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We establish that the only positive integral solutions common to the two Pell’s
equations U 2

− 18V 2
=−119 and Z2

− 29V 2
=−196 are U = 41, V = 10 and

Z = 52.

1. Introduction

Let n be a nonzero integer. We say that two integers α and β have the Diophantine
property D(n) if αβ + n is a prefect square. A set of numbers has the property
D(n) if every pair of distinct elements of the set has this property. A Diophantine
set S with property D(n) is said to be extendable if, for some integer d , with d not
belonging to S, the set S ∪ {d} is also a Diophantine set with property D(n).

Sets consisting of Fibonacci numbers {Fm} and Lucas numbers {Lm} with the
Diophantine property D(n) have attracted the attention of many number theorists
recently. A. Baker and H. Davenport [1969] dealt with the quadruple {1, 3, 8, 120}
with property D(1) in which the first three terms are F2, F4 and F6. They proved
that the set cannot be extended further. V. E. Hoggatt and G. E. Bergum [1977]
proved that the four numbers F2k , F2k+2, F2k+4 and d = 4F2k+1 F2k+2 F2k+3, for
k ≥ 1, have the Diophantine property D(1) and conjectured that no other integer
can replace d here. The result of Baker and Davenport [1969] was an assertion of
the conjecture for k = 1. A. Dujella [1999] proved the Hoggatt-Bergum conjecture
for all positive integral values of k.

Dujella [1995] also considered Diophantine quadruples for squares of Fibonacci
and Lucas numbers. In this paper we consider the Lucas numbers Ln , which are
defined by L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln . The three Lucas numbers L1, L6

and L7 have the property D(7). The aim of this paper is to determine whether this
set {1, 18, 29} is extendable.
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2. Formulation of the problem

Suppose the natural number x extends the set S = {1, 18, 29}. Then we have

x + 7= V 2, (1)

18x + 7=U 2, (2)

29x + 7= Z2, (3)

for some integers U, V, Z . Solving (1), (2) and (3) is equivalent to solving simulta-
neously the two Pell’s equations

U 2
− 18V 2

=−119, (4)

Z2
− 29V 2

=−196. (5)

We prove that there is essentially a unique solution, so the set S can be extended
by exactly one element:

Theorem. The only positive integral solutions common to the two Pell’s equations
U 2
− 18V 2

=−119 and Z2
− 29V 2

=−196 are U = 41, V = 10 and Z = 52.

Using these values in (1) yields x = 93. Therefore:

Corollary. The triple {1, 18, 29} of Lucas numbers is extendable; the quadruple
{1, 18, 29, 93} has the Diophantine property D(7) and cannot be extended further.

3. Methodology

For the determination of the common solutions of the system of Pell’s equations
3x2
− 2= y2 and 8x2

− 7= z2, Baker and Davenport [1969] gave a method based
on the linear forms of logarithms of algebraic numbers. P. Kanagasabapathy and T.
Ponnudurai [1975] applied quadratic reciprocity to the same system. S. P. Mohanty
and A. M. S. Ramasamy [1985] introduced the concept of the characteristic number
of two simultaneous Pell’s equations and solved the system U 2

− 5V 2
=−4 and

Z2
− 12V 2

= −11. N. Tzanakis [2002] gave a method in for solving a system
of Pell’s equations using elliptic logarithms, and earlier [1993] described various
methods available in the literature for finding out the common solutions of a system
of Pell’s equations. (For a history of numbers with the Diophantine property, one
may refer to [Ramasamy 2007].)

When applying congruence methods to solve a given system of Pell’s equations,
the traditional approach is to work with a modulus of the form 2τ · 3 · 5 (τ ≥ 1) in
the final stage of computation; see, e.g., [Kangasabapathy and Ponnudurai 1975]
and [Mohanty and Ramasamy 1985]. This modulus involves only two specific odd
primes, namely 3 and 5. Because of the inadequacy of such a restricted modulus for
handling several problems, a method involving a general modulus was established



A NONEXTENDABLE DIOPHANTINE QUADRUPLE 259

in [Ramasamy 2006]. The present problem involves computational complexities
and a new method is devised to overcome the computational difficulty by employing
a result in this same reference. Taking D as a fixed natural number, one may refer
to [Nagell 1951, pp. 204–212] for a theory of the general Pell’s equation

U 2
− DV 2

= N . (6)

