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We study the notion of n-diameter for sets of constant width. A convex set in the
plane is said to be of constant width if the distance between two parallel support
lines is constant, independent of the direction. The Reuleaux triangles are the
well-known examples of sets of constant width that are not disks. The n-diameter
of a compact set E in the plane is

dn(E)=max
( ∏

1≤i< j≤n

|zi − z j |

) 2
n(n−1)

,

where the maximum is taken over all zk ∈ E , k = 1, 2, . . . , n. We prove that if
n = 5, then the Reuleaux n-gons have the largest n-diameter among all sets of
given constant width. The proof is based on the solution of an extremal problem
for n-diameter.

1. Introduction

Sets of constant width have been an object of study by geometers for several
centuries; some nontrivial examples of such sets were already known to Euler. A
good summary of these studies is given in [Chakerian and Groemer 1983]; see also
[Eggleston 1958]. A convex set in the plane is said to be of constant width if the
distance between two parallel support lines is constant independent of the direction.
Equivalently, a planar convex set W with nonempty interior is said to be of constant
width if for each ξ ∈ ∂W there exists η∈ ∂W with |ξ−η|=diam W . While the disks
are easily seen to be of constant width, the Reuleaux triangles are the well-known
examples of sets of constant width that are not disks. In fact, sets of constant width
can be thought of as generalizations of disks in that they share many properties with
disks. For example, closed disks are diametrically complete, that is, addition of any
point increases their diameter. This completeness notion characterizes the sets of
constant width. Namely, the family of all complete sets is precisely the family of
sets of constant width [Eggleston 1958, Theorem 52]. Another common property is
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that sets of constant width are precisely the sets of constant diameter. (A compact
set E is said to be of constant diameter if max{|x − y| : y ∈ E} = diam E for each
x ∈ ∂E). Also, the definition of constant width sets using parallel support lines is
also based on a property of disks, namely that the distance between any two parallel
support lines of a disk is constant. Finally, one more property of sets of constant
width that is common with disks is that the length of the boundary arc of a disk is
equal to λπ , where λ is the diameter of the disk; the same is true of sets of constant
width. Of course, not every property of the disks is shared by sets of constant width.
For example, sets of constant width λ> 0 do not have to have the same area as disks
of diameter λ or that sets of constant width do not have to have smooth boundaries.
In fact, by the isoperimetric inequality disks of diameter λ have the largest area
while by the Blaschke–Lebesgue theorem the Reuleaux triangles of diameter λ
have the smallest area. The Reuleaux triangle (named after the nineteenth-century
German engineer Franz Reuleaux) of diameter λ is constructed by connecting the
vertices of an equilateral triangle of sidelength λ by arcs of circles of radius λ and
centered at the vertices.

Sets of constant width arise in many areas of mathematics. For instance, every
odd-term Fourier series gives rise to a planar set of constant width [Kelly 1957].
Constant width sets are used in cinematography and engineering. For example,
they are used in the design of the Wankel engine [Berger 1994]. They are also
aesthetically pleasing, frequently turning up in art and design contexts. For example,
some Irish coins have constant width shapes because of their appealing character.

The 3-diameter of sets of constant width as well as the related notions of
d3-complete sets and sets of constant 3-diameter were first studied in [Hästö et al.
2012]. As mentioned above the disks have the largest area and the Reuleaux
triangles have the smallest area among all sets of given constant width. Surprisingly,
the roles of the isoperimetric inequality and the Blaschke–Lebesgue theorem are
reversed when it comes to 3-diameter. More precisely, among the planar sets of
constant width λ, Reuleaux triangles have the largest 3-diameter, namely λ, and
disks have the smallest 3-diameter,

√
3λ/2 [Hästö et al. 2012, Theorem 3.1]. On the

other hand, the Reuleaux triangles have the largest area among all sets with both the
diameter and 3-diameter equal to λ [Hästö et al. 2012, Proposition 2.2]. As in the
case of ordinary diameter, disks are both of constant 3-diameter and d3-complete,
and d3-complete sets are of constant 3-diameter [Hästö et al. 2012, Theorem 5.2].

