prove that the bifurcation
curve is at least S-shaped.

Step 1. Consider the functions

f (u)= u(u+ 1)(b− u)−
cu2

u2+ 1

and
k(u)= u(u+ 1)(b− u)− cu2.

0

                 b= 5, c= 12

λπ
2

f’(0)

2

σ

ρ
*

Figure 19
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0

f(u)

k(u)θ2 σ

Figure 20

As shown in Figure 20, it is clear f (u)≥ k(u). Any positive root of k(u), θ , will
occur before any positive root of f (u), σ . Thus, if r ∈ (0, θ), then r ∈ (0, σ ).

Therefore, it suffices to show that 2 ∈ (0, θ). By solving k(u)= 0, we obtain

θ =
(b− 1− c)+

√
4b+ (b− 1− c)2

2
. (5-6)

We want θ > 2, so

(b− 1− c)+
√

4b+ (b− 1− c)2

2
> 2 (5-7)

Simplifying, we obtain √
4b+ (b− 1− c)2 > (5+ c− b) (5-8)

If 5+ c− b ≤ 0, then it is clear the above inequality holds true. If 5+ c− b > 0,
then c > b− 5 and squaring and solving (5-8) gives

c < 3
2 b− 3. (5-9)

Thus, if b > 2 and c ∈ (max{0, b− 5}, 3
2 b− 3), then 2 ∈ (0, θ); hence, 2 ∈ (0, σ ).

Step 2. Recall that

H(s)= F(s)−
s
2

f (s)=
s4

4
− (b− 1)

s3

6
+ c

[
s3

2(1+ s2)
− s+ arctan s

]
.

Then,

H(2)= 4− (b− 1)4
3 + c[45 − 2+ arctan 2] ≤ 16−4b

3
+ c(−6

5 + 1) < 0

for all b > 4.
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0

H(ρ)

ρ
*

2

Figure 21

Step 3. Let b > 4 and c ∈ (b− 1, 3
2 b− 3). Recall from Lemma 2.2 that

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv. (5-10)

Then from Theorem 5.1, we conclude that G ′(ρ) begins positive. From Steps 1 and
2, we know 2 ∈ (0, σ ) and H(2) < 0. Hence there exists ρ∗ ∈ (0, 2), (say, the first
zero of H(ρ)), such that G ′(ρ∗) < 0. (See Figure 16.) Also, limρ→σ− G(ρ)=∞
by Lemma 5.2. Therefore, the graph of G(ρ) must be at least S-shaped. �

Next we study the bifurcation diagram for a larger range of c values. First, we
consider the case when the bifurcation curve is split, providing various numbers of
positive solutions for different ranges of λ:

Theorem 5.3. There exist c0, ĉ1 (< c1) such that for c ∈ (c0, ĉ1), there exists a
λ1 > (π/

√
2b)2 such that (1-1) has at least one positive solution in ((π/

√
2b)2, λ1),

at least two positive solutions for λ= λ1, and at least three positive solutions for
λ > λ1.

Proof. By Lemma 5.1, limρ→0+ G(ρ) = π/
√

2b. Recall from Section 3 that for
c0 < c < c1, f (s) has the appearance shown in Figure 22.

Furthermore, recall from Section 3 that G(ρ) is well-defined for ρ ∈ (0, σ )
and ρ ∈ (γ, σ1), and that F(γ ) = F(σ ) (see the graph of F(u) for c ∈ (c0, ĉ1)

in Figure 4, page 139). From Lemma 5.2, we know limρ→σ− G(ρ) = ∞. A
similar argument can be applied to show that limρ→σ−1

G(ρ) =∞. The proof of
Theorem 5.3 is complete if limρ→γ+ G(ρ) = +∞. Such a result was proved in
[Brown and Budin 1979], which we will recall now. First recall that F(γ )= F(σ ).
We let A =max{| f ′(s)|; s ∈ [0, σ1]}. Then we can note that | f (s)| ≤ A|s− σ | for
all s ∈ [0, σ1]. Next we let B =max{| f (s)|; 0≤ s ≤ σ1}. Now, if σ1 > ρ > γ and
0≤ s < ρ, then

F(ρ)− F(s)= F(ρ)− F(γ )+ F(σ )− F(s).



150 EMILY POOLE, BONNIE ROBERSON AND BRITTANY STEPHENSON

0

f(u)

  σ
1 σ γ

Figure 22

By the mean value theorem, we can then write this as

F(ρ)− F(s)= (ρ− γ ) f (ξ)+ (σ − s) f (η),

where ξ ∈ (γ, ρ) and η lies between σ and s. Hence,

F(ρ)− F(s)≤ B(ρ− γ )+ A(σ − s)2.

Recall that

G(ρ)=
√

2
∫ ρ

0
[F(ρ)− F(s)]−

1
2 ds.

By substitution, we can write

G(ρ)≥
∫ γ

0

√
2
[
B(ρ− γ )+ A(σ − s)2

]− 1
2 ds.

Let Hρ(s)=
√

2
[
B(ρ−γ )+ A(σ−s)2

]− 1
2 . Since Hρ is nondecreasing as ρ→ γ+,

we can apply the monotonic convergence theorem, which gives us

lim
ρ→γ+

G(ρ)≥ lim
ρ→γ+

∫ γ

0
Hρ(s) ds =

∫ γ

0

√
2A−

1
2 |σ − s|−1ds

=
√

2A−
1
2

∫ σ

0
(σ − s)−1ds+

∫ γ

σ

(s− σ)−1ds.

Both these integrals diverge to +∞, so limρ→γ+ G(ρ)=+∞. �

Thus, we obtain the bifurcation diagram represented in Figure 23 (see next page).
Next we establish a result for large values of c:

Theorem 5.4. There exists a c̃ such that if c > c̃, then (1-1) has a unique positive
solution for all λ > (π/

√
2b)2.
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              b=5, c=18

π
2
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              b=5, c=18

σ
1

σσ

  γ

 ||u||
∞

Figure 23

Proof. From Section 3 we know that for c> ĉ1, G(ρ) is only defined for ρ ∈ (0, σ ).
With f1(u) = u(u+ 1)(b− u) and f2(u) = cu2/(1+ u2), the graph of f1− f2 is
illustrated in Figure 24. Recall the equality

G ′(ρ)=
∫ 1

0

H(ρ)− H(ρv)

[F(ρ)− F(ρv)]
3
2

dv

with

H(s)= F(s)− 1
2 s f (s), H ′(s)= 1

2 [ f (s)− s f ′(s)], H ′′(s)=− 1
2 s f ′′(s).

We wish to show that f ′′(s) < 0 for 0< s < σ . This will alternatively imply that
H ′′(s) > 0 for 0 < s < σ , noting once again that H(0) = H ′(0) = 0. Therefore,
showing H ′(s) > 0 for 0 < s < σ implies G ′(ρ) > 0 for 0 < ρ < σ , as shown in
the bifurcation diagram in Figure 25.

We begin with the analysis of f ′′(s).

f ′′(s)=−6s+ 2(b− 1)− c
2− 6s2

(1+ s2)3
(5-11)

0

f = f
1
 − f

2

σ

Figure 24. f (u)= f1− f2.
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0

λ

ρ

σ

Figure 25

We can then bound this function by a larger one, so we choose

f ′′(s)≤ 2(b− 1)− c
2− 6s2

(1+ s2)3
. (5-12)

Let

B(s)=
2− 6s2

(1+ s2)3
.

Note that B(s) > 0 on 0≤ s < 1
√

3
. For c� 1, we can assume that σ < 1

2
√

3
. Hence,

for c� 1, there exists δ > 0 such that B(s)≥ δ for all 0≤ s ≤ σ . Thus,

f ′′(s)≤ 2(b− 1)− cδ for all 0≤ s ≤ σ. (5-13)

Therefore, for c� 1, f ′′(s)< 0 for 0< s<σ . Hence, we know then that H ′′(s)> 0
for 0< s < σ and G ′(ρ) > 0 for 0< ρ < σ . �

The corresponding bifurcation diagram is illustrated in Figure 25.

6. Computational results for logistic growth

In [Lee et al. 2011], the effect of grazing on a logistic growth rate was studied.
Several bifurcation diagrams were provided, but a complete bifurcation evolution for
the one-dimensional case as c varies was not provided. It is useful to compare these
computational results to those of the weak and strong Allee effect. The combination
of grazing with a logistic growth rate can be illustrated by the following equation:

f̂ (u)= u(1− bu)− c
u2

1+ u2 ; b > 0, c ≥ 0. (6-1)

We obtain our evolution results via the quadrature method and Mathematica compu-
tations. The following figures illustrate this evolution for a fixed b as c increases.

If b ∈ (0, b0), then there exist ĉ0, ĉ1, ĉ2, ĉ3, ĉ4 > 0 such that:

1. If c ∈ [0, ĉ0), there exists a 3> 0 such that (6-1) has
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0
λ

||
u
||

∞

b=0.01, c=0

Λ

Figure 26. Illustration of Case 1.

• no positive solution for λ ∈ (0,3), and
• exactly 1 positive solution for λ ∈ [3,∞).

(See illustration in Figure 26.)

2. If c ∈ (ĉ0, ĉ1), there exist 3, λ0, λ1 > 0 such that (6-1) has
• no positive solution for λ ∈ (0,3),
• exactly 1 positive solution for λ ∈ [3, λ0),
• exactly 2 positive solutions for λ= λ0,
• exactly 3 positive solutions for λ ∈ (λ0, λ1], and
• exactly 1 positive solution for λ ∈ (λ1,∞).

(See illustration in Figure 27.)

0

b = 0.01, c = 0.8

λ

||
u
||

∞

Λ λ
0

λ
1

Figure 27. Illustration of Case 2.

3. If c ∈ (ĉ2, ĉ3), there exist 3, λ0 > 0 such that (6-1) has
• no positive solution for λ ∈ (0,3),
• exactly 1 positive solution for λ ∈ (3, λ0),
• exactly 2 positive solutions for λ= λ0, and
• exactly 3 positive solutions for λ ∈ (λ0,∞].

(See illustrations in Figure 28.)

4. If c ∈ (ĉ3, ĉ4), there exists a 3> 0, such that (6-1) has
• no positive solution for λ ∈ (0,3), and
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Figure 28. Illustrations of Case 3.

0

b = 0.01, c = 26

λ

||
u

| ∞

Λ

Figure 29. Illustration of Case 4.

• exactly 1 positive solution for λ ∈ [3,∞).

(See illustration in Figure 29.)

7. Computational results for strong Allee effect

This section describes the case in which a grazing term is combined with a strong
Allee growth rate. Thus, our reaction term is

f̄ (u)= u(u− 1)(b− u)−
cu2

1+ u2 , b > 1, c ≥ 0.

As in Section 4, we obtain our results via the quadrature method detailed in Section 2
and apply Mathematica to complete our computations. In the top left part of
Figure 30, we present the bifurcation curve with no grazing term (c = 0). The
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Figure 30. Evolution of the bifurcation curve as c increases.

resulting bifurcation curve evolution for increasing c is briefly exemplified in the
remaining three parts of the figure.

After careful computational analysis and application of values for ranges of b> 1
and c≥ 0, we observe that the grazing term ultimately has little effect on the overall
structure of the resulting bifurcation curve. However, we must note that for large
values of c the grazing term will overcome the strong Allee effect and there will no
longer exist any steady states. Thus, in this case the population will die out.

8. Biological implications

Analysis of the steady states of (1-1) provides valuable information on the long-
term survival of a population. Given an initial population size and grazing rate, the
bifurcation diagrams we have included provide ranges of λ for which the population
persists. Depending on the range of λ, the persistence is either conditional or
unconditional.

When λ is small, the diffusion coefficient is large enough to cause a population
to die out despite its initial size. This is clearly illustrated through the bifurcation
diagrams for the range λ ∈ (0, λ0). Using Figure 31 as an example, it is clear that
whether a population has an initial size of k or of l, it will still die out.

Between λ1 and λ2, we have unconditional persistence. That is, a population
with an initial size of m will decrease until achieving stability at the bottom branch.
However, between λ2 and λ3, the stability of the steady states results in conditional
persistence. In this range, the top and bottom branches are stable solutions while the
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middle branch is unstable. Thus, a population’s persistence is dictated by its initial
population size. For example, a population beginning with a size of n will decline
until reaching stability at the bottom branch; whereas, a population beginning with
a size of o will increase until reaching stability at the bottom branch. Furthermore,
for an initial size of p, the population will grow until obtaining stability at the top
branch while an initial size of q will diminish until obtaining stability at the top
branch.

For λ > λ3, the population will unconditionally persist. With an initial size of r ,
a population will decrease until stabilizing at the top branch while an initial size of
s will increase until stabilizing at the top branch.

9. Appendix: Proofs of Lemma 5.1 and Lemma 5.2

Proof of Lemma 5.1. (See also [Laetsch 1970].)

lim
ρ→0+

G(ρ)= lim
ρ→0+

∫ ρ

0

dz
√

F(ρ)− F(z)
= lim
ρ→0+

∫ 1

0

ρdv
√

F(ρ)− F(ρv)

= lim
ρ→0+

∫ 1

0

dv√
F(ρ)−F(ρv)

ρ2

(9-1)

By Lebesgue’s dominated convergence theorem, the limit can be moved inside the
integral. Thus, we evaluate

lim
ρ→0+

F(ρ)− F(ρv)
ρ2 .
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After applying L’Hospital’s rule twice, we obtain

lim
ρ→0+

f ′(ρ)− v2 f ′(ρv)
2

=
f ′(0)

2
(1− v2). (9-2)

Combining (9-1) and (9-2), we have

lim
ρ→0+

G(ρ)=
√

2
f ′(0)

∫ 1

0

dv
√

1− v2
=

π
√

2 f ′(0)
=

π
√

2b
. �

Proof of Lemma 5.2. (See also [Laetsch 1970].) Let N > 0 be large enough such
that f (u)≤ N (σ − u) for all 0≤ u ≤ σ . By the mean value theorem,

F(ρ)− F(s)= F ′(θ)(ρ− s)= f (θ)(ρ− s)≤ N (σ − θ)(ρ− s)≤ N (σ − s)2.

Then
√

F(ρ)− F(s)≤
√

N (σ − s), or, with n = 1/
√

N ,

1
√

F(ρ)− F(s)
≥

n
σ − s

.

Integrating both sides gives∫ ρ

0

ds
√

F(ρ)− F(s)
≥ n

∫ ρ

0

ds
σ − s

G(ρ)≥−n ln(σ − ρ)+ n ln(σ ).

As ρ→ σ−, the right side of the inequality approaches∞. Thus, G(ρ)→∞ as
ρ→ σ−. �
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A BMO theorem for ε-distorted diffeomorphisms
on RD and an application to comparing manifolds

of speech and sound
Charles Fefferman, Steven B. Damelin and William Glover

(Communicated by Kenneth S. Berenhaut)

This paper deals with a BMO theorem for ε-distorted diffeomorphisms on RD

and an application comparing manifolds of speech and sound.

1. Introduction

From the very beginning of time, mathematicians have been intrigued by the fasci-
nating connections which exist between music, speech and mathematics. Indeed,
these connections were already in some subtle form in the writings of Gauss. The
aim of this paper is to study estimates in measure for diffeomorphisms RD to RD ,
D≥ 2 of small distortion and provide an application to comparing music and speech
manifolds.

This paper originated from discussions where Glover, an undergraduate student of
Damelin and a passionate practitioner of music (particularly the piano), introduced
Damelin to the beautiful world of beats, movements, scales, measures and time
signatures. A fruitful and inspiring collaboration ensued, enriched by wonderful
contributions from Fefferman.

2. Preliminaries

Fix a dimension D≥ 2. We work in RD . We write B(x, r) to denote the open ball in
RD with centre x and radius r . We write A to denote Euclidean motions on RD . A
Euclidean motion may be orientation-preserving or orientation reversing. We write
c, C , C ′, etc. to denote constants depending on the dimension D. These expressions
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Keywords: measure, BMO, diffeomorphism, small distortion, manifold, music, sound, noise, speech,

alignment.
Damelin thanks Princeton University and Wayne Country Day School for financial support. He also
thanks Prof Charles Fefferman for wonderfully inspiring collaborations and his generosity.

159

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2012.5-2
http://dx.doi.org/10.2140/involve.2012.5.159


160 CHARLES FEFFERMAN, STEVEN B. DAMELIN AND WILLIAM GLOVER

need not denote the same constant in different occurrences. For a D× D matrix,
M = (Mi j ), we write |M | to denote the Hilbert–Schmidt norm

|M | =
(∑

i j

|Mi j |
2
)1/2

.

Note that if M is real and symmetric and if

(1− λ)I ≤ M ≤ (1+ λ)I

as matrices, where 0< λ < 1, then

|M − I | ≤ Cλ. (2-1)

This follows from working in an orthonormal basis for which M is diagonal. One
way to understand the formulas above is to think of λ as being close to zero. See
also (2-6) below.

A function f : RD
→ R is said to be BMO (Bounded mean oscillation )if there

is a constant K ≥ 0 such that, for every ball B ⊂ RD, there exists a real number
HB such that

1
vol B

∫
B
| f (x)− HB | dx ≤ K . (2-2)

The least such K is denoted by ‖ f ‖BMO.
In harmonic analysis, a function of bounded mean oscillation, also known as a

BMO function, is a real-valued function whose mean oscillation is bounded (finite).
The space of functions of bounded mean oscillation (BMO), is a function space
that, in some precise sense, plays the same role in the theory of Hardy spaces, that
the space of essentially bounded functions plays in the theory of Lp-spaces: it
is also called a John–Nirenberg space, after Fritz John and Louis Nirenberg who
introduced and studied it for the first time [John 1961; John and Nirenberg 1961].

The John–Nirenberg inequality asserts the following: Let f ∈ BMO and let
B ⊂ RD be a ball. Then there exists a real number HB such that

vol {x ∈ B : | f (x)− HB |> Cλ‖ f ‖BMO} ≤ exp(−λ)vol B, λ≥ 1. (2-3)

As a corollary of the John–Nirenberg inequality, we have(
1

vol B

∫
B
| f (x)− HB |

4dx
)1/4

≤ Cλ‖ f ‖BMO. (2-4)

There is nothing special about the 4th power in the above; it will be needed later.
The definition of BMO, the notion of the BMO norm, the John–Nirenburg

inequality (2-3) and its corollary (2-4) carry through to the case of functions f
on RD which take their values in the space of D× D matrices. Indeed, we take
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HB in (2-2)–(2-4) to be a D× D matrix for such f . The matrix valued norms of
(2-3)–(2-4) follow easily from the scalar case.

We will need some potential theory. If f is a smooth function of compact support
in RD , then we can write 1−1 f to denote the convolution of f with the Newtonian
potential. Thus, 1−1 f is smooth and 1(1−1 f )= f on RD .

We will use the estimate:∥∥∥∥ ∂∂xi
1−1 ∂

∂x j
f
∥∥∥∥

L2(RD)

≤ C‖ f ‖L2(RD), i, j = 1, . . . , D, (2-5)

valid for any smooth function f with compact support. Estimate (2-5) follows by
applying the Fourier transform.

We will work with a positive number ε. We always assume that ε ≤min(1,C).
An ε-distorted diffeomorphism of RD is a one to one and onto diffeomorphism
8 : RD

→ RD such as

(1− ε)I ≤ (8′(x))T (8′(x))≤ (1+ ε)I

as matrices. Thanks to (2-1), such 8 satisfy∣∣(8′(x))T (8′(x))− I
∣∣≤ Cε. (2-6)

We end this section with the following inequality from [Fefferman and Damelin
≥ 2012]:

Approximation Lemma. Let 8 : RD
→ RD be an ε-distorted diffeomorphism.

