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The sum of distances between vertices of a tree has been considered from many
aspects. The question of characterizing the extremal trees that maximize or
minimize various such “distance-based” graph invariants has been extensively
studied. Such invariants include, to name a few, the sum of distances between all
pairs of vertices and the sum of distances between all pairs of leaves. With respect
to the distances between internal vertices, we provide analogous results that
characterize the extremal trees that minimize the value of any nonnegative and
nondecreasing function of internal distances among trees with various constraints.

1. Introduction

As a classic example of the distance-based graph invariants, the Wiener index
[1947] is one of the most well used chemical indices that correlate a chemical
compound’s structure (the “molecular graph”) with experimentally gathered data of
the compound’s physical-chemical properties such as boiling point, surface pressure,
etc. The Wiener index is defined as

W (G)=
∑

{u,v}⊆V (G)

d(u, v),

where d(u, v) is the distance between two vertices u and v and the sum is over all
pairs of vertices. For example, the tree shown here has index 29:

The extremal trees that maximize or minimize the Wiener index among general
trees [Dobrynin et al. 2001], trees with a given maximum degree [Fischermann
et al. 2002], and trees with given degree sequence [Zhang et al. 2008; 2010] have
been characterized through various approaches. A general approach was presented
dealing with functions of distances between vertices [Schmuck et al. 2012].
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Recently, the gamma index [Székely et al. 2011], also known as the terminal
Wiener index [Gutman et al. 2009], was introduced due to its applications in phylo-
genetic reconstruction and biochemistry. For a tree T , the gamma index is defined
as the sum of distances between all pairs of leaves. It is interesting to note that the
star minimizes both the Wiener index and the gamma index among trees of given
order. Among trees of a given degree sequence, the “greedy tree” (Definition 1.1)
was shown to minimize both the Wiener index [Zhang et al. 2008] and the gamma
index [Székely et al. 2011].

Definition 1.1 (greedy trees). With given vertex degrees, the greedy tree is achieved
through the following greedy algorithm:

(i) Label the vertex with the largest degree as v (the root).

(ii) Label the neighbors of v as v1, v2, . . . , and assign the largest degrees available
to them such that deg(v1)≥ deg(v2)≥ · · · .

(iii) Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the
largest degrees available and that deg(v11)≥ deg(v12)≥ · · · , then do the same
for v2, v3, . . . .

(iv) Repeat (iii) for all the newly labeled vertices, always starting with the neighbors
of the labeled vertex with largest degree whose neighbors are not labeled yet.

For example, here is a greedy tree with degree sequence

{4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1}.

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Theorem 1.2 [Schmuck et al. 2012]. Let f (x) be any nonnegative, nondecreasing
function of x. Then the graph invariant

W f (T )=
∑

{u,v}⊆V (T )

f (d(u, v))

is minimized by the greedy tree among all trees with given degree sequence.
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Theorem 1.2 immediately implies the extremality of the greedy tree regarding
many different distance-based graph invariants. Take, for instance, the Wiener
index ( f (x)= x), the hyper-Wiener index ( f (x)= x(x+1)/2), and the generalized
Wiener index ( f (x)= xα). See [Schmuck et al. 2012] for more details.

Following the Wiener index and the gamma index, a natural next step is to
consider the sum of distances between internal vertices. In [Székely and Wang
2005], it was asked if the extremal values of the sums of distances between internal
vertices, between leaves, or between internal vertices and leaves can be explored
through a similar approach. The sum of distances between internal vertices was
brought up again in [Bartlett et al. 2013] and named the spinal index:

S(T )=
∑

{u,v}⊆V (T )−L(T )

d(u, v),

where L(T ) denotes the set of leaves of T . The extremal trees that maximize or
minimize the spinal index have been studied based on the known results regarding
the Wiener index [Bartlett et al. 2013]. Similar to W f (T ), it is natural to consider
the spinal function index, defined as

S f (T )=
∑

u,v∈V (T )−L(T )

f (d(u, v))

for any nonnegative, nondecreasing function f .
The goal of this note is to show that one can provide general statements analogous

to Theorem 1.2 and its consequences for S f (T ). By establishing Proposition 2.4,
we characterize the trees that minimize the spinal function index among trees with
given order and number of leaves (Theorem 3.2), with given degree sequence
(Theorem 3.4), as well as with given order and maximum degree (Theorem 3.5).

2. Preliminaries

Our study consists of a combination of techniques in [Bartlett et al. 2013] and
[Schmuck et al. 2012]. We first recall the following crucial result, where pk(T ) is
the number of pairs (u, v) of vertices such that d(u, v)≤ k.