In this paper we study n-diameter of sets of constant width. Our study is based
on the following extremal problem: among all planar sets of cardinality n and
of diameter less than or equal to 2, find one with the largest n-diameter. We
conjecture that the vertices of regular n-gons have the largest n-diameter if n is
odd (Conjecture 2.8) and show the conjecture is equivalent to stating that the
Reuleaux n-gons have the largest n-diameter among all sets of given constant width
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(Theorem 4.3). Clearly, for n = 3 the vertices of equilateral triangles provide a
solution to the extremal problem. In contrast, the vertices of the regular 4-gon do
not have the largest 4-diameter (Lemma 2.9). We show that Conjecture 2.8 holds for
n= 5 (Theorem 3.1), and also verify the conjecture for n= 7 under some additional
assumptions (Proposition 3.3).

2. Extremal problem for n-diameter

Definition 2.1. The n-diameter of a compact set E in the complex plane C is
defined by

dn(E)=max
( ∏

1≤i< j≤n

|zi − z j |

) 2
n(n−1)

,

where the maximum is taken over all zk ∈ E , k = 1, 2, . . . , n.

Clearly, d2(E) is the ordinary diameter of E . That is,

d2(E)= diam E = sup{|z−w| : z, w ∈ E}.

The n-diameter is weakly decreasing in n, that is, dn(E)≥ dn+1(E) [Ahlfors 1973,
p. 23]; see also [Hayman 1966, Theorem 1]. We give the proof for completeness.
We have

dn+1(E)=
∏

1≤i< j≤n+1

|zi − z j |
2

n(n+1) ;

thus(
dn+1(E)

)n(n+1)/2
=

n+1∏
k=2

|z1−zk |
∏

2≤i< j≤n+1

|zi−z j | ≤

n+1∏
k=2

|z1−zk |
(
dn(E)

)n(n−1)/2
.

Similarly, for each l = 2, 3, . . . , n+ 1 we have

(
dn+1(E)

)n(n+1)/2
≤

n+1∏
k=1
k 6=l

|zl − zk |
(
dn(E)

)n(n−1)/2
.

Multiplying these expressions we obtain(
dn+1(E)

)n(n+1)2/2
≤
(
dn+1(E)

)n(n+1)(dn(E)
)n(n−1)(n+1)/2

which yields dn+1(E)≤ dn(E), as required.
The transfinite diameter of E is defined by

d∞(E)= lim
n→∞

dn(E).

The transfinite diameter of a line segment of length L is L/4 and the transfinite
diameter of a disk of radius r is equal to r [Ahlfors 1973, p. 28; Goluzin 1969,
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p. 298]. The notion of transfinite diameter is due to Fekete and plays an important
role in complex analysis. It is related to the notions of logarithmic capacity and
the Chebysheff constant [Ahlfors 1973; Hille 1962; Tsuji 1959]. Some extremal
problems involving the transfinite diameter and n-diameter of planar sets were
studied in [Burckel et al. 2008; Dubinin 1986; Duren and Schiffer 1991; Grandcolas
2000; Grandcolas 2002; Reich and Schiffer 1964].

The simplest examples of sets for computing the n-diameter are undoubtedly the
n-tuples, that is, sets consisting of n distinct points. Let Tn denote the set of all
n-tuples in C of diameter less than or equal to 2.

Definition 2.2. By the extremal problem for n-diameter we mean the problem of
finding

sup
E∈Tn

dn(E).

According to Jung’s theorem each E ∈ Tn is contained in a disk of radius r , where
1/2≤ r ≤ 2/

√
3 [Berger 1994, Theorem 11.5.8]. Also, for any E ⊂ C and for any

linear transformation L(z)= az+b (a, b∈C, a 6= 0) we have dn(L(E))= |a|dn(E).
Consequently,

sup
E∈Tn

dn(E)= sup
E∈T ′n

dn(E), where T ′n = {E ∈ Tn : E ⊂ B(0, 2/
√

3)}.

Since the function dn : T ′n→ [0, 2] is continuous and since T ′n is a compact subset
of the n-dimensional complex space Cn , dn achieves its maximum in T ′n .

Definition 2.3. An n-tuple E ′ ∈ Tn is called extremal if

sup
E∈Tn

dn(E)= dn(E ′).

Let En ⊂ Tn denote the set of all extremal n-tuples in Tn . Thus, the n-diameter
problem is equivalent to finding a member of En and computing its n-diameter.