Then, there exists an Euclidean motion A such that

|8(x)− A(x)| ≤ Cε (2-7)

for all x ∈ B(0, 10).

3. An overdetermined system

We will need to study the following elemetary overdetermined system of partial
differential equations.

∂�i

∂x j
+
∂� j

∂xi
= fi j , i, j = 1, . . . , D, (3-1)

on RD. Here, �i and fi j are C∞ functions on RD. A result concerning (3-1) we
need is:

PDE Theorem. Let �1, . . . , �D and fi j , for i, j = 1, . . . , D, be smooth functions
on RD . Assume that (3-1) holds and suppose that

‖ fi j‖L2(B(0,4)) ≤ 1. (3-2)
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Then, there exist real numbers 1i j , for i, j = 1, . . . , D, such that

1i j +1 j i = 0 for all i, j (3-3)

and ∥∥∥∥∂�i

∂x j
−1i j

∥∥∥∥
L2(B(0,1))

≤ C. (3-4)

Proof. From (3-1), we see at once that

∂�i

∂xi
=

1
2 fi i

for each i . Now, by differentiating (3-1) with respect to x j and then summing on j ,
we see that

1�i +
1
2
∂

∂xi

(∑
j

f j j

)
=

∑
j

∂ fi j

∂x j

for each i . Therefore, we may write

1�i =
∑

j

∂

∂x j
gi j

for smooth functions gi j with

‖gi j‖L2(B(0,4) ≤ C.

This holds for each i . Let χ be a C∞ cutoff function on RD equal to 1 on B(0, 2)
vanishing outside B(0, 4) and satisfying 0≤ χ ≤ 1 everywhere. Now let

�err
i =1

−1
∑

j

∂

∂x j

(
χg j i

)
and let

�∗i =�i −�
err
i .

Then,

�i =�
∗

i +�
err
i (3-5)

each i . The function

�∗i (3-6)

is harmonic on B(0, 2) and ∥∥∇�err
i

∥∥
L2(B(0,2)) ≤ C (3-7)
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thanks to (2-5). By (3-1), (3-2), (3-5), (3-7), we can write

∂�∗i

∂x j
+
∂�∗j

∂xi
= f ∗i j , i, j = 1, . . . , D, (3-8)

on B(0, 2) and with
‖ f ∗i j‖L2(B(0,2) ≤ C. (3-9)

From (3-6) and (3-8), we see that each f ∗i j is a harmonic function on B(0, 2).
Consequently, (3-9) implies

supB(0,1)|∇ f ∗i j | ≤ C. (3-10)

From (3-8), we have for each i, j, k,

∂2�∗i

∂x j∂xk
+
∂2�∗k

∂xi∂x j
=
∂ f ∗ik
∂x j

,
∂2�∗i

∂x j∂xk
+
∂2�∗j

∂xi∂xk
=
∂ f ∗i j

∂xk
, (3-11)

∂2�∗j

∂xi∂xk
+
∂2�∗k

∂xi∂x j
=
∂ f ∗jk

∂xi
. (3-12)

Now adding the first two equations above and subtracting the last, we obtain:

2
∂2�∗i

∂x j∂xk
=
∂ f ∗ik
∂x j
+
∂ f ∗i j

∂xk
−
∂ f ∗jk

∂xi
(3-13)

on B(0, 1). Now from (3-10) and (3-13), we obtain the estimate∣∣∣∣ ∂2�∗i

∂x j∂xk

∣∣∣∣≤ C (3-14)

on B(0, 1) for each i, j, k. Now for each i, j , let

1∗i j =
∂�∗i

∂x j
(0). (3-15)

By (3-14), we have ∣∣∣∣∂�∗i∂x j
−1∗i j

∣∣∣∣≤ C (3-16)

on B(0, 1) for each i, j . Recalling (3-5) and (3-7), we see that (3-16) implies that∥∥∥∥∂�i

∂x j
−1∗i j

∥∥∥∥
L2(B(0,1))

≤ C. (3-17)

Unfortunately, the 1∗i j need not satisfy (3-3). However, (3-1), (3-2) and (3-17)
imply the estimate

|1∗i j +1
∗

j i | ≤ C
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for each i, j . Hence, there exist real numbers 1i j , (i, j = 1, . . . , D) such that

1i j +1 j i = 0 (3-18)

and
|1∗i j −1i j | ≤ C (3-19)

for each i, j . From (3-17) and (3-19), we see that∥∥∥∥∂�i

∂x j
−1i j

∥∥∥∥
L2(B(0,1))

≤ C (3-20)

for each i and j .
Thus (3-18) and (3-20) are the desired conclusions of the theorem. �

4. A BMO theorem

BMO Theorem 1. Let 8 : RD
→ RD be an ε diffeomorphism and let B ⊂ RD be

a ball. Then, there exists T ∈ O(D) such that

1
vol B

∫
B
|8′(x)− T | dx ≤ Cε1/2. (4-1)

Proof. Estimate (4-1) is preserved by translations and dilations. Hence we may
assume that

B = B(0, 1). (4-2)

Now we know that there exists an Euclidean motion A : RD
→ RD such that

|8(x)− A(x)| ≤ Cε (4-3)

for x ∈ B(0,10). Our desired conclusion (4-1) holds for 8 if and only if it holds for
A−1o8 (with a different T). Hence, without loss of generality, we may assume that
A = I . Thus, (4-3) becomes

|8(x)− x | ≤ Cε, x ∈ B(0, 10). (4-4)

We set up some notation: We write the diffeomorphism 8 in coordinates by setting:

8(x1, . . . , xD)= (y1, . . . , yD) (4-5)

where for each i , 1≤ i ≤ D,

yi = ψi (x1, . . . , xD). (4-6)

First claim: For each i = 1, . . . , D,∫
B(0,1)

∣∣∣∣∂ψi (x)
∂xi

− 1
∣∣∣∣≤ Cε. (4-7)
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For this, for fixed (x2, . . . , xD)∈ B ′, we apply (4-4) to the points x+=(1, . . . , xD)

and x− = (1, . . . , xD). We have∣∣ψ1(x+)− 1
∣∣≤ Cε

and ∣∣ψ1(x−1)+ 1
∣∣≤ Cε.

Consequently, ∫ 1

−1

∂ψ1

∂x1
(x1, . . . , xD)dx1 ≥ 2−Cε. (4-8)

On the other hand, since, (
ψ ′(x)

)T (
ψ ′(x)

)
≤ (1+ ε)I,

we have for each i = 1, . . . , D the inequality(
∂ψi

∂xi

)2

≤ 1+ ε.

Therefore, ∣∣∣∣∂ψi

∂xi

∣∣∣∣− 1≤
√

1+ ε− 1≤ ε. (4-9)

Set

I+ =
{

x1 ∈ [−1, 1] :
∂ψ1

∂x1
(x1, . . . , xD)− 1≤ 0

}
,

I−1
=

{
x1 ∈ [−1, 1] :

∂ψ1

∂x1
(x1, . . . , xD)− 1≥ 0

}
,

1+ =

∫
I+

(
∂ψ1

∂x1
(x1, . . . , xD)− 1

)
dx1,

1− =

∫
I−

(
∂ψ1

∂x1
(x1, . . . , xD)− 1

)
dx1.

The inequality (4-8) implies that −1−1
≤ Cε+1+. The inequality (4-9) implies

that
∂ψ1

∂x1
− 1≤ Cε.

Integrating the last inequality over I+, we obtain 1+ ≤ Cε. Consequently,∫ 1

−1

∣∣∣∣∂ψ1

∂x1
(x1, . . . , xD)− 1

∣∣∣∣ dx1 =1
+
−1− ≤ Cε. (4-10)
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Integrating this last equation over (x2, . . . , xD) ∈ B ′ and noting that B(0, 1) ⊂
[−1, 1]× B ′, we conclude that∫

B(0,1)

∣∣∣∣∂ψ1

∂x1
(x1, . . . , xD)− 1

∣∣∣∣ dx ≤ Cε.

Similarly, for each i = 1, . . . , D, we obtain (4-7).

Second claim: For each i, j = 1, . . . , D, i 6= j , we have∫
B(0,1)

∣∣∣∣∂ψi (x)
∂x j

∣∣∣∣ dx ≤ C
√
ε. (4-11)

Since
(1− ε)I ≤ (8′(x))T (8′(x))≤ (1+ ε)I,

we have
D∑

i, j=1

(
∂ψi

∂x j

)2

≤ (1+Cε)D. (4-12)

Therefore,

∑
i 6= j

(
∂ψi

∂x j

)2

≤ Cε+
D∑

i=1

(
1−

∂ψi

∂xi

)(
1+

∂ψi

∂xi

)
.

Using (4-9) for i , we have |∂ψi/∂xi | + 1≤ C . Therefore,∑
i 6= j

(
∂ψi

∂x j

)2

≤ Cε+C
∣∣∣∣∂ψi

∂xi
− 1

∣∣∣∣ .
Now integrating the last inequality over the unit ball and using (4-7), we find

that ∫
B(0,1)

∑
i 6= j

(
∂ψi

∂x j

)2

dx ≤ Cε+
∫

B(0,1)

∣∣∣∣∂ψi

∂xi
− 1

∣∣∣∣ dx ≤ Cε. (4-13)

Consequently, by the Cauchy–Schwarz inequality, we have∫
B(0,1)

∑
i 6= j

∣∣∣∣∂ψi

∂x j

∣∣∣∣ dx ≤ C
√
ε.

Third claim: ∫
B(0,1)

∣∣∣∣∂ψi

∂xi

∣∣∣∣ dx ≤ C
√
ε (4-14)
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Since, ∫
B(0,1)

(
∂ψi

∂xi
− 1

)2

dx ≤
∫

B(0,1)

∣∣∣∣∂ψi

∂xi
− 1

∣∣∣∣ ∣∣∣∣∂ψi

∂xi
+ 1

∣∣∣∣ dx,

using (4-7) and |∂ψi/∂xi | ≤ 1+Cε, we obtain∫
B(0,1)

(
∂ψi

∂xi

)2

dx ≤ Cε.

Thus, an application of Cauchy–Schwarz, yields (4-14).

Final claim: By the Hilbert–Schmidt definition, we have∫
B(0,1)

|9 ′(x)− I | dx =
∫

B(0,1)

( D∑
i, j=1

(
∂ψi

∂x j
− δi j

)2)1/2

≤

∫
B(0,1)

D∑
i, j=1

∣∣∣∣∂ψi

∂x j
− δi j

∣∣∣∣ dx .

The estimate (4-11) combined with (4-14) yields:∫
B(0,1)

∣∣8′(x)− I
∣∣ dx ≤ Cε1/2.

Thus we have proved (4-1) with T = I . The proof of the BMO Theorem 1 is
complete. �

Corollary. Let 8 : RD
→ RD be an ε-distorted diffeomorphism. For each, ball

B ⊂ RD , there exists TB ∈ O(D), such that(
1

vol B

∫
B

∣∣8′(x)− T
∣∣4 dx

)1/4

≤ Cε1/2.

Proof. The proof follows from that of BMO Theorem 1 just proved and the John
Nirenberg inequality. (See (2-4).) �

5. A refined BMO theorem

BMO Theorem 2. Let 8 : RD
→ RD be an ε diffeomorphism and let B ∈ RD be a

ball. Then, there exists T ∈ O(D) such that

1
vol B

∫
B

∣∣8′(x)− T
∣∣ dx ≤ Cε. (5-1)

Proof. We may assume without loss of generality that

B = B(0, 1). (5-2)
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We know that there exists T ∗B ∈ O(D) such that(∫
B
|8′(x)− T ∗B |

4dx
)1/4

≤ Cε1/2.

Our desired conclusion holds for 8 if and only if it holds for (T ∗B )
−1o8. Hence

without loss of generality, we may assume that T ∗B = I . Thus we have(∫
B
|8′(x)− I )|4dx

)1/4

≤ Cε1/2. (5-3)

Let
�(x)=

(
�1(x),�2(x), . . . , �D(x)

)
=8(x)− x, x ∈ RD. (5-4)

Thus (5-3) asserts that (∫
B(0,1)

|∇�(x)|4 dx
)1/4

≤ Cε1/2. (5-5)

We know that ∣∣(8′(x))T8′(x)− I
∣∣≤ Cε, x ∈ RD. (5-6)

In coordinates, 8′(x) is the matrix
(
δi j +

∂�i (x)
∂x j

)
; hence 8′(x)T8′(x) is the

matrix whose i j-th entry is

δi j +
∂� j (x)
∂xi

+
∂�i (x)
∂x j

+

∑
l

∂�l(x)
∂xi

∂�l(x)
∂x j

.

Thus (5-6) says that ∣∣∣∣∂� j

∂xi
+
∂�i

∂x j
+

∑
l

∂�l

∂xi

∂�l

∂x j

∣∣∣∣≤ Cε (5-7)

on RD , i, j = 1, . . . , D. Thus, we have from (5-5), (5-7) and the Cauchy–Schwarz
inequality the estimate ∥∥∥∥∂�i

∂x j
+
∂� j

∂xi

∥∥∥∥
L2(B(0,10))

≤ Cε.

By the PDE Theorem, there exists, for each i, j , an antisymmetric matrix S = (S)i j ,
such that ∥∥∥∥∂�i

∂x j
− S

∥∥∥∥
L2(B(0,1))

≤ Cε. (5-8)

Recalling (5-4), this is equivalent to∥∥8′− (I + S)
∥∥

L2(B(0,1)) ≤ Cε. (5-9)
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Note that (5-5) and (5-8) show that

|S| ≤ Cε1/2

and thus,

|exp(S)− (I + S)| ≤ Cε.

Hence, (5-9) implies via Cauchy–Schwarz.∫
B(0,1)

∣∣8′(x)− exp(S)(x)
∣∣ dx ≤ Cε1/2. (5-10)

This implies the result because S is antisymmetric, which means that exp S ∈ O(D).
�

6. A BMO theorem for diffeomorphisms of small distortion

Theorem. Let 8 : RD
→ RD be an ε distorted diffeomorphism. Let B ⊂ RD be a

ball. Then, there exists TB ∈ O(D) such that for every λ≥ 1,

vol
{

x ∈ B : |8′(x)− TB |> Cλε
}
≤ exp(−λ)vol (B). (6-1)

Moreover, the result (6-1) is sharp in the sense of small volume if one takes a
slow twist defined as follows: For x ∈ RD , let Sx be the block-diagonal matrix

D1(x) 0 0 0 0 0
0 D2(x) 0 0 0 0
0 0 · 0 0 0
0 0 0 · 0 0
0 0 0 0 · 0
0 0 0 0 0 Dr (x)


where, for each i , either Di (x) is the 1× 1 identity matrix or else

Di (x)=
(

cos fi (|x |) sin fi (|x |)
−sin fi (|x |) cos fi (|x |)

)
for a function fi of one variable.

Now define for each x ∈ RD , 8(x)=2T Sx(2x) where 2 is any fixed matrix in
SO(D). One checks that 8 is ε-distorted, provided for each i , t | f ′i (t)|< cε for all
t ∈ [0,∞).

Proof. The theorem follows from BMO Theorem 2 and the Nirenberg inequality.
The sharpness can be easily checked. �
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7. On the approximate and exact alignment of data in Euclidean space,
speech and music manifolds

Approximate and exact alignment of data. A classical problem in geometry goes
as follows. Suppose we are given two sets of D-dimensional data, that is, sets of
points in Euclidean D-space, where D ≥ 1. The data sets are indexed by the same
set, and we know that pairwise distances between corresponding points are equal in
the two data sets. In other words, the sets are isometric. Can this correspondence
be extended to an isometry of the ambient Euclidean space?

In this form the question is not terribly interesting; the answer has long known
to be yes (see [Wells and Williams 1975], for example). But a related question
is actually fundamental in data analysis: here the known points are samples from
larger, unknown sets — say, manifolds in RD — and we seek to know what can be
said about the manifolds themselves. A typical example might be a face recognition
problem, where all we have is multiple finite images of people’s faces from various
views.

An added complication is that in general we are not given exact distances. We
have noise and so we need to demand that instead of the pairwise distances being
equal, they should be close in some reasonable metric. Some results on almost
isometries in Euclidean spaces can be found in [John 1961; Alestalo et al. 2003].

In [Fefferman and Damelin ≥ 2012], the following two theorems are established
which tell us about how to handle manifold identification when the point set function
values given are not exactly equal but are close.

Theorem. Given ε > 0 and k ≥ 1, there exists δ > 0 such that the following holds.
Let y1, . . . , yk and z1, . . . , zk be points in RD . Suppose

(1+ δ)−1
≤
|zi − z j |

|yi − y j |
≤ 1+ δ, i 6= j.

Then, there exists a Euclidean motion 80 : x→ T x + x0 such that

|zi −80(yi )| ≤ ε diam {y1, . . . , yk}

for each i . If k ≤ D, then we can take 80 to be a proper Euclidean motion on RD .

Theorem. Let ε > 0, D ≥ 1 and 1≤ k ≤ D. Then there exists δ > 0 such that the
following holds: Let E := y1, . . . , yk and E ′ := z1, . . . zk be distinct points in RD.
Suppose that

(1+ δ)−1
≤
|zi − z j |

|yi − y j |
≤ (1+ δ), 1≤ i, j ≤ k, i 6= j.

Then there exists a diffeomorphism 9 : RD
→ RD with
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(1+ ε)−1
≤
|9(x)−9(y)|
|x − y|

≤ (1+ ε), x, y ∈ RD, x 6= y

satisfying
9(yi )= zi , 1≤ i ≤ k.

The theorem above shows that any 1+ δ bilipchitz mapping 8 of 1 ≤ k ≤ D
points from RD to RD may be extended to a 1+ ε bilipchitz diffeomorphism of RD

to RD .
Given the two theorems above, we now need to ask ourselves. Can we take, in

any particular data application, an ε-distorted map and replace it by a Euclidean
motion or visa versa. Clearly this is very important since the theorems themselves
provide in the once case a Euclidean motion and in the other a diffeomorphism of
small distortion. We understand that our main BMO theorems tell us that at least in
measure, diffeomorphisms of small distortion are very close to Euclidean motions
motions.

Speech and music manifolds. Recently (see [Damelin and Miller 2012] and the
references cited therein) there has been much interest in geometrically motivated
dimensionality reduction algorithms. The reason for this is that these algorithms
exploit low dimensional manifold structure in certain natural datasets to reduce
dimensionality while preserving categorical content. In [Jansen and Niyogi 2006],
the authors motivated the existence of low dimensional manifold structure to voice
and speech sounds. As an immediate application of our results from this paper and
from [Fefferman and Damelin ≥ 2012], we are now able to answer the following
question related to speech and music manifolds. Suppose that we are given two
collections of data functions in time which arise from vocal tract functions used
in speech and music production. These manfolds exist; see the results of [Jansen
and Niyogi 2006]. Suppose that all we know is that the functions are the same
within a small δ distrortion. Then what can one say about the manifolds themselves.
For example, can one identify different musical instruments or people/animals
via speech using Euclidean motions or diffeomorphisms of ε distortion? What
can one say about the differences in measure between the Euclidean motions or
diffeomorphisms themselves? The theorems proved in this paper and in [Fefferman
and Damelin ≥ 2012] provide a fascinating insight into these very interesting
questions.
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Modular magic sudoku
John Lorch and Ellen Weld

(Communicated by Kenneth S. Berenhaut)

A modular magic sudoku solution is a solution to a sudoku puzzle with symbols
in {0, 1, . . . , 8} such that rows, columns, and diagonals of each subsquare add
to 0 mod 9. We count these sudoku solutions by using the action of a suitable
symmetry group and we also describe maximal mutually orthogonal families.