We follow the conventional notations in the literature. An interesting property of
Equation (6) is that its solutions may be partitioned into a certain number of disjoint
classes. If m and n are two distinct integers, Un+Vn

√
D and Um +Vm

√
D belong

to the same class of solutions of (6) if

Un + Vn
√

D = (u+ v
√

D)(a+ b
√

D)n, (7)

Um + Vm
√

D = (u+ v
√

D)(a+ b
√

D)m, (8)

where a+ b
√

D is the fundamental solution of Pell’s equation

A2
− DB2

= 1 (9)

and u+ v
√

D is the fundamental solution of (6) in the particular class. Otherwise,
Un + Vn

√
D and Um + Vm

√
D belong to different classes of solutions, which are

referred to as nonassociated classes (see [Nagell 1951, pp. 204–205], for example).
Let Un + Vn

√
D (n = 0, 1, 2, . . . ) constitute a class of solutions of (6), so that we

have
Un + Vn

√
D = (u+ v

√
D)(a+ b

√
D)n.

All the solutions of (9) with positive A and B are obtained from the formula

An + Bn
√

D = (a+ b
√

D)n, (10)

where n = 1, 2, 3, . . . . We have the following relations from [Mohanty and Rama-
samy 1985, pp. 204–205]:

Un = u An + DvBn, (11)

Vn = vAn + u Bn, (12)

Un+s = AsUn + DBs Vn, (13)

Vn+s = BsUn + As Vn. (14)

The sequences Un and Vn satisfy the following recurrence relations:

Un+2 = 2aUn+1−Un, (15)

Vn+2 = 2aVn+1− Vn, (16)

Un+2s ≡−Un (mod As), (17)

Un+2s ≡Un (mod Bs), (18)
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Vn+2s ≡−Vn (mod As), (19)

Vn+2s ≡ Vn (mod Bs). (20)

Equations (7) and (10) imply that Un and Vn depend on the values of An and Bn . In
our present problem, we have D = 18 from (4) and therefore we have to consider
the Pell equation

A2
− 18B2

= 1. (21)

Equation (21) has the fundamental solution A1 = 17, B1 = 4. We check that
−67+ 16

√
18, −13+ 4

√
18, −23+ 6

√
18 and −41+ 10

√
18 are the fundamental

solutions of (4). Employing the condition stated for (7), we see that (4) has four
nonassociated classes of solutions. Hence the general solution of (4) is given by

Un +
√

18 Vn = (−67+ 16
√

18)(17+ 4
√

18)n, (22)

Un +
√

18 Vn = (−13+ 4
√

18)(17+ 4
√

18)n, (23)

Un +
√

18 Vn = (−23+ 6
√

18)(17+ 4
√

18)n, (24)

Un +
√

18 Vn = (−41+ 10
√

18)(17+ 4
√

18)n. (25)

The solutions of (21) are provided by

A0 = 1, A1 = 17, An+2 = 34An+1− An,

B0 = 0, B1 = 4, Bn+2 = 34Bn+1− Bn.

4. Solutions of the form (22)

Now, we consider the solutions of (4) given by (22), namely

U0 =−67, U1 = 13, Un+2 = 34Un+1−Un,

V0 = 16, V1 = 4, Vn+2 = 34Vn+1− Vn.

We repeatedly use the relation (19) and reason by cases.

(a) From (19) we have Vn+2s ≡ −Vn (mod As). From this we obtain Vn+2 ≡ −Vn

(mod A1)≡−Vn (mod 17). The sequence Vn (mod 17) is periodic with period 4.
By quadratic reciprocity, we see that n 6≡ 0, 2 (mod 4). So, we are left with
odd values of n only.

(b) We have Vn+4 ≡ −Vn (mod A2) ≡ −Vn (mod 577). The sequence Vn (mod
577) is periodic with period 8. We obtain n 6≡ 1, 3, 5, 7 (mod 8). Hence no
solution of (4) having the form (22) satisfies (5).
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5. Solutions of the form (23)

Next we consider the solutions of (4) of the form (23), namely

U0 =−13, U1 = 67, Un+2 = 34Un+1−Un,

V0 = 4, V1 = 16, Vn+2 = 34Vn+1− Vn.

As in the previous case, one can check that no such solution can satisfy (5).