Lemma 2.4. Given E ∈ En , for each z ∈ E there exists w ∈ E with |z−w| = 2. In
particular, the n-gon with vertices in E is convex.

Proof. Let E = {z1, z2, . . . , zn} ∈ En and suppose that there exists k such that
|zk − zl |< 2 for all l = 1, 2, . . . , n. Then there exists a disk D centered at zk such
that |z− zl |< 2 for all z ∈ D and for all l = 1, 2, . . . , n. Since the function

P(z)=
n∏

l=1
l 6=k

(z− zl)

is analytic in D, its modulus |P(z)| cannot achieve its maximum at zk . Hence there
exists a point z′k ∈ D such that the n-tuple E ′ = {z1, z2, . . . , z′k, . . . , zn} belongs to
Tn and that dn(E ′) > dn(E). Hence E /∈ En , which is the required contradiction.
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Let C(E) be the convex hull of E , that is, the smallest convex set containing E .
Then

C(E)=
{ 3∑

k=1

λkαk | αk ∈ E, λk ≥ 0,
3∑

k=1

λk = 1
}

by Carathéodory’s theorem [Berger 1994, 11.1.8.6]. The first part of the lemma
implies that the points z1, z2, . . . , zn can only lie on the corners of C(E). Hence
C(E) is the n-gon with vertices at the points z1, z2, . . . , zn . �

The following corollary is an immediate consequence of Lemma 2.4.

Corollary 2.5. Let n ≥ 3 be an odd integer. Then for each E ∈ En there exist
z, w1, w2 ∈ E such that |z−w1| = |z−w2| = 2.

Let ω = e2π i/n be the nth root of unity and put

En = {1, ω, ω2, . . . , ωn−1
}.

Let D= {z ∈C : |z| ≤ 1} be the closed unit disk in C. The following observation
is credited to Pólya [Overholt and Schober 1989, p. 279]:

Theorem 2.6 (Pólya extremal problem).

max dn({z1, z2, . . . , zn})= dn(En)= n1/(n−1)

where the maximum is taken over all points z1, z2, . . . , zn in D.

Observe that
diam En = 2 if n is even.

On the other hand, if n is odd, then

diam En =|1−ω(n−1)/2
|= 2 sin((n−1)π/2n)= 2 sin(π/2−π/2n)= 2 cos(π/2n).

Put

rn =

{
1 if n is even,
sec(π/2n) if n is odd,

and let
rnEn = {rn, rnω, rnω

2, . . . , rnω
n−1
}.

Note that

dn(rnEn)= rndn(En)=

{
n1/(n−1) if n is even,
sec(π/2n)n1/(n−1) if n is odd.

(2-7)

Since rnEn ∈ T ′n , we have

sup
E∈Tn

dn(E)= sup
E∈T ′n

dn(E)≥ dn(rnEn)=

{
n1/(n−1) if n is even,
sec(π/2n)n1/(n−1) if n is odd.
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Conjecture 2.8. If n is odd, then dn(E)≤ dn(rnEn) for each E ∈ Tn .

Conjecture 2.8 predicts that if n is odd, then the vertices of the regular n-gons
are extremal. In contrast, the vertices of the regular 4-gon are not extremal.

Lemma 2.9. Let E = {r3, r3ω, r3x, r3ω
2
} = r3(E3∪{x}), where x = 1−

√
3. Then

d4(E) > d4(E4).

Proof. Recall that r3 = 2/
√

3 and E3 = {1, ω, ω2
}, where w = e2π i/3 is the third

root of unity. Then |x − 1| =
√

3 and |x − ω| = |x − ω2
| =

√
6− 3
√

3. Clearly,
E ∈ T4 and hence

d4(E)= r3(|x − 1| |x −ω| |x −ω2
| |1−ω| |1−ω2

| |ω−ω2
|)1/6

=
2
√

3
(|x − 1| |x −ω| |x −ω2

|)1/6
[
(|1−ω| |1−ω2

| |ω−ω2
|)1/3

]1/2
=

2
√

3
(6
√

3− 9)1/6(d3(E3))
1/2
=

2
√

3
(6
√

3− 9)1/631/4

= 2(2−
√

3)1/6 > 41/3
= d4(E4),

as required. �

Unfortunately, this idea does not seem to extend to even integers greater than 4.
More precisely, some tedious computations show that if

E = rn−1(En−1 ∪ {xn}), where xn = 1− 2 cos
π

2(n− 1)
,

then dn(E) < dn(En) for n = 6, 8, 10.