1. Introduction

1A. Terminology and goals. Upon completing a newspaper sudoku puzzle one
obtains a sudoku solution of order nine, namely, a nine-by-nine array in which all of
the symbols {0, 1, . . . , 8} occupy each row, column, and subsquare. For example,
both

7 2 3 1 8 5 4 6 0
4 0 5 3 2 6 1 8 7
6 1 8 4 0 7 2 3 5

1 7 0 6 3 2 5 4 8
5 4 6 8 1 0 7 2 3
8 3 2 7 5 4 0 1 6

2 6 4 0 7 8 3 5 1
3 5 7 2 6 1 8 0 4
0 8 1 5 4 3 6 7 2

and

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8

8 4 6 5 1 3 2 7 0
7 0 2 4 6 8 1 3 5
3 5 1 0 2 7 6 8 4

5 1 3 2 7 0 8 4 6
4 6 8 1 3 5 7 0 2
0 2 7 6 8 4 3 5 1

(1-1)

are sudoku solutions. The righthand array in (1-1) is a modular magic sudoku
solution: in addition to satisfying the ordinary sudoku conditions, the rows, columns,
and diagonals of each subsquare add to 0 mod 9. These subsquares are called
modular magic squares. Plain magic squares of order 3 can’t be cobbled into
sudoku solutions but modular magic squares can.

One of our goals is to count the modular magic sudoku solutions. In Sections 2
and 3 we discuss properties and relabelings of modular magic squares; in Section 4

MSC2010: 05B15.
Keywords: sudoku, magic square, orthogonality, Latin square.
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we introduce a natural symmetry group G acting on the set X of modular magic
sudoku solutions and determine its structure. These ideas, coupled with a G-
invariant property possessed by certain elements of X , are used to show that there
are exactly two G-orbits on X (Theorem 4.3) and that there are 32256 modular
magic sudoku solutions (Theorem 4.4).

Two sudoku solutions are orthogonal if upon superimposition there is no repeti-
tion in the resulting ordered pairs. The set of ordered pairs formed by superimposing
the righthand sudoku solution in (1-1) and the solution x ′2 given in Section 5 is

10 88 01 73 52 64 46 25 37
24 33 42 87 06 15 51 60 78
65 77 56 38 41 20 02 14 83

86 44 68 50 17 32 23 71 05
72 00 27 45 63 81 18 36 54
31 55 13 04 28 76 67 82 40

53 11 35 26 74 08 80 47 62
48 66 84 12 30 57 75 03 21
07 22 70 61 85 43 34 58 16

.

One can check directly that the two solutions are orthogonal; each is called an
orthogonal mate of the other. On the other hand, the lefthand sudoku solution in
(1-1) is not orthogonal to any sudoku solution (or to any Latin square, for that
matter). A collection of sudoku solutions is said to be mutually orthogonal if every
pair of distinct members is orthogonal.

Another of our goals is to investigate the orthogonality of modular magic su-
doku solutions. In Section 5 we show that every modular magic sudoku solution
possesses an orthogonal modular magic sudoku mate and that each such pair forms
a largest possible family of mutually orthogonal modular magic sudoku solutions
(Theorem 5.1).

1B. Background: Latin squares, orthogonality, and sudoku. A Latin square of
order n is an n×n array with n symbols such that every symbol appears in each row
and column. Latin squares have been of mathematical interest for hundreds of years,
at first in their own right (for example, Euler’s 36 officers problem; see [Euler 1923;
Ball and Coxeter 1987]) and then in concert with other mathematical structures
when it was discovered in the early 20th century that Latin squares are intimately
connected with statistical design, coding theory, finite geometry, and graph theory.
(See [Colbourn and Dinitz 1996; Dénes and Keedwell 1974; Roberts 1984] for more
information.) A classical theorem illustrating some of these connections, largely
due to Bose [1938], is:
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Theorem 1.1. Let m be an integer with m ≥ 2. The following are equivalent:

(a) There is a collection of m− 1 mutually orthogonal Latin squares of order m.

(b) There is a finite projective plane of order m.

(c) There exists a symmetric balanced incomplete block design with the type
(m2
+m+ 1,m+ 1, 1).

The theorem indicates that counting Latin squares is of fundamental importance.
The exact number of Latin squares of order nine (approximately 5.52× 1027; see
[Bammel and Rothstein 1975]) wasn’t known until 1975, and the exact number
for orders twelve and larger is currently unknown. Regarding families of mutually
orthogonal Latin squares, it has long been known that there are at most n − 1
mutually orthogonal Latin squares of order n and that this bound is achieved when
n is a prime power. However, for nonprime power orders larger than six, the largest
size of a family of mutually orthogonal Latin squares is unknown. This open
problem has been proposed by Mullen [1995] as a candidate for the “next Fermat
problem.”

Sudoku solutions, being special types of Latin squares, inherit both the legacy
and the problems associated with Latin squares. In [Felgenhauer and Jarvis 2006]
and [Jarvis and Russell 2006], using computer-aided arguments, it has been shown
that there are 6670903752021072936960 distinct sudoku solutions of order nine
and 5472730538 orbits under the action of a natural symmetry group (consisting of
rotations, relabelings, et cetera), respectively. Moving on to orthogonal families of
sudoku solutions, it is known that there are at most n(n− 1) mutually orthogonal
sudoku solutions of order n2; this bound is achieved when n is a prime power.
More generally it has recently been shown (for example, [Bailey et al. 2008]) that if
pk1

1 . . . pks
s is the prime factorization of n and q =min{pki

i }, then there is a family of
q(q − 1) mutually orthogonal sudoku solutions of order n2. As in the case of Latin
squares, the maximum size of a family of mutually orthogonal sudoku solutions is
unknown in general. Given the difficulty of these counting problems, it is desirable
to understand tractable settings such as modular magic sudoku thoroughly so that
they can be used as a testing ground for new counting methods.

1C. Miscellaneous remarks. In addition to modular magic sudoku, both magi-
doku and quasimagic sudoku (each described in [Forbes 2007] and certain of the
latter painstakingly counted in [Jones et al. 2011]) are types of sudoku solutions
characterized by additional sum conditions on the subsquares. Also, our modular
magic squares are equivalent (in order three) to the pseudomagic, modular magic
squares considered by Evans [1996], provided that one adds a diagonal condition
to Evans’ definition.
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2. Properties of modular magic squares

Before investigating modular magic sudoku, we establish a few properties of modular
magic squares. For example, all of the modular magic squares presented thus far
have the entries {0, 3, 6} on a diagonal; this is not coincidental. Throughout we let
U = {1, 2, 4, 5, 7, 8} and D = {0, 3, 6} be subsets of {0, 1, . . . , 8}, and we let the
remainder square associated to a modular magic square consist of remainders mod 3
of the original entries. We often identify {0, 1, . . . , 8} with the ring Z9.

Lemma 2.1. A remainder square associated to a modular magic square must be a
Latin square.

Proof. Given a modular magic square, we make the following observations about
its remainder square:

(a) Each of the symbols {0, 1, 2} must appear exactly three times in the remainder
square.

(b) The rows, columns, and diagonals of the remainder square must each add
to 0 mod 3 or else the rows, columns, and diagonals of the original modular
magic square won’t sum to 0 mod 9.

(c) No row or column can consist of the same symbol.

Item (a) must hold because there are exactly three numbers in Z9 possessing each
of the three possible remainders mod 3. Item (b) must hold or else the rows,
columns, and diagonals of the original modular magic square won’t sum to 0 mod 9.
Regarding item (c), rows or columns of 1s or 2s in the remainder square lead to
sums of the form 7+4+1 and 8+5+2, respectively, in the original modular magic
square; neither is equal to 0 in Z9. In view of items (a) and (b), a row or column of
0s in the remainder square implies a row or column of 1s, which is not allowed.

These observations imply that the remainder square is Latin: item (a) says that
we have an order-three grid with three symbols each appearing three times. Further,
if there is repetition of symbols in a given row or column then item (b) forces that
row or column to consist of all the same symbol, thus violating item (c). �

Proposition 2.2. In any modular magic square the elements of D must lie on a
diagonal.

Proof. We first show that the central entry of a given modular magic square must
lie in D. Suppose otherwise that α ∈ U occupies the central location. Since α
is not a zero divisor in Z9, it follows that −(2−1α) is distinct from α. Therefore,
α, −(2−1α), and a third element of Z9 must form a row, column, or diagonal of
the square. But the zero sum condition forces this third element to be −(2−1α),
contradicting the uniqueness of symbols in a modular magic square.



MODULAR MAGIC SUDOKU 177

Then, given a modular magic square, the fact that an element of D lies in the
center together with Lemma 2.1 indicate that the associated remainder square must
be Latin with a 0 in the center. This means that all the 0s in the remainder square
must occupy one of the diagonals, and so the elements of D must lie on this same
diagonal in the original modular magic square. �

Finally, we observe that a modular magic square is uniquely determined by a
choice of diagonal type (either “main” or “off”), elements of D to occupy this
diagonal, and one element of U occupying a location away from the chosen diagonal.
All of the remaining entries of the square can be filled in via the zero sum condition.
This gives 2× 6× 6= 72 modular magic squares.

3. Modular magic relabelings

Ultimately we will use a group generated by certain grid symmetries and relabelings
to count modular magic sudoku solutions. As opposed to ordinary sudoku, we
cannot allow all relabelings because not every relabeling preserves modular magic
squares. For example, the relabeling that swaps 0 and 1 and leaves everything else
fixed is not allowable, as when

4 8 6
2 0 7
3 1 5

becomes
4 8 6
2 1 7
3 0 5

.

Our purpose here is to describe the collection of modular magic relabelings, namely,
those bijections of Z9 onto itself that preserve modular magic squares. We begin
by making a few observations:

Lemma 3.1. Let S denote the group of magic relabelings.

(a) Members of S become permutations of D when restricted to D.

(b) Given a permutation µ of {0, 3, 6} and λ ∈U , there is at most one σ ∈ S with
σ |D = µ and σ(λ)= 1.

(c) |S| ≤ 36.

Proof. Part (a) must hold or else the action of such a relabeling on a modular
magic square can produce a square having a member of U in its central location,
contradicting Proposition 2.2. For part (b), more than one such σ would imply
the existence of multiple modular magic squares possessing the data described
immediately after Proposition 2.2, again a contradiction. Part (c) follows from part
(b): we have |S| ≤ |S3| × |U | = 36. �

Let’s produce some magic relabelings. Given k ∈ U and l ∈ D, consider the
mapping µk,l : Z9→ Z9 defined by µk,l(n)= kn+ l. Let H = {µk,l | k ∈U, l ∈ D},
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and it is not too difficult to see that H is an order-18 subgroup of S. In addition
to H there are rather less obvious magic relabelings. For example, consider the
mapping ρ : Z9→ Z9 defined1 by

ρ(n)=
{

2n−1 if n ∈U,
n if n ∈ D.

To see that ρ preserves the magic sum property, if m, n ∈ U and a ∈ D with
m+ n+ a = 0 (that is, {m, n, a} make a typical row/column/diagonal triple), then

ρ(m)+ ρ(n)+ ρ(a)= 2m−1
+ 2n−1

+ a

= (mn)−1(2m+ 2n+mna)

= (mn)−1((2m+ 2n+mna)+ (m+ n+ a)
)

= (mn)−1(3(m+ n)+ (mn+ 1)a
)

= (mn)−1(0+ 0)= 0,

where we’ve used the facts that m+ n+ a = 0 in Z9 implies m+ n ≡ 0 mod 3 and
that mn ≡ 2 mod 3 for all m, n ∈U . All told, these relabelings generate S:

Proposition 3.2. The group S of modular magic relabelings is generated by the set
{µk,l, ρ | k ∈U, l ∈ D} and is isomorphic to (S3×Z3)o Z2.

Proof. Using the fact that µk,l ◦ ρ = ρ ◦µk−1,l , which we verify at the end of the
proof, we know H o Z2 is a subgroup of S and so |S| ≥ 36. But Lemma 3.1 says
|S| ≤ 36, so we conclude that |S| = 36 and that S = 〈µk,l, ρ〉 ∼= H o Z2. Regarding
H , observe that |µ1,6| = 3, |µ8,0| = 2, and µ1,6 ◦µ8,0 = µ8,0 ◦µ

−1
1,6. Therefore,

these two elements generate a copy of S3 within H . Likewise, µ4,0 generates a
copy of Z3 in H that commutes with and has trivial intersection with the previously
mentioned copy of S3. Therefore, the direct product of these groups is an order-18
subgroup of H ; this subgroup must be the entirety of H because |H | = 18. We
conclude that H ∼= S3×Z3 and that S ∼= (S3×Z3)o Z2.

Finally, we verify that µk,l ◦ ρ = ρ ◦µk−1,l . Note that

µk,l ◦ ρ(n)=
{

kn+ l if n ∈ D,
2kn−1

+ l if n ∈U,

while

ρ ◦µk−1,l(n)=
{

k−1n+ l if n ∈ D,
2(k−1n+ l)−1 if n ∈U.

If n ∈ D, we require kn+ l = k−1n+ l in Z9, or equivalently (k − k−1)n = 0 in
Z9. The latter statement is an immediate consequence of the facts that k and k−1

1As a product of cycles ρ = (12)(45)(78).
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have the same remainder mod 3 and 3|n. If on the other hand n ∈ U , we require
(k−1n+ l)−1

= kn−1
+ 2−1l in Z9. This follows from

(k−1n+ l)(kn−1
+ 2−1l)= 1+ l

(
kn−1
+ 2−1(kn−1)−1)

+ 2−1l2

= 1+ l(0)+ 0= 1,

where for the latter equation kn−1
+ 2−1(kn−1)−1

≡ 0 mod 3 and l2
= 0 when

l ∈ D. �

Since |S| = 36, all of the relabelings in part (b) of Lemma 3.1 are achieved:

Corollary 3.3. Given λ ∈ U and µ a permutation of D, there exists σ ∈ S with
σ |D = µ and σ(λ)= 1.

4. Counting modular magic sudoku solutions

We use a symmetry group G, called the modular magic sudoku group, to assist
us in the task of counting modular magic sudoku solutions. We first describe the
generators of this group and its action on the set X of modular magic sudoku
solutions, then we count the number of G-orbits in X (this gives the number of
“essentially different” modular magic sudoku solutions), and finally we count the
total number of modular magic sudoku solutions.

4A. The modular magic sudoku group. The modular magic sudoku group G
should consist of all reasonable grid transformations and relabelings that send one
modular magic sudoku solution to another. We declare this group to have the
generators:

• Modular magic relabelings. (Here a single relabeling is applied to each sub-
square. Modular magic relabelings are discussed in Section 3 above.)

• Permutations of large rows. (A large row is a row of subsquares.)

• Swaps of the outer two rows within a given large row.

• Permutations of large columns. (A large column is a column of subsquares.)

• Swaps of the outer two columns within a large column.

• Transpose.

The first set of generators forms the group S of modular magic relabelings, whose
structure we’ve already discussed in Section 3. The remaining generators form a
group H of grid transformations (including rotations), and we have G = H × S
because H, S commute and have trivial intersection.

We determine the structure of H . Observe that H = [Hr × Hc]o T , where
Hr denotes the subgroup of H generated by the large row and row permutations
described, Hc is the analogous subgroup generated by column permutations, and
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T is the two-element group generated by the transpose. The direct product arises
because the groups Hr and Hc have trivial intersection and commute, while the
semidirect product comes about as a result of the fact that thr = hct whenever t is
transpose, hr ∈ Hr , and hc ∈ H , where hc is obtained from hr by simply replacing
the word “row” by “column” in any generators used to produce hr . Now Hr and
Hc clearly have the same structure, so all that remains is to describe the structure
of Hr , which we address in the following paragraphs.

Positions of rows within our sudoku grid can be labeled (a, b) where a, b ∈ Z3,
a denotes the large row, and b denotes the row within a large row, with 1 denoting
top, 0 denoting middle, and 2 denoting bottom for both large rows and rows within
large rows. (This ordering of rows seems unnatural at the moment, but will suit our
purpose.) The set of permutations of large rows is isomorphic to S3, regarded as
bijections of Z3 onto itself, with σ(a, b)=

(
σ(a), b

)
for σ ∈ S3. On the other hand,

the set of swaps of outer rows within a given large row is isomorphic to (Z∗3)
3 ∼= Z3

2
where if s = (s0, s1, s2) ∈ (Z

∗

3)
3 then s(a, b)= (a, sab).2 (Here sab is computed by

multiplication in Z3.) Observe that S3 acts on Z3
2 via σ.s = (sσ−1(0), sσ−1(1), sσ−1(2))

and that each such σ determines an automorphism φσ : Z
3
2→ Z3

2. Further, if σ ∈ S3

and s ∈ Z3
2 we have the commutation relation

σ s = (σ.s)σ (4-1)

because

σ s(a, b)= σ(a, sab)=
(
σ(a), sab

)
=

(
σ(a), sσ−1(σ (a))b

)
=

(
σ(a), (σ.s)σ(a)b

)
= (σ.s)(σ (a), b)= (σ.s)σ (a, b).

An example may help: According to our labeling, the (0, 1) row is the top row
within the middle large row. Further, if s = (2, 2, 1) ∈ (Z∗3)

2 and σ = (021) ∈ S3,
then σ.s = (2, 1, 2). Applying these to the (0, 1) row we have

σ s(0, 1)= σ(0, s0× 1)= σ(0, 2× 1)= σ(0, 2)=
(
σ(0), 2

)
= (2, 2). (4-2)

Therefore, the outcome of σ s(0, 1) is the bottom row within the bottom large row.
Likewise, we have

(σ.s)σ (0, 1)= σ.s(2, 1)=
(
2, (σ.s)2× 1

)
= (2, 2× 1)= (2, 2), (4-3)

with the equality of (4-2) and (4-3) as required by (4-1).
Returning to the structure of Hr , the commutation relation (4-1) implies that

Hr ∼= S3 o Z3
2 via

( f, σ )(g, τ )=
(

f (σ.g), στ
)
,

2The simple action of s ∈ (Z∗3)
3 on a row (a, b) is facilitated by the strange ordering of rows given

above.
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where f, g ∈ (Z∗3)
3 ∼= Z3

2 and τ, σ ∈ S3. Note here that S3 is acting on multiple
copies of Z2 (three copies), where S3 acts to permute the copies of Z2 among
themselves. Semidirect products of this type are known as wreath products: we
denote Z3

2 o S3 by Z2 wr S3. Summarizing the discussion above we have:

Proposition 4.1. The modular magic sudoku group G is isomorphic to S × H ,
where S ∼= (S3×Z3)o Z2 and H ∼=

[
(Z2 wr S3)× (Z2 wr S3)

]
o Z2. The order of

this group is |S| × |H | = 36× (48× 48× 2)= 165888.

4B. Orbits of the modular magic sudoku group. We set about counting the G-
orbits on X . Begin by declaring a modular magic sudoku solution to be in proper
form if it has this aspect, as described by Lemma 4.2:

1 8 0 6 3
2 3 4 0 6
6 7 5 3 0

6
0

3

3
6

0

.

Lemma 4.2. Every modular magic sudoku solution is in the same G-orbit as some
proper form modular magic sudoku solution.

Proof. Beginning with a modular magic sudoku solution, we apply the these group
elements to produce something in proper form:

(a) Permute the large columns so that there is a 3 in the center of the upper left
subsquare.

(b) Perform an outer row swap in the top large row and/or outer column swap in
the left large column to place 0 in the upper right location of the upper left
subsquare.

(c) Swap the middle and right large columns to place 0 in the center location of
the upper middle subsquare.

(d) Make outer column swaps in the rightmost two large columns to make the
{0, 3, 6}-diagonals go from lower left to upper right in the top rightmost two
subsquares (rightmost two subsquares in the top large row).