6. Solutions of the form (24)

Next we consider the solutions of (4) of the form (24), namely

U0 =−23, U1 = 41, Un+2 = 34Un+1−Un,

V0 = 6, V1 = 10, Vn+2 = 34Vn+1− Vn.

(a) We see that Vn+4 ≡−Vn (mod A2) ≡ −Vn (mod 577). The sequence Vn (mod
577) has period 8. By evaluating the Jacobi symbol(

Vn

577

)
,

we check that n 6≡ 2, 3, 6, 7 (mod 8).

(b) We have Vn+6 ≡−Vn (mod A3) ≡ −Vn (mod 1153). The sequence Vn (mod
1153) has period 12. It is ascertained that n 6≡ 8, 9 (mod 12).

(c) We get Vn+12≡ −Vn (mod A6) ≡ −Vn (mod 768398401). On factoring, we get
768398401 = 97·577·13729. Therefore Vn+12 ≡ −Vn (mod 97). The sequence
Vn (mod 97) has period 24. We see that n 6≡ 4, 5,16, 17 (mod 24). Also, we
have Vn+12 ≡ −Vn (mod 13729). The sequence Vn (mod 13729) has period 24.
It is seen that n 6≡ 0, 12 (mod 24).

So far we have excluded all possibilities other than n ≡ 1 (mod 12).

(d) We obtain Vn+16 ≡ −Vn (mod A8) ≡ −Vn (mod 886731088897). We see that
886731088897 = 257·1409·2448769. Therefore Vn+16 ≡ −Vn (mod 257). The
sequence Vn (mod 257) has a period of 32. We check that n 6≡ 5, 9, 13, 21, 25,
29 (mod 32). So we are left with n ≡ 1 (mod 16).

(e) We have Vn+10 ≡ −Vn (mod A5) ≡ −Vn (mod 22619537). We see that
22619537 = 17·241·5521. Therefore Vn+10 ≡ −Vn (mod 241). The sequence
Vn (mod 241) has period 20. We check that n 6≡ 5, 17 (mod 20). Also Vn+10 ≡

−Vn (mod 5521) and the sequence Vn (mod 5521) has period 20. It is seen that
n 6≡ 9 (mod 20).

(f) We get Vn+20 ≡ −Vn (mod A10) ≡ −Vn (mod 1023286908188737). We see
that 1023286908188737 = 577·188801·9393281. Therefore Vn+10 ≡−Vn (mod
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9393281). The sequence Vn (mod 9393281) has a period of 40. We verify that
n 6≡ 13, 33 (mod 40).

The last three steps leave only the possibility n ≡ 1 (mod 20).

(g) We obtain Vn+14 ≡−Vn (mod A7) ≡ −Vn (mod 26102926067). We see that
26102926067 = 17·1535466241. Therefore Vn+14 ≡ −Vn (mod 1535466241).
The sequence Vn (mod 1535466241) has period 28. We check that n 6≡ 5, 13,
17, 21 (mod 28).

(h) We have Vn+28 ≡−Vn(mod A14)≡−Vn (mod 136272550150887306817). We
see that 136272550150887306817 = 577·209441·11276410240481. Therefore
Vn+28 ≡ −Vn (mod 209441). The sequence Vn (mod 209441) has period 56.
We obtain n 6≡ 9, 25 (mod 56).

Steps (d), (g) and (h) leave only the possibility n ≡ 1 (mod 28).

(i) We get Vn+22 ≡−Vn (mod A11)≡−Vn (mod 34761632124320657). We see
that 34761632124320657 = 17·2113·967724510017. So Vn+22 ≡ −Vn (mod
2113). The sequence Vn (mod 2113) has period 44. We have n 6≡ 9, 17, 25, 29
(mod 44). Also Vn+22 ≡ −Vn (mod 967724510017). The sequence Vn (mod
967724510017) has period 44. We get n 6≡ 13, 37, 41 (mod 44).

(j) We have Vn+44 ≡ −Vn (mod A22) ≡ −Vn (mod 74915060494433). We see
that 74915060494433 = 577·129835460129. Therefore Vn+44 ≡ −Vn (mod
129835460129). The sequence Vn (mod 129835460129) has period 88. When
n ≡ 5, 49 (mod 88), we have respectively

29V 2
n − 196≡ 51293333469, 51271172096 (mod 129835460129).

