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Given two points inside a circle in the hyperbolic plane, we study the problem of
finding an isosceles triangle inscribed in the circle so that the two points belong
to distinct congruent sides. By means of a reduction to the corresponding result
in Euclidean geometry, we prove that this problem cannot generally be solved
with hyperbolic ruler and compass.

In his treatise on optics, written in Arabic, the scientist and mathematician Abu
Ali al-H. asan ibn al-Haytham (965–1039) posed the problem of finding the light
path between a source and an observer by way of a fixed spherical mirror, and gave
a geometric solution for it. The problem may have been formulated much earlier, by
the great Greek mathematicians of the Hellenistic era, but no surviving testimony
confirms this. Thus it is fit that it carries al-H. asan ibn al-Haytham’s name, which
was rendered as Alhazen in the Latin translation of his book — a document that
played an important role in the development of modern science.

Alhazen recognized that the problem is essentially two-dimensional — the path
must lie in a plane determined by the center of the sphere, the source and the
observer. His solution is long, in part because he is actually studying a more general
problem; see [Sabra 1982] for details. It is not a ruler-and-compass construction, as
it requires an auxiliary hyperbola; in fact, apart from special cases, the problem turns
out not to be solvable with ruler and compass alone, though it seems this was only
proved some 50 years ago ([Elkin 1965]; see also [Riede 1989; Neumann 1998]).

In this paper, we study the hyperbolic version of Alhazen’s problem and relate
it to its classical Euclidean counterpart. We use the following formulation of the
problem: Given a circle (in the Euclidean or the hyperbolic plane) and two points
A and B inside it, construct an inscribed, isosceles triangle with A on one equal
leg and B on the other.

The isosceles condition is equivalent to the condition that the two legs meet at
equal angles the diameter of the circle that goes through their common vertex, so
this is Alhazen’s problem all right. (One can also imagine a round billiard table
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with two points marked on the felt. A shot that goes through one of the points, hits
the cushion and then goes through the other point is a solution to the problem.)

We show the following result:

Theorem. For a given circle in the hyperbolic plane and a given circle in the
Euclidean plane, there exists a bijection — indeed a homeomorphism — between
Alhazen point configurations of one and those of the other, preserving in both
directions the property of Alhazen constructibility with ruler and compass.

That is, hyperbolic configurations whose Alhazen solution is constructible with
(hyperbolic) ruler and compass correspond to Euclidean configurations whose
Alhazen solution is constructible with (Euclidean) ruler and compass, and similarly
for nonconstructible configurations.

This correspondence was unexpected to us, since hyperbolic triangles are so
different from Euclidean ones — to begin with, their angles add up to arbitrary
measures less than π . Generally, Euclidean ruler-and-compass constructions fail to
carry over to the hyperbolic plane; even trisecting an arbitrary segment, something
quite simple with Euclidean ruler and compass, cannot be done in the hyperbolic
case! (See [Martin 1975, p. 483], for instance.)

Since, as already mentioned, Alhazen’s problem is seldom solvable with ruler
and compass in the Euclidean plane, we obtain (see Remark 2 on page 281):

Corollary. The hyperbolic Alhazen problem is not generally solvable with ruler
and compass. Indeed, for any fixed hyperbolic open disk DH , the set of pairs of
points A, B ∈ DH for which the Alhazen problem can be solved with ruler and
compass has measure zero in DH × DH .

This paper is organized as follows. In Section 1 we describe the relevant models
of the hyperbolic plane and spell out the hyperbolic Alhazen problem. In Section 2
we motivate the correspondence between Euclidean and hyperbolic constructions,
observing it in action in a simple constructible case. The proof of the theorem is
then given in Section 3.

1. Alhazen’s billiard problem in hyperbolic geometry

Hyperbolic geometry has several models, that is, ways to name points and make
calculations. We will need to use two: the Poincaré disk model and the Klein model.

The Poincaré model represents the hyperbolic plane by an open disk, that is, the
set of points inside a fixed Euclidean circle.1 This so-called boundary circle is not
part of the hyperbolic plane. It is a “boundary” of the model only: the hyperbolic

1We haven’t defined the hyperbolic plane. The reader new to hyperbolic geometry can imagine
that it is the Poincaré model: the set of points (x, y) in R2 satisfying x2

+ y2 < 1, with further features
called (hyperbolic) distance, lines, angles, and so on, which we now describe.
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Figure 1. A hyperbolic Alhazen triangle, JKL. The hyperbolic
plane is the interior of the disk with red boundary. The pink circles
represent hyperbolic lines, to be determined in the solution of the
problem, together with their intersections J , K , L . The givens of
the problem consist of the small circle (on which we must place J ,
K , and L) and the points A and B inside it. Note the position of
the center H of the given hyperbolic circle.

plane itself extends infinitely in all directions. The center of the boundary circle
will be labeled O . It is not a special point in the hyperbolic plane — any point can
be chosen for this honor — but it does enjoy special properties in the model.