(e) Swap the middle and bottom large rows so that 0 lies in the center location of
the middle left subsquare (and 6 lies in the bottom left subsquare).
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(f) Make outer row swaps in the bottommost two large rows to make the {0, 3, 6}-
diagonals go from lower left to upper right in the leftmost bottom two sub-
squares (bottom two subsquares in the leftmost large column).

(g) Via Corollary 3.3 apply a modular magic relabeling to the resulting modular
magic sudoku solution that fixes D and sends the upper leftmost symbol to
1. �

To count the number of proper form modular magic sudoku solutions, and thereby
to determine an upper bound on the number of G-orbits, we first observe that in
any proper form solution, such as

1 8 0 a1 6 a2 3
2 3 4 0 6
6 7 5 3 0

a3 6
0

3

a4 3
6

0

, (4-4)

each of the symbols a1, a2, a3, a4 shown in (4-4) has no more than two possible
values. For example, in order for the first row to satisfy the Latin row condition, we
know that a1 and −(a1+6) cannot be 1 or 8, so a1 ∈ {5, 7}. Further, one can check
that values for a1, a2, a3, a4 either uniquely determine a proper form solution or
lead to a contradiction of sudoku conditions. This implies that there are at most
sixteen proper form solutions. A case-by-case check shows that seven of these
sixteen are valid modular magic sudoku solutions and further that each of these
seven is readily obtainable via G from one of the two proper form solutions:

x1 =

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8

7 5 6 4 2 3 1 8 0
8 0 1 5 6 7 2 3 4
3 4 2 0 1 8 6 7 5

4 2 3 1 8 0 7 5 6
5 6 7 2 3 4 8 0 1
0 1 8 6 7 5 3 4 2

and x2 =

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8

8 4 6 5 1 3 2 7 0
7 0 2 4 6 8 1 3 5
3 5 1 0 2 7 6 8 4

5 1 3 2 7 0 8 4 6
4 6 8 1 3 5 7 0 2
0 2 7 6 8 4 3 5 1

. (4-5)
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This leads to the summary result:

Theorem 4.3. There are exactly two G-orbits orbits in X. The modular magic
sudoku solutions x1 and x2 can be taken as base points for these orbits.

Proof. Our discussion up to this point indicates that there are at most two G-orbits.
To finish we show that x1 and x2 from (4-5) must lie in different orbits. Recall
that a transversal of a Latin square is a collection of locations that meets every
row, column, and symbol exactly once. The property of possessing a transversal
consisting of the diagonals of exactly three subsquares is a property that is invariant
under the action of G: no modular magic sudoku group generator takes a central
subsquare location to a noncentral subsquare location. We see that x1 possesses
such a transversal (the main diagonal) while x2 does not. It follows that x1 and x2

must be in different G-orbits. �

4C. The total number of modular magic sudoku solutions. Let x1 and x2 be as
in (4-5) and let Gx1 and Gx2 be the corresponding stabilizer subgroups of G (that
is, Gxi = {g ∈ G | g.xi = xi }). We introduce the notation:

• Large rows, and rows within large rows, are labeled 0, 1, and 2 from top to
bottom. The same goes for columns, labeled left to right.3

• If σ is a permutation of {0, 1, 2} then σr , σc ∈ G denote the corresponding
permutations of large rows and large columns, respectively, determined by σ .

• Let s ∈ G denote the grid permutation that swaps the outer rows of every large
row and the outer columns of every large column.

• Let t ∈ G denote transpose.

We describe the structure of Gx1 . First observe that s is the only possible
nontrivial combination of outer row/column swaps because any other nontrivial
combination of these swaps when applied to x1 yields a modular magic sudoku
solution with some {0, 3, 6} subsquare diagonal of the wrong type. This means
that the possible generators of Gx1 have been reduced to relabelings, permutations
of large rows/columns, s, and t . If g ∈ Gx1 has no contribution from s or t , then
the large row/column permutations must be even, or else g.x1 is not in proper
form. Likewise, if there is contribution from s or t (possibly both), then the
large row/column permutations must be odd. This allows us to further narrow the
possible generators for Gx1 , and, upon checking the possibilities, we find that all of
the “allowable” large row/column permutations (in the sense of the previous two

3This is different from the ordering presented in Section 4A.
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sentences) actually appear in elements of Gx1 . We therefore have

Gx1 =
〈
µ1,6(012)c, µ1,6(012)r , ρµ5,6(12)r (12)ct, µ8,6(12)r (12)cs

〉
∼= (Z3×Z3)o (Z2×Z2).

A similar analysis can be applied to Gx2 , which has the same “allowable” large
row/column permutations, but here fewer of them actually work. Upon checking
we have

Gx2 =
〈
µ1,6(012)c, µ8,6(12)r (12)cs

〉
∼= S3,

a subgroup of Gx1 .

Theorem 4.4. There are 32256 modular magic sudoku solutions.

Proof. Let G.xi denote the G-orbit in X through xi . From the discussion immedi-
ately above we have

|G.xi | =
|G|
|Gx1 |

=
165888

36
= 4608 while |G.x2| =

|G|
|Gx2 |

=
165888

6
= 27648.

The total number of modular magic sudoku solutions is |G.x1|+|G.x2| = 32256. �

5. Orthogonality of modular magic sudoku solutions

Here we investigate the orthogonality of modular magic sudoku solutions. We begin
by observing that the solutions x ′1 and x ′2 given in (5-1) are modular magic and are
orthogonal to the solutions x1 and x2 given in (4-5), respectively.

x ′1 =

0 8 1 3 2 4 6 5 7
4 3 2 7 6 5 1 0 8
5 7 6 8 1 0 2 4 3

6 5 7 0 8 1 3 2 4
1 0 8 4 3 2 7 6 5
2 4 3 5 7 6 8 1 0

3 2 4 6 5 7 0 8 1
7 6 5 1 0 8 4 3 2
8 1 0 2 4 3 5 7 6

and x ′2 =

0 8 1 3 2 4 6 5 7
4 3 2 7 6 5 1 0 8
5 7 6 8 1 0 2 4 3

6 4 8 0 7 2 3 1 5
2 0 7 5 3 1 8 6 4
1 5 3 4 8 6 7 2 0

3 1 5 6 4 8 0 7 2
8 6 4 2 0 7 5 3 1
7 2 0 1 5 3 4 8 6

. (5-1)

The selection of x ′1 and x ′2 is not entirely random. For example, one can see that
the {0, 3, 6} subsquare diagonals for x j and x ′j with j ∈ {1, 2} must be of opposite
types and that by applying a relabeling (Corollary 3.3) the upper left subsquare of



MODULAR MAGIC SUDOKU 185

x ′j can be chosen to be

0 8 1
4 3 2
5 7 6

.

Due to the fact that orthogonality is preserved under relabelings and grid symme-
tries, Theorem 4.3 implies that every modular magic sudoku solution possesses an
orthogonal modular magic sudoku mate.

If M is a modular magic sudoku solution let C(M) denote the Latin square of
order 3 with symbols in D containing the subsquare centers of M . We note that if
two modular magic sudoku solutions M1 and M2 are orthogonal then so are C(M1)

and C(M2). Since two is the maximal size of a family of mutually orthogonal Latin
squares of order 3, this observation implies that the maximal size of a family of
mutually orthogonal modular magic sudoku solutions is at most two. Summarizing,
we have:

Theorem 5.1. Every modular magic sudoku solution has an orthogonal modu-
lar magic sudoku mate; such a pair forms a largest possible family of mutually
orthogonal modular magic sudoku solutions.
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Distribution of the exponents of primitive circulant
matrices in the first four boxes of Zn

Maria Isabel Bueno, Kuan-Ying Fang,
Samantha Fuller and Susana Furtado

(Communicated by Joseph Gallian)

We consider the problem of describing the possible exponents of n-by-n boolean
primitive circulant matrices. It is well known that this set is a subset of [1, n−1]
and not all integers in [1, n−1] are attainable exponents. In the literature, some
attention has been paid to the gaps in the set of exponents. The first three gaps
have been proven, that is, the integers in the intervals [ n2+1, n−2], [ n3+2, n

2−2]
and [ n4+3, n

3−2] are not attainable exponents. Here we study the distribution
of exponents in between those gaps by giving the exact exponents attained there
by primitive circulant matrices. We also study the distribution of exponents in
between the third gap and our conjectured fourth gap. It is interesting to point out
that the exponents attained in between the (i−1)-th and the i-th gap depend on
the value of n mod i .

1. Introduction

A boolean matrix is a matrix over the binary boolean algebra {0, 1}. An n-by-n
boolean matrix C is said to be circulant if each row of C (except the first one) is
obtained from the preceding row by shifting the elements cyclically 1 column to the
right. In other words, the entries of a circulant matrix C = (ci j ) are related in the
manner: ci+1, j = ci, j−1, where 0≤ i ≤ n−2, 0≤ j ≤ n−1, and the subscripts are
computed modulo n. The first row of C is called the generating vector. Here and
throughout we number the rows and columns of an n-by-n matrix from 0 to n−1.

The set of all n-by-n boolean circulant matrices forms a multiplicative commuta-
tive semigroup Cn with |Cn| = 2n [Davis 1979; Lancaster 1969]. This semigroup
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was thoroughly investigated by K. K.-H. Butler and J. R. Krabill [1974] and by S.
Schwarz [1974].

An n-by-n boolean matrix C is said to be primitive if there exists a positive
integer k such that Ck

= J , where J is the n-by-n matrix whose entries are all ones
and the product is computed in the algebra {0, 1}. The smallest such k is called
the exponent of C , and we denote it by exp C . Let us denote En = {exp C : C ∈
Cn, C is primitive}.

In [Bueno et al. 2009] we stated the following question: Given a positive integer
n, what is the set En?

The previous question can easily be restated in terms of circulant graphs or bases
for finite cyclic groups, as we explain next.

Let C be a boolean primitive circulant matrix and let S be the set of positions
corresponding to the nonzero entries in the generating vector of C (where the
columns are counted starting with zero). C is the adjacency matrix of the circulant
digraph Cay(Zn, S). The vertex set of this graph is Zn and there is an arc from u
to u+a (mod n) for every u ∈ Zn and every a ∈ S. A digraph D is called primitive
if there exists a positive integer k such that for each ordered pair a, b of vertices
there is a directed walk from a to b of length k in D. The smallest such integer k
is called the exponent of the primitive digraph D. Thus, a circulant digraph G is
primitive if and only if its adjacency matrix is. Moreover, if they are primitive, they
have the same exponent. Therefore, finding the set En is equivalent to finding the
possible exponents of circulant digraphs of order n.

Let n be a positive integer and let S be a nonempty subset of the additive group
Zn . For a positive integer k we denote by kS the set given by

kS = {s1+· · ·+sk mod n : si ∈ S} ⊂ Zn.

The set kS is called the k-fold sumset of S.
The set S is said to be a basis for Zn if there exists a positive integer k such that

kS=Zn . The smallest such k is called the order of S, denoted by order(S). It is well
known [Butler and Krabill 1974; Schwarz 1974] that the set S={s0, s1, . . . , sr }⊂Zn

is a basis if and only if gcd(s1−s0, . . . , sr−s0, n)= 1. In [Bueno et al. 2009] we
proved that, given a matrix C in Cn , if S is the set of positions corresponding to the
nonzero entries in the generating vector of C , then C is primitive if and only if S
is a basis for Zn . Moreover, if C is primitive, then exp(C)= order(S). Therefore,
finding the set En is equivalent to finding the possible orders of bases for the cyclic
group Zn . This question is quite interesting by itself. We note that all the results
in this paper will be given in terms of bases for Zn , as the techniques we can use
following this approach result more convenient.

The problem we study in this paper has applications in different areas. In
particular, circulant matrices appear as transition matrices in Markov processes
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[Chou et al. 2008]. Also, the problem stated in terms of bases for Zn has applications
in coding theory and quantum information [Klopsch and Lev 2009].

In the literature, the problem of computing all possible exponents attained by
circulant primitive matrices or, equivalently, by circulant digraphs, has been con-
sidered. In particular, the following results were obtained. Here and throughout,
[a, b] denotes the set of positive integers in the real interval [a, b]. If a > b then
[a, b] =∅.

Lemma 1 [Huang 1990; Wang and Meng 1997]. If C is a primitive circulant matrix,
then its exponent is either n−1,

⌊n
2

⌋
,
⌊n

2

⌋
−1 or does not exceed

⌊ n
3

⌋
+1. Moreover,

exp C = n−1 if and only if the number of nonzero entries in the generating vector
of C is exactly 2.

Lemma 2 [Dukes et al. 2010]. For every n ≥ 3, the sets
[⌊ n

4

⌋
+3,

⌊ n
3

⌋
−2
]

and En

are disjoint.

All these results can be immediately translated into results about the possible
orders of bases for a finite cyclic group.

Note that the only primitive matrix in C2 is J2, so E2 = {1}. From now on, we
assume that n ≥ 3. In [Bueno et al. 2009] we presented a conjecture concerning the
possible exponents attained by n-by-n boolean primitive circulant matrices which
we restate here in a more precise way. We start with a definition.

Definition. Let j be a positive integer. We call the j th box of Zn , and denote it by
B j , the set of positive integers[⌊

n
j

⌋
−1,

⌊
n
j

⌋
+ j−2

]
.

Conjecture 3. If C ∈ Cn is primitive, then

exp C ∈
[
1,
⌊√

n
⌋]
∪

b
√

nc⋃
j=1

B j .

In [Dukes et al. 2010], it was proven that if C ∈ Cn is primitive and its exponent
is greater than k for some positive integer k, then there exists dk such that the
exponent of C is within dk of n/ l for some integer l ∈ [1, k]. Notice that the result
we present in Conjecture 3 produces gaps in the set of exponents which are larger
than the ones encountered in [Dukes et al. 2010]. In fact, we have shown that the
gaps in our conjecture should be maximal [Bueno and Furtado 2010]. We say that a
gap A in En is maximal if A′∩En 6=∅ for any interval of integers A′ ⊂ [1, n−1],
with A strictly contained in A′. In [Bueno and Furtado 2010], we proved that for
each positive integer j , there is an integer n, such that B j,n is a maximal gap in
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En . However, as stated in [Dukes et al. 2010], we remain far from a complete
characterization of the possible exponents of n×n primitive circulant matrices.

Lemmas 1 and 2 above show the gaps between the first and second box, between
the second and third box, and between the third and fourth box when these boxes do
not overlap. Here we present the distribution of orders of bases within the first three
boxes by showing what orders are attained and which ones are not. The results
for the first and second box were already known [Huang 1990; Wang and Meng
1997] and we include them for completeness. We also study the order of bases in
the fourth box by giving orders that are attained and we conjecture that those are,
in fact, the exact orders in that box. In addition, we also prove that all integers in
[1,
⌊√

n
⌋
] are attained by bases of Zn .

This paper is organized as follows. In Section 2 we state our main results and
prove them in Section 4. In Section 3 we state and prove several auxiliary results
concerning the order of bases for Zn , which will be used to prove our main theorems.
The order of several bases for Zn with cardinality at most 4 that are relevant to our
proofs is studied in the Appendix.

2. Main results

In this section, we give the exact orders attained by bases for Zn in the first three
boxes of Zn . We also give orders attained in the fourth box. Notice that the results
for the first and second box were already known [Huang 1990; Wang and Meng
1997] but we include them for completeness. Finally, we state that all integers up
to
⌊√

n
⌋

are in En .
The result for the first box is an immediate consequence of Lemma 1.

Theorem 4 [Huang 1990]. For all n,

B1 ⊆ En.

Concerning the second box, we have the following result obtained in [Huang
1990; Wang and Meng 1997]. In Section 4.1 we include a proof of it using the
techniques for bases.

Theorem 5 [Huang 1990; Wang and Meng 1997]. Let n ≥ 17 be a positive integer.

• If n is even, then B2 ⊆ En .

• If n is odd, then B2∩En =
⌊ n

2

⌋
.

The next two theorems are our main results and will be proven in Section 4. In
our first result we assume a lower bound n0 for n, which is the smallest value of n
for which the theorem holds for all n > n0. The possible orders in En , with n < n0,
appear in Tables 1 and 2. We observe that, for any n for which the box under
study does not overlap with adjacent boxes, the theorem holds. We also notice that,
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though we have a lower bound for n in our results, when n ≡ 0 mod j , j = 3, 4,
B j is a subset of En , for all n.

Theorem 6. Let n ≥ 45 be a positive integer.

• If n ≡ 0 (mod 3), then B3 ⊆ En .

• If n ≡ 1 (mod 3), then B3∩En =
{⌊ n

3

⌋
+1,

⌊ n
3

⌋}
.

• If n ≡ 2 (mod 3), then B3∩En =
{⌊ n

3

⌋
+1
}
.

Theorem 7. Let n ≥ 16 be a positive integer.

• If n ≡ 0 (mod 4), then B4 ⊆ En .

• If n ≡ 1 (mod 4), then
{⌊ n

4

⌋
+2,

⌊ n
4

⌋
+1,

⌊ n
4

⌋}
⊆ En .

• If n ≡ 2 (mod 4) or n ≡ 3 (mod 4), then
{⌊ n

4

⌋
+2,

⌊n
4

⌋
+1
}
⊆ En .

Though we do not prove it, we conjecture that
⌊ n

4

⌋
−1 /∈ En when n≡ 1 (mod 4)

and
⌊ n

4

⌋
−1,

⌊n
4

⌋
/∈ En when n ≡ 2, 3 (mod 4).

