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Repulsive point processes arise in models where competition forces entities to
be more spread apart than if placed independently. Simulation of these types
of processes can be accomplished using dominated coupling from the past with
a running time that depends on the intensity of the number of points. These
algorithms usually exhibit what is called an artificial phase transition, where
below a critical intensity the algorithm runs in finite expected time, but above the
critical intensity the expected number of steps is infinite. Here the artificial phase
transition is examined. In particular, an earlier lower bound on this artificial phase
transition is improved by including a new type of term in the analysis. In addition,
the results of computer experiments to locate the transition are presented.

1. Introduction

A spatial point process is a random collection of points in a set S. In most applica-
tions, S is a continuous space and all of the points are distinct. For instance, the
locations of trees in a forest [Møller and Waagepetersen 2007] and the locations
of cities in a country [Glass and Tobler 1971] can be modeled using spatial point
processes.

One simple spatial point process is the Poisson point process. Suppose that
S is a bounded Borel set with positive and finite Lebesgue measure. The basic
Poisson point process is the outcome of the following algorithm. First choose a
random number of points N according to a Poisson distribution with parameter
λµ(S) (so P(N = i)= exp(−λµ(S))(λµ(S))i/ i ! for nonnegative integers i .) Here
µ is Lebesgue measure and λ > 0 is a parameter of the model. Next, choose
points X1, . . . , Xn independently and uniformly from the set S. The resulting set
{X1, . . . , X N } is a Poisson point process.
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Since the points are drawn independently, this model fails to capture situations
where the locations of points are not independent. In both the forest and cities ex-
amples mentioned earlier, the points tend to be farther apart than in the independent
situation since the entities involved are competing for space and resources. The
points appear to act as particles with the same charge, and so they exhibit repulsion.

There are several ways to account for this repulsion. The hard core Gibbs process
[Mase et al. 2001] is a Poisson point process conditioned on the event that none
of the points lie within distance R of each other. In other words, each point is
surrounded by a hard core of radius R/2. The cores are “hard” in the sense that the
cores are not allowed to overlap. Here R is a parameter of the model.

In frequentist approaches, this model can be used to construct maximum likeli-
hood estimators for R and λ. The values of these estimators can be approximated
by methods which use random draws of the point process from the model. See, for
example, [Geyer and Møller 1994; Geyer 1999; Møller and Waagepetersen 2004]
for details.

In Bayesian approaches, this model (together with a prior on λ and R) can be
used to build a posterior for the parameters. This posterior is quite complex, and
depends on a normalizing constant (also known as partition function) that is difficult
to compute exactly. The auxiliary variable method of Møller et al. [2006] can be
used to create a Markov chain for these problems: this Markov chain also requires
the ability to draw random variates from the model in question.

Spatial birth and death chains. Preston [1975] created a coupled pair of jump
processes (X t , Yt) where the stationary distribution of Yt is a Poisson point process,
and the stationary distribution of X t is the target process. In a jump process, the
state stays the same until abruptly jumping to a new state (these jumps are called
events). The time until the next jump is an exponential random variable whose
rate depends only on the current state. Conditioned on this rate, the exponential is
independent of all prior history of the process. For Yt , a birth is an addition of a
point to the process, and occurs at rate equal to λµ(S). If a birth event occurs, the
point added is chosen uniformly from S (again this choice is independent of the
prior history of the process.) Each point when born is given a time of death that is
the current time plus an exponential random variable with mean 1. This exponential
is once more independent of the prior history of the process. At time of death, the
point is removed from the process.

For a jump process At , let

At− =
⋂
ε>0

⋂
t−ε<t ′<t

At ′

be the state of the process immediately before time t . To use Preston’s method for
the hard core Gibbs process, suppose that the point v is born at time t in the Y
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process. Then v is added to the X t state if and only if it is not within distance R of
a point in X t− . So births are always added to the Y process, but only sometimes to
the X process in order to maintain the hard core property.

If a point w ∈ Yt− dies, at time t it is removed from the Y process. If w is also
in X t− it is also removed from the X process at time t . With this coupling,

X t ′ ⊆ Yt ′ =⇒ X t ⊆ Yt

for all t ′ < t , so the Y process is referred to as the dominating process.
Preston’s approach yields a jump process whose limiting distribution of X t is

the hard core Gibbs process, but X t will never exactly be in the correct distribution.
Ferrari, Fernández, and Garcia [2002] developed a method for drawing samples
exactly from the desired distribution using a clan of ancestors approach. In turn,
Kendall and Møller [2000] developed a much faster algorithm, dominated coupling
from the past (DCFTP), which can be used to sample from a variety of distributions
that include the hard core Gibbs process.

Previous analysis showed that when using the standard Euclidean distance, the
DCFTP method was provably fast when λ < 1/(πR2) [Huber 2012]. In this work
we build upon this analysis, providing a wider set of conditions on λ and R for the
DCFTP method to run quickly. The original argument used a term depending on
the number of points in the configuration, while the new method uses the number
of points as well as the area spanned by these points. This extra area term is what
leads to the stronger proof. For ease of exposition we use the Euclidean metric to
measure the distance between points and only operate in R2 throughout this work;
we simply note that the same argument can easily be applied to any metric and to
problems in higher dimensions.

