

Vertex polygons Candice Nielsen

Vertex polygons

Candice Nielsen

(Communicated by Colin Adams)

We look at hexagons whose vertex triangles have equal area, and identify necessary conditions for these hexagons to also have vertex quadrilaterals with equal area. We discover a method for creating a hexagon whose vertex quadrilaterals have equal area without necessarily having vertex triangles of equal area. Finally, we generalize the process to build any polygon with an even number of sides to have certain vertex polygons with equal area.

1. Introduction

In the article "Polygons whose vertex triangles have equal area," Harel and Rabin [2003] discuss the properties of polygons with the very special characteristic described in the title. To clarify, the authors offer the following definitions:

Definition 1. A triangle formed using three adjacent vertices of any polygon is called a *vertex triangle*.

Definition 2. A polygon $V_1 V_2 \cdots V_n$ for which all vertex triangles have the same nonzero area is called an *equal-area polygon*.

Harel and Rabin take an algebraic approach, assigning direction and magnitude to each side of the polygon. In this article, we take a geometric approach, using area formulas and triangle congruencies to identify properties of certain polygons.

To extend from triangles, we offer the following definitions:

Definition 3. A polygon of *n* sides, formed using *n* adjacent vertices of any *m*-sided polygon (with $m \ge n$), is called a *vertex n-gon*.

Definition 4. A polygon $V_1V_2 \cdots V_m$ for which all vertex *n*-gons have the same nonzero area is called an *equal-n-gon polygon*.

It is clear that every equal-area quadrilateral is also an equal-quadrilateral polygon, since any vertex quadrilateral is the whole quadrilateral. Furthermore, every equal-area pentagon is an equal-quadrilateral polygon because, for P equal to the area of

MSC2010: primary 51N20; secondary 00A99.

Keywords: vertex polygons, vertex triangles, vertex quadrilaterals, geometry, equal area, hexagon, proof by contradiction.

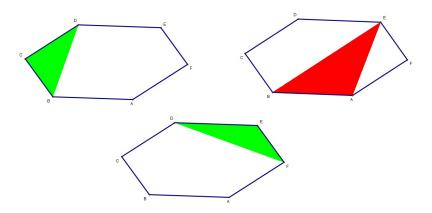


Figure 1. $\triangle BCD$ and $\triangle DEF$ are vertex triangles of hexagon *ABCDEF*, but $\triangle BEA$ is not.

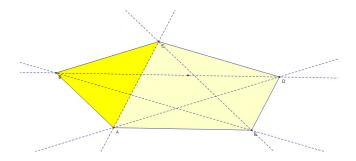


Figure 2. An equal-area pentagon is always an equal-quadrilateral pentagon.

the pentagon, and T equal to the area of any vertex triangle, the area of every vertex quadrilateral is equal to P - T (Figure 2). This means every equal-quadrilateral pentagon is also an equal-area pentagon. For this reason, we begin with hexagons.

2. Equal-area hexagons

The first nontrivial case of the equal-area and equal-quadrilateral polygon is the hexagon. The first task is to construct an equal-area hexagon. We can show that, for any equal-area polygon $V_1V_2 \cdots V_n$, the line V_iV_{i+1} is parallel to the line $V_{i-1}V_{i+2}$. In other words, each side is parallel to the line formed by the surrounding two vertices.

Proof. Let $V_1V_2 \cdots V_n$ be an equal-area polygon. Then $\operatorname{Area}(\triangle V_{i-1}V_iV_{i+1}) = \operatorname{Area}(\triangle V_iV_{i+1}V_{i+2})$. Let $b = V_iV_{i+1}$, $h_1 = d(V_{i-1}, V_iV_{i+1})$, $h_2 = d(V_{i+2}, V_iV_{i+1})$. So $\operatorname{Area}(\triangle V_{i-1}V_iV_{i+1}) = \frac{1}{2}bh_1 = \frac{1}{2}bh_2 = \operatorname{Area}(\triangle V_iV_{i+1}V_{i+2})$. Therefore, $h_1 = h_2$ and $V_{i-1}V_{i+2}$ is parallel to V_iV_{i+1} .