Therefore 29V 2
n − 196 cannot be a square. This implies that n 6≡ 5, 49 (mod

88). Similarly, we see that n 6≡ 21, 33 (mod 88).

(k) We obtain Vn+88 ≡−Vn (mod A44)≡−Vn (mod 2331170689). The sequence
Vn (mod 2331170689) has a period of 176. We check that n 6≡ 65 (mod 176).

Steps (d), (i), (j) and (k) leave only the possibility n ≡ 1 (mod 44). Consequently
a solution requires n≡ 1 (mod 4), n≡ 1 (mod 3), n≡ 1 (mod 5), n≡ 1 (mod 7) and
n≡ 1 (mod 11). By the Chinese remainder theorem, then, n≡ 1 (mod 22

·3·5·7·11).
Now we establish that the relation Z2

= 29V 2
n −196 is impossible for such values

of n. For this purpose, we need two functions, which we now describe.

6.1. The functions a(t) and b(t). Throughout this subsection we keep the notation
of page 259 for the solutions of the Pell equation A2

− DB2
= 1: the fundamental

solution is written a+b
√

D and its n-th power is An+ Bn
√

D. We further consider
the equation U 2

− DV 2
= N , singling out a class of solutions Un + Vn

√
D =

(u+ v
√

D)(a+ b
√

D)n .
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Definition [Mohanty and Ramasamy 1985, p. 205]. For t a natural number, define

a(t)= A2t−1 and b(t)= B2t−1 . (26)

These functions will be used in defining a generalized characteristic number of our
system of simultaneous Pell’s equations. We follow [Ramasamy 2006, pp. 714–715].
We have the equalities

a(t + 1)= 2(a(t))2− 1, (27)

b(t + 1)= 2a(t)b(t). (28)

Next, we have the recursion relations

An = 2a An−1− An−2 (n ≥ 2), (29)

Bn = 2aBn−1− Bn−2 (n ≥ 2), (30)

which are particular cases of (15) and (16). Repeated application of these relations
shows that An can be expressed as a polynomial in a, while Bn can be expressed as
a polynomial in a and b:

An = αn,nan
−αn,n−2an−2

+αn,n−4an−4
− · · · , (31)

Bn = βn,nan−1b−βn,n−2an−3b+βn,n−4an−5b− · · · . (32)

Now we state a key result with reference to a system of two simultaneous Pell’s
equations

U 2
− DV 2

= N , Z2
− gV 2

= h, (33)

where g and h are integers.

Definition and Lemma [Ramasamy 2006, Theorem 13]. Fix odd primes p1 = p,
p2, . . . , ps , not necessarily distinct. Let P = p1 p2 · · · ps . Take τ ≥ 1. Set either

(i) m = 2τ · p and n = i + p · 2t(2µ+ 1), t ≥ 1, or

(ii) m = 2τ · P and n = i + P · 2t(2µ+ 1), t ≥ 1,

where i is a fixed residue (mod m) and µ is a nonnegative integer. In Case (ii), let
F1, F2, . . . be the polynomials contributed by the distinct primes among p1, p2, . . . ,
ps and let G1, G2, . . . be the irreducible polynomials arising due to their various
products, so that F1, F2, . . . and G1, G2, . . . are factors of the polynomial

βP,P D(P−1)/2(b(t + 1))P−1
+βP,P−2 D(P−3)/2(b(t + 1))P−3

+ · · ·+βP,1.

(A prime pi contributes a polynomial of degree pi − 1. The product of two distinct
primes pi , p j yields a factor of degree (pi − 1)(p j − 1), and so on.) Let

φ := gU 2
i − Dh (34)

be the characteristic number of the system (33) (for the given residue i).
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Then, for each t ≥ 1, if at least one of the Jacobi symbols(
φ

(a(t))2+ D(b(t))2

)
and

(
φ

βp,p D(p−1)/2(b(t + 1))p−1+ · · ·+βp,1

)
equals −1 in Case (i), and if at least one of(

φ

(a(t))2+ D(b(t))2

)
,

(
φ

F1

)
,

(
φ

F2

)
, . . . ,

(
φ

G1

)
,

(
φ

G2

)
, . . .

equals −1 in Case (ii), the system has no solution with V = Vn for n ≡ i (mod m),
except possibly V = Vi .