The remainder of the work is organized as follows. Section 2 gives our new
result: improved sufficient conditions on the parameters of the model for dominated
coupling from the past to operate quickly. Section 3 gives computer results to
complement the theoretical results of the previous section, and we close with our
conclusions.

2. Bounding the running time of DCFTP

The time necessary to run DCFTP is related to the clan of descendants (cod) of
a point v, defined as follows. For any point v ∈ Y0, couple another point process
Ct(v) to Yt as follows. Let C0(v)= {v}. If a point w is born to Yt− at time t , add
w to Ct if and only if w is within distance R of a point in Ct− . If a point w′ dies in
the Y process at time t , and is also in the C process, remove it from Ct as well.

Then the cod of v is
C(v)=

⋃
t≥0

Ct(v).
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The clan of ancestors in [Ferrari et al. 2002] is the time reversal of the cod, so they
have the same size. In addition, the expected running time of DCFTP is bounded
by a constant times the expected size of the cod. If there is a chance that the cod
grows indefinitely, DCFTP has the same chance of taking forever to generate a
sample, so the algorithm is only useful when the cod is finite with probability 1.

To bound the size of the cod, we wish to show that #Ct converges to 0 (so that
Ct =∅) with probability 1 after a finite number of births and deaths that affect the
cod. In particular,

Theorem. For λ < [8/(3
√

3+ 4π)]/R2, the expected number of births and deaths
that affect the cod is bounded above by(

8/(3
√

3+ 4π)
R2 − λ

)−1

.

As noted in Section 1, a similar previous result in [Huber 2012] had a constant of
1/π ≈ 0.3183 in front of the R−2 factor, while the new result has 8/(3

√
3+ 4π)≈

0.4503. Hence this result proves the efficacy of the DCFTP method (and mixing
time of the chain) over values of λ that are 41% larger than previously known.

Avoiding boundary effects. In order to avoid having to worry about boundary
effects arising from finite S, we first build another point process that dominates
Ct(v). As with the regular process, start with C+0 (v) = {v}. Let S(C+t (v), R) be
all points within distance R of a point in C+t (v). Then births in S(C+t (v), R) will
occur at rate λ ·µ(S(C+t (v), R)). Points in C+t die at rate 1. Births and deaths in S
can be coupled to the births and deaths in Yt , but there might be extra points in C+t
that were born outside of S. Therefore, Ct(v)⊆ C+t (v), and to show that #Ct(v)

converges to zero, it suffices to show #C+t (v) converges to zero.

Useful facts. Before proving the Theorem, we show some facts that will be useful.
We are only interested in how C+t changes with births and deaths. Hence let ti
denote the time of the i-th event that is either a death of a point in the cod, or
the proposed birth of a point within distance R of the cod. Let Di = C+ti , so Di

represents a superset of the cod after i such events have occurred. Let #Di denote
the number of points in this set.

For a configuration x , let A(x) denote the Lebesgue measure of the region within
distance R of at least one point in x . In particular, A(Di ) is the measure of the area
of the region within distance R of points in the cod. So A(Di ) is proportional to
the rate at which births occur that increase #Di by 1. Our first lemma limits the
average area that is added when such a birth occurs.

Lemma 1. E[A(Di+1)− A(Di ) | a birth occurs at time ti+1] ≤ R23
√

3/4.
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A1

A2

A3

Figure 1. For circles of radius R, 3πR2
= A1+ 2A2+ 3A3.

Proof. Let w be a proposed birth point. Then in order to add to the clan of
descendants, w must be within distance R of a point v of Di . The area of the new
setup does not increase by πR2, however, since only the region within R of w
and not within R of v can be added area. Because w is conditioned to lie within
distance R of v, the distance between centers is a random variable with density
fr (a)= (2a/R2) ·1(0≤ a ≤ R).1 Hence, the expected area added can be written as

E[A(Di+1)− A(Di ) | birth] ≤
∫ R

0

2a
R2

[
πR2
− 4

∫ R

a/2

√
R2− x2 dx

]
da

= R23
√

3/4.

This is an upper bound on the expected value of A(Di+1)− A(Di ) because w might
be within distance R of other points in Di as well, which would reduce the added
area. �

The last lemma gives an upper bound on the area added when a birth occurs.
The next lemma gives a lower bound on the area removed when a death occurs.

Lemma 2.

E[A(Di+1)− A(Di ) | a death occurs at time ti+1] ≥ [2A(Di )/#Di ] −πR2.

Proof. Let Ak denote the area of the region that is within distance R of exactly k
points of Di . Then (see Figure 1)

πR2#Di = A1+ 2A2+ 3A3+ · · ·+ (#Di )A#Di ,

and A(Di )= A1+ A2+ A3+ · · ·+ A#Di . Therefore

2A(Di )−πR2#Di = A1− A3− 2A4− · · ·− (#Di − 2)A#Di ≤ A1.