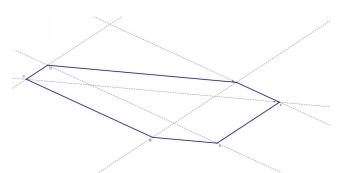


Figure 3. Every equal-area hexagon enjoys parallelism betweenopposite sides and corresponding main diagonals.

With this property, an equal-area hexagon can be uniquely determined by any trapezoid. As we build an equal-area hexagon, it is important to note that the diagonals of the hexagon need not intersect at a single point. This is a key observation as we transform the equal-area hexagon into an equal-quadrilateral hexagon.

Using the hexagon *CDEFGH* in Figure 3, certain geometric properties arise. First, the sides of the hexagon, along with the diagonals, divide the hexagon into four triangles and three trapezoids. Let us define these as follows:

Definition 5. Let *ABCDEF* be any hexagon, with $\overline{AD} \cap \overline{BE} = J$, $\overline{BE} \cap \overline{CF} = L$, $\overline{CF} \cap \overline{AD} = K$. The triangle $\triangle JKL$ is called the *center triangle*. The triangles $\triangle ABJ$, $\triangle CKD$, and $\triangle ELF$ are called *interior triangles*, and *BCKJ*, *DELK*, and *FAJL* are called *interior trapezoids* (see Figure 4).

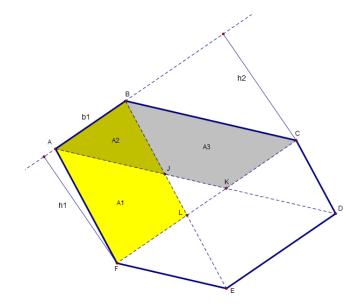


Figure 4. Equal-area hexagon ABCDEF and two of the associated trapezoids.

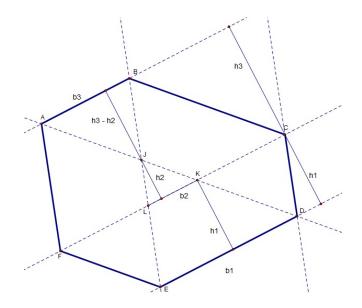


Figure 5. Equal-area, equal-quadrilateral hexagon ABCDEF.

Lemma. For an equal-area hexagon, each interior trapezoid has the same nonzero area and each interior triangle has the same nonzero area.

Proof. Let *ABCDEF* be an equal-area hexagon, with $\overline{AD} \cap \overline{BE} = J$, $\overline{BE} \cap \overline{CF} = L$, $\overline{CF} \cap \overline{AD} = K$ (see Figure 5). From the previous proof, $\overline{AF} \parallel \overline{BE}$ and $\overline{AB} \parallel \overline{FL}$, so *ABLF* is a parallelogram. Likewise, $\overline{AK} \parallel \overline{BC}$ and $\overline{AB} \parallel \overline{CK}$, so *ABCK* is a parallelogram, and the parallelograms share a base, \overline{AB} . Let $b_1 = AB$, $h_1 = \text{height}(ABLF) = \text{height}(\triangle BAF)$, and $h_2 = \text{height}(ABCK) = \text{height}(\triangle ABC)$. Then Area(*ABLF*) = $b_1h_1 = 2\text{Area}(\triangle BAF)$ and Area(*ABCK*) = $b_1h_2 = 2\text{Area}(\triangle ABC)$. Since *ABCDEF* is an equal-area hexagon, we have Area($\triangle BAF$) = Area($\triangle ABC$), so Area(*ABLF*) = Area(*ABCK*). Let $A_1 = \text{Area}(AJLF)$, $A_2 = \text{Area}(\triangle ABJ)$, and $A_3 = \text{Area}(BCKJ)$. Then Area(*ABLF*) = $A_1 + A_2$ and Area(*ABCK*) = $A_2 + A_3$. This implies that $A_1 = A_3$. Similar argument supports that all interior trapezoids have the same nonzero area, as do all interior triangles.

Definition 6. For any integer n > 1 and any polygon having n sides with vertices V_1, V_2, \ldots, V_{2n} , a *true diagonal* has endpoints V_i and V_{i+n} , where $i \in \{1, 2, \ldots, n\}$.

