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Using the concepts of Bochner measurability and Bochner space, we introduce a
continuous version of (p, Y)-operator frames for a Banach space. We also define
independent Bochner (p, Y)-operator frames for a Banach space and discuss
some properties of Bochner (p, Y)-operator frames.

1. Introduction and preliminaries

The concept of frames was first introduced in the context of nonharmonic Fourier
series [Duffin and Schaeffer 1952], and after the publication of [Daubechies
et al. 1986] it has found broad application in signal processing, image process-
ing, data compression and sampling theory. In this paper we introduce Bochner
(p, Y)-operator frames, which are the continuous version of (p, Y)-operator frames
for a Banach space, introduced in [Cao et al. 2008]. The new frames also generalize
the continuous p-frames introduced in [Faroughi and Osgooei 2011].

Throughout this paper H will be a Hilbert space and X will be a Banach space.

Definition 1.1. Let { f;};c; be a sequence of elements of H. We say that { f;}ics is
a frame for H if there exist constants 0 < A < B < oo such that forall h € H

AllRIZ <D K fi ) < BlR| (1-1)
iel
The constants A and B are called frame bounds. If A, B can be chosen so that
A = B, we call this frame an A-tight frame and if A = B =1 it is called a Parseval
frame. If we only have the upper bound, we call {f;};c; a Bessel sequence. If
{ fi}icr is a Bessel sequence then the following operators are bounded:

T:I°(I)—>H, T()=)Y cfi (1-2)
iel
T*:H — I*(I), T*(f)={{f fi)lier, (1-3)
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called the synthesis and analysis operators, respectively. Hence the frame operator S,
given by
Sf=TT*f =Y (/. fi)fi, (1-4)

iel
is also bounded.
The theory of frames has a continuous version, as follows.

Definition 1.2 [Rahimi et al. 2006]. Let (€2, i) be a measure space. Let f:Q2— H
be weakly measurable (i.e., for each & € H, the mapping w — ( f (w), h) is measur-

able). Then f is called a continuous frame or c-frame for H if there exist constants
0<A<B<oosuchthatforallh e H

Allh|? < fg [(f (@), h)|*dp < B|h>. (1-5)
In this context the synthesis operator 7 : L*(X, ) — H is defined by
(T, h) = f () (f (), h) du(o): (1-6)
X

the analysis operator Tji'.‘ :H — L*(X, ) by
(TFh)(x) = (h, f(x)), x€X; (1-7)
and the frame operator by
Sf:TfT}k. (1-8)
By Theorem 2.5 in [Rahimi et al. 2006], S is positive, self-adjoint and invertible.
Suppose (€2, X, ) is a measure space, where p is a positive measure.

Definition 1.3. A function f : Q — X is called simple if there exist xq, ..., x, € X
and Ey, ..., E, € T suchthat f =Y ", x; xg,, where xg,(w) =1 if v € E; and
xe (w) =0if w € E7. If w(E;) is finite whenever x; # 0 then the simple function
f is integrable, and the integral is then defined by

n
/ f (@) dp(@) =y " u(Enx;.
@ i=1
Definition 1.4. A function f : Q — X is called Bochner-measurable if there exists
a sequence of simple functions { f,}72 | such that
lim || fu(w) — f(0)| =0, p-ae.
n—oo

Definition 1.5. A Bochner-measurable function f : Q2 — X is called Bochner-
integrable if there exists a sequence of integrable simple functions { f;,}°°

n—1 such
that

lim. /Q I fu(@) = f (@) dia(@) =0.
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In this case, [, f(w) du(w) is defined by

/ F(@) di(@) = lim / @) du@). Ecs.
E n—oQ E

Definition 1.6. A Banach space X has the Radon—Nikodym property if, for every
finite measure space (2, X, i) and every (finitely additive) X-valued measure y
on (€2, X) that has bounded variation and is absolutely continuous with respect to
W, there is a Bochner-integrable function g : € — X such that

y(E) = /E ¢(0) du()

for every measurable set E € X.