In Tables 1 and 2 we give the exact orders attained by bases for Zn with n =
2, 3, 4, . . . , 104. As the numerical experiments show, for each n there is a number of

n En n En n En

2 1 23 1 . . .8,11,22 44 1 . . .13,15,21,22,43
3 1,2 24 1 . . .9,11,12,23 45 1 . . .16,22,44
4 1,2,3 25 1 . . .9,12,24 46 1 . . .13,15,16,22,23,45
5 1,2,4 26 1 . . .9,12,13,25 47 1 . . .13,16,23,46
6 1,2,3,5 27 1 . . .10,13,26 48 1 . . .17,23,24,47
7 1,2,3,6 28 1 . . .10,13,14,27 49 1 . . .14,16,17,24,48
8 1 . . .4,7 29 1 . . .10,14,28 50 1 . . .14,17,24,25,49
9 1 . . .4,8 30 1 . . .11,14,15,29 51 1 . . .14,16,17,18,25,50

10 1 . . .5,9 31 1 . . .11,15,30 52 1 . . .15,17,18,25,26,51
11 1 . . .5,10 32 1 . . .11,15,16,31 53 1 . . .15,18,26,52
12 1 . . .6,11 33 1 . . .12,16,32 54 1 . . .15,17,18,19,26,27,53
13 1 . . .6,12 34 1 . . .12,16,17,33 55 1 . . .15,18,19,27,54
14 1 . . .7,13 35 1 . . .10,12,17,34 56 1 . . .16,19,27,28,55
15 1 . . .7,14 36 1 . . .13,17,18,35 57 1 . . .16,18,19,20,28,56
16 1 . . .8,15 37 1 . . .13,18,36 58 1 . . .16,19,20,28,29,57
17 1 . . .6,8,16 38 1 . . .11,13,18,19,37 59 1 . . .16,20,29,58
18 1 . . .9,17 39 1 . . .14,19,38 60 1 . . .17,19,20,21,29,30,59
19 1 . . .7,9,18 40 1 . . .14,19,20,39 61 1 . . .17,20,21,30,60
20 1 . . .7,9,10,19 41 1 . . .12,14,20,40 62 1 . . .17,21,30,31,61
21 1 . . .8,10,20 42 1 . . .14,15,20,21,41 63 1 . . .17,20,21,22,31,62
22 1 . . .8,10,11,21 43 1 . . .12,14,15,21,42 64 1 . . .18,21,22,31,32,63

Table 1. Orders of bases for Zn .
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n En n En

65 1 . . . 14, 16, 17, 18, 22, 32, 64 85 1 . . . 18, 20, 21, 22, 23, 28, 29, 42, 84
66 1 . . . 18, 21, 22, 23, 32, 33, 65 86 1 . . . 18, 20, 21, 22, 23, 29, 42, 43, 85
67 1 . . . 18, 22, 23, 33, 66 87 1 . . . 18, 20, 22, 23, 28, 29, 30, 43, 86
68 1 . . . 19, 23, 33, 34, 67 88 1 . . . 24, 29, 30, 43, 44, 87
69 1 . . . 19, 22, 23, 24, 34, 68 89 1 . . . 20, 22, 23, 24, 30, 44, 88
70 1 . . . 15, 17, 18, 19, 23, 24, 34, 35, 69 90 1 . . . 19, 21, 22, 23, 24, 29, 30, 31, 44, 45, 89
71 1 . . . 19, 24, 35, 70 91 1 . . . 21, 23, 24, 30, 31, 45, 90
72 1 . . . 20, 23, 24, 25, 35, 36, 71 92 1 . . . 19, 21, 22, 23, 24, 25, 31, 45, 46, 91
73 1 . . . 20, 24, 25, 36, 72 93 1 . . . 21, 23, 24, 25, 30, 31, 32, 46, 92
74 1 . . . 20, 25, 36, 37, 73 94 1 . . . 21, 23, 24, 25, 31, 32, 46, 47, 93
75 1 . . . 16, 18, 19, 20, 24, 25, 26, 37, 74 95 1 . . . 20, 22, 24, 25, 32, 47, 94
76 1 . . . 21, 25, 26, 37, 38, 75 96 1 . . . 26, 31, 32, 33, 47, 48, 95
77 1 . . . 16, 18, 19, 20, 21, 26, 38, 76 97 1 . . . 18, 20, 22, 24, 25, 26, 32, 33, 48, 96
78 1 . . . 21, 25, 26, 27, 38, 39, 77 98 1 . . . 22, 24, 25, 26, 33, 48, 49, 97
79 1 . . . 18, 20, 21, 26, 27, 39, 78 99 1 . . . 22, 25, 26, 32, 33, 34, 49, 98
80 1 . . . 17, 19, 20, 21, 22, 27, 39, 40, 79 100 1 . . . 21, 23, 24, 25, 26, 27, 33, 34, 49, 50, 99
81 1 . . . 22, 26, 27, 28, 40, 80 101 1 . . . 23, 25, 26, 27, 34, 50, 100
82 1 . . . 17, 19, 20, 21, 22, 27, 28, 40, 41, 102 1 . . . 21, 23, 25, 26, 27, 33, 34, 35, 50, 51, 101

81 103 1 . . . 19, 21, 22, 23, 26, 27, 34, 35, 51, 102
83 1 . . . 19, 21, 22, 28, 41, 82 104 1 . . . 19, 21, 22, 23, 25, 26, 27, 28, 35, 51, 52,
84 1 . . . 23, 27, 28, 29, 41, 42, 83 103

Table 2. Orders of bases for Zn .

consecutive orders that can be attained by bases of Zn . Though we prove Theorem 8,
according to our numerical experiments, we conjecture that at least all consecutive
integers up to 2

√
n−2 are attainable orders.

Theorem 8. Let n be a positive integer. Then [1, b
√

nc] ⊆ En .

Though this result is cited in [Dukes et al. 2010], it seems that the paper where
its proof is said to be is not available.

3. Order of bases for Zn

Computing the order of bases for Zn is, in general, a challenging task. In this
section we introduce some results relative to the order of bases of Zn that will be
helpful when proving our main results.

To start with, let us notice that the order of a basis S is invariant under shifts and
multiplication by a unit of Zn , that is, for a ∈ Zn and b a unit of Zn

order(S)= order(S+a), and order(S)= order(b∗S) (1)

where b∗S = {bs mod n : s ∈ S}. In particular, this result implies that the set of
orders attained by bases of Zn is the same as the set of orders attained by bases of
Zn containing 0.
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We now state some known results about the order of a basis for Zn . The following
lemma gives an upper bound on the cardinality of a basis when a lower bound on
its order is known.

Lemma 9 [Klopsch and Lev 2009]. Let n ∈ N and ρ ∈ [2, n−1]. Let S be a basis
for Zn such that order(S)≥ ρ. Then

|S| ≤max
{

n
d

(⌊
d−2
ρ−1

⌋
+1
)
: d|n, d ≥ ρ+1

}
.

In particular, for each fixed k ∈ N, if order(S)≥ n
k and n� 0, then |S| ≤ 2k.

The next lemma gives an upper and a lower bound on the order of some bases
for Zn with cardinality 3.

Lemma 10 [Bueno and Furtado 2010]. Let 2≤ b ≤ n−1. Then⌊ n
b

⌋
≤ order({0, 1, b})≤

⌊ n
b

⌋
+b−2.

We now give the exact order of some particular bases for Zn that will be needed
later. The next lemma shows, in particular, that the largest element of the j-th box,
j ≤
√

n, belongs to En for all n.

Lemma 11 [Bueno et al. 2009]. For j ∈ {1, 2, . . . ,
⌊√

n
⌋
},

order({0, 1, j})=
⌊n

j

⌋
+ j−2.

Lemma 12 [Bueno and Furtado 2010]. Let 2≤ j ≤
√

n be a positive integer. Then

order
({

0, 1,
⌊ n

j

⌋
+1
})
=
⌊n

j

⌋
+ j−2.

Lemma 13 [Bueno et al. 2009]. Let 2≤ r ≤ n−1 and t = n−r
⌊ n

r

⌋
. Then

order({0, 1, 2, . . . , r−1, r})=

{⌊n
r

⌋
if t ≤ 1,⌊ n

r

⌋
+1 if t > 1.

Lemma 14. Let 2≤ r ≤ n−2. Then

order({0, 1, 2, . . . , r−1, r+1})=
⌊

n
r+1

⌋
+1.

Proof. Let S = {0, 1, 2, . . . , r−1, r+1}. It can be shown by induction on k that,
for k ≥ 1, kS= [0, . . . , k(r+1)−2] ∪ {k(r+1)}. Thus, order(S)= k if and only if
k is the minimum integer such that k(r+1)−2≥ n−1, which implies the result. �
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Lemma 15. Suppose that m is a divisor of n and let 1≤ q < m ≤ n. Then

order
( q⋃

i=0

(i+〈m〉)
)
=

⌈
m−1

q

⌉
.

Proof. Let S be the basis in the statement. Note that kS =
⋃kq

i=0(i+〈m〉) for all
k ≥ 1. Therefore, the order of S equals the minimum k such that kq ≥ m−1 and
the result follows. �

As a consequence of the previous result, we obtain that, if j is a divisor of n, the
smallest element of the j-th box is an element of En , since

order (〈n/j〉∪(1+〈n/j〉))= n/j−1.

Using canonical projections we can bound the order of some bases in a convenient
way. Given Zn and a proper divisor m of n, we denote by φ the canonical quotient
map φ : Zn→ Zn/m . We denote by ordern(S) the order of the basis S as a subset
of Zn . The next result is well known. For that reason, we include it without proof.

Lemma 16. Let m be a proper divisor of n. If S is a basis for Zn that contains zero
and an element of order m, then φ(S) is a basis for Zn/m and

ordern/m(φ(S))≤ ordern(S)≤ ordern/m(φ(S))+m−1.

The next corollaries are immediate consequences of the previous lemma and
Lemma 1.

Corollary 1 [Huang 1990]. Suppose m is a proper divisor of n and S is a basis for
Zn that contains zero and an element of order m. Then order(S)≤ (n/m)+m−2.

Corollary 2. Let S be a basis for Zn and assume that S contains zero and an
element of order 2. Then order(S)≤

⌊ n
4

⌋
+1 or order(S)≥

⌊ n
2

⌋
−1.

Corollary 3. Let S be a basis for Zn and assume that S contains zero and an element
of order 3. Then order(S)≤

⌊n
6

⌋
+2 or order(S)≥

⌊ n
3

⌋
−1.

The next technical lemma allows us to prove Corollary 4, which is a key result
in the proof of our main theorems.

Lemma 17. Let j ≥ 2 be an integer and assume that

b ∈ I j =

[⌊ n
j+1

⌋
+2,

⌊n
j

⌋
−1
]
.

Then
order({0, 1, b})≤

⌊ n
j+2

⌋
+ j.

Proof. Let S = {0, 1, b}. First we observe that j+1< ( j+1)b−n < b. We divide
the proof into three cases.
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Case 1: Assume b is even and ( j+1)b−n= b/2. This implies that (2 j+1)b/2= n
and, therefore, b is not a divisor of n. Since (2 j+1)b = 2n, then b is an element
of Zn of order 2 j+1. Then

order(S)≤
n

2 j+1
+2 j−1≤

⌊
n

j+2

⌋
+ j.

The inequality on the left follows from Corollary 1 while the right inequality follows
after a few computations. Thus,⌊

n
j+2

⌋
+ j =

⌊
(2 j+1)( j+2+k)

j+2

⌋
+ j ≥ 3 j+1+k =

n
2 j+1

+2 j−1.

Case 2: Assume ( j+1)b−n < b/2. Let k = j+1 and p = ( j+1)b−n. Clearly,
[0, k] ∪ {p} ∪ [b, b+k−1] ⊆ kS. It can be shown by induction on q that

q⋃
i=0

[i p, i p+(q−i)k] ∪ [b, b+qk−1] ⊂ qkS (2)

and
q−1⋃
i=0

[i p+(k−1)b, i p+(k−1)b+(q−(i+1))k] ⊂ (qk−1)S. (3)

Now assume that q is the largest integer such that qp < b, that is, q = bb/pc and
let l = max{b− pq, p−k}. Note that q ≥ 2. Also, the gaps between consecutive
intervals in the unions in (2) and (3) have at most l−1 elements. Thus, we have

[0, b+ j]∪[ jb, jb+(q−1)p+l] ⊆ (qk+l−1)S.

Moreover, [0, jb+(q−1)p+l+ j−1] ⊆ (qk+l−1+( j−1))S. Since n− jb =
b− p, we get that (q−1)p+l+ j ≥ n− jb is equivalent to l+ j ≥ b−qp, which
is true because of the definition of l. This implies

order(S)≤ qk+max{b− pq, p−k}+ j−2. (4)

Let b = pq+r , 0≤ r < p and q1 = brk/pc. It is easy to show that

max{b− pq, p−k} ≤ q1+ p−k (5)

which implies

order(S)≤
⌊

bk
p

⌋
+ p−k+ j−2. (6)

Taking into account (6), to complete the proof it is sufficient to show that⌊
bk
p

⌋
+ p−k+ j−2≤

⌊
n

j+2

⌋
+ j. (7)
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Let g be the function given by

g(b)=
bk
p
+ p−3=

n
p
+ p−2.

To see that (7) holds it is enough to note that g(b)≤ n
j+2+ j, or, equivalently,

b ∈

[
n+ j+2

j+1
,

n+ n
j+2

j+1

]
.

Case 3: Assume ( j+1)b−n> b/2. Note that j =
⌊n

b

⌋
. Let n= jb+r3, 0≤ r3< b.

Thus, ( j+1)b−n= b−r3. Clearly, [0, j+1]∪{b−r3}∪[b, b+ j]∪[ jb, jb+1]⊆
( j+1)S. It can be shown by induction on j that

[0, q j+1] ∪
q−1⋃
i=0

[b−(q−i)r3, b−(q−i)r3+i j]∪[b, b+q j] ⊂ (q j+1)S (8)

Denote by q the largest integer such that q j+2 ≤ b−qr3, that is, q =
⌊

b−2
j+r3

⌋
.

An argument similar to Case 2 implies that

order(S)≤ q j+max{r3, b−q( j+r3)−1}+ j−1. (9)

Let l =max{r3, b−q( j+r3)−1}. Now we show that

q j+l+ j−1≤
⌊

j (b−1)
j+r3

⌋
+ j+r3−1≤

⌊
n

j+2

⌋
+ j. (10)

To see the first inequality in (10), it is enough to note that, by definition of q,
q( j+r3) < b−1 and b−1≤ (q+1)( j+r3). To see the second inequality in (10),
let h be the function given by

h(b)=
j (b−1)
j+r3

+ j+r3−1=
n

j+n− jb
+ j+n− jb−2.

Then we see that

h(b)≤
n

j+2
+( j+2)−2 if and only if j+n− jb ∈

[
j+2,

n
j+2

]
.

Moreover, for j+n− jb=
⌊ n

j+2

⌋
+1, we get bh(b)c=

⌊ n
j+2

⌋
+ j , since by [Bueno

and Furtado 2010, Theorem 5.7], and taking into account that j <
√

n,⌊
n⌊ n

j+2

⌋
+1

⌋
= j+1.
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Therefore, if j+n− jb ∈
[

j+2, n
j+2+1

]
, or equivalently, if

b ∈

[
n+ j−1− n

j+2

j
,

n−2
j

]
, (11)

then the second inequality in (10) holds. We finish the proof by showing that any b
satisfying our assumptions is such that (11) holds. Note that, as ( j+1)b−n> b

2 , we
have 2n/(2 j+1)<b≤

⌊ n
j

⌋
−1. Thus, because j ≥2, it follows that b≤ n

j −1≤ n−2
j .

First we note that if |I j | ≥ 2, then

n+ j−1− n
j+2

j
≤

2n
2 j+1

< b. (12)

If |I j | = 1, then b = bn/jc−1. If (12) holds, we are done. Otherwise, it can be
proven that

n+ j−1− n
j+2

j
≤ b =

⌊n
j

⌋
−1. �

From the previous lemma we obtain the next corollary, which includes some
results presented in [Dukes et al. 2010] without proof.

Corollary 4. Let n ≥ 16. Suppose that 2≤ b ≤
⌊ n

2

⌋
+1.

(i) If either b /∈
{
2, 3,

⌊ n
3

⌋
,
⌊ n

3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1
}
, or b =

⌊ n
3

⌋
and n 6= 0 mod 3,

then order({0, 1, b})≤
⌊ n

4

⌋
+2.

(ii) If either b ∈
{
3,
⌊ n

3

⌋
+1
}
, or b =

⌊n
3

⌋
and n ≡ 0 mod 3, or b =

⌊ n
2

⌋
with n

odd, then order({0, 1, b})=
⌊ n

3

⌋
+1.

(iii) If either b∈
{
2,
⌊n

2

⌋
+1
}
, or b=

⌊n
2

⌋
and n is even, then order({0, 1, b})=

⌊n
2

⌋
.

Proof. By Lemma 17, if b ∈
[⌊n

4

⌋
+2,

⌊ n
3

⌋
−1
]
∪
[⌊ n

3

⌋
+2,

⌊n
2

⌋
−1
]
, the order of

{0, 1, b} is at most
⌊n

4

⌋
+2. By Lemma 10, if 4≤ b ≤ n/4, then order({0, 1, b})≤⌊ n

4

⌋
+2. By Lemma 12, order

{
0, 1,

⌊ n
4

⌋
+1
}
=
⌊ n

4

⌋
+2. If b =

⌊ n
3

⌋
and n 6=

0 mod 3 then

order({0, 1, b})=
{

order(1+3∗{0, 1, b})= order({0, 1, 4}) if n ≡ 1 mod 3,
order(2+3∗{0, 1, b})= order({0, 2, 5}) if n ≡ 2 mod 3,

and the result follows from Lemmas 19 and 20. Thus, (i) follows. If b∈
{
3,
⌊ n

3

⌋
+1
}

the result follows from Lemmas 12 and 14. If n is odd, then

order(
{
0, 1,

⌊ n
2

⌋}
)= order(1+2∗{0, 1, b})= {0, 1, 3}

and the result follows from Lemma 14. If n ≡ 0 mod 3 and b= n/3, then, for k ≥ 1,

kS = [0, k] ∪ [n/3, n/3+k−1] ∪ [2n/3, 2n/3+k−2]
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(in Z). The order of S is the smallest positive integer k such that k−2+2n/3≥n−1,
that is, k = 1+n/3, which completes the proof of (ii). To prove (iii), note that, if n
is even and b = n/2, then, for k ≥ 1,

kS = [0, k] ∪ [n/2, n/2+k−1]

(in Z). Thus, the order of S is the smallest positive integer k such that k−1+n/2≥
n−1, that is, order(S)= n/2. If b ∈

{
2,
⌊ n

2

⌋
+1
}
, the result follows from Lemmas

12 and 13. �

4. Proofs of the main results

In this section we prove Theorems 5, 6, 7, and 8. To prove the first three results,
we initially show that certain orders in each box are attained by giving examples of
bases with such orders. Then, regarding the first two theorems, we prove that the
remaining orders are not attained.

4.1. Proof of Theorem 5. In the next table, we give examples of bases attaining
the orders in the second box according to Theorem 5. The results follow from
Lemmas 13 and 15.

Second Box for Zn

n ≡ 0 mod 2 n ≡ 1 mod 2 Order(S)

S = 〈n/2〉 ∪ (1+〈n/2〉) —
⌊ n

2

⌋
−1

S = {0, 1, 2} S = {0, 1, 2}
⌊ n

2

⌋
We now assume that n ≥ 17 and n is odd, and show that there is no basis S ⊆ Zn

such that order(S)=
⌊ n

2

⌋
−1.

Assume that S ⊂ Zn is a basis such that order(S) =
⌊ n

2

⌋
−1. By Lemma 9,

|S| ≤ 3. Note that, by definition of basis, |S| ≥ 2 and, by Lemma 1, |S| 6= 2 if
order(S) 6= n−1. Thus |S| = 3. Suppose S = {0, a, b} where a, b ∈ Zn . If a had
order m 6= n, then 3≤ m <

⌊ n
2

⌋
, since n is odd. By Corollary 1, this would imply

that order(S) ≤ m+n/m−2<
⌊ n

2

⌋
−1, as n ≥ 17. Therefore, a must have order

n. Then S has the same order as a−1S = {0, 1, c} for some c ∈ Zn . If c >
⌊n

2

⌋
+1,

then S has the same order as 1−a−1S = {0, 1, d} with d ≤
⌊ n

2

⌋
+1. Thus, we can

assume that c ≤
⌊n

2

⌋
+1. Now using Corollary 4, we get order(S) 6=

⌊ n
2

⌋
−1, a

contradiction.

4.2. Proof of Theorem 6. The next table gives examples of bases attaining the
conjectured orders in the third box according to Theorem 6. The results follow
from Lemmas 13–15.
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Third Box for Zn

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3 Order(S)

S = 〈n/3〉 ∪ (1+〈n/3〉) — —
⌊ n

3

⌋
−1

S = {0, 1, 2, 3} S = {0, 1, 2, 3} —
⌊ n

3

⌋
S = {0, 1, 3} S = {0, 1, 3} S = {0, 1, 3}

⌊ n
3

⌋
+1

The fact that, for n ≥ 45, order(S) 6=
⌊n

3

⌋
−1, if n ≡ 1 mod 3, and order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
, if n ≡ 2 mod 3, follows from Lemma 18. Just note that, if

order(S) ∈
{⌊n

3

⌋
−1,

⌊ n
3

⌋}
, then, by Lemma 9, |S| ≤ 4.

The statement of the next lemma is stronger than what is needed to prove
Theorem 6. However, the techniques we developed before allowed us to get this
result, which in turn is useful in the proof of Corollary 5.

Lemma 18. Let n ≥ 45 and suppose that 3 is not a divisor of n. Let S be a basis
for Zn . If |S| ≤ 4, then order(S) ≤

⌊ n
4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
. Moreover, if

order(S)=
⌊ n

3

⌋
, then n ≡ 1 mod 3.