Theorem 1. An equal-area hexagon is equal-quadrilateral if and only if all its true diagonals intersect at a single point.

Proof. Let *ABCDEF* be an equal-area, equal-quadrilateral hexagon, with the following properties: $\overline{AD} \cap \overline{BE} = J$, $\overline{BE} \cap \overline{CF} = L$, $\overline{CF} \cap \overline{AD} = K$. Suppose, for the sake of

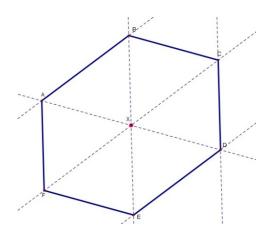


Figure 6. Equal-area hexagon ABCDEF with main diagonals intersecting.

contradiction, that *J*, *K*, and *L* are three distinct points. Let A_1 be the area of the interior triangles, A_2 be the area of the interior trapezoids, and A_c be the area of the center triangle. Consider the vertex quadrilaterals *ABCD* and *BCDE*. Since *ABCDEF* is an equal-quadrilateral hexagon, the areas of the vertex quadrilaterals are equal to each other. Thus, Area(*ABCD*) = $2A_1 + A_2 = A_1 + 2A_2 + A_c = \text{Area}(BCDE)$.

Let $b_1 = DE$, and let h_1 equal the height of trapezoid *ELKD*, which is equal to the height of vertex triangle *EDC*.

Let $b_2 = LK$, and let h_2 equal the height of center triangle JKL.

Let $b_3 = AB$ and let h_3 equal the height of vertex triangle ABC, so the height of interior triangle ABJ is $h_3 - h_2$. Then $2A_1 + A_2 = A_1 + 2A_2 + A_c$ implies

$$2\left(\frac{1}{2}b_3(h_3 - h_2)\right) + \frac{1}{2}(b_1 + b_2)h_1 = \frac{1}{2}b_3(h_3 - h_2) + 2\left(\frac{1}{2}(b_1 + b_2)h_1\right) + \frac{1}{2}b_2h_2$$

This simplifies to

$$b_2h_2 + b_1h_1 + b_2h_1 = b_3h_3 - b_3h_2.$$
(1)

Since *ABCDEF* is equal-area, the vertex triangles have the same area, and $\frac{1}{2}b_1h_1 = \frac{1}{2}b_3h_3$, so $b_1h_1 = b_3h_3$ and (1) becomes

$$b_2h_2 + b_2h_1 = -b_3h_2. (2)$$

Since b_2h_2 , b_2h_1 , b_3h_2 are all positive values, this is a contradiction. Therefore, J = K = L, and the diagonals of *ABCDEF* intersect at a single point.

For the other direction, let *ABCDEF* be an equal-area hexagon, satisfying $\overline{AD} \cap \overline{BE} \cap \overline{CF} = X$.

Without loss of generality, consider $\triangle ABX$. Since the height of $\triangle ABX$ is equal to the height of $\triangle ABC$, their areas are equal. Thus, the area of each interior triangle

is the area of a vertex triangle. Since all vertex triangles share an equal area, so do the interior triangles. Each vertex quadrilateral is made up of three interior triangles, so each vertex quadrilateral shares an equal area. Therefore, *ABCDEF* is an equal-quadrilateral hexagon.

3. Equal-quadrilateral hexagons

While constructing an equal-quadrilateral hexagon out of an equal-area hexagon is helpful, the question arose: if a hexagon is equal-quadrilateral, is it necessarily equal-area? We are able to observe, through interior triangle congruencies, that the intersection of the three diagonals is the midpoint of each diagonal. Since the three diagonals are diameters of three concentric circles, we have a new way to construct the equal-quadrilateral hexagon.

Theorem 2. A hexagon whose true diagonals are diameters of concentric circles is an equal-quadrilateral hexagon.