Remark 1.7. Suppose that (2, X, u) is a measure space and X* has the Radon—
Nikodym property. Let 1 < p < oco. The Bochner space L? (i, X) is defined to
be the Banach space of (equivalence classes of) X-valued Bochner-measurable
functions F on 2 whose L” norm is finite; here the L” norm is defined by

1/p
I1Fllp= (/Q IIF(w)II”dM(w))

if p is finite, and by the essential supremum of || F (w)]| if p = co. In [Diestel and
Uhl 1977; Cengiz 1998; Fleming and Jamison 2008, p. 51] it is proved that if g is
such that % + é =1, then L9 (u, X™) is isometrically isomorphic to (L? (u, X))* if
and only if X* has the Radon—-Nikodym property. This isometric isomorphism

Y1 LG, X — (L7 (1, X))
takes g € L9(it, X*) to g, the linear map defined by
80 = [ s@ @) du@), f L7 )
Soforall f e LP(iu, X) and g € L9(ju, X*) we have
V& =) = [ 2@ @) du@) = [ (f@), g@) duco)

In the following, we use the notation ( f, g) instead of (f, ¥ (g)), so for all f €
LP(u, X) and g € L (e, X*)

(frg) = /Q (@), (@) du(®).

Hilbert spaces have the Radon—-Nikodym property, so in particular, if H is a
Hilbert space then (L?(u, H))* is isometrically isomorphic to L?(u, H). So, for
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all f eL?P(u, H)and g € LY(u, H), we have

(f. 8)= /Q(f(w),g(w)) dp(w),

in which ( f(w), g(w)) does not mean the inner product of elements f(w), g(w) in
H, but

(f(@), g(w)) = v(g(@))(f (),
where v: H — H™ is the isometric isomorphism between H and H™.

Lemma 1.8. Let (2, X, 1) be a measure space and suppose there exists k > 0 such
that w(E) > k for every nonempty measurable set E of 2. For every w € 2, define
P,:LP(u, X) = X, P,(G) = G(w). Then || P,|| < k~'/P.

Proof. For a fix wp € €2, put
A={we Q|G =G(wol}-

Then
IIGII§=/QIIG(60)II”du(w)Z/ G () ? du(w) = w(A)IG(wo)|I” = k|| G (wo)]|”.
A

Hence

IPull = sup [[Pu(G)ll= sup [IGwo)l < sup kPG|, =k""P. O
IGll,<1 IGll,<1 IGll,=<1

2. Bochner (p, Y)-Bessel mappings for X

Throughout this section and the next we will work with a second Banach space Y in
addition to X. We denote by B(X, Y) the space of bounded operators from X to Y.

Definition 2.1. Let 1 < p < o0, and let F : 2 — B(X, Y) be a map; we write F,,
for F(w). We say that F is a Bochner (p, Y)-Bessel mapping for X if the following
conditions are met:

(i) Foreach x € X, the mapping w — F,(x) from €2 into Y is Bochner-measurable.

(i1) There exists a positive constant B such that
IF.(x)|l, < Blx] forall x € X, 2-1)
where

1/p
||F.(x>||p=< /Q IIFw(X)II”dM> . 2-2)

We denote by B}’;(Y) the set of all Bochner (p, Y)-Bessel mappings for X. It
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is easy to see that this set is closed under addition (defined in the obvious way:
for F, K € B)’;(Y), the sum F + K satisfies (F + K),(x) = F,(x) + K, (x) for all
x € X and w € Q) and under multiplication by scalars. Thus B§(Y) is a vector
space. We give it a norm as follows. The Bessel bound of F € B§(Y) is the number

Br = inf{B > 0 : B satisfies (2-1)}.

For every F € Bf;(Y), define Rp : X — L?(u, Y) by x — F (x). This is clearly a
linear map; we should that it is also bounded. For every F € B}’;(Y),

IRFCOIp = I1F.(Ollp < Bllxl, (2-3)
for any B satisfying (2-1). Together with the linearity of Rr this implies that
IRFIl < Br; (2-4)
thatis, Rr € B(X, L?(u, Y)). Now set
11, =1IRF- (2-5)
By (2-4), | F|l, < Br. Itis easy to show that this gives a norm on B)I?(Y).