6.2. Application of the characteristic number. The modulus in the present case
consists of four distinct odd primes: 3, 5, 7 and 11. The characteristic number
gU 2

i − Dh of the system (4), (5) for i = 1 is 52277; see (34). The sequence a(t)
(mod 52277) is periodic with period 265 and b(t) (mod 52277) is periodic with
period 530. Thus when we deal with the characteristic number of the system,
we encounter computational complexities posed by the large periods of the two
sequences. To overcome this difficulty, instead of working with the characteristic
number directly, we consider the prime factors of the characteristic number, which
are 61 and 857. The sequences a(t) (mod 61) and b(t) (mod 61) are periodic with
period 5 — see Table 1 — whereas a(t) (mod 857) is periodic with period 53 and
b(t) (mod 857) is periodic with period 106; moreover,

b(t + 53)≡−b(t) (mod 857). (35)

Thus Table 2 lists only the values of a and b (mod 857) with argument up to 52.
For residue calculations with respect to the factors 61 and 857, we require the values
of a(t + 1) and powers of D(b(t + 1))2 modulo 61 and 857.

We take P = 3 · 5 · 7 · 11 and m = 2τ · P with τ ≥ 1. In the notation of Case (ii)
of the Definition and Lemma, we have

Z2
≡ 1185 (mod a(t + 1) · F1 · · · F4 ·G1 · · ·G11) (36)

where the polynomials F1, . . . ,G11 are illustrated in Table 3.

t−1 a(t) b(t)

0 17 4
1 28 14
2 42 52
3 50 37
4 58 40

Table 1. Values of a(t) and b(t) (mod 61).
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t−1 a(t) b(t) t−1 a(t) b(t) t−1 a(t) b(t) t−1 a(t) b(t) t−1 a(t) b(t)

0 17 4 11 652 391 22 563 369 33 454 825 44 72 611
1 577 136 12 63 806 23 614 706 34 14 82 45 83 570
2 825 113 13 224 430 24 688 541 35 391 582 46 65 350
3 333 481 14 82 672 25 559 540 36 669 57 47 736 79
4 671 685 15 592 512 26 208 392 37 413 850 48 143 593
5 631 566 16 758 309 27 827 242 38 51 217 49 618 769
6 168 411 17 747 522 28 85 49 39 59 709 50 260 71
7 742 119 18 203 855 29 737 617 40 105 533 51 650 69
8 739 54 19 145 45 30 518 181 41 624 520 52 854 572
9 423 111 20 56 195 31 165 690 42 595 211

10 488 493 21 272 415 32 458 595 43 167 846

Table 2. Values of a(t) and b(t) (mod 857). For the boldface, see Note on p. 266.

F1 = 4 b2
+1

F2 = 16 b4
+12 b2

+1

F3 = 64 b6
+80 b4

+24 b2
+1

F4 = 1024 b10
+2304 b8

+1792 b6
+560 b4

+60 b2
+1

G1 = 256 b8
+576 b6

+416 b4
+96 b2

+1

G2 = 4096 b12
+13312 b10

+16384 b8
+9344 b6

+2368 b4
+192 b2

+1

G3 = 1048576 b20
+5505024 b18

+12320768 b16
+15302656 b14

+11493376 b12

+ 5326848 b10
+1487104 b8

+232256 b6
+17440 b4

+480 b2
+1

G4 = 16777216 b24
+104857600 b22

+287309824 b20
+453246976 b18

+454557696 b16

+ 301907968 b14
+134123520 b12

+39298048 b10
+7287808 b8

+785792 b6

+ 40896 b4
+576 b2

+1

Table 3. Expressions for some of the polynomials in (36). We
use the shorthand b =

√
D b(t+1). The polynomials G5, . . . ,G11

have degrees 40, 60, 48, 80, 120, 240, 480, respectively.

We still have to determine an appropriate value of t . For the application of the
quadratic reciprocity law, we require the values of the polynomials modulo 4. By
induction, we obtain the following results for the present problem:

a(t + 1)≡ 1 (mod 4) for all t ≥ 1, (37)

b(t + 1)≡ 0 (mod 4) for all t ≥ 1. (38)

We see that, for all t ≥ 1 and i = 1, 2, 3, 4,

Fi ,Gi ≡ 1 (mod 4). (39)
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Considering the values of Fi and Gi modulo 857, it follows from relation (35)
that Fi at t + 53 is the same as at t , and Gi at t + 53 is the same as at t , for all
positive integers t .