3. Cases n = 5 and n = 7

In this section we discuss Conjecture 2.8 for n=5 and n=7. We will make a frequent
use of the well-known Ptolemy’s inequality and the AM-GM inequality as well as
Reinhardt’s theorem. Recall that Ptolemy’s inequality says that |a− b| |c− d| ≤
|a− c| |b− d| + |a− d| |b− c| for all a, b, c, d ∈ C and that the equality occurs if
and only if the points a, b, c, d lie on a circle in this order. The AM-GM inequality
says that

x1+ x2+ · · ·+ xn

n
≥ (x1 · x2 · · · xn)

1/n

for all nonnegative real numbers x1, x2, . . . , xn , and that the equality occurs when
x1= x2= · · · = xn . Reinhardt’s theorem says that if n is odd, then the regular n-gon
has the largest perimeter among all convex n-gons of fixed diameter [Mossinghoff
2006].

Theorem 3.1. Conjecture 2.8 is true for n = 5.
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Proof. Let E = {z1, z2, z3, z4, z5} be any 5-tuple in T5. Without loss of generality
we can assume that E is extremal, that is, E ∈ E5. Let P5(E) denote the 5-gon
with vertices in E . Note that P5(E) is convex by Lemma 2.4. Let P denote the
perimeter of P5(E). That is,

P = |z1− z2| + |z2− z3| + |z3− z4| + |z4− z5| + |z5− z1|.

Clearly,
|z1− z3| |z1− z4| |z2− z4| |z2− z5| |z3− z5| ≤ 25

and the equality holds if P5(E) is regular. Using the AM-GM inequality we obtain

|z1− z2| |z2− z3| |z3− z4| |z4− z5| |z5− z1| ≤ (P/5)5.

Since P5(E) is convex and diam P5(E)= 2, by Reinhardt’s theorem P is less than
or equal to the perimeter of a regular 5-gon of diameter 2. Computations show that
such a 5-gon has a side-length l = sec(π/5) and is inscribed in a circle of radius

r = csc(2π/5)= csc(π/2−π/10)= sec(π/10).

Hence
d5(E)=

∏
1≤i< j≤5

|zi − z j |
1/10
≤
√

2 sec(π/5).

Observe that √
2 sec(π/5)= sec(π/10)51/4.

Indeed, by Theorem 2.6 we have d5(E5)= 51/4 and a direct computation yields

d5(E5)=
√
|1−ω| |1−ω2| = 2

√
sin(π/5) sin(2π/5).

Hence 2
√

sin(π/5) sin(2π/5)= 51/4 and it remains to show that

2 sec(π/5)= 4 sec2(π/10) sin(π/5) sin(2π/5).

Equivalently,
cos2(π/10)= 2 cos(π/5) sin(π/5) sin(2π/5).

We have

2 cos(π/5) sin(π/5) sin(2π/5)= sin2(2π/5)= sin2(π/2−π/10)= cos2(π/10),

as required.
Finally, the equality holds if P5(E) is regular, that is, E = L(r5E5) for some

L(z)= az+ b with |a| = 1. Thus,

d5(E)≤
√

2 sec(π/5)= sec(π/10)51/4
= dn(r5E5),

completing the proof. �
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Next, we discuss Conjecture 2.8 for n = 7. While we cannot verify if the
conjecture is true for n = 7, we provide its validity under the following additional
condition on 7-tuples. Given a 7-tuple E = {z1, z2, z3, z4, z5, z6, z7}, suppose that
the 7-gon P7(E) with vertices in E is convex and that

7∑
k=1

|zk − zk+1| |zk+2− zk+3|

≤
1
2

7∑
k=1

|zk − zk+1|
(
|zk+1− zk+2| + |zk+3− zk+4|

)
, (3-2)

where z8 = z1, z9 = z2, z10 = z3, z11 = z4. Observe that the regular 7-gons satisfy
condition (3-2).

Proposition 3.3. Suppose that the 7-tuple E = {z1, z2, z3, z4, z5, z6, z7} is in T7

and satisfies condition (3-2) and that P7(E) is convex. Then

d7(E)≤ 2(2 sin(π/14))1/2(1+ 2 sin(π/14))1/6.