Theorem 2.2. Let (2, X, u) be a measure space and suppose there exists k > 0
such that L (E) > k for every nonempty measurable set E of Q2. Forevery 1 < p <00,
the mapping

A BY(Y) = B(X, LP (i, Y))

given by A(F) = Rp is a linear isometric isomorphism, and B )’;(Y) is a Banach
space over C.

Proof. Clearly, the mapping A is a linear isometry from B)I;(Y) into B(X, L?(u, Y)).
Next we prove that A is surjective.
Choose w € 2. For every A € B(X, L?(u, Y)), define Fj : X > Y by

FA(x) = P,(A(X)) = A(x)(w), x€X.

By Lemma 1.8, we have || P, || < k~!/7; hence F € B(X, Y) for all » € Q. Now,
consider the mapping
FA:Q— B(X,Y)

given by w > F2. Since FA(x) = A(x)(-): Q — Y for each x € X, the mapping
w Faf)‘ (x) from €2 into Y is Bochner-measurable and

A, =/S2I|A(X)(w)||”du(w) =/QIIFG?(X)II”dM(w) = IFA @Il p-

Therefore
IFAC)I, = 1A, < IAlllx].
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Hence F4 € BY(Y). Also, for all w €  we have Rpa(x)(w) = F24(x) = A(x)(w).
Thus Rpa(x) = A(x) for all x € X. This shows that A(F4) = Rpa = A; thus A is
surjective and so bijective. Consequently, B}’;(Y) is isometrically isomorphic to the
Banach space B(X, L?(u, Y)). Therefore, BQ(Y) is a Banach space over C. [J

Theorem 2.3. Let | < p < oo and F € BY(Y). Then, for every y* € Y*, the
mapping F*(y*) : Q = X*, F*(y*)(w) = F;(y*) is a Bochner pg-Bessel mapping
for X with respect to C.

Proof. Let y* € Y* and x € X. Clearly for each x € X the map w — (x, F5(y*))
from €2 into C is measurable and

fQI(x,Fi(y*))lpdu(w)=/gI(Fw(X),y*)lde(w)

smfwﬁénmuw%mwﬂ
< Iy 1P BLIx ). 0

Theorem 2.4. Let (2, 1) be a o -finite measure space with positive measure | and
let Q =\, cn Kn with Ky C K41 Let 1 < p <00, %+§ =land F:Q— B(X,Y).
The following assertions are equivalent:

(i) F e BY(Y).

(i1) Foreach x € X, fQ | Fo () |1? din(w) < o0.
(iii) For each G € L1(Y™*), sup”xH51|fQ (x, F}(G(w))) du(w)| < oo.
(iv) The operator Sg : L1(Y*) — X™* defined by

(x, SF(G)) = /Q(x, F}(G(w))) du(w) for x € X

is well defined and bounded.
Proof. (1) = (ii) This is obvious.

(ii) = (i) Define A, : X — LP(Y) by A, (x)(w) = xk, (@) Fy,(x). For every n e N,
we have
IAnll = sup [[An(X)]lp < [ Foll-

lxll<1
Hence, for alln e N, A, € B(X, L?(Y)). By the definition of Rp, for every n € N,
I(RF — A)(O)|I5 = / [RF(x) (@) = Ap(x) (@) dp(w)
Q
:/ | Foo(x) = Xk, (@) Fo (X) | dpa (@)
Q

=/ | F (I dia ().
Q—-K,
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This converges to 0 as n — o0, proving that lim,,_, o, A, (x) = Rp(x) for all x € X.
By the Banach—Steinhaus theorem, Ry € B(X, L?(Y)) and ||Rp|| =sup || A, || < oc.
Hence F € B)[;(Y).