Figure 1 illustrates the main features of the Poincaré model. The boundary
circle is shown in red. Hyperbolic straight lines appear in the model either as
Euclidean diameters (like the line OH) or as circles (in pink) orthogonal to the
boundary circle — or rather, the portions of such circles inside the boundary circle.
Hyperbolic circles (sets of points at a fixed hyperbolic distance from a center) appear
as Euclidean circles contained in the open disk; the green circle is an example.

This is two-thirds of what we need in order to visualize the hyperbolic Alhazen
problem. But how are we to recognize isosceles triangles? Hyperbolic distances
cannot be discerned from appearances in the model: the formula to compute the
hyperbolic distance between two points, given their coordinates in the Poincaré
model, is very different from the formula giving the Euclidean distance. The ratio
between the two is, roughly speaking, inversely proportional to the Euclidean
distance to be boundary.
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(Another manifestation of this is that the center of a hyperbolic circle does not
match what appears to be the center in the model. The true center H is the point
hyperbolically equidistant from the points on the circle; it can be found, for instance,
as the intersection of two hyperbolic lines perpendicular to the circle. H always
lies closer to the boundary than the apparent center, unless both coincide with O .
In Figure 1, H is the center of the green circle.)

What saves the day is an important feature of the Poincaré model: it is conformal,
meaning that it renders angles faithfully. The true angle between two hyperbolic
lines equals the (Euclidean) angle between the circles representing the same lines in
the model. Thus a hyperbolic Alhazen triangle has two equal angles in the Poincaré
model, as exemplified by the triangle JKL in Figure 1. (This example is special in
that the triangle’s axis of symmetry, the line OH, is a diameter of the model, so the
triangle also appears “isosceles”, that is, symmetric, to Euclidean eyes. This would
not generally be the case.)

The Klein model of the hyperbolic plane also uses a Euclidean disk to represent its
points, but in this model hyperbolic lines correspond to Euclidean chords. Euclidean
appearances are even more deceiving here, because hyperbolic angle measures are
not the Euclidean ones visible in the model. However, the property that hyperbolic
and Euclidean notions of straightness coincide in this model will be helpful.

There exists an isomorphism between the Poincaré and Klein models, based on
stereographic projection, which will be the key in Section 3 to our correspondence
between the hyperbolic and Euclidean Alhazen problems. To describe it, we work
in (Euclidean) three-dimensional space, with both models lying on the horizontal
coordinate plane. We rest a sphere on this plane, as shown in Figure 2: the radius of
the sphere is half the radius of the Poincaré model, and its south pole is the center
O of both models. Given a point R in the Poincaré model, we find its counterpart
in the Klein model by first mapping the point onto the sphere via stereographic
projection (central projection from the north pole); this gives a point P, somewhere
on the south hemisphere. We then project P directly down onto the horizontal
plane, obtaining Q; this is the counterpart of R in the Klein model.

Stereographic projection maps circles to circles and preserves orthogonality. An
arc of circle orthogonal to the red boundary of the Poincaré model projects onto
the sphere as a semicircle orthogonal to the equator. When projected again straight
down, this gives a line segment. This confirms that in the Klein model hyperbolic
lines are represented by Euclidean chords.

Finally, we observe that if a hyperbolic circle happens to be centered at O in the
Poincaré model (in which case its hyperbolic and Euclidean centers coincide), it
will map to a horizontal circle on the sphere, and from there down to a circle in the
Klein model, again centered at O . These are the only hyperbolic circles that look
like Euclidean circles in Klein model: other circles look like Euclidean ellipses.
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Figure 2. Correspondence between the Poincaré and Klein models.

2. A constructible example

The Euclidean Alhazen problem has an obvious solution when the given points
A and B lie on a diameter of the given circle and are equidistant from the center
(Figure 3, left). We simply construct the perpendicular bisector of AB — the
horizontal diameter in Figure 3, right. Each of the two points where this line
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Figure 3. Solving the Alhazen problem in a special case: A and
B are diametrically opposed and equidistant from the center of the
circle. The triangle UVW is a solution if and only if VO ⊥ AB.
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intersects the given circle provides a solution to the problem, since the angles
subtended by OA and O B from these points are the same.