Theorem 2.1 [Schmuck et al. 2012]. Let d1 ≥ d2 ≥ · · · ≥ dn be positive integers
such that

∑
i di = 2(n− 1), and let k be another arbitrary positive integer. Among

all trees with degree sequence (d1, d2, . . . , dn), the greedy tree maximizes pk(T ).

Remark 2.2. Theorem 2.1 implies Theorem 1.2. Indeed, note that

W f (T )=
∑
k≥0

(
f (k+ 1)− f (k)

)∣∣{{u, v} ⊆ V (T )
∣∣ d(u, v) > k

}∣∣,
and that f (k)− f (k− 1) is nonnegative for all k (we set f (0)= 0).
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The idea of comparing greedy trees with different degree sequences through
“majorization” was used in [Zhang et al. 2012], where the following is defined.

Consider two nonincreasing sequences π = (d0, . . . , dn−1), π ′ = (d ′0, . . . , d ′n−1).
If

k∑
i=0

di ≤

k∑
i=0

d ′i for k = 0, . . . , n− 2 and
n−1∑
i=0

di =

n−1∑
i=0

d ′i ,

then π ′ is said to majorize the sequence π , denoted by

π G π ′.

Lemma 2.3 [Wei 1982]. Let π = (d0, . . . , dn−1) and π ′ = (d ′0, . . . , d ′n−1) be two
nonincreasing graphic degree sequences. If π G π ′, then there exists a series of
graphic degree sequences π1, . . . , πm such that π G π1 G · · · G πm G π

′, where πi

and πi+1 differ at exactly two entries, say d j (d ′j ) and dl (d ′l ) of πi (πi+1), with
d ′j = d j + 1, d ′l = dl − 1 and j < l.

With Lemma 2.3, the following can be shown in a way similar to Theorem 2.4
in [Zhang et al. 2012].

Proposition 2.4. For two different degree sequences π and π ′, if π G π ′, then

pk(T ∗π )≤ pk(T ∗π ′)

for any k≥ 1 where T ∗π and T ∗π ′ are the greedy trees with degree sequences π and π ′,
respectively.

Proof. By Lemma 2.3, it is sufficient to show the statement for degree sequences

π = (d0, . . . dn−1) G (d ′0, . . . , d ′n−1)= π
′

that differ only at the j -th and l-th entries with d ′j =d j+1, d ′l =dl−1 for some j < l.
Let T ′π be the tree constructed from T ∗π by removing the edge vw and adding an

edge uw, where u and v are the vertices corresponding to d j and dl , respectively,
and w is a child of v:

v

w

u

w

T ∗π , π = (4, 4, 3, 3, 3, 3, 2, 2, 1, . . . , 1) T ′π , π
′
= (4, 4, 4, 3, 3, 2, 2, 2, 1, . . . , 1)

Let T ′ be the tree obtained from T ∗π after removing w and its descendants. Then
the next claim follows from the structure of the greedy tree T ∗π (see, for instance,
[Wang 2008; Zhang et al. 2008; 2012]).
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Claim 2.5. Let the path from u to v be uu1u2 · · · um(z)vm · · · v2v1v, where the
existence of z depends on the parity of d(u, v). Let U , Ui , V , Vi , Z denote the
component containing u, ui , v, vi , z, respectively, after removing the edges on this
path from T ′:

. . . . . .
u

U

u1

U1

u2

U2

uk

Uk

z

Z

vk

Vk

v2

V2

v1

V1

v

V

Then pk(U, u)≥ pk(V, v) and pk(Ui , ui )≥ pk(Vi , vi ) for any 1≤ i ≤ m and any
k≥ 1. Here pk(T, x) denotes the number of vertices y ∈ V (T ) such that d(x, y)≤ k.

In particular, Claim 2.5 implies that, for any k ≥ 1, there are more vertices within
distance k from u in T ′ than those from v.

Now simple calculations (see [Wang 2008], for instance) show that

pk(T ∗π ′)≥ pk(T ′π )≥ pk(T ∗π ) for any k ≥ 1. �

3. Extremal trees with respect to S f (T )

First note that any tree T that is not a star has at least two internal vertices. Hence
S f (T )≥ 0 for any T . The following observation is trivial.

Proposition 3.1. Among all trees with the same order, the star has the minimal
S f (T )= 0.

As shown in Remark 2.2, we only need to focus on pk(T ) for other more involved
cases. In what follows we show that several statements from [Bartlett et al. 2013] can
be easily generalized for S f (T ). It is worth pointing out that, with the understanding
of the preliminaries (particularly with Proposition 2.4), these results can be obtained
in a very similar fashion as [Bartlett et al. 2013].

Theorem 3.2. For a tree T with given order