(i) = (iii) Let G € LY(u, Y*) be arbitrary. By the Holder inequality, we have

sup
llxlI<1

/Q(x, F(G(w))) dM(w)‘

= sup
lxll<1

1/p 1/q
< sup < /Q IIFw(X)II”dM(w)) ( fg IIGwIquM(w)> < Br||G]l, < oo.

lxl=<1

/Q(Fw(X), G(w)) du(w)’

(iii) = (iv) Clearly SF is well defined and by the proof of (i) = (iii) we have

ISell= sup [ISF(G)l[= sup sup (Sp(G),x) < B < o0.
IGlg=1 IGllg<1 Il <1

(iv) = (i) Take G € L9(u, Y*) such that |G(w)| = 1 for every w € 2 and
| Fo () || = (Fo(x), G(@)) = (x, F;(G(w))) forall x € X.

Define o, : 2 — Y* by o (w) = XKn(co)HFw(x)HP_lG(a)). Then

1/q
lanlly = (fg IIXKn(w)IIFw(x)II”lG(w)IquM(w)>

1/q 1/q
=(/K ||Fw<x>||q<”—“du(w)) =(/K IIFw(X)II”dM(a))) :

Now, we have
f | Fo (O dit() = / . [ Fu ()17 (G (@))) dit(@)
K, K,
_ fg (. 2k, @ FoCOIP F2(G (@) dut(@) = (x. Sr ()

1/q
5IIXIIIISFIIIIOtnIIq=IIXIIIISFH(/ IIFw(X)II”dM(w)> .
K,
Thus

1/p
(/ IIFw(X)II”dM(w)) < xSk (2-6)

K,

By letting n — oo in (2-6), we get F € By (Y). O
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3. Bochner (p, Y)-operator frames

Definition 3.1. Let 1 < p < co. A mapping F : 2 — B(X, Y) is called a Bochner
(p, Y)-operator frame for X if the following conditions hold:

(i) Foreach x € X, the mapping w — F,,(x) from 2 into Y is Bochner-measurable.
(i1) There exist positive constants A and B such that

Allxl = IF.(x)ll, = Bllx|| forall x € X, (3-1)

where || F.(x)]|, is as in (2-2). The lower and upper bounds of F are then
given by

Afp =sup{A > 0: A satisfies (3-1)}, Bp =inf{B > 0: B satisfies (3-1)},
We denote by F )’(’ (Y) the set of all Bochner (p, Y)-operator frames for X.

Definition 3.2. A Bochner (p, Y)-operator frame F is called tight if Ap = Bp.
If Ap = Bp = 1, we call F normalized. We denote by TFy(Y) and NFy(Y),
respectively, the sets of all tight and normalized Bochner (p, Y)-operator frames
for X.

Corollary 3.3. Let F € BY(Y).
) Fe F;(Y) if and only if R is bounded below if and only if R}, is surjective.
(i) FeTF )l(’ (Y) if and only if RF is a scaled isometry.
Lemma 3.4. (i) If F € BY(Y) then Ry = SF.
(i) If Y is reflexive then LP (., Y) is reflexive.
Proof. (i) For all g € LY(u, Y*) and x € X, we have

(x, Rp¥ () = (Rpx, ¥ (8)) = / (Fo(x), g(@)) du(w)

Q

_ /Q (x. F(g(@))) du(@) = (x. Srg).

(ii) Let Jy : Y — Y™* be the canonical mapping. Suppose that Y is reflexive, that is
Jy(Y)=Y*. Forevery f € L?(u,Y), define L?(Jy)(f(w)) = Jy f(w), w € Q.
This gives a bijection L?(Jy) : L?(u,Y) — LP(u, Y**). By using Remark 1.7,
we know that the mapping ¢ : LY(u, Y*) — (L?(u, Y))* is a bijective bounded
operator and so the adjoint ¥* : (L?(u, ¥Y))** — (L9(u, Y*))* is bijective.