Proof. Let *AD*, *BE*, *CF* be diameters of three concentric circles with center X and also be diagonals of hexagon *ABCDEF* (see Figure 7). Without loss of generality, consider *ABCD* and *BCDE*. We have *ABCD* \cap *BCDE* = *BCDX*. We also have *EX* = *XB* and *AX* = *XD* because they are radii of the same respective circles. Furthermore, $\angle EXD \cong \angle BXA$ because they are vertical angles. Thus, by the side-angle-side condition, $\triangle EXD \cong \triangle BXA$. Since *BCDX* is congruent to itself, *ABCD* and *BCDE* are congruent, and therefore share an equal, nonzero area. With this argument, every vertex quadrilateral of *ABCDEF* shares the same, nonzero area. Thus, *ABCDEF* is an equal-quadrilateral hexagon.

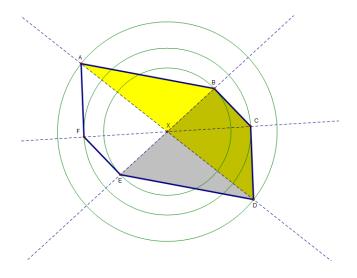


Figure 7. Equal-quadrilateral hexagon ABCDEF.

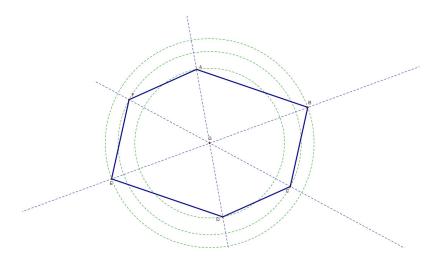


Figure 8. *ABCDEF* is an equal-quadrilateral hexagon, but it is not an equal-area hexagon: Area($\triangle ABC$), Area($\triangle BCD$), and Area($\triangle CDE$) are all different (and each is equal to the area of the symmetrically placed triangle).

To answer the question posed at the beginning of this section, Figure 8 offers a counterexample. All vertex quadrilaterals share an equal area, while the vertex triangles have varying areas.

4. Equal-(*n*+1)-gon polygons

Corollary. For any integer n > 1, a polygon with 2n sides is an equal-(n+1)-gon polygon if its true diagonals are diameters of n concentric circles (see Figure 9).

Proof. Let $n \in Z$, with n > 1. Let P_0 be a 2*n*-sided polygon constructed using the endpoints of diameters of *n* concentric circles. Call the center of the circles *B*, and denote the vertices of P_0 by $V_1, V_2, V_3, \ldots, V_{2n}$.

Let P_1 be a polygon with vertices $V_i, V_{i+1}, \ldots, V_{i+n}$, and let $\operatorname{Area}(P_1) = A_1$. Let P_2 be the polygon with vertices $V_{i+1}, V_{i+2}, \ldots, V_{i+n+1}$ and let $\operatorname{Area}(P_2) = A_2$. We have $P_1 \cap P_2 = \operatorname{polygon}(V_{i+1}, V_{i+2}, \ldots, V_{i+n}) \cup \triangle V_{i+1}V_{n+1}B$, which we will call Q_0 . Note that $\operatorname{Area}(Q_0)$ is equal to itself, so we need only to prove that $\operatorname{Area}(P_1 - Q_0) = \operatorname{Area}(P_2 - Q_0)$. Since BV_{i+n} and BV_i are radii of the same circle, they are congruent, and likewise for BV_{i+1} and BV_{i+n+1} . Angles V_iBV_{i+1} and $V_{i+n}BV_{i+n+1}$ are congruent because they are vertical angles. Thus, by the side-angle-side formula, the triangles are congruent and therefore have equal area.

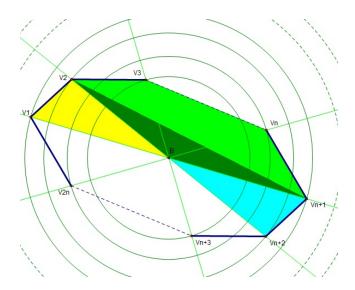


Figure 9. P_1 constructed from diameters of concentric circles.

So Area $(P_1 - Q_0)$ = Area $(P_2 - Q_0)$, and we finally have

$$Area(P_1) = Area(Q_0) + Area(P_1 - Q_0)$$
$$= Area(P_2 - Q_0) + Area(Q_0) = Area(P_2).$$

Therefore, the areas of all vertex (n+1)-gons are equal to each other.

