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A Scramble Squares puzzle is made up of nine square pieces such that each edge
of each piece contains half of an image. A solution to the puzzle is obtained when
the pieces are arranged in a 3×3 grid so that the adjacent edges of different pieces
together make up a complete image. We describe a graph-theoretical approach to
solving Scramble Squares puzzles and a method for decreasing randomness in
the backtracking solution algorithm.

1. Introduction

A Scramble Squares R© puzzle (created and marketed by B. Dazzle, Inc.) consists
of nine square pieces, each of which contains half of an image on each side. A
solution to a Scramble Squares puzzle is an arrangement of the nine pieces into
a 3× 3 grid so that the adjacent half images on adjacent pieces together create a
complete image. Here is an example of a solution to a Scramble Squares puzzle:

There are many different ways to arrange the pieces in an attempt to solve a
Scramble Squares puzzle. There are nine different positions in the 3 × 3 grid
and therefore 9! different ways to place the pieces into the grid, assuming that
the pieces are pairwise distinct. Once the pieces have been placed, there are 4

MSC2010: 05C75, 94C15.
Keywords: graph theory, algorithms.

313



314 SARAH MASON AND MALI ZHANG

different orientations for each piece. This means that there are a total of 49
× 9!

different arrangements of the pieces. Taking into account rotational symmetry, if
there is a solution there must be at least four, but still the probability of finding
one of them by laying the pieces down at random can be as low as 4/(49

× 9!), or
about 4.2×10−11. It would therefore be desirable to have an efficient algorithm for
solving Scramble Squares puzzles, but this turns out to be quite a steep request since
Scramble Squares are constraint satisfaction problems (CSPs) and many CSPs are
known to belong to the NP-complete complexity class. The most efficient known
algorithm for solving Scramble Squares puzzles is a depth first backtracking search
developed by Brandt, Burger, Downing, and Kilzer [Brandt et al. 2002].

A visual representation of a problem can often provide key insights into the
nature of the solution(s). The graph-theoretical solution to the Instant Insanity
puzzle is a wonderful example of this phenomenon [Busacker and Saaty 1965;
Carteblanche 1947; Grecos and Gibberd 1971; Van Deventer 1969]. The Instant
Insanity puzzle consists of four unit cubes whose faces are colored arbitrarily with
four colors. A solution is obtained by stacking the cubes into a vertical rectangular
prism with dimensions 4× 1× 1 so that each color appears exactly once on each
side of the prism. Van Carteblanche [1947] introduces a method (elaborated upon
by many [Busacker and Saaty 1965; Grecos and Gibberd 1971; Van Deventer
1969]) for representing the cubes as edges in a graph whose vertices correspond
to the four colors. A solution is determined by choosing an appropriate subgraph.
This graph-theoretical solution to Instant Insanity is the inspiration for this paper.
We provide a graph-theoretical solution to a simplified Scramble Squares puzzle,
following a similar approach. We also provide a method for ordering the pieces
used in the backtracking algorithm in [Brandt et al. 2002] as a way to potentially
improve upon its efficiency.

2. Restricted Scramble Squares puzzles

We begin by introducing the terminology and notations which will appear throughout
this paper. A pattern is a complete image in the puzzle. Each pattern is comprised
of two pictures, which are halves of the image. The complement of a picture is the
other half of the pattern. A piece is one of the nine squares that make up a puzzle.
See Figure 1 for an example.

In this section, we will restrict to puzzles containing four or fewer patterns. We
do this for the sake of simplicity, but it would not be difficult to extend these results
to puzzles with more patterns; in essence, it involves considering graphs with more
vertices but whose solution graphs satisfy the same set of restrictions.

The recording graph. We provide a method to represent any Scramble Squares
puzzle mathematically as a graph. Begin by assigning a number to each pattern.
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Figure 1. The two pictures on the right are complements, which
together make up the pattern on the left.