Moreover, these are the only solutions. To see this, take a point V on the given
circle, and form the inscribed triangle whose sides lie on the lines V A and V B.
If this triangle is isosceles, its median VO is also an altitude, so V lies on the
perpendicular bisector of AB. (If we allow degenerate triangles then of course the
line AB also provides a solution.)

For this simple situation, the reasoning in the hyperbolic case is identical. Given
a hyperbolic circle of center H and two points A and B, diametrically opposed
and equidistant from H , we draw the perpendicular bisector of A and B using
our (hyperbolic!) compass, just as we would in the Euclidean case, and mark off
its intersections with the circle, each of which provides a solution to the Alhazen
problem. Seen in the Klein model, the picture would look exactly the same as
Figure 3, provided we took the precaution of starting with a circle whose center
coincides with the center O of the model! In the Poincaré model, with the same
precaution, we’d have Figure 4.

B

A

O

UV

W

Figure 4. Special case of Alhazen problem in the Poincaré model;
compare Figure 3, right. The triangle UVW is a solution if and
only if VO ⊥ AB.

This leads to an important digression. With Euclidean constructions, we have
physical tools (paper, ruler and compass) at our disposal, which are sufficiently
accurate to help build intuition. Alas, we don’t have a physical hyperbolic compass
at our disposal, nor hyperbolic paper. What tools can we use to explore?

That’s where the two models come in. In the Klein model, a Euclidean ruler
is a proxy for a hyperbolic one, but the same cannot be said about the compass:
hyperbolic circles look like ellipses in the model. What about the Poincaré model?
Hyperbolic lines look like lines or circles in the model, and hyperbolic circles look
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like circles, so it’s at least conceivable that what can be done with hyperbolic ruler
and compass can also be done in the Poincaré model with Euclidean ruler and
compass. And that turns out to be so:

Fact 1. Any point in the hyperbolic plane obtained from initial data by using only
(hyperbolic) ruler and compass can be obtained using ruler and compass in the
Euclidean plane that supports the Poincaré model.

This is proved by considering each building block of ruler-and-compass con-
structions. For instance, the problem of drawing a line through two points translates
into finding a circle perpendicular to the boundary of the model and going through
the given points; this can be done with Euclidean ruler and compass in a few steps.
Drawing a (hyperbolic) circle centered at a point and going through another point
translates into finding the Euclidean center of the desired circle in the model, and so
on. See [Goodman-Strauss 2001] for a pleasant exposition of these constructions.

Fact 2. Conversely, any point in the Poincaré model obtained from initial data by
using Euclidean ruler and compass can also be obtained using intrinsic (hyperbolic)
ruler and compass.

This is perhaps more surprising than Fact 1, since Euclidean manipulations in
the Poincaré model can involve objects that are not actually in the hyperbolic plane,
but rather on the boundary and the exterior of the disk. Fact 2 was apparently first
proved in [Curtis 1990] — specifically in §6, but the whole article is recommended
for its lucid discussion, references to earlier work, and a proof of the 90-year old
result of D. Mordukhai-Boltovskoi that states exactly which lengths are constructible
in hyperbolic geometry. (Warning: The “Klein conformal model” to which Curtis
refers is a slight variation of the Poincaré model, rather than the projective Klein
model explained on page 276.)

With this we can close our digression, confident that in talking about ruler-and-
compass constructibility, it makes no difference whether we use intrinsic hyperbolic
tools or Euclidean tools in the Poincaré model!

3. Correspondence between the hyperbolic and Euclidean Alhazen problems

We now prove the Theorem stated on page 274. We are given a disk DH in the
hyperbolic plane and a disk DE in the Euclidean plane.

Lemma 1. We can assume without loss of generality that DH and DE are centered
at the origin O of the Cartesian plane. (In the hyperbolic case, we understand the
Cartesian plane as underlying the Poincaré model.)

This may seem obvious, but it merits discussion: the theorem does talk of
arbitrary circles, after all. The proof of the lemma follows from three observations:
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Any isometry T of either the Euclidean or the hyperbolic plane can be imple-
mented with ruler and compass, in the following sense: Let T be defined by some
known data, such as the images T (a), T (b), T (c) of three noncollinear points
a, b, c. Then, given any point x , one can construct T (x) with ruler and compass,
starting from x and the data defining T .

This is usually taken for granted for Euclidean constructions, and indeed it is
easy to show — we leave it as an exercise. Your proof for the Euclidean case will
quite likely carry over to the hyperbolic case (with intrinsic ruler and compass).