Proof. Without loss of generality, assume 0∈ S. Suppose that n 6= 0 mod 3. Since S
is a basis, |S|> 1. If |S| = 2, then order(S)= n−1>

⌊n
3

⌋
. Suppose that |S| = 3 or

|S| = 4. If S has an element whose order is not 1, 2, n/2 nor n, then, by Corollary 1,
the result follows since there can’t be an element of order 3 or n/3. Thus, this
element has order ≥ 4 or ≤ n/4. Suppose that the order of the elements in S is
1, 2, n/2, or n, where 2 and n/2 only occur when n is even. If S has an element
of order 2, then the result follows from Corollary 2. If S does not contain an
element of order 2, then necessarily it contains an element of order n. Moreover,
by (1), if S has an element of order n, the basis S has the same order as some basis
of the form {0, 1, a, b}. If |S| = 3, then we can assume that S = {0, 1, a}, with
1< a≤

⌊ n
2

⌋
+1. In this case, the result follows from Corollary 4. If |S| = 4, assume

that S = {0, 1, a, b} with a ≤
⌊ n

2

⌋
+1. Since for S′ ⊂ S, order(S)≤ order(S′), we

have
order({0, 1, a, b})≤min{order({0, 1, a}), order({0, 1, b})}. (13)

Let
A1 =

{
2, 3,

⌊ n
3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1
}
,

A2 =
{
2, 3,

⌊ n
3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
.

Note that −
⌊ n

2

⌋
∈ A2. Also, 1−

⌊n
2

⌋
≡
⌊ n

2

⌋
+1 mod n, for n even. If a /∈ A1 or

b /∈ A2 then, by Corollary 4 and taking into account (13),

order({0, 1, a, b})≤min{order({0, 1, a}), order({0, 1, b})} ≤
⌊ n

4

⌋
+2.
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Recall that order({0, 1, 1−b})= order({0, 1, b}). If a ∈ A1 and b ∈ A2, the 25 and
26→ result follows from Lemmas 22–26. �

The following result was presented in [Dukes et al. 2010]. However, the authors
leave most of the details of the proof to the reader and we do not see clearly that
the result follows from their proof. For that reason and for completeness we are
including it in this paper.

Corollary 5. Let S be a basis for Zn . Then

order(S) /∈
[⌊ n

4

⌋
+3,

⌊n
3

⌋
−2
]
.

Proof. Note that, for n < 45, the interval in the statement is empty. Assume that
n ≥ 45. Without loss of generality, suppose that 0∈ S. If S⊂Zn is a basis such that⌊ n

4

⌋
+3≤ order(S), by Lemma 9, |S| ≤ 6. Assume that n 6= 0 mod 3. If |S| = 5 or

|S| = 6, by [Bueno et al. 2009, Theorem 3.7], order(S) ≤
⌊ n

4

⌋
+1. If |S| ≤ 4, by

Lemma 18, order(S)≤
⌊ n

4

⌋
+2 or order(S)≥

⌊ n
3

⌋
.

Now assume that n ≡ 0 mod 3. If |S| = 3, the result follows from Corollary 4.
Suppose that |S| ∈ {4, 5, 6}. If

⌊ n
4

⌋
+3 ≤ order(S), by Corollary 1, the order of

the elements in S must be 1, 2, 3, n/2, n/3, or n. First note that S contains, or has
the same order as a basis which contains, an element of order 2, 3 or n. In fact, if
|S| = 4 and S does not have an element of order 2, 3 or n, then S has an element of
order n/2 and an element of order n/3. Hence, {0, 2a, 3b} ⊆ S for some a, b ∈ Zn .
Since S is a basis, 3b−2a is not an element of order n/2 nor n/3 as, otherwise, 6
would divide 2a or 3b and all elements of S would be multiples of 2 or multiples
of 3. Thus, S has the same order as S−2a, which has an element of order 2, 3 or
n. A similar argument can be applied if |S| = 5 or |S| = 6. Thus, assume that S
contains an element of order 2, 3 or n. If S contains an element of order 2 or 3, the
result follows from Corollaries 2 and 3. Now suppose that S contains an element
of order n and no elements of order 2 and 3. If either n/3+1 ∈ S or n is even and
n/2+1 ∈ S, then S can be transformed into a basis with the same order containing
zero and an element of order 2 or 3 and we reduce the problem to the previous case.
Let

A1 =
{
2, 3,

⌊n
2

⌋
,
⌊n

2

⌋
+1
}
,

A2 =
{
2, 3,

⌊n
2

⌋
,
⌊n

2

⌋
+1, 1−

⌊ n
2

⌋
,−2,−1

}
.

Assume that S = {0, 1, a, b, c, d}, with a ≤
⌊ n

2

⌋
+1 and b = c = d if |S| = 4, and

c= d if |S| = 5. Note that if S′ ⊂ S then order(S)≤ order(S′). If a /∈ A1 or, b,c, or
d /∈ A2 the result follows from Corollary 4. Suppose that a ∈ A1, b, c, d ∈ A2 and
if a, b, c or d ∈

{⌊ n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊ n
2

⌋}
then n is odd. If |S| = 4, the result follows

from Lemmas 22–26. If |S| = 5 or |S| = 6 the result follows from the Remark on
page 204 by noting that S has a subset of cardinality 4 containing 0 and 1 which is
not one of the exceptional bases and, therefore, order(S)≤

⌊n
4

⌋
+2. �
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4.3. Proof of Theorem 7. The next table gives examples of bases attaining the
orders in the fourth box of Zn claimed in Theorem 7. The results follow from
Lemmas 12–15.

Fourth Box for Zn

n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4 Order(S)

〈n/4〉 ∪ (1+〈n/4〉) — — —
⌊ n

4

⌋
−1

{0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
⋃2

i=0(i+〈n/2〉) —
⌊ n

4

⌋
{0, 1, 2, 4} {0, 1, 2, 4} {0, 1, 2, 4} {0,1,2,4}

⌊ n
4

⌋
+1{

0, 1, n
4+1

} {
0, 1,

⌊ n
4

⌋
+1
} {

0, 1,
⌊ n

4

⌋
+1
} {

0, 1,
⌊ n

4

⌋
+1
} ⌊ n

4

⌋
+2

4.4. Proof of Theorem 8. If n ≤ 4, the result follows from Table 1. Assume n ≥ 5.
Notice that Zn is always a basis for Zn , which implies that 1 ∈ En . Consider the set
S= {0, 1, 2, . . . , r−1, r+1} with 2≤ r ≤ n−2. By Lemma 14, order(S)=

⌈ n+1
r+1

⌉
.

For all r ≥
√

n−1

n+1
r+1
−

n+1
r+2

=
n+1

(r+1)(r+2)
=

n+1
r2+3r+2

≤
n+1

n+
√

n
< 1.

It can be easily seen that, for positive real numbers a and b, dae−dbe ≤ da−be.
Thus,

⌈ n+1
r+1

⌉
−
⌈ n+1

r+2

⌉
≤ 1 for all r ≥

√
n−1, which implies that all integers from 2

to ⌈
n+1⌈√

n
⌉
−1+1

⌉

are attained orders. But
⌈

n+1⌈√
n
⌉⌉≥ ⌈ n⌈√

n
⌉⌉≥ ⌊√n

⌋
and the result follows.

Appendix: Gallery of bases and their orders

Here we provide the order of some particular bases that are necessary to prove the
main results in this paper. We do not include all the proofs since many of them are
similar.

Lemma 19. For n ≥ 6, order({0, 1, 4})=
⌊ n

4

⌋
+2.

Proof. Let S = {0, 1, 4}. It can be shown by induction on k that in Z, for all k ≥ 2,

kS = [0, 4k−6] ∪ [4k−4, 4k−3] ∪ {4k}.

Let q =
⌊n

4

⌋
. Then

(q+1)S = [0, 4q−2] ∪ [4q, 4q+1] ∪ {4q+4}

and [0, 4q+2] ⊆ (q+2)S. Note that 4q+4 6= 4q−1 (mod n), since n ≥ 6. Thus,
(q+1)S 6= Zn (mod n). On the other hand, 4q+2≥ n−1. The result follows. �
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Lemma 20. For n ≥ 6, order({0, 2, 5})≤
⌊ n

5

⌋
+3.

Lemma 21. For n ≥ 4, order({0, 2, 3, 4})=
⌊n

4

⌋
+1.

Bases of the form {0, 1, 2, a}

Lemma 22. Let n≥21. Let a∈
{
3,
⌊n

3

⌋
+1,

⌊n
2

⌋
,
⌊n

2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S = {0, 1, 2, a}. Then order(S) ≤

⌊ n
4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
−1. Moreover,

if n ≡ 1 mod 3, then order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
.

Proof. Case 1: If a ∈ {3,−1}, then the basis S has the same order as {0, 1, 2, 3}
and the result follows by Lemma 13.

Case 2: If a =−2, then S has the same order as 2+S = {0, 2, 3, 4} and the result
follows from Lemma 21.

Case 3: Suppose that a ∈
{⌊ n

2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊n
2

⌋}
. Assume n is even. Note that

1−
⌊ n

2

⌋
=
⌊ n

2

⌋
+1. In this case, S contains an element of order 2 or it has the same

order as a basis containing 0 and an element of order 2. Thus, the result follows
from Corollary 2. Assume n is odd. Then

order
({

0, 1, 2,
⌊ n

2

⌋})
= order({0, 1, 3, 5})≤ order({0, 1, 5}),

order
({

0, 1, 2,
⌊n

2

⌋
+1
})
= order({0, 1, 2, 4})≤ order({0, 1, 4}).

In both cases, order(S)≤
⌊ n

4

⌋
+2 by Corollary 4. Also,

order
({

0, 1, 2,
⌊ n

2

⌋
+2
})
= order({0, 2, 3, 4})≤

⌊ n
4

⌋
+2

by Lemma 21. Note that 1−
⌊ n

2

⌋
=
⌊ n

2

⌋
+2.

Case 4: Suppose that a ∈
{
−
⌊n

3

⌋
,
⌊ n

3

⌋
+1
}
. If n ≡ 0 mod 3, then S contains an

element of order 3 or it has the same order as a basis containing 0 and an element of
order 3. Thus, the result follows from Corollary 3. Let n ≡ 1 mod 3. If a =−

⌊ n
3

⌋
,

then 3∗S = {0, 1, 3, 6} and

order(S)= order(3∗S)≤ order({0, 1, 6});

if a =
⌊n

3

⌋
+1, then 3∗S−2= {0, 1, 4,−2} and

order(S)= order(3∗S−2)≤ order({0, 1, 4}).

In both cases, order(S)≤
⌊ n

4

⌋
+2 by Corollary 4. If n ≡ 2 mod 3, then

order
({

0, 1, 2,−
⌊ n

3

⌋})
= order({0, 1, 4,−2}),

order
({

0, 1, 2,
⌊ n

3

⌋
+1
})
= order({0, 1, 3, 6}),

and the result follows as before. �
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Bases of the form {0, 1, 3, a}

Lemma 23. Let n ≥ 30. Let a ∈
{⌊n

3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S = {0, 1, 3, a}. Then order(S) ≤

⌊ n
4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
−1. Moreover,

if n ≡ 1 mod 3, then order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
.

Bases of the form
{

0, 1,
⌊ n

3
⌋
+1, a

}
Lemma 24. Let n ≥ 30. Let a ∈

{⌊n
2

⌋
,
⌊n

2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and

S =
{
0, 1,

⌊ n
3

⌋
+1, a

}
. Then order(S)≤

⌊ n
4

⌋
+2 or order(S)≥

⌊ n
3

⌋
−1. Moreover,

if n ≡ 1 mod 3, then order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
.

Bases of the form
{

0, 1,
⌊ n

2
⌋
, a

}
Lemma 25. Let n ≥ 22. Let a ∈

{⌊ n
2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S ={

0, 1,
⌊ n

2

⌋
, a
}
. Then order(S)≤

⌊n
4

⌋
+2 or order(S)≥

⌊n
3

⌋
−1. Moreover, if n ≡ 1

mod 3, then order(S) 6=
⌊n

3

⌋
−1 and if n≡ 2 mod 3, then order(S) /∈

{⌊ n
3

⌋
−1,

⌊ n
3

⌋}
.

Proof. If n is even, then S contains an element of order 2 and the result follows
from Corollary 2. Now suppose that n is odd. Note that 2∗S+1= {0, 1, 3, 2a+1}.

For a =−1, order(S)= order({0, 1, 3,−1})= order({0, 1, 2, 4})≤
⌊n

4

⌋
+2, by

Corollary 4.
For a =−

⌊n
3

⌋
and n ≡ 0 mod 3, S contains an element of order 3 and the result

follows from Corollary 4.
For a =

⌊n
2

⌋
+1, order(S)= order(2∗S+1)= {0, 1, 2, 3} and the result follows

from Lemma 13.
Now suppose that a does not satisfy the previous cases. We have order(S) =

order({0, 1, 3, b}), with b∈
{
4,
⌊ n

3

⌋
+t+1,−3

}
, where 0< t =n−3

⌊ n
3

⌋
≤2. Thus,

order(S)≤ order({0, 1, b})≤
⌊ n

4

⌋
+2 by Corollary 4. �

Bases of the form
{

0, 1,
⌊ n

2
⌋
+1, a

}
Lemma 26. Let n ≥ 21, a ∈

{
1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S =

{
0, 1,

⌊n
2

⌋
+1, a

}
.

Then order(S) ≤
⌊n

4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
−1. Moreover, if n ≡ 1 mod 3, then

order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈

{⌊ n
3

⌋
−1,

⌊ n
3

⌋}
.

Proof. If n is even, then S has the same order as S−1, which contains 0 and an
element of order 2. Thus, the result follows from Corollary 2. Now suppose that n
is odd. Then order(S)= order({0, 1, 2, 2a}).

If a = 1−
⌊ n

2

⌋
=
⌊ n

2

⌋
+2, then 2a = 3 and the result follows from Lemma 13.
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If a =−2, then 2a =−4 and, by Corollary 4,

order(S)≤ order({0, 1,−4})= order({0, 1, 5})≤
⌊ n

4

⌋
+2.

If a = −1, then 2a = −2 and, by Lemma 21, order(S) = order({0, 2, 3, 4}) ≤⌊ n
4

⌋
+2.

Suppose that a = −
⌊n

3

⌋
. If n ≡ 0 mod 3, then S contains 0 and an element

of order 3 and the result follows from Corollary 3. If n ≡ 1 mod 3, then S ={
0, 1, 2,

⌊ n
3

⌋
+1
}

and the result follows from Lemma 22. If n ≡ 2 mod 3, then, by
Corollary 4,

order(S)= order
({

0, 1, 2,
⌊ n

3

⌋
+2
})
≤ order

({
0, 1,

⌊ n
3

⌋
+2
})
≤
⌊ n

4

⌋
+2. �

Remark. Suppose that S = {0, 1, a, b}, with a ∈
{
2, 3,

⌊ n
2

⌋
,
⌊n

2

⌋
+1
}

and b ∈{
2, 3,

⌊n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊n
2

⌋
,−2,−1

}
, where n is odd if a or b belong to the set{⌊ n

2

⌋
,
⌊ n

2

⌋
+1,−

⌊ n
2

⌋}
. From the proofs of Lemmas 22–26, we get that order(S)≤⌊ n

4

⌋
+2 if S is not one of the next exceptional bases:{

0, 1, 2, 3
}
,

{
0, 1, 2,−1

}
,

{
0, 1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1
}
,

{
0, 1,

⌊ n
2

⌋
+1, 1−

⌊n
2

⌋}
.

Note that all of them have the same order as {0, 1, 2, 3}.
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Commutation classes of double wiring diagrams
Patrick Dukes and Joe Rusinko

(Communicated by Ravi Vakil)

We describe a new method for computing the graph of commutation classes of
double wiring diagrams. Using these methods we compute the graph for five
strings or less which allows us to confirm a positivity conjecture of Fomin and
Zelevinsky when n ≤ 4.

1. Introduction

In the theory of cluster algebras, the term Laurent phenomenon describes the
mysterious instances in which recursively defined rational functions simplify to
Laurent polynomials [Fomin and Zelevinsky 2002]. In many instances of the
Laurent phenomenon, it is conjectured that the coefficients of the resulting Laurent
polynomials are all positive.

One of the first examples of the Laurent phenomenon was found by Fomin and
Zelevinsky [2000] when studying the relationships among minors of an n×n matrix
with real coefficients. In this work they showed that every minor of a matrix was
positive if and only if a particular subset of minors known as chamber minors was
positive. These chamber minors were indexed by regions of a combinatorial object
known as a double wiring diagram. Further, the relationships among minors were
described in terms of a graph that describes the relationships among classes of
double wiring diagrams.

As an example of the Laurent phenomenon, Fomin and Zelevinsky proved that
every minor of an n × n matrix can be written as a Laurent polynomial in the
chamber minors. They stated the following conjecture which remains open:

Conjecture 1.1 [Fomin and Zelevinsky 2000]. For any n-string double wiring
diagram w, every minor of an n× n matrix can be written as a Laurent polynomial
with nonnegative coefficients in terms of the chamber minors of w.

In this paper we confirm the conjecture for n ≤ 4. To do so, we develop a new
method of computing the graph of relationships among classes of double wiring

MSC2010: primary 05E15; secondary 15B48.
Keywords: wiring diagram, matrix positivity, Laurent phenomenon.
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diagrams. We then use an original program for computing this graph based on
this method, along with the algebra software Fermat [Lewis 2007] to compute the
aforementioned Laurent polynomials.

In Section 2 of this paper we define commutation classes of double wiring
diagrams and a graph which displays the relationships among these classes. In
Section 3 we describe a new quiver representation of the commutation classes. This
representation greatly simplifies the computation of the associated graph which we
describe in Section 4. Finally, we return in Section 5 to the Laurent phenomenon
and use our new computations to confirm the positivity conjecture for n ≤ 4.

2. Double wiring diagrams

Fomin and Zelevinsky [2000] define an n-stringed double wiring diagram as two
sets of n piecewise linear lines (black and gray) such that each line intersects every
other line of the same color exactly once. We number gray lines from 1 to n with 1
on the top left and n on the bottom left. The black lines are labeled in the reverse
order. In addition, for each chamber of the double wiring diagram we define the
chamber label to be a pair of subsets (g, b) where g (respectively b) is the subset
of {1, 2, . . . , n} identifying the gray (respectively black) strings that pass below the
chamber. See Figure 1 for an example of a double wiring diagram with the chamber
labels.

Figure 1. A four string double wiring diagram with chamber labels.

It is possible that slightly different wiring diagrams yield the same collection
of chamber labels. Following Fomin and Zelevinsky, we consider two wiring
diagrams that share the same collection of chamber labels isotopic. For single
wiring diagrams, such collections of diagrams are called commutation classes,
which have been studied in [Bédard 1999; Carter and Marsh 2000].

Definition 2.1. A commutation class of double wiring diagrams is the collection
of all double wiring diagrams that share the same collection of chamber labels.

Any two commutation classes of double wiring diagrams can be linked by a
sequence of the braid moves pictured in Figure 2 [Fomin and Zelevinsky 2000].
Note that in each exchange only one chamber label changes. In a braid move from
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wiring diagram w to wiring diagram w′, we call the chamber label of w that changes
under the braid move, the center of the braid move. A braid move is centered at a
chamber label if that label changes under the braid move.

Figure 2. Braid moves. Left: 2-move; right: 3-move.

Since any two commutation classes of wiring diagrams can be connected by
a sequence of braid moves, it is natural to construct a graph describing these
relationships.

Definition 2.2. The graph of commutation classes of wiring diagrams, 8n , has a
unique vertex for every commutation class of double wiring diagram with n strings.
Two vertices are connected by an edge if their wiring diagrams differ by a single
braid move.