Each pattern consists of two pictures, so associate a plus sign to one of the pictures
and a minus sign to the other. This assigns a number and a sign to each picture
appearing in the puzzle. Notice that two pictures with the same number but opposite
signs together form a complete pattern. Also note that if X+ is the signed number
corresponding to a given picture (of pattern |X |), then its complement X c, is given
by X−. For example, in Figure 2 the number 1 represents the star, the number 2
represents the ice cream cone, the number 3 represents the house, and the number 4
represents the smiling face. For this reason, we use the absolute value notation to
denote the underlying pattern, so that |X+| = |X−|, and we frequently refer to a
pair of complementary pictures as X and X c.

A repetition in a puzzle piece is a picture which appears more than one time on
the piece. Note that a picture X+ and its complement X− appearing on the same
piece do not constitute a repetition. We say that a puzzle is repetition-free if no piece
of the puzzle contains a repetition. This means that a particular picture may appear
multiple times in the puzzle, provided that each appearance is on a different piece.
We restrict to 2× 2 repetition-free puzzles but it would be interesting to extend
these results to larger puzzles or puzzles containing repetitions. See Section 4 for
details on this and other related open problems.

We construct a graph, called the recording graph G(P), corresponding to a given
Scramble Squares puzzle P as follows. The vertices of G(P) are the symbols
associated to the pictures appearing in the puzzle pieces. They are arranged into

- 2+
2−

1− 1+

4− 4+
3+
3−

4+ 2−
3+

4−

2+

2−
2+ 3+

Figure 2. Converting pictures to symbols.
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4+ 3+ 2+ 1+

4− 3− 2− 1−

Figure 3. An edgeless graph.

2−

1+

3+

4−

−→

4- 3- 2- 1-

4+ 3+ 2+ 1+

Figure 4. One piece of the puzzle becomes a length-4 directed cycle.

2−

1+

3+

4−

3− 1−

4−

4+

−→

Figure 5. The left-hand piece is represented by solid lines, while
the right-hand piece is represented by dashed lines.

two rows so that the top row contains the pictures with negative sign and the bottom
row contains the pictures with positive sign. The vertices are written in decreasing
order in both rows, as shown in Figure 3.

The edges of the recording graph are colored directed edges obtained from
the pieces in the puzzle. Each piece is assigned a color. (Note that the numbers
represent patterns while the colors represent pieces.) Construct four directed edges
for each piece by drawing an arrow from each picture appearing in the piece to the
picture which is ninety degrees away clockwise. Therefore each piece contributes
four edges to the recording graph. The vertex from which this arrow originates is
called the tail of the edge, while the vertex to which it points is called the head of
the edge. Figure 4 demonstrates the construction of the four edges corresponding
to one puzzle piece, and Figure 5 demonstrates the recording graph for a Scramble
Squares puzzle with two pieces.
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Figure 6. Recording graph for the puzzle shown in Figure 2.

The pieces of the puzzle are distinguished from one another by the color (or
shading) of their edges. Once all the pieces have been represented in the graph,
the resulting figure is called the recording graph. Figure 6 shows an example. We
may now discard the original pieces since the recording graph encodes all of the
information necessary to solve the puzzle. We determine a solution by finding a
subgraph of the recording graph which satisfies certain properties.

Solution graphs for 2×2 repetition-free puzzles. Every solution to a 2×2 Scramble
Squares puzzle without repetitions is an arrangement of the pieces such that each
picture not on the boundary is adjacent to its complement. Every subgraph of
the recording graph which contains four edges of distinct colors represents an
arrangement of the pieces. (Note that we need exactly one edge of each color to
represent an arrangement of the pieces since each color represents a piece.) Recall
that an arrow A→ B in the recording graph represents the corner between sides A
and B, where A is 90 degrees counterclockwise from B. When that edge is present
in a subgraph, it means that this corner will be the corner of that piece which is
in the middle of the arrangement, adjacent to the other pieces. Since not every
arrangement of the pieces constitutes a solution, not every four-colored subgraph
of the recording graph constitutes a solution. See Figure 6 for an example of a
recording graph, and Figure 7 for examples of a solution subgraph and a subgraph
which does not correspond to a solution. We provide necessary and sufficient
conditions on a subgraph to guarantee that it constitutes a solution.