Equality holds P7(E) is a regular 7-gon of side-length

l = 2 sec(π/14) sin(π/7)= 4 sin(π/14).

In particular,

2(2 sin(π/14))1/2(1+ 2 sin(π/14))1/6 = sec(π/14)71/6.

Proof. The product
∏

1≤k<l≤7 |zk − zl | can be split into three parts:

|z1− z2||z2− z3||z3− z4||z4− z5||z5− z6||z6− z7||z1− z7|,

|z1− z4||z1− z5||z2− z5||z2− z6||z3− z6||z3− z7||z4− z7|,

|z1− z3||z2− z4||z3− z5||z4− z6||z5− z7||z1− z6||z2− z7|.

It follows from the AM-GM inequality and Reinhardt’s theorem that

|z1− z2||z2− z3||z3− z4||z4− z5||z5− z6||z6− z7||z1− z7| ≤ (P/7)7,

where P is the perimeter of a regular 7-gon with side-length 4 sin π
14 . Therefore,

|z1− z2||z2− z3||z3− z4||z4− z5||z5− z6||z6− z7||z1− z7| ≤ [4 sin(π/14)]7

and since E ∈ T7, we also obtain

|z1− z4||z1− z5||z2− z5||z2− z6||z3− z6||z3− z7||z4− z7| ≤ 27.

Moreover, the equality holds for a regular 7-gon in both of these inequalities.
It remains to find the maximum value of

|z1− z3||z2− z4||z3− z5||z4− z6||z5− z7||z1− z6||z2− z7|.
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To achieve this goal we will use Ptolemy’s inequality. We have

|z1−z3||z2−z4|≤ |z1−z4||z2−z3|+|z1−z2||z3−z4|≤2|z2−z3|+|z1−z2||z3−z4|.

Hence

|z1− z3||z2− z4| ≤ 2|z2− z3| + |z1− z2||z3− z4|.

In a similar fashion we obtain

|z2− z4||z3− z5| ≤ 2|z3− z4| + |z2− z3||z4− z5|,

|z3− z5||z4− z6| ≤ 2|z4− z5| + |z3− z4||z5− z6|,

|z4− z6||z5− z7| ≤ 2|z5− z6| + |z4− z5||z6− z7|,

|z5− z7||z1− z6| ≤ 2|z6− z7| + |z5− z6||z1− z7|,

|z1− z6||z2− z7| ≤ 2|z1− z7| + |z6− z7||z1− z2|,

|z2− z7||z1− z3| ≤ 2|z1− z2| + |z1− z7||z2− z3|.

Notice that the equalities hold if P7(E) is a regular 7-gon in T7, since the vertices
of such a 7-gon lie on a circle and that |zk − zk+3| = 2 for each k = 1, 2, . . . , 7.

Multiplying these inequalities and applying the AM-GM inequality we obtain∏
1≤k≤7

|zk− zk+2|
2
=
(
|z1− z3||z2− z4||z3− z5||z4− z6||z5− z7||z1− z6||z2− z7|

)2

≤

∏
1≤k≤7

(2|zk+1− zk+2|+|zk− zk+1||zk+2− zk+3|))

≤
1
77

(
2

7∑
k=1

|zk− zk+1|+

7∑
k=1

|zk− zk+1||zk+2− zk+3|

)7

.

Reinhardt’s theorem implies

2
7∑

k=1

|zk − zk+1| ≤ 2P = 56 sin
π

14

Once again we have the equality if P7(E) is a regular 7-gon in T7.
By our assumption we have

7∑
k=1

|zk − zk+1| |zk+2− zk+3| ≤
1
2

7∑
k=1

|zk − zk+1|(|zk+1− zk+2| + |zk+3− zk+4|)

with equality for a regular 7-gon. Applying the AM-GM inequality for each pair of
|zk − zk+1|

2
+ |zl − zl+1|

2 (1≤ k < l ≤ 7) and Reinhardt’s theorem we have
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282 sin2 π

14
≥

( 7∑
k=1

|zk − zk+1|

)2

≥
7
3

7∑
k=1

|zk − zk+1|
(
|zk+2− zk+3| + |zk+1− zk+2| + |zk+3− zk+4|

)
≥ 7

7∑
k=1

|zk − zk+1| |zk+2− zk+3|

Thus,
7∑

k=1

|zk − zk+1| |zk+2− zk+3| ≤ 112 sin2 π

14
,

which means that
7∏

k=1

|zk − zk+2| ≤

(
8 sin

π

14
+ 16 sin2 π

14

)7/2
.