Fomin and Zelevinsky [2000] prove that 8n is a finite connected graph and
compute 83. In this paper we present a method for computing 8n and use it to
construct 84 and 85. We use these calculations to verify a positivity conjecture of
Fomin and Zelevinsky when n ≤ 4.

3. Using quivers to compute 8n

We have found that it is easier to compute 8n from the relationships among chamber
labels than through the graphical structure of the wiring diagrams. This avoids the
difficulty of keeping track of which wiring diagrams are in the same commutation
class.

We introduce a quiver that describes the relevant relationships among the chamber
labels of the double wiring diagram. This quiver is similar to a dual graph. The dual
graph itself, however, is not an adequate data structure, as double wiring diagrams
that are in the same commutation class may have differing dual graph structures.

Definition 3.1. For any double wiring diagram ω, define the quiver Q(w) with
vertices corresponding to chamber labels and an arrow from (g, b) to (g′, b′) if
g′ = g ∪ {g j } and b′ = b∪ {bk} for g j , bk ∈ {1, 2, . . . , n}. We label the arrows of
the quiver with the pair of numbers (g j , bk). We refer to g j (respectively bk) as the
gray (respectively black) labels of the arrow.

Figure 3 shows Q(w) for the wiring diagram pictured in Figure 1. To keep track
of the geometric relationship between the wiring diagram and the quiver we define
the height and position of a vertex of a quiver, which roughly describe the location
in the double wiring diagram of the corresponding chamber label.
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Figure 3. Quiver diagram.

Definition 3.2. Let v be a vertex of Q(w) corresponding to the chamber label
(g, b). We define the height of v to be the cardinality of g; h(v)= |g|. We define
the position of v denoted p(v)=

∑
x∈b x −

∑
y∈g y.

Notice that the height increases the higher up one moves in the diagram while
the position increases from left to right.

In order to construct 8n one needs to be able to identify the edges that are
incident to a given vertex. This information is local in nature so we introduce
language that allows us to discuss pieces of Q(w).

Definition 3.3. A subquiver of Q(w) is any subset of the vertices of Q(w) together
with a (possibly empty) set of arrows whose corresponding vertices are in the subset.

The following definitions provide the language needed to discuss the subquivers
that are fundamental to the identifying braid moves.

Definition 3.4. A subquiver S of Q(w) is complete if it contains every arrow of Q
that connects two vertices of S.

Definition 3.5. A subquiver S of Q(w) is full if, given that (g1, b1) and (g2, b2) are
elements of S with height h, S contains the vertices corresponding to all chamber
labels with height h and position between the positions of (g1, b1) and (g2, b2).

Notice that complete full subquivers completely determine a portion of a wiring
diagram without missing arrows or vertices.

Using the language of complete full subquivers we can describe all of the
edges that are incident to a vertex of 8n . Recall, each edge of 8n corresponds
to a particular braid move centered at a particular chamber of the double wiring
diagram.

Theorem 3.6. There exists a 3-move centered at label (g, b) if and only if Q(w)

contains a complete, full subquiver of one of the two types shown in Figure 4.
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Figure 4. Subquivers for 3-move.

Proof. Assume a 3-move exists. Then there must be a region of the wiring diagram
isomorphic to Figure 2 (right). Constructing the subquiver from this diagram yields
Figure 4.

For the other direction, assume Q(w) has a compete full subquiver isomorphic
to Figure 4 (left). We examine the possible gray labels for this subquiver. Since
the bottom vertex is connected to the top by a path of length three, we know that
only three distinct edge labels may appear in this subquiver. We label the leftmost
path from the bottom to the top that passes through (g, b), x , y, z as pictured in
Figure 5.

For each four-cycle in Figure 5 only two distinct edge labels may be used since
the bottom and top vertices are connected by a path of length two. This limits the
potential labelings to those in Figure 6. The case of picture d) in the figure cannot
exist because strings z and y are exchanged twice, which contradicts the definition
of a double wiring diagram.

Figure 5. Grey labels for subquiver.

Figure 6. Possible labeled subquivers.
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Figure 7. Invalid quiver labeling.

Repeat this argument for the black strings and label those cases A through H .
We now determine which gray and black cases can be paired together. Since the
labels must be distinct, the only potential pairs are (a, H), (b, G) and (c, F), and
their opposites (h, A), (g, B) and ( f, C).

If we draw a subquiver with the labels in the case (b, G), as in Figure 7, we
recover an extra arrow, which contradicts the hypothesis that the subquiver was
complete. The pairs (c, F), (g, B) and ( f, C) are symmetric to (b, G), so they are
also eliminated. This leaves only (a, H) and (h, A) as possible labelings.

By symmetry of the labelings we may assume the edge labels are of type (h, A).
Since this subquiver is full, there are no missing vertices. This means that changes in
chamber labels of the same cardinality indicate a unique braid crossing as pictured
in Figure 8 (left). No other crossings may occur in this region because the quiver is
complete. Therefore, the strings must connect without creating any other crossings.
This yields the 3-move pictured in Figure 8 (right). The proof for Figure 4 (right)
follows the same argument with reflected labels. �

Theorem 3.7. There exists a 2-move centered at label (g, b) if and only if Q(w)

contains the full subquiver shown in Figure 9.

Proof. Assume a 2-move exists. Then there must be a region of the wiring diagram
isomorphic to Figure 2 (left). Constructing the quiver from this diagram yields the
subquiver in Figure 9.

Figure 8. Reconstructed 3-move.
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Figure 9. Subquiver for 2-move.

Now assume Q(w) contains the full subquiver in Figure 9. We examine the
possible gray labels for the subquiver. Label the arrows to and from (g, b) as x
and y. Since there is a path from the bottom vertex to the top vertex of length two,
all arrows in the subquiver must be labeled x or y. Figure 10 shows the possible
labelings. The case corresponding to picture d) can be eliminated because it would
require strings x and y to be exchanged twice.

Figure 10. Quiver labelings.

We construct a similar pattern of possibilities for the black strings by labeling
the arrows with X and Y . We need to determine which gray and black cases can be
paired together. Since all of the labelings are distinct, the only potential pairs of
cases are (b, C) and (c, B); see Figure 11.

Figure 11. Potential quiver labelings.

As the labelings are symmetric, we can assume without loss of generality that
the diagram has edge labels of type (b, C). Since this subquiver is full there are no
missing vertices. This means that changes in chamber labels of the same height
indicate a unique braid crossing as pictured in Figure 12 (left). Since no other
crossings may occur in this region we connect the strings without creating any other
crossings. Doing so yields the 2-move pictured in Figure 12 (right). �
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Figure 12. Reconstructed 2-move.

4. Describing 8n

Theorems 3.6 and 3.7 allow for the computation of the graph 8n for any n using
the following algorithm:

(1) Choose an n-stringed double wiring diagram w with quiver Q(w).

(2) Using Theorems 3.6 and 3.7 find and connect all vertices incident to the vertex
corresponding to w.

(3) Repeat the previous step with the new set of vertices.

(4) Repeat this process until no new vertices can be added.

Since 8n is finite and connected this process will terminate and compute the entire
graph. This process has been implemented in C++ using algorithms available at
[Dukes 2011].

The smallest graph 82 consists of two vertices connected by an edge. The graph
of 83 first appeared in [Fomin and Zelevinsky 2000]. Figure 13 shows a new

Figure 13. 83 with Hamiltonian cycle highlighted.
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82 83 84 85

Vertices 2 34 4894 5520372
Edges 1 120 33300 60930112

Table 1. 8n edge and vertex data.

1 2 3 4 5 6 7 8 9

82 2
83 16 18
84 2 522 1362 1754 1054 200

Table 2. Number of vertices of given degree for 82 through 84.

6 7 8 9 10 11
85 84 28584 198596 632028 1165732 1402756

12 13 14 15 16
85 1165888 651188 227520 44452 3544

Table 3. Number of vertices of given degree for 85.

representation of 83 which indicates the presence of a Hamiltonian path. Tables 1,
2 and 3 summarize information about 8n for n ≤ 5.

5. Total positivity conjecture

With these explicit computations of 8n in hand, we return to the positivity conjecture
of Fomin and Zelevinsky described in the introduction. We briefly review the
setup of their work here. See [Fomin and Zelevinsky 2000] for a more complete
description.

Definition 5.1. An n× n matrix M with entries in R is called totally positive if all
minors of M are positive.

Definition 5.2 (Fomin and Zelevinsky). Let w be an n-stringed double wiring
diagram. For each chamber label (b, g) of w we define the minor 1g,b to be the
determinant of the matrix with rows of M corresponding to g and columns of M
corresponding to b. We call the collection of all such minors the chamber minors
of w.

Fomin and Zelevinsky [2000] proved that for any commutation class of double
wiring diagrams w, a matrix M is totally positive if and only if all of its chamber
minors are positive. In addition they conjectured that every minor could be written
as a Laurent polynomial in the chamber minors with nonnegative coefficients.
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Using our computations from Section 3, we can confirm this conjecture for n≤ 4.

Theorem 5.3. For n ≤ 4 and any n-stringed double wiring diagram w, every
minor of an n× n matrix can be written as a Laurent polynomial with nonnegative
coefficients in terms of the chamber minors of w.

Proof. Fomin and Zelevinsky [2000] show that if w and w′ are linked by a braid
move as pictured in Figure 2, then their chamber minors satisfy the equation

AD+ BC = XY. (1)

Using the program Fermat [Lewis 2007] and a C++ program written by the first
author, we verify Theorem 5.3 using the following algorithm:

(1) For each vertex v ∈8n and minor 1, find a path from v to a vertex v′ such
that 1 is a chamber minor of v′. This is possible since 8n is connected and
every minor appears as the chamber minor for some double wiring diagram.

(2) At each edge of this path use Fermat to compute the new minor as a Laurent
polynomial in terms of the previous minors using Equation (1). The Laurent
theorem [Fomin and Zelevinsky 1999] guarantees the result will be a Laurent
polynomial in the chamber minors of v. Repeat the process until 1 is written
as a Laurent polynomial in terms of the chamber minors of v.

(3) Verify that the corresponding Laurent polynomial has all positive coefficients.

The relevant code and data files can be found in [Dukes 2011]. �

Example 5.4. In this example we demonstrate that 114,12 can be written as a
Laurent polynomial in the chamber minors of w as in the wiring diagram in Figure 1
with nonnegative coefficients. First, the diagrams in Figure 14 determine a path in
84 from w to a vertex corresponding to a diagram with 114,12 as a chamber minor.

Each exchange along this path introduces a new chamber minor. Using (1), we
compute the new chamber minor as a Laurent polynomial in terms of the chamber
minors of w. The results of the Fermat computations of these Laurent polynomials
are listed below.

134,13 =
134,12113,13+1134,12313,1

113,12

=1134,1231
−1
13,1213,1+134,121

−1
13,12113,13,

114,13 =
11,1134,13+14,1113,13

13,1

=1134,1231
−1
13,12+134,121

−1
13,12113,131

−1
3,111,1+113,1314,11

−1
3,1,

114,12 =
114,13134,12+1134,12314,1

134,13
=134,121

−1
3,111,1+113,1214,11

−1
3,1.
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Figure 14. Path to a vertex with 114,12 as a chamber minor.

It suffices to observe that the coefficients in the expression of 114,12 in terms of the
chamber minors of w, are all positive.

Remark 5.5. The example above is not indicative of the complexity of the com-
putations. In 84 the Laurent polynomials in the solution frequently had over 100
terms.

Although we were able to compute 85 we were unable to confirm the conjecture
for n = 5 because of number of computations required. There are 34× 14= 476
pairs of vertices and chamber minors in 83, and 62 × 4,894 = 303,420 such
combinations in 84. To confirm the conjecture with brute force for n = 5 would
require 242× 5,520,372= 1,335,930,024 computations each involving extremely
large Laurent polynomials.
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A two-step conditionally bounded numerical
integrator to approximate some traveling-wave

solutions of a diffusion-reaction equation
Siegfried Macías and Jorge E. Macías-Díaz

(Communicated by Emil Minchev)

We develop a finite-difference scheme to approximate the bounded solutions of
the classical Fisher–Kolmogorov–Petrovsky–Piskunov equation from population
dynamics, in which the nonlinear reaction term assumes a generalized logistic
form. Historically, the existence of wave-front solutions for this model is a well-
known fact; more generally, the existence of solutions of this equation which
are bounded between 0 and 1 at all time, is likewise known, whence the need to
develop numerical methods that guarantee the positivity and the boundedness
of such solutions follows necessarily. The method is implicit, relatively easy
to implement, and is capable of preserving the positivity and the boundedness
of the new approximations under a simple parameter constraint. The proof of
the most important properties of the scheme is carried out with the help of the
theory of M-matrices. Finally, the technique is tested against some traveling-wave
solutions of the model under investigation; the results evince the fact that the
method performs well in the cases considered.

1. Introduction

R. A. Fisher [1937] and A. Kolmogorov, I. Petrovsky and N. Piskunov [Kolmogorov
et al. 1937] were the first to investigate the advance wave of mutant genes which
are advantageous to some populations distributed on linear habitats. The model
that they investigated is known as the Fisher–Kolmogorov–Petrovsky–Piskunov
equation, the Fisher–KPP equation, or simply Fisher’s equation, and it is one of
the simplest diffusive equations with nonlinear reaction. This parabolic partial
differential equation is a useful model in the description of the process of epidermal
wound healing [Sherratt and Murray 1990], in the theory of the electrodynamics of
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semiconductors [Wallace 1984], in the investigation of excitons [Rashba and Sturge
1982], and as a model for neutron flux in nuclear reactor kinetics [Kastenberg and
Chambré 1968].

The Fisher–KPP equation, like many other equations in mathematical physics,
is well-known to possess traveling-wave solutions [Wang 1988]. The wave fronts
connect the two stationary solutions, 0 and 1 in the equation’s nondimensionalized
version, via a monotone solution bounded within (0, 1) at all times. The existence
of other bounded solutions for this model, apart from traveling waves, is also a
standard result in the specialized literature [Wazwaz and Gorguis 2004]. This and
the fact that the Fisher–KPP equation is a model for which there is no analytic
solution for every admissible set of initial conditions justify interest in the design
of numerical techniques preserving the boundedness of the solutions.

The design of numerical methods that preserve several physical or mathematical
properties of the phenomena that they describe is a fruitful avenue of research in
scientific computation. Thus, from the physical point of view, several methods have
been proposed to approximate the solution and the energy dynamics of conservative
[Furihata 2001] and dissipative [Furihata 1999] systems. From the mathematical
point of view, the preservation of conditions such as symmetry, monotonicity,
positivity and boundedness is sometimes a highly desirable characteristic in a
numerical integrator. In fact, several numerical methods have been designed with
these conditions in mind, particularly in those cases when the variable of interest is
measured in an absolute scale. In these situations, the conditions of positivity and
boundedness of solutions, which are typical in the study of some traveling waves,
arise as constraints in the meaningfulness of the numerical results.

In this article we develop a finite-difference scheme to approximate bounded
positive solutions to the Fisher–KPP equation, and test our method against known
traveling-wave solutions. The main properties of our technique are consequences
of the theory of M-matrices [Fujimoto and Ranade 2004], which are nonsingular,
square matrices with the property that their inverses have only positive entries.

This work is organized as follows: In Section 2, we introduce the quantitative
model under investigation (namely, the Fisher–KPP equation from population
dynamics), and a family of traveling-wave solutions used in the sequel as comparison
paradigms. Section 3 presents the numerical method employed to approximate
solutions of the problem under investigation. There we prove our main result,
which gives parameter conditions under which the method is able to preserve
positivity and boundedness of the solutions of the Fisher–KPP model. Section 4
presents numerical evidence that the method is capable of preserving the properties
mentioned above when the conditions of our main result are satisfied. We make
some concluding remarks in Section 5.
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2. The Fisher–KPP equation

Let p be a positive integer. Let R+ represent the set of nonnegative numbers, and
let I = [a, b] be a closed and bounded interval of R. Let u be a real function defined
on I ×R+ which, for practical purposes, is supposed to be twice differentiable in
the interior of its domain. In this work, we approximate traveling-wave solutions of
the classical Fisher–KPP equation, which, in nondimensional form, is the nonlinear,
parabolic partial differential equation

∂u
∂t
=
∂2u
∂x2 + u f (u), (1)

where the function f : R→ R has the generalized logistic form

f (u)= 1− u p. (2)

As mentioned in the Introduction, this equation was first studied in the context
of the dynamics of populations in a one-dimensional, unbounded habitat. (In the
original studies, the exponent p was equal to 1.) For every real constant C , the
functions

u(x, t)=
{

1
2

tanh
[
−

p
2
√

2p+ 4

(
x −

p+ 4
√

2p+ 4
t
)
+

C
2

]
+

1
2

}2/p

(3)

are traveling wave solutions to (1), bounded in the interval (0, 1), and connecting
the two constant solutions u = 0 and u = 1 (see [Wang 1988]). These solutions will
be employed for comparison purposes in Section 4.

3. Numerical method

For the discretization, we consider a uniform partition a = x0 < x1 < · · ·< xN = b
of the interval I and a uniform partition 0 = t0 < t1 < · · · < tM = T of the time
interval [0, T ] over which we will compute approximate solutions of (1). We let uk

n
represent the approximation to the exact value of u(xn, tk). For convenience, let
1x = (b− a)/N and 1t = T/M , and consider the standard linear operators

δt uk
n =

uk+1
n − uk

n

1t
, (4)

defined for every n ∈ {0, 1, . . . , N } and every k ∈ {0, 1, . . . ,M − 1}, and

δ2
x uk

n =
uk

n+1− 2uk
n + uk

n−1

(1x)2
, (5)

defined for every n ∈ {1, 2, . . . , N − 1} and every k ∈ {0, 1, . . . ,M}. Let n ∈
{1, 2, . . . , N − 1} and k ∈ {0, 1, . . . ,M − 1}. With this notation at hand, we
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approximate the exact solution of u at (xn, tk) through the nonlinear difference
equation

δt uk
n = δ

2
x uk+1

n + uk+1
n f (uk

n). (6)

Clearly, in order to approximate solutions of (1) using the numerical method (6),
appropriate initial and boundary conditions must be imposed in both the continuous
and the discrete scenarios. In the present work, we will consider an initial profile of
the form u(x, 0)= φ(x) for every x ∈ I , a condition that translates to the discrete
scene into the constraint u0

n = φ(xn), for n ∈ {0, 1, . . . , N }. Similarly, we will
consider boundary conditions of the form u(a, t) = g(t) and u(b, t) = h(t) for
every t ∈ [0, T ], which translate, respectively, as uk

0 = g(tk) and uk
N = h(tk), for

every k ∈ {0, 1, . . . ,M}. With these conventions, the finite-difference method (6)
may be rewritten in vector form as the equation

Ak uk+1
= vk for k ∈ {0, 1, . . . ,M − 1}, (7)

where vk is the (N + 1)-dimensional real vector

vk
=
(
g(tk+1), uk

1, . . . , uk
N−1, h(tk+1)

)t
, (8)

for k ∈ {0, 1, . . . ,M}, and A is the matrix of size (N + 1)× (N + 1) given by

Ak =



1 0 0 0 · · · 0 0 0
−R ak

1 −R 0 · · · 0 0 0
0 −R ak

2 −R · · · 0 0 0
0 0 −R ak

3 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · ak
N−2 −R 0

0 0 0 0 · · · −R ak
N−1 −R

0 0 0 0 · · · 0 0 1


. (9)

Here,

R =
1t
(1x)2

, (10)

ak
n = 1+ 2R− f (uk

n)1t for n ∈ {1, 2, . . . , N − 1}. (11)

The forward-difference stencil of our method is depicted in Figure 1. The method
is clearly implicit and, after appropriate boundary conditions are specified at the
endpoints of I , it only requires of an initial profile u0 in order to compute the
subsequent approximations. Note also that, if f were a constant function, the
matrix Ak would be a constant matrix A, and the approximation at time k would be
given by Ak uk

= u0.
We now establish conditions under which the finite-difference method (6) pre-



APPROXIMATION OF SOLUTIONS OF A NONLINEAR EQUATION 223

6
t

-ee
ee
ee
ee
e

ee
ee
ee
ee
e

e e e e e e e e e e e e e
xn

xn−1 xn+1

tk
tk+1 u× × ×

Figure 1. Forward-difference stencil of the finite-difference
scheme (6). The black circle represents the known approximation
to the exact solutions at the time tk , and the crosses denote the
unknown, new approximations at the time tk+1.

serves the boundedness and the positivity of the solutions of (1), and it makes use
of the nonsingularity properties of M-matrices [Fujimoto and Ranade 2004].