Figure 7. Left: a subgraph of Figure 6 representing the solution
shown in Figure 2. Right: graph of an arrangement of the pieces
that does not constitute a solution.
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In order to state these conditions, we need the notion of pseudoconnectedness.
Two distinct connected components of a recording graph are said to be pseu-
doconnected if the intersection of the set of absolute values of their vertices is
nonempty. Write C1 ' C2 if C1 and C2 are pseudoconnected. A pseudo-path
between two connected components C and D is a collection of connected compo-
nents {C0 = C, C1, . . . , Ck = D} such that C0 ' C1 ' . . .' Ck . A subgraph of a
recording graph is said to be pseudoconnected if there is a pseudo-path between
every pair of connected components in the graph.

For example, let C1, C2, C3 be the three connected components of a recording
graph G, with respective vertex sets {1+, 3−, 4−}, {2+, 3−, 3+}, and {1−, 4+}.
The graph G is pseudoconnected even though C2 is not pseudoconnected to C3,
since there exists a pseudo-path C2 ' C1 ' C3.

Theorem 2.1. A subgraph of the recording graph G(P) consisting of four edges
is a solution graph Gs(P) for a repetition-free 2× 2 puzzle if and only if it is a
pseudoconnected subgraph satisfying the following properties:

(1) Each edge is a different color.

(2) The in-degree of each vertex is equal to the out-degree of its complement.

(3) If X→A→Y is a directed path in Gs(P), then Y must be the complement of X.

Proof. We begin by proving that every subgraph which corresponds to a solution
must be of the form described in Theorem 2.1. The subgraph must contain exactly
four distinctly colored edges since a solution must use each of the four pieces.

Next consider the pseudoconnectedness property. In a solution to the puzzle,
every pair of pieces is either adjacent or diagonally opposite one another. If two
pieces are adjacent, then their corresponding vertices are pseudoconnected in the
solution graph since the adjacent edges of the pieces must contain the same pattern.
If two pieces are diagonally opposite one another, there is a piece between them
whose edges share a pattern with each. The edges of this piece will form a pseudo-
path between the two corresponding patterns contained in the diagonally opposite
pieces. Hence every solution graph must be pseudoconnected.

Every vertex appearing in the solution graph corresponds to a picture which is
matched to its complement. Since at every such matching, one picture is represented
by the head of a directed edge and the other is represented by the tail of a directed
edge, the matching contributes 1 to the in-degree of one picture and 1 to the out-
degree of its complement. Therefore the in-degree of a vertex must equal the
out-degree of its complement.

Finally consider a graph that does not satisfy the third property. This implies
that the graph contains a length 2 directed path X→ A→ Y such that Y is not the
complement of X . Without loss of generality, let the corner A→ Y be the upper-left
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corner of the solution. Then the corner represented by X→ A cannot be placed in
a position adjacent to the corner represented by A→ Y since the complement of A
is not A and the complement of Y is not X . Therefore the corner represented by
X→ A must be positioned in the lower right-hand corner (diagonally opposite the
corner represented by A→ Y ):

Y

A

X
A

In this case, the picture Ac must appear twice in the piece located in the upper
right-hand corner. This contradicts the assumption that the puzzle is repetition-free,
and therefore in this case no solution exists. Thus if there is a length two directed
path X → A→ Y , then Y must be the complement of X . This implies that the
conditions listed in Theorem 2.1 are necessary.

Next we must prove that all subgraphs satisfying the given conditions are indeed
solution graphs. Let G be a subgraph satisfying the hypotheses of Theorem 2.1.
We prove that the pieces represented by G constitute a solution to the puzzle.

First assume that four distinct patterns appear in the pieces represented by G.
Without loss of generality let A, B, C, and D denote the pictures with out-degree one.
We can’t have X→ X c for any X by the pseudoconnectedness condition. (Since four
distinct patterns appear, if we had X→ X c then the pattern represented by X would
not be pseudoconnected to any of the other patterns, violating pseudoconnectedness.)
Therefore without loss of generality assume A→ Bc is one of the pieces. If B→ Ac

is a piece, then pseudoconnectedness fails since the patterns |A| and |B| would not
be pseudoconnected to the patterns |C | and |D|. So, again without loss of generality,
assume B→Cc. Then C→ Dc since pattern D must be pseudoconnected to one of
the other patterns and if C→ Ac then pattern D would be isolated. Then D→ Ac by
process of elimination. Therefore a solution is given by the following arrangement.