This completes our proof in this case. The equality indeed occurs when zk’s are
vertices of the regular 7-gon whose side-length l = 4 sinπ/14. �

4. The n-diameter of sets of constant width

Let n be odd and consider the n-tuple rnEn . Recall that rn = sec(π/2n) and
En = {1, ω, ω2, . . . , ωn−1

}. Put zk = rnω
k , k = 0, 1, 2, . . . , n − 1. Connect the

consecutive points zk and zk+1 by an arc of a circle whose center is the unique
point zl in the set {z1, z2, . . . , zn} which is equidistant from the points zk and zk+1.
The radii of all such circles are the same and is equal to 2. For example, the circle
centered at zn and radius λ joins the points z(n−1)/2 and z(n+1)/2. The resulting
set, denoted by Rn , is of constant width 2. It is called a Reuleaux n-gon and the
points {z1, z2, . . . , zn} are called the vertices of Rn [Chakerian and Groemer 1983,
p. 59]. It follows from the construction of Rn that if W is any set of constant width
2 containing rnEn , then W ⊂Rn . A Reuleaux n-gon of width λ > 0 is constructed
in a similar fashion.

A Reuleaux polygon of width λ is a set of constant width λ whose boundary
consists of a finitely many (necessarily odd) circular arcs of radius λ [Eggleston
1958, p. 128]. Let R be a Reuleaux polygon and let D be a unique disk of smallest
radius containing R. If all the corners of R (i.e., the intersection points of the
boundary arcs of R) are contained on ∂D, then R is a Reuleaux n-gon, where n is
the number of corners.

Lemma 4.1. If n is odd, then dn(Rn)= dn(rnEn).
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Proof. Let D = B(0, rn). Since Rn ⊂ D, we have dn(Rn) ≤ dn(D). Since the
corners {z1, z2, . . . , zn} of Rn are equally spaced on ∂D, we have

dn(Rn)≥
∏

1≤k<l≤n

|zk − zl |
2

n(n−1) = dn(D).

Thus, dn(Rn)= dn(D)= rndn(D)= sec(π/2n)n1/(n−1)
= dn(rnEn). �

Conjecture 4.2. If n is odd, the Reuleaux n-gons have the largest n-diameter
among all sets of the same constant width.

Theorem 4.3. Conjecture 4.2 is equivalent to Conjecture 2.8.

Proof. Suppose that Conjecture 2.8 is true and let W be a set of constant width λ.
Let Rn(λ) be a Reuleaux n-gon of width λ. Note that if L(z)= az+ b with a 6= 0,
then the set L(W ) is of constant width |a|λ. Let E be an n-tuple of points in ∂W
with dn(W )= dn(E). Since (2/λ)E ∈ Tn , using Conjecture 2.8 and Lemma 4.1 we
obtain

dn(W )= dn(E)=
λ

2
dn((2/λ)E)≤

λ

2
dn(rnEn)=

λ

2
dn(Rn)= dn(Rn(λ)).

Conversely, suppose that Conjecture 4.2 is true and let E be any n-tuple in Tn .
Then E is contained in a set W of constant width 2 [Eggleston 1958, Theorem 54].
Using Conjecture 4.2 and Lemma 4.1 we obtain

dn(E)≤ dn(W )≤ dn(Rn)= dn(rnEn). �

Conjecture 4.2, if true, would imply the following corollary (see also [Hille
1962]).

Corollary 4.4. Let A ⊂ C be any set with diam A = λ > 0 and let D be a disk with
diam A = λ. Then

d∞(A)≤ d∞(D)=
λ

2
.

Proof. Clearly, d∞(D)= λ/2. The set A is contained in a set W of constant width
λ. If n is odd, then using (2-7), Lemma 4.1 and Conjecture 4.2 we obtain

dn(A)≤ dn(W )≤
λ

2
dn(Rn(λ)=

λ

2
sec(π/2n)n1/(n−1).

By letting n tend to infinity we obtain d∞(A)≤ λ/2. �
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