6.3. Computations involved in the proof of the Theorem. With the background
just provided, we are now in a position to employ the characteristic number of
the present system consisting of (4) and (5). For the remaining part of our work,
stagewise computation becomes necessary. The details of calculations in 9 stages
required for our problem are presented in the sequel.

The characteristic number of the generalized version discussed in Section 6.1
offers several polynomials for consideration to solve a given problem, as seen from
(36). First, we employ the factor (a(t))2+D(b(t))2 provided by the Definition and
Lemma to rule out as many possible values of t as we can.

1. Working with a(t + 1). We consider the Jacobi symbol(
52277

a(t + 1)

)
.

Using the quadratic reciprocity law and the relation (37), we evaluate this to(
61

a(t + 1)

)
·

(
857

a(t + 1)

)
=

(
a(t + 1)

61

)
·

(
a(t + 1)

857

)
.

From Table 1, when t ≡ 2, 4 (mod 5), we have a(t + 1) ≡ 42, 58 (mod 61),
respectively; these are quadratic residues of 61. When t ≡ 0, 1, 3 (mod 5), we have,
respectively, a(t + 1)≡ 17, 28, 50 (mod 61); all are quadratic nonresidues of 61.

Note. We have indicated with an asterisk in Table 2 the values of a(t) that are
quadratic nonresidues of 857.

Using the fact that the product of a quadratic residue of 52277 and a nonresidue
of 52277 is a nonresidue, we determine the values of t for which a(t + 1) is a
quadratic nonresidue of 52277. They are 1, 4, 6, 7, 9, 10, 12, 19, 22, 25, 26, 28, 30,
32, 33, 34, 38, 39, 42, 43, 45, 49, 51, 52, 55, 57, 62, 63, 64, 69, 70, 72, 74, 78, 80,
81, 83, 84, 86, 87, 89, 90, 91, 92, 94, 96, 98, 99, 100, 102, 108, 109, 114, 116, 117,
119, 120, 122, 123, 124, 127, 129, 130, 131, 133, 135, 136, 137, 142, 143, 147, 150,
151, 152, 153, 154, 159, 160, 161, 162, 164, 165, 167, 172, 173, 174, 176, 177, 179,
182, 183, 185, 186, 188, 194, 196, 199, 203, 206, 207, 209, 210, 212, 213, 217, 218,
219, 224, 226, 227, 232, 234, 236, 238, 240, 241, 244, 245, 247, 250, 252, 254,
255, 256, 262, 263, 264 (mod 265). It follows that the relation Z2

= 29V 2
n − 196

is impossible for these values of t . Therefore these values of t have to be excluded.
In the sequel we consider the remaining values of t (mod 265).
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t F1 F2 F3 t F1 F2 F3 t F1 F2 F3 t F1 F2 F3 t F1 F2 F3

0 296 497 766 11 125 323 294 22 370 149 61 33 27 755 545 44 165 822 24
1 792 731 416 12 447 574 462 23 518 600 648 34 781 557 294 45 129 486 490
2 665 677 292 13 163 164 166 24 260 156 177 35 480 346 545 46 614 529 775
3 484 778 623 14 326 333 583 25 415 382 809 36 825 134 163 47 285 94 32
4 404 789 337 15 658 836 72 26 796 231 770 37 101 17 776 48 378 142 306
5 335 292 79 16 636 627 258 27 169 448 575 38 117 93 573 49 519 781 240
6 626 852 524 17 405 742 40 28 616 420 567 39 209 182 303 50 442 409 775
7 620 226 35 18 289 680 658 29 178 152 463 40 390 800 462 51 850 41 618
8 845 131 285 19 111 433 393 30 329 587 556 41 332 2 334 52 33 264 373
9 118 329 468 20 543 583 376 31 58 850 386 42 333 668 816

10 446 537 490 21 268 103 15 32 50 835 542 43 143 23 598

Table 4. Values of F1, F2 and F3 (mod 857) as functions of t (mod
53). Quadratic nonresidues of 857 are in bold.

2. Working with F1. Now we consider(
52277

F1

)
=

(
61
F1

)
·

(
857
F1

)
=

(
F1

61

)
·

(
F1

857

)
,

in view of (39). When t≡ 1 (mod 5), we have F1≡22 (mod 61)which is a quadratic
residue of 61. When t ≡ 0, 2, 3, 4 (mod 5), we have F1≡ 55, 38, 54, 33 (mod 61);
all are quadratic nonresidues of 61. As for the modulus 857, Table 4 shows the
values of F1, with the quadratic nonresidues in bold.