B

Bc
A Ac

Cc C
Dc

D

Next assume that three distinct patterns appear in the pieces represented by the
subgraph G. Let |A| be the repeated pattern. Then the tails are either given by
A, A, B, C or A, Ac, B, C for some pictures A, B, C . Assume that the tails are
A, A, B, C . By pseudoconnectedness one of B, C must appear on the same piece
as Ac. Assume without loss of generality that this piece is B→ Ac. Then C appears
(also by pseudoconnectedness) on the same piece as either Ac or Bc. If C→ Ac,
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then the other pieces must be A→ Bc and A→ Cc and a solution is given below.

A

Ac
B Bc

Cc C
Ac

A

If C→ Bc, then the other two directed edges appearing in G must be A→ Cc

and A→ Ac, which together with C→ Bc and B→ Ac represent a solution.
If the tails are A, Ac, B, C , then one of B or C must be on the same piece as

either A or Ac. Without loss of generality assume this piece is B→ A. Then the
third condition implies that A→ Bc is another piece. Pseudoconnectedness implies
that the remaining two pieces are represented by C → Ac and Ac

→ Cc since
C→ Cc would isolate pattern C , keeping it from being pseudoconnected to A or
B. Therefore a solution is obtained by placing the pieces as shown below.

Ac

A
B Bc

Cc C
Ac

A

Next assume that two distinct patterns appear in the pieces represented by G.
This can happen with each pattern appearing twice or one pattern repeated three
times. If each of two patterns |A| and |B| is repeated twice, we may assume without
loss of generality that A → B appears in G. Condition 3 implies that none of
Ac
→ A, B→ Bc, or B→ A appears in G, but there must be at least one more

piece involving both |A| and |B| since each pattern occurs an even number of times.
This piece could be any of Bc

→ A, Bc
→ Ac, B→ Ac, A→ B, A→ Bc, Ac

→ B,
or Ac

→ Bc.

Case 1: If this piece is Bc
→ A then Ac must appear at least two more times, once

as a head and once as a tail by condition 2. Similarly, B must appear as a head and
Bc as a tail by condition 2. This means that the other pieces appearing are either

(a) Ac
→ B and Bc

→ Ac, or (b) Ac
→ Bc and B→ Ac.

In both cases, a solution is possible. See Figure 8(a) for the solution to Case 1(a);
Case 1(b) is similar. (Notice that if Bc

→ A is replaced by B→ Ac then the proof
that the puzzle has a solution is the same.)

Case 2: If the second piece involving |A| and |B| is Ac
→ B, then the other two

pieces must be Bc
→ A and Bc

→ Ac, which are the same pieces used in Case 1(a);
see Figure 8, left. A similar argument works when the second piece is A→ Bc;
see second diagram in Figure 8.
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Bc

B
A Ac

A Ac
B

Bc

Case 1(a)

Bc

B
A Ac

Ac A
Bc

B

Case 2

Bc

B
A Ac

A Ac
Bc

B

Case 3

Bc

B
A Ac

B Bc
Ac

A

Case 4

Figure 8. Solutions for puzzles with two repeated patterns.

Case 3: If the second piece is Ac
→ Bc then the other pieces must be Bc

→ A and
B→ Ac by conditions two and three, which together represent a solution depicted
in the third diagram of Figure 8. If the second piece is A→ B then the other two
pieces are Bc

→ Ac, which together with the first two pieces represent a solution
similar to the solution for the puzzle with second piece Ac

→ Bc.

Case 4: Finally, if the second piece is Bc
→ Ac then the other two pieces are either

(A→ Ac and Bc
→ B) or (A→ B and Bc

→ Ac) or (Bc
→ A and Ac

→ B)
or (A→ Bc and B→ Ac), all of which admit a solution similar to the previous
solutions; the solution to the first is depicted in the rightmost part of Figure 8.