Proposition 1. Let k ∈ {0, 1, . . . ,M − 1}, let p be equal to 1, and suppose that all
the components of vk are numbers in (0, 1). If 1t < 1 then the components of uk+1

in (7) are all likewise bounded in (0, 1).

Proof. Clearly, Ak has nonpositive, off-diagonal entries. Moreover, if f (uk
n)1t < 1

for every n ∈ {1, 2, . . . , N − 1}, then Ak is a strictly diagonally dominant matrix
with positive diagonal entries (notice that such condition holds if 0< uk

n < 1 for
every n ∈ {1, 2, . . . , N −1} and 1t < 1) and, as a consequence, Ak is an M-matrix,
that is, a nonsingular matrix whose inverse only has positive entries. Together
with (7), this implies that uk+1 is a vector with positive entries. Next, we establish
the boundedness from above of the components of uk+1. Let e be the (N + 1)-
dimensional vector all of whose components are equal to 1, and let wk+1

= e−uk+1.
A simple substitution in (7) gives us the equation

Akw
k+1
= Ak e− vk . (12)

The first and last components of the right-hand side of (12) are, respectively, 1−g(tk)
and 1−h(tk), which are positive, while for every n ∈{1, 2, . . . , N−1}, the (n+1)-st
component is given by the expression (1−1t)(1− uk

n), which is also a positive
number. As in the first part of this proof, it follows that the components of wk+1

are all positive numbers or, equivalently, that the components of uk+1 are all less
than 1. �
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We stress that (4) is a first-order accurate approximation of the partial derivative
of u with respect to t at (xn, tk), and that (5) is an approximation of the second
order to the value of the partial derivative of u with respect to x2 at the same point.
Under these circumstances, the linearized version of the finite-difference scheme
(6) is consistent of order 1t+ (1x)2 with the linearized version of (1) at (xn, tk+1).

4. Numerical results

To illustrate the validity of the our method and its computational implementation,
we ran two numerical experiments, choosing the initial conditions so the exact
solution is known, namely, the function (3). We set C = 1 and p = 1, and let the
spatial domain be I = [−50, 150], imposing at the endpoints Dirichlet conditions
provided by the exact solution evaluated at −50 and 150.
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Figure 2. Analytical solution (solid line) and the corresponding
approximation (dotted line) versus the spatial variable x at four
different times, of a system governed by (1) with p= 1. The initial
profile is that given by (3) at t = 0 with C = 1, and the boundary
conditions are provided by (3) at the endpoints of [−50, 150] at
any time. Numerically, the method (6) employed 1x = 1 and
1t = 0.05, and the times considered were t = 5, 15, 30, 60.
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In the first run, we use the finite-difference method (6) with1x=1 and1t=0.05,
so that the parameter constraint in Proposition 1 for the boundedness of the method
be satisfied. Under these conditions, Figure 2 compares the exact solutions with
the corresponding numerical approximations provided by our technique at four
different times, namely t=5, 15, 30 and 60. The results show that the computational
solution remains bounded within (0, 1), as expected. Additionally, there exists a
good agreement between both solutions at small times; the difference between the
exact solutions and the numerical approximations is more pronounced at the times
t = 30 and 60.

In the second run, we change only the parameter values1x = 0.5 and1t = 0.005.
The numerical results are presented in Figure 3, and one immediately notices a better
agreement between the analytical solutions and the computational approximations
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Figure 3. Analytical solution (solid line) and the corresponding
approximation (dotted line) versus the spatial variable x at four
different times, of a system governed by (1) with p= 1. The initial
profile is that given by (3) at t = 0 with C = 1, and the boundary
conditions are provided by (3) at the endpoints of [−50, 150] at
any time. Numerically, the method (6) employed 1x = 0.5 and
1t = 0.005, and the times considered were t = 5, 15, 30, 60.
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to the problem under consideration, even for larger values of time. We also see
that the numerical approximations, like the exact solutions, remain bounded within
(0, 1). This is in agreement with Proposition 1.

5. Conclusions

We have presented a numerical method to approximate bounded solutions of the
classical Fisher–KPP equation from population dynamics. The proposed finite-
difference scheme is a nonstandard method in the way that the reaction term is
approximated, and it may be conveniently expressed in vector form in terms of
the multiplication by a tridiagonal matrix which, under certain circumstances, is
actually an M-matrix. In this way, new approximations may be written as the
product of the previous approximation by the inverse of the M-matrix. Some simple
and direct calculations show that the new approximations are bounded between 0
and 1 under suitable conditions on the computational parameters.

The method was implemented and tested against known exact solutions of the
classical Fisher–KPP equation on a bounded spatial domain. The results show that
the method performs well when approximating the analytical solutions considered.
Moreover, one notices that the method preserves the boundedness and the positivity
of the solutions considered when the parameter conditions derived in the work are
satisfied.
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The average order of elements
in the multiplicative group of a finite field

Yilan Hu and Carl Pomerance

(Communicated by Kenneth S. Berenhaut)

We consider the average multiplicative order of a nonzero element in a finite
field and compute the mean of this statistic for all finite fields of a given degree
over their prime fields.

1. Introduction

For a cyclic group of order n, let α(n) denote the average order of an element. For
each d | n, there are exactly ϕ(d) elements of order d in the group (where ϕ is
Euler’s function), so

α(n)=
1
n

∑
d|n

dϕ(d).

It is known [von zur Gathen 2004] that

1
x

∑
n≤x

α(n)=
3ζ(3)
π2 x + O

(
(log x)2/3(log log x)4/3

)
.

We are interested here in obtaining an analogous result where n runs over the orders
of the multiplicative groups of finite fields. Let p denote a prime number. We know
that up to isomorphism, for each positive integer k, there is a unique finite field of
pk elements. The multiplicative group for this field is cyclic of size pk

−1. We are
concerned with the average order of an element in this cyclic group as p varies.
We show the following results.

Theorem 1. For each positive integer k there is a positive constant Kk such that
the following holds. For each number A> 0, each number x ≥ 2, and each positive
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Keywords: average multiplicative order, finite field.
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integer k with k ≤ (log x)/(2 log log x), we have

1
π(x)

∑
p≤x

α(pk
− 1)

pk − 1
= Kk + OA

(
1

logA x

)
.

This theorem in the case k = 1 appears in [Luca 2005]. Using Theorem 1 and a
partial summation argument we are able to show the following consequence.

Corollary 2. For all numbers A > 0, x ≥ 2, and for any positive integer k ≤
(log x)/(2 log log x), we have

1
π(x)

∑
p≤x

α(pk
− 1)= Kk

li(xk+1)

li(x)
+ OA

(
xk

logA x

)
,

where Kk is the constant from Theorem 1 and li(x) :=
∫ x

2 dt/ log t .

Since li(xk+1)/li(x)∼ xk/(k+ 1) as x→∞, Corollary 2 implies that

1
π(x)

∑
p≤x

α(pk
− 1)∼

Kk

k+ 1
xk, as x→∞.

We identify the constants Kk as follows. Let Nk(n) denote the number of solu-
tions to the congruence sk

≡ 1 (mod n).

Proposition 3. For each prime p and positive integer k let

Sk(p)=
∞∑
j=1

Nk(p j )

p3 j−1 .

Then Sk(p) < 1 and
Kk :=

∏
p

(1− Sk(p))

is a real number with 0< Kk < 1.

2. Preliminary results

In this section we prove Proposition 3 and we also prove a lemma concerning the
function Nk(n).

Proof of Proposition 3. We clearly have Nk(n) ≤ ϕ(n) for every n, since Nk(n)
counts the number of elements in the group (Z/nZ)∗ with order dividing k and
there are ϕ(n) elements in all in this group. Thus, we have

Sk(p)≤
∞∑
j=1

ϕ(p j )

p3 j−1 =

(
1−

1
p

) ∞∑
j=1

p
p2 j =

(
1−

1
p

)
p

p2− 1
=

1
p+ 1

.
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This proves the first assertion, but it is not sufficient for the second assertion. For
p an odd prime, the group (Z/p j Z)∗ is cyclic so that the number of elements in
this group of order dividing k is

Nk(p j )= gcd(k, ϕ(p j )). (1)

The same holds for p j
= 2 or 4, or if p = 2 and k is odd. Suppose now that

p= 2, j ≥ 3, and k is even. Since (Z/2 j Z)∗ is the direct product of a cyclic group
of order 2 and a cyclic group of order 2 j−2, we have

Nk(2 j )= 2 · gcd(k, 2 j−2)= gcd(2k, ϕ(2 j )). (2)

Thus, we always have Nk(p j )≤ 2k, and so

Sk(p)≤
∞∑
j=1

2k
p3 j−1 =

2kp
p3− 1

.

In particular, we have Sk(p) = Ok(1/p2), which with our first assertion implies
that the product for Kk converges to a positive real number that is less than 1. This
completes the proof. �

Lemma 4. For every positive integer k and each real number x ≥ 1 we have∑
n≤x

Nk(n)
n
≤ 2(1+ log x)k .

Proof. Let ω(n) denote the number of distinct primes that divide n and let τk(n)
denote the number of ordered factorizations of n into k positive integral factors.
Since kω(n) is the number of ordered factorizations of n into k pairwise coprime
factors, we have kω(n)≤τk(n) for all n. Further, from (1), (2) and the fact that Nk(n)
is multiplicative in the variable n, we have Nk(n)≤ 2kω(n), so that Nk(n)≤ 2τk(n).
Thus, it suffices to show that∑

n≤x

τk(n)
n
≤ (1+ log x)k . (3)

We prove (3) by induction on k. It holds for k = 1 since τ1(n)= 1 for all n, so that∑
n≤x

N1(n)
n
=

∑
n≤x

1
n
≤ 1+

∫ x

1

dt
t
= 1+ log x .

Assume now that k ≥ 1 and that (3) holds for k. Since

τk+1(n)=
∑
d|n

τk(n),

we have
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∑
n≤x

τk+1(n)
n
=

∑
n≤x

1
n

∑
d|n

τk(d)=
∑
d≤x

τk(d)
d

∑
m≤x/d

1
m

≤

∑
d≤x

τk(d)
d

(1+ log x)≤ (1+ log x)k+1,

by the induction hypothesis. This completes the proof. �

Corollary 5. For k a positive integer and y a positive real with k ≤ 1+ log y, we
have ∑

n>y

Nk(n)
n2 ≤ 2(k+ 1)

(1+ log y)k

y
.

Proof. By partial summation, Lemma 4, and integration by parts, we have∑
n>y

Nk(n)
n2 =

∫
∞

y

1
t2

∑
y<n≤t

Nk(n)
n

dt ≤ 2
∫
∞

y

(1+ log t)k

t2 dt

=
2
y

(
(1+ log y)k+k(1+log y)k−1

+k(k−1)(1+log y)k−2
+· · ·+k!

)
≤ 2(k+ 1)

(1+ log y)k

y
,

using k ≤ 1+ log y. This completes the proof. �

3. The main theorem

Proof of Theorem 1. The function

α(m)
m
=

1
m2

∑
n|m

nϕ(n)

is multiplicative and so by Möbius inversion, we may write

α(m)
m
=

∑
n|m

γ (n),

where γ is a multiplicative function. It is easy to compute that

γ (p j )=−
p− 1
p2 j (4)

for every prime p and positive integer j . If rad(n) denotes the largest squarefree
divisor of n, we thus have

γ (n)= (−1)ω(n)
ϕ(rad(n))

n2 (5)

for each positive integer n. Note that (4), (5) are also in [Luca 2005].
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For n a positive integer, label the Nk(n) roots to the congruence sk
≡ 1 (mod n)

as sk,1, sk,2, . . . , sk,Nk(n). We have

∑
p≤x

α(pk
− 1)

pk − 1
=

∑
p≤x

∑
n|pk−1

γ (n)=
∑

n≤xk−1

γ (n)
∑
p≤x

n|pk
−1

1

=

∑
n≤xk−1

γ (n)
Nk(n)∑
i=1

π(x; n, sk,i ),

where π(x; q, a) denotes the number of primes p ≤ x with p ≡ a (mod q).
If q is not too large in comparison to x and if a is coprime to q, we expect

π(x; q, a) to be approximately π(x)/ϕ(q). With this thought in mind, let Eq,a(x)
be defined by the equation

π(x; q, a)=
1

ϕ(q)
π(x)+ Eq,a(x).

Further, let y= x1/2/ logA+4 x , where A is as in the statement of Theorem 1. From
the above, we thus have

∑
p≤x

α(pk
− 1)

pk − 1

=

∑
n≤xk−1

γ (n)
Nk(n)∑
i=1

π(x; n, sk,i )

=

∑
n≤y

γ (n)Nk(n)
ϕ(n)

π(x)+
∑
n≤y

γ (n)
Nk(n)∑
i=1

En,ski
(x)+

∑
y<n≤xk−1

γ (n)
Nk(n)∑
i=1

π(x; n, sk,i )

=: T1+ T2+ T3, say.

We further refine the main term T1 as

T1 = π(x)
∞∑

n=1

γ (n)Nk(n)
ϕ(n)

−π(x)
∑
n>y

γ (n)Nk(n)
ϕ(n)

.

The first sum here has an Euler product as

∞∑
n=1

γ (n)Nk(n)
ϕ(n)

=

∏
p

(
1+

∞∑
j=1

γ (p j )Nk(p j )

ϕ(p j )

)
=

∏
p

(
1−

∞∑
j=1

Nk(p j )

p3 j−1

)
= Kk,
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where we used (4). For the second sum in the expression for T1, we have by (5)
and Corollary 5,∣∣∣∣∣∑

n>y

γ (n)Nk(n)
ϕ(n)

∣∣∣∣∣≤∑
n>y

Nk(n)
n2 ≤ 2(k+ 1)

(1+ log y)k

y
.

Here we have used k ≤ (log x)/(2 log log x) and y = x1/2/ logA+4 x , so that k ≤
1+ log y for all sufficiently large x depending on the choice of A. Further, with
these choices for k, y we have (1+ log y)k < x1/2 for x sufficiently large, so that

π(x)

∣∣∣∣∣∑
n>y

γ (n)Nk(n)
ϕ(n)

∣∣∣∣∣≤ π(x)2(k+ 1)(1+ log y)k

y
≤

π(x)

exp log x
3 log log x

for all sufficiently large values of x depending on A. Thus,

T1 = Kkπ(x)+ OA(π(x)/ logA x).

It remains to show that both T2 and T3 are OA(π(x)/ logA x). Using the ele-
mentary estimate π(x; q, a)≤ 1+ x/q , we have

|T3| ≤
∑

y<n≤xk−1

|γ (n)|Nk(n)
(

1+
x
n

)
≤

∑
y<n≤xk−1

Nk(n)
n
+ x

∑
y<n≤xk−1

Nk(n)
n2 ,

by (5). We have seen that the second sum here is negligible, and the first sum is
bounded by 2(1+ k log x)k using Lemma 4. This last expression is smaller than(

log2 x
log log x

)k

≤
x

exp log x log log log x
2 log log x

= OA

(
π(x)

logA x

)

for any fixed choice of A.
To estimate T2, note that

|T2| ≤
∑
n≤y

|γ (n)|Nk(n) max
(a,n)=1

∣∣∣∣π(x; n, a)−
1
ϕ(n)

π(x)
∣∣∣∣

≤

∑
n≤y

max
(a,n)=1

∣∣∣∣π(x; n, a)−
1
ϕ(n)

π(x)
∣∣∣∣ ,

since |γ (n)| ≤ ϕ(n)/n2
≤ 1/n and Nk(n) ≤ ϕ(n) ≤ n. Thus, by the Bombieri–

Vinogradov theorem (see [Davenport 2000, Chapter 28]) we have

|T2| = OA(π(x)/ logA x),

by our choice of y. These estimates conclude our proof of Theorem 1. �
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4. Proof of Corollary 2 and more on the constants Kk

Proof of Corollary 2. By partial summation, we have∑
p≤x

α(pk
− 1)=

∑
p≤x

α(pk
− 1)

pk − 1
(pk
− 1)

= (xk
− 1)

∑
p≤x

α(pk
− 1)

pk − 1
−

∫ x

2
ktk−1

∑
p≤t

α(pk
− 1)

pk − 1
dt.

Thus, by Theorem 1, the prime number theorem, and integration by parts, we have∑
p≤x

α(pk
− 1)= (xk

− 1)Kkπ(x)−
∫ x

2
ktk−1Kkπ(t) dt + O

(
π(x)xk

logA x

)

= (xk
− 1)Kk li(x)−

∫ x

2
ktk−1Kk li(t) dt + O

(
π(x)xk

logA x

)
=

∫ x

2
Kk

tk

log t
dt + O

(
π(x)xk

logA x

)
.

This last integral is Kk li(xk+1)−Kk li(2k+1), so the corollary now follows via one
additional call to the prime number theorem. �

We now examine the constants Kk for k ≤ 4. Since N1(p j ) = 1 for all p j , we
have

K1 =
∏

p

(
1−

∑
j≥1

p
p3 j

)
=

∏
p

(
1−

p
p3− 1

)
= 0.5759599689 . . . .

(This constant is also worked out in [Luca 2005].) For K2 we note that N2(p j )= 2
for all prime powers p j except that N2(2)= 1 and N2(2 j )= 4 for j ≥ 3. Thus,∑

j≥1

N2(2 j )

23 j−1 =
1
4
+

2
32
+

1
56
=

37
112

,

and so

K2 =
75
112

∏
p>2

(
1−

2p
p3− 1

)
= 0.4269891575 . . . .

For K3, we have N3(p j )=3 for p≡1 (mod 3) and for p=3 and j ≥2. Otherwise,
N3(p j )= 1. Thus,

K3 =
205
234

∏
p≡1 (mod 3)

(
1−

3p
p3− 1

) ∏
p≡2 (mod 3)

(
1−

p
p3− 1

)
= 0.6393087751 . . . .
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For K4, we have N4(p j ) = 4 for p ≡ 1 (mod 4), N4(p j ) = 2 for p ≡ 3 (mod 4),
N4(2)= 1, N4(22)= 2, N4(23)= 4, and N4(2 j )= 8 for j ≥ 4. Thus,

K4 =
299
448

∏
p≡1 (mod 4)

(
1−

4p
p3− 1

) ∏
p≡3 (mod 4)

(
1−

2p
p3− 1

)
= 0.3775394971 . . . .

These calculations were done with the aid of Mathematica. With a little effort
other constants Kk may be computed, but if k has many divisors, the calculation
gets more tedious.

We close with the observation that there is an infinite sequence of numbers k on
which Kk→ 0. In particular, if k= km is the least common multiple of all numbers
up to m, then Nk(p)= p− 1 for every prime p ≤ m+ 1, so that

Kk <
∏

p

(
1−

Nk(p)
p2

)
<

∏
p≤m+1

(
1−

p− 1
p2

)
.

Since
∑
(p−1)/p2

=+∞, it follows that as m→∞, Kkm→0. Using the theorem
of Mertens, we in fact have lim inf Kk log log k <+∞.
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