If the points in Di are labeled 1, 2, . . . , #Di , then A1 = a1 + a2 + · · · + a#D1 ,
where ak is the area of the region within distance R of point i and no other points.

1We use 1(P(a)) for the indicator function of P(a), defined as 1 if P(a) is true and as 0 otherwise.
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When a death occurs, every point in #Di is equally likely to be chosen to be removed,
so the average area removed is

1
#Di

a1+ · · ·+
1

#Di
a#Di =

1
#Di

A1 ≥
2A(Di )

#Di
−πR2. �

Proof of the Theorem. For a configuration x , let φ(x)= A(x)+ c · #x , where c > 0
is a constant to be chosen later. Note that φ(x) is positive unless x is the empty
configuration, in which case it equals 0. Let τ = inf{i : Di = ∅}. Using a ∧ b
to denote the minimum of a and b, we shall show that φ(Di∧τ )+ (i ∧ τ)δ is a
supermartingale with

δ =
2− λR2(3

√
3/4)

1+ λ
.

The rest of the result then follows as a consequence of the optional sampling theorem
(OST). See Chapter 5 of [Durrett 2010] for a description of supermartingales and
the OST.

When i ≥ τ , φ(Di∧τ )+(i∧τ)δ is a constant, and so trivially is a supermartingale.
When i<τ , φ(Di+1) either grows when a birth occurs in the cod, or shrinks when

a death occurs. First consider how #Di changes. Births occur at rate λA(Di ), and
deaths at rate #Di . Hence the probability that an event that changes #Di is a birth
is A(Di )/(A(Di )+ #Di ), with the rest of the probability going towards deaths. So

E[#Di+1− #Di |φ(Di )] = E
[
E[#Di+1− #Di | Di ]

∣∣ φ(Di )
]

≤ E

[
1(i < τ)

(
λA(Di )

A(Di )+ #Di
−

#Di

A(Di )+ #Di

) ∣∣∣∣ φ(Di )

]
.

(The analysis in [Huber 2012] only considered this term in φ, which is why the
result is weaker than what is given here.)

From our first lemma, a birth increases (on average) the area covered by the cod
by at most R23

√
3/4. Our second lemma provides a lower bound on the average

area removed when a death occurs. Combining these results yields

E[A(Di+1)− A(Di ) |φ(Di )] = E
[
E[A(Di+1)− A(Di ) | Di ]

∣∣ φ(Di )
]

≤E

[
1(i<τ)

(
λA(Di )

A(Di )+ #Di
R2 3
√

3
4
−

#Di

A(Di )+ #Di

(2A(Di )

#Di
−πR2

))∣∣∣∣φ(Di )

]
.

Note that 1(i < τ) is measurable with respect to φ(Di ), so bringing that out front
and adding the inequalities gives

E[φ(Di+1)−φ(Di ) |φ(Di )]

≤ 1(i < τ) E

[
A(Di )(λ((R23

√
3/4)+ c)− 2)+ #Di (πR2

− c)
A(Di )+ #Di

∣∣∣∣ φ(Di )

]
.
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Now c can be set to

c =
πR2
+ 2− λR2(3

√
3/4)

1+ λ
,

so that

E [φ(Di+1)−φ(Di ) | φ(Di )] ≤ 1(i < τ)E
[

A(Di )(−δ)+ #Di (−δ)

A(Di )+ #Di

∣∣∣∣ φ(Di )

]
=−δ1(i < τ).

Hence φ(Di∧τ )+ (i ∧ τ)δ is a supermartingale. �

3. Experimental results

This theoretical result increases the known lower bound for the value of λ where
the clan of descendants is finite, but this is still just a lower bound. Computer
experiments can estimate this critical value of λ more precisely.

For the estimates in this section, the following protocol was used. We began a
clan of descendants superset C+(v) from a single point, and recorded whether the
clan died out or reached a size of 750. This was repeated 200 times, and used to
estimate the probability that the clan dies out for a given value of λ. The results
indicate that somewhere in [0.625, 0.626], the probability begins to drop from 1
down towards 0 (see Figure 2 for how the extinction probability changes with λ).

0.0 0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

e
x
ti
n

c
ti
o

n
 p

ro
b

a
b

ili
ty

λ

Figure 2. Estimate of extinction probability using 200 trials. The
maximum cod size is 750 points.
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This indicates that while the new 0.4503 theoretical result is an improvement
over the old result of 0.3183, there is still work to be done to reach the true
value. Increasing the ceiling size from 750 to 1500 did not alter the results within
experimental error.

In short, by including a term for the area covered by the points in the potential
function, a stronger theoretical lower bound on the artificial phase transition for
dominated coupling from the past applied to the hard core gas model has been
found. This method appears to be very general and should apply to a wide variety
of repulsive processes.
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