Finally, suppose that one of the patterns appears three times. Then we may
assume A→ B is a piece, since the two patterns A and B must be pseudoconnected.
Assuming A is the piece repeated three times, there is one piece containing Bc as
the tail and either A or Ac as the head. Since the remaining two pieces must contain
two occurrences of A and two occurrences of Ac by the repetition-free assumption,
this second piece must be Bc

→ Ac. The remaining pieces must both be A→ Ac

since Ac
→ A violates condition 3. This collection of pieces can easily be arranged

to produce a solution, shown below.

Bc

B
A Ac

Ac A
Ac

A

Finally assume that only one distinct pattern appears in the pieces represented by
G. If A→ Ac is one of the pieces, condition 3 implies that all other pieces must be
of this form. Therefore any arrangement of the pieces represents a solution and our
proof is complete. �

3. Backtracking

Brandt et. al [2002] use the method of backtracking to solve Scramble Squares
puzzles algorithmically. Their procedure begins by labeling the 3× 3 grid with the



322 SARAH MASON AND MALI ZHANG

numbers 1 through 9 in the order shown in Figure 9. The numbers stand for the
order in which pieces are inserted.

The pieces are then randomly numbered 1 through 9 as well and the orientation
of each piece is numbered 0 to 3 since each piece can be rotated and placed in
four different ways. The first step is to place a piece into position #1 with a settled
orientation. The orientation of the piece at position #1 is set to avoid repetitions
obtained by rotating the whole grid.

Next, another piece is placed at position #2 with orientation 0. If the edges match,
one of the remaining pieces is chosen at random for position #3 with orientation
0. This process is repeated until a piece is placed in such a way that the edges
don’t match. If rotating this piece 90 (or 180 or 270) degrees clockwise causes
the edges to match, then the process continues. Otherwise, this piece is removed
(backtracking) and a different piece is selected. If none of the pieces under any
rotation makes the edges match, the previous piece is rotated 90 degrees clockwise
(or removed, if its orientation number is 3) and the process continues. This trial
and error process continues until all nine pieces match perfectly in their positions.

Finding the middle piece. The backtracking process described above uses random-
ization to select the pieces involved and thus does not take any information from
the puzzle into account. We introduce a procedure called maximizing the center that
uses information about the puzzle to potentially improve the speed of the algorithm.
In the following, we will assume for simplicity of exposition that there is only one
solution to a given Scramble Squares puzzle.

Notice that all of the pictures on edges in the middle of the solved puzzle will
be matched and thus will need a complement, while the edges facing out on the
boundary of the solved puzzle will not need a complement. Therefore we seek a
procedure which will select an initial middle piece which is most likely to have
matches for all four of its edge pictures.

1 2

345

6

7 8 9

Figure 9. Order of placement of the pieces in the 3 × 3 grid.
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Consider a picture A and its complement Ac. Let n A be the number of times the
picture A appears on a puzzle piece and let n Ac be the number of times the picture
Ac appears on a puzzle piece, called the index of that picture. Assume without loss
of generality that n A ≥ n Ac . If x is the number of times the pattern |A| appears as a
complete (matched) pattern in the solution, then the probability that an occurrence
of the picture A will be matched in the solution is x/n A, while the probability that
an occurrence of the picture Ac will be matched in the solution is x/n Ac . Since
x/n Ac ≥ x/n A, an arbitrary occurrence of picture Ac is more likely to be matched
in the solution to the puzzle than an arbitrary occurrence of picture A. Therefore, it
is reasonable to select as middle position candidates pieces whose pictures have
lower indices, since all four sides of the middle piece must be matched. In fact,
since a picture and its complement might both have a low index, an even better
measure is to use the index of the complement of a picture. This value equals the
number of pictures available to be matched to the picture, and thus higher values
imply more potential matches are available. The following procedure provides a
method for ordering the pieces so that the ones “most likely” to be in the middle are
tested there first. Of course, there are examples of puzzles in which the last piece
chosen by this procedure appears in the middle, so this method is not always faster
than the original backtracking method. It would be interesting to determine how
frequently this method does yield some improvement over previous backtracking
methods.