The second observation is that any given disk is mapped by some isometry T to
some disk centered at O . This is because the hyperbolic and Euclidean planes are
homogeneous: given two points in the Euclidean plane, there is an isometry taking
one to the other — and of course such an isometry maps a disk to a disk. Similarly
for the hyperbolic plane — having in mind hyperbolic isometries, of course.

The third observation ties it all together: The theorem asserts a constructibility-
preserving bijection between DH - and DE -Alhazen configurations. If such a
bijection is known for DH and DE of the special form in the lemma, it can be
defined for any DH and DE , by using isometries to bridge between configurations
in the old and the new DH , and between configurations in the old and the new DE .
Because isometries are constructible, these bridges take constructible configurations
to constructible configurations; and because they do so in both directions, they also
take nonconstructible configurations to nonconstructible configurations.

This formally justifies the usual cavalier attitude about isometries when dealing
with constructibility questions.

Let φ denote the map taking the Poincaré model to the Klein model, described
in Figure 2 as the composition of stereographic projection and vertical projection.
We need one more normalization.

Lemma 2. We can assume, moreover, that DH is taken to DE under the Poincaré-
to-Klein map φ.

The radius of DH cannot be tampered with,2 but fortunately the radius of DE
can, by applying a homothety (scaling transformation). Homotheties preserve con-
structibility, being themselves constructible (same logic as in the third observation
above). So we just scale DE to make it coincide with φ(DH ).

Lemma 3. The Poincaré-to-Klein correspondence φ, applied to Alhazen configura-
tions in our normalized DH and DE , preserves constructibility.

2The hyperbolic plane has no similarities other than isometries, so we cannot hope to reduce the
hyperbolic Alhazen problem to a single circle size, as we’re accustomed to doing with Euclidean
problems. Another way to say this is that hyperbolic disks of different sizes are not scaled images of
one another — in fact, the larger the circle, the greater the ratio between circumference and diameter!
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Indeed, the action of φ on single points can be implemented with (Euclidean)
ruler and compass. This is obvious for points on the red boundary circle,3 since
such points are just pulled halfway toward O — a homothety of ratio 1

2 . Now let
P be a point inside the Poincaré disk. Use Poincaré (i.e., Euclidean) ruler and
compass to draw any two hyperbolic lines crossing at P; this is possible by Fact 1.
Mark the intersections of these lines with the Poincaré red circle (like points H1

and H2 in Figure 2). Apply φ to the four points thus determined on the Poincaré
red circle, to find the corresponding points on the Klein red circle. Obtain φ(P) as
the intersection of the two line segments connecting pairs of opposite points.

The key observation now is that the hyperbolic Alhazen problem in DH with
initial data A, B has S as a solution if and only if the Euclidean Alhazen problem
in DE with initial data φ(A), φ(B) has φ(S) as a solution. Here we’re thinking of
the solution as a single point — the reflection point on the circle between A and B.

The statement in italics applies to solutions in general, whether or not they are
constructible. To wrap up the proof, we resort again to the bridge idea used for
the first two lemmas. We spell it out here, since we didn’t before. Because φ and
its inverse are constructible, they preserve the constructibility status of solutions.
That is, if we can get from A and B to the solution S, then we can get from φ(A)
and φ(B) to φ(S), via A (= φ−1(φ(A))) and B and then S. Conversely, if we can
get from φ(A) and φ(B) to φ(S), we can get from A and B to S. This finishes the
proof of the Theorem.

Remark 1. What makes the Alhazen problem special is that we can write that
boldfaced “Euclidean” above. For any problem, φ transforms hyperbolic solutions
in the Poincaré model into hyperbolic solutions in the Klein model; but only here is
the hyperbolic solution also a Euclidean solution, and only because we chose DH
and DE judiciously in Lemmas 1 and 2, rendering irrelevant the difference between
the Euclidean metric and the hyperbolic metric in the Klein model. That’s why the
proof fails for a problem such as finding a point T a third of the way from A to B
(as already mentioned, the hyperbolic version of this problem is not constructible).

Remark 2. The bijection we have constructed between DH - and DE -Alhazen
configurations is just a componentwise application of the Poincaré-to-Klein map
φ, and is therefore very well behaved (homeomorphic, locally bi-Lipschitz). It
follows that, for each circle radius, not only are there DH -Alhazen configurations
that are not solvable with ruler and compass, but in fact they are the rule. Solvable
configurations are the exception — they form a set of measure zero in DH × DH ,
corresponding to a set of measure zero of solvable configurations in the Euclidean
case [Neumann 1998, p. 527]. This proves the Corollary.

3That these points are not in the hyperbolic plane itself doesn’t matter: we’re using them as
stepping stones, and φ is obviously defined on them.
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