Consequently, we see that the relation Z2
= 29V 2

n − 196 is not true when t ≡ 3,
5, 11, 15, 16, 18, 21, 23, 27, 35, 37, 40, 41, 46, 48, 58, 61, 66, 68, 75, 79, 85, 88,
93, 105, 106, 110, 125, 126, 128, 132, 134, 138, 144, 145, 155, 156, 158, 163, 166,
169, 171, 178, 187, 189, 190, 195, 197, 198, 201, 208, 215, 221, 222, 226, 230,
235, 239, 242, 243, 246, 248, 249, 260 (mod 265).

3. Working with F2. Next we have(
52277

F2

)
=

(
61
F2

)
·

(
857
F2

)
=

(
F2

61

)
·

(
F2

857

)
.

When t≡ 3 (mod 61), we have F2≡ 41 (mod 61), which is a quadratic residue of 61.
When t ≡ 0, 1, 2, 4 (mod 5), we have, respectively, F2 ≡ 29, 17, 17, 23 (mod 61),
all of which are quadratic nonresidues of 61. Further, Table 4 shows the values of
F2 modulo 857, with the quadratic nonresidues in bold.

Consequently, we see that the relation Z2
= 29V 2

n − 196 does not hold when
t ≡ 8, 44, 47, 53, 56, 71, 73, 95, 97, 101, 103, 104, 111, 113, 115, 118, 121, 139,
146, 149, 157, 170, 180, 181, 192, 193, 200, 202, 205, 211, 225, 228, 231, 259
(mod 265).
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4. Working with F3. Next we have(
52277

F3

)
=

(
61
F3

)
·

(
857
F3

)
=

(
F3

61

)
·

(
F3

857

)
.

When t ≡ 1, 2, 3 (mod 5), we have respectively F3 ≡ 3, 15, 5 (mod 61), all of
which are quadratic residues of 61. When t ≡ 0, 4 (mod 5), we have respectively
F3 ≡ 44, 17 (mod 61) both of which are quadratic nonresidues of 61. Further,
Table 4 shows the values of F3 modulo 857, with the quadratic nonresidues in bold.

As a result, the relation Z2
= 29V 2

n − 196 does not hold when t ≡ 17, 24, 36,
50, 54, 60, 67, 82, 112, 141, 214, 216, 223, 237, 251, 257 (mod 265).

5. Working with F4. Next we have(
52277

F4

)
=

(
61
F4

)
·

(
857
F4

)
=

(
F4

61

)
·

(
F4

857

)
.

When t ≡ 0, 1, 4 (mod 5), we have respectively F4 ≡ 42, 34, 4 (mod 61), all of
which are quadratic residues of 61. When t ≡ 2, 3 (mod 5), we have respectively
F4 ≡ 55, 55 (mod 61). It is checked that 55 is a quadratic nonresidue of 61. The
relevant values modulo 857 are as follows (bold indicates quadratic nonresidues):

t (mod 53) 2 9 13 14 42 16 23 32
F4 (mod 857) 407 827 762 792 619 415 437 557

Consequently, the relation Z2
= 29V 2

n − 196 does not hold when t ≡ 2, 13, 14, 76,
148, 168, 175, 191 (mod 265).

6. Working with G1. Next we have(
52277

G1

)
=

(
61
G1

)
·

(
857
G1

)
=

(
G1

61

)
·

(
G1

857

)
,

because of (39). When t ≡ 3 (mod 5), we have G1 ≡ 46 (mod 61), which is
a quadratic residue of 61. When t ≡ 0, 1, 2, 4 (mod 5), we have respectively
G1 ≡ 55, 51, 26, 28 (mod 61), all of which are quadratic nonresidues of 61.
The relevant values modulo 857 are as follows (again, bold indicates quadratic
nonresidues):

t (mod 53) 0 6 12 17 20 21 46
G1 (mod 857) 774 737 57 487 785 367 210

As a result, it is seen that the relation Z2
= 29V 2

n − 196 does not hold when
t ≡ 0, 20, 59, 65, 229, 233, 258 (mod 265).
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7. Working with G2. Next we have(
52277

G2

)
=

(
61
G2

)
·

(
857
G2

)
=

(
G2

61

)
·

(
G2

857

)
.