By using Remark 1.7 again, we obtain a bijective bounded operator

Y LP(w, Y1) — (L, Y7)
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such that for all f € LP(u, Y*) and g € L9(u, Y'™)

(fod'g) = fQ(f(w), g(@)) du(w).

Forall f € LP(u,Y), g € LY(u, Y*) we have

(& W o Jrruy) f) = (W (&), Jrun ) = (f, ¥ (9) = /Q(f(w), g(w)) du(w)

and

(8. (W o LP(Ip) f)=(g. (W' Uy F()))
= /Q (g(@), Jy f (@) du(w)

= /Q(f(w),g(w)) du(w).

Therefore, ¥* o Jpr(u,y)y =¥ o LP(Jy) and hence Jpr(, y) = (w*)—l oy’ o L?(Jy),
which is a bijection. Hence L?(u, Y) is reflexive. O

Theorem 3.5. Let F € By (Y), G € Fy(Y) and ||F|, < Ag. Then
F+G e F{(Y).
Proof. For each x € X, we have
[(F£G).()p=IF.(x)£G.()p = I1G.()p = I1F.() N p = (A — I Fllp)llx]l

and

I(F+G). (Ol = IFll, +IGI )X
So F+G € Fy(Y). O

Theorem 3.6. Let F € F )’;(Y ). Then for each x* € X*, there exists an element
G e LP(u, Y*) such that

(y,x*)=L(y, F (G(w)) du(w), yeX.

Proof. By Lemma 3.4, we have R%y = Sp. Since F € F{(Y), it follows from
Corollary 3.3 that R}, is surjective. Thus the operator Sg : LY(u, Y*) — X*is a
surjection. Let x* € X*; then there exists a G € L?(u, Y*) such that x* = Sp(G),
o)

(y.x*) = /Q (v, F1(G(@)) du(@), yeX. 0
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Definition 3.7. A Bochner (p, Y)-operator frame for X is called independent if
the operator Sr is injective, i.e., if for every f # 0 there exists x € X such that

/QOC, Fu(f (@) du(w) #0.

We denote by IFy (Y) the set of all independent Bochner (p, Y)-operator frames
for X.

Theorem 3.8. Let F be an independent Bochner (p, Y)-operator frame for X.
Then Rp is invertible.

Proof. We already know that Sr is injective. By Lemma 3.4 and Corollary 3.3, we
know that R} is bijective. Hence R is invertible. U

Theorem 3.9. Let (2, X, u) be a measure space and suppose there exists k > 0
such that w(E) > k for every nonempty measurable set E of Q2. For each F €
IF f(’ (Y), there exists a unique Bochner (q, Y*)-operator frame Q for X* such that
forally e X

(y,x") = /Q<y’ FyRox™(w)) du(w).

Proof. Let F be an independent Bochner (p, Y)-operator frame for X. Then
Theorem 3.8 yields that the operator R is invertible, so by Lemma 3.4, Sf is
invertible. We can define Q,, = PwS_l, w € Q, where P, : L9(u, Y*) — Y* is
defined by P,(G) = G(w). By Lemma 1.8, P, is bounded. Therefore Q, €
B(X*,Y*), w € Q. For each x* € X*, we have O (x*) = S;l(x*), so for each
x* e X*, the mapping w — Q,(x*) is Bochner-measurable and

1
ISFl

1/q
||x*||s< fQ IIQw(X*)II"dM> = ISF M < ISF ™.

Hence, Q is a Bochner (g, Y*)-operator frame for X* with bounds ||.§ r|I~! and
||S;1||. By the definition of Q, we obtain that Ry = S;l and so x* = SFRox",
x* € X*. Thus
(v, x*) = / (v, FuRox™(w)) dn(w), yeX.
Q

Next, we will show the uniqueness of Q. Let W be a Bochner (g, Y*)-operator
frame for X* such that for all y € X

(y,X*)zf(y,F;"RWX*(w»du(w), x* e X",
Q

Thus SpRw = Ix+, or Ry = S;l = Rg. Therefore, W = Q. U
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