(1) Count the number of times each picture occurs. This is the index of the picture.

(2) Assign a value index to each piece by summing the indices of the complements
of the pictures appearing on the piece.

(3) Place the piece with the highest value index in the middle.

(4) Begin with the picture on this piece whose complement has the lowest index.

(5) Find all the pieces containing the complement of this picture and place the one
with the lowest value index next to the picture.

(6) Next use the interior picture whose complement has the lowest index from the
two placed pieces and repeat step (5). Repeat the process until a picture on the
interior is reached which cannot be matched to any of the remaining pieces. If
no such piece exists, then the algorithm has produced a solution.

(7) If such a piece exists, rotate this piece 90 degrees clockwise and repeat. If its
orientation is 3, backtrack and replace the previous piece with another piece
whose value index is greater than or equal to the value index of the previous
piece.

(8) Continue the procedure until arriving at a solution.
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The purpose of starting with the picture whose complement has the lowest index
in Steps (4) and (5) is to ensure that the picture with the highest probability of
failing to find a match is tested first. Ideally this will avoid testing many extra
correct pictures before finding a side of the middle piece that cannot be matched.
Again, this is not a perfect strategy because it is possible for the mismatched side
to be one with a high index, but perhaps this will reduce the amount of time needed
to arrive at a solution for certain puzzles. Further investigation is necessary to
determine the efficiency of this approach.

4. Future directions and open questions

The use of graph theory and informed backtracking to solve Scramble Squares
puzzles paves the way for many new and exciting research topics. We describe
several potential directions the interested reader is encouraged to explore.

Puzzles with repetitions. Repetition occurs when one picture appears two or more
times in one piece. However, in a specific 2 × 2 puzzle, the solution relies on the
two adjacent sides used to match other pieces. Hence, when the same picture shows
up on opposite sides of a piece, while the other pictures are distinct, the solution
graph properties are the same as for puzzles with no repetition. However, when the
same picture appears on two adjacent sides of one piece, represented by a loop in
the recording graph, different conditions are required to find a solution. While some
of the conditions are similar to those for the repetition-free case, the full necessary
and sufficient conditions for puzzles containing repetitions are currently unknown.

Solutions to larger puzzles. This paper focuses on solutions to 2× 2 Scramble
Squares puzzles. Certainly these results could be extended to larger puzzles in an
ad hoc manner, but an ideal solution would describe conditions on a subgraph of
the overall recording graph so that the subgraph corresponds to a solution.

Uniqueness. Some Scramble Squares puzzles have multiple solutions. Is it possible
to find conditions under which a puzzle has a unique solution? Perhaps there is a
formula using the recording graph or on the puzzle itself that enumerates the number
of solutions to a given Scramble Squares puzzle. This seems to be an extremely
difficult problem, but perhaps a probabilistic approach would be more likely to yield
results. Such an approach would look for the probability that an arbitrary puzzle
has a unique solution. Calculations could be made toward this effort by placing
restrictions on the number of patterns or the number of appearances of any given
pattern and then counting the number of puzzles which exhibit such properties.

It is not difficult to find conditions which are necessary for a puzzle to have at
least one solution. It would be useful to have sufficient conditions as well, ideally
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conditions which could be easily checked using a counting argument or by verifying
properties of the recording graph.

Probability. The “maximizing the center” approach will not always be faster than
the depth first backtracking approach. It is possible that for some puzzles the
additional information taken into account through our approach does not decrease
the total time needed to solve the puzzle. If a puzzle is unusual in the sense that
its central piece has the smallest value of all the pieces, then the “maximizing the
center” approach would actually force us to run through all of the possible center
pieces before finding the correct center piece, thus potentially taking longer than a
random backtracking process. It would be very useful, therefore, to determine the
probability that, given a random Scramble Squares puzzle, our approach will actually
improve upon the amount of time needed to determine a solution as compared to
the random backtracking approach.
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