When t ≡ 1, 2, 4 (mod 5), we have respectively G2 ≡ 60, 34, 49 (mod 61), all of
which are quadratic residues of 61. When t ≡ 0, 3 (mod 5), we have respectively
G2 ≡ 23, 6 (mod 61) both of which are quadratic nonresidues of 61.

When t≡ 8, 34, 41 (mod 53), we have respectively G2≡ 72, 177, 439 (mod 857),
all of which are quadratic residues of 857. When t ≡ 25, 29, 31, 45 (mod 53), we
have respectively G2 ≡ 840, 718, 507, 781 (mod 857), all of which are quadratic
nonresidues of 857. As a consequence, the relation Z2

= 29V 2
n −196 does not hold

when t ≡ 29, 31, 140, 184, 204, 220, 253 (mod 265).

8. Working with G3. Next we have(
52277

G3

)
=

(
61
G3

)
·

(
857
G3

)
=

(
G3

61

)
·

(
G3

857

)
.

When t ≡ 4 (mod 5), we have G3≡ 34 (mod 61), which is a quadratic residue of 61.
When t ≡ 0, 1, 2, 3 (mod 5), we have respectively G3 ≡ 59, 2, 50, 21 (mod 61),
all of which are quadratic nonresidues of 61. When t ≡ 49 (mod 53), we have
G3 ≡ 453 (mod 857) which is a quadratic residue of 857. Hence the relation
Z2
= 29V 2

n − 196 does not hold when t ≡ 261 (mod 265).

9. Working with G4. Next we have(
52277

G4

)
=

(
61
G4

)
·

(
857
G4

)
=

(
G4

61

)
·

(
G4

857

)
.

When t ≡ 0, 2 (mod 5), we have respectively G4 ≡ 14, 16 (mod 61), both of which
are quadratic residues of 61. Modulo 61, G4 attains the same value of 31 at t ≡ 1
(mod 5) and 3 (mod 5). When t ≡ 4 (mod 5), we have G4 ≡ 38 (mod 61). It is
seen that 31 and 38 are quadratic nonresidues of 61. When t ≡ 1, 24 (mod 53),
we have, respectively, G4 ≡ 612, 851 (mod 857) both of which are quadratic
nonresidues of 857. Therefore it is seen that the relation Z2

= 29V 2
n − 196 does

not hold when t ≡ 77, 107 (mod 265).

Conclusion of the argument for solutions of the form (24). As mentioned, the
characteristic number (in the generalized version given in [Ramasamy 2006] and
explained earlier in this section) places several polynomials at our disposal for
solving the problem. Each polynomial can potentially exclude several values of t .
Once all values of t are excluded, we need not examine the remaining polynomials.
In the present case we used the polynomials a(t+1), F1 through F4 and G1 through
G4 appearing in (36), and we exhausted, in the 9 steps above, all possible values of
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t ; that is, we showed that the relation Z2
= 29V 2

n −196 does not hold for any value
of t (mod 265). Thus we need not consider the values attained by the polynomials
G5 through G11 modulo 52277. This exemplifies the usefulness of the generalized
characteristic number.

The conclusion is that the system of Pell’s equations U 2
− 18V 2

= −119,
Z2
− 29V 2

=−196 has no solution Vn of the form (24) except possibly for n = 1.
When n = 1 we obtain a common solution with U =±41, V =±10 and Z =±52.

7. Solutions of the form (25)

We finally turn to the possible solutions of the form (25):

U0 =−41, U1 = 23, Un+2 = 34Un+1−Un,

V0 = 10, V1 = 6, Vn+2 = 34Vn+1− Vn.

A case-by-case calculation as in the previous section shows that the possibilities
are n ≡ 0 (mod 4), n ≡ 0 (mod 3), n ≡ 0 (mod 5), n ≡ 0 (mod 7) and n ≡ 0 (mod
11). We establish that the relation Z2

= 29V 2
n − 196 is impossible in these cases as

before. The characteristic number gU 2
i − Dh of the system (4) and (5) for i = 0

is again 52277. Since this is the same as for the previous case, the results for the
solutions in Section 6 are applicable here also.

We have now taken care of all four cases (22)–(25). Putting together the conclu-
sions of the last four sections, we see that the proof of the Theorem is complete.
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