5. Results and open questions

 \square

Using known properties of equal-area polygons, we discovered properties of the equal-quadrilateral hexagon. We stated and proved a result that gives necessary conditions for an equal-area hexagon to also be equal-quadrilateral. Finally, we were able to generalize the process of constructing an equal-quadrilateral hexagon to allow construction of any equal-(n+1)-gon polygon.

An additional observation on the equal-area hexagon, whether convex or nonconvex, is that the area of the hexagon is equal to the sum of the areas of the vertex triangles. Likewise, the area of any equal-quadrilateral hexagon is twice the area of the vertex quadrilaterals. While this is immediately clear for a convex hexagon, it is not so when the hexagon is nonconvex. Since it is likely the proofs for these observations are simple, they were omitted from this article.

Some questions to consider in extending the idea of equal-*n*-gon polygons are:

(1) Given an equal-area heptagon, what are the necessary conditions to imply an equal-quadrilateral heptagon? Does equal-quadrilateral imply equal-area in heptagons? If not, how can we construct an equal-quadrilateral heptagon?

(2) Our corollary applies only to polygons with an even number of sides. Given a polygon with an odd number of sides, are there sufficient conditions to ensure vertex polygons of equal area?

Acknowledgements

The author wishes to thank her advisor, Dr. Jon Johnson, for his guidance and support throughout the semester.

References

[Harel and Rabin 2003] G. Harel and J. M. Rabin, "Polygons whose vertex triangles have equal area", *Amer. Math. Monthly* **110**:7 (2003), 606–619. MR 2004e:51021 Zbl 1046.51008

Received: 2012-09-18 Revised: 2012-11-10 Accepted: 2012-12-15 nielsenc@net.elmhurst.edu Mathematics Department, Elmhurst College, Elmhurst, IL 60126, United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS				
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu	
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu	
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu	
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz	
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu	
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com	
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu	
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir	
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu	
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu	
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu	
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu	
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com	
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch	
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu	
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu	
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu	
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu	
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu	
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu	
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu	
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu	
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu	
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu	
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com	
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu	
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu	
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it	
K.B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com	
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu	
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu	

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2012 is US \$105/year for the electronic version, and \$145/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2012 Mathematical Sciences Publishers

2012 vol. 5 no. 3

Analysis of the steady states of a mathematical model for Chagas disease MARY CLAUSON, ALBERT HARRISON, LAURA SHUMAN, MEIR SHILLOR AND ANNA MARIA SPAGNUOLO	237
Bounds on the artificial phase transition for perfect simulation of hard core Gibbs processes MARK L. HUBER, ELISE VILLELLA, DANIEL ROZENFELD AND JASON XU	247
A nonextendable Diophantine quadruple arising from a triple of Lucas numbers A. M. S. RAMASAMY AND D. SARASWATHY	257
Alhazen's hyperbolic billiard problem NATHAN POIRIER AND MICHAEL MCDANIEL	273
Bochner (<i>p</i> , <i>Y</i>)-operator frames MOHAMMAD HASAN FAROUGHI, REZA AHMADI AND MORTEZA RAHMANI	283
<i>k</i> -furcus semigroups NICHOLAS R. BAETH AND KAITLYN CASSITY	295
Studying the impacts of changing climate on the Finger Lakes wine industry BRIAN MCGAUVRAN AND THOMAS J. PFAFF	303
A graph-theoretical approach to solving Scramble Squares puzzles SARAH MASON AND MALI ZHANG	313
The <i>n</i> -diameter of planar sets of constant width ZAIR IBRAGIMOV AND TUAN LE	327
Boolean elements in the Bruhat order on twisted involutions DELONG MENG	339
Statistical analysis of diagnostic accuracy with applications to cricket Lauren Mondin, Courtney Weber, Scott Clark, Jessica Winborn, Melinda M. Holt and Ananda B. W. Manage	349
Vertex polygons CANDICE NIELSEN	361
Optimal trees for functions of internal distance ALEX COLLINS, FEDELIS MUTISO AND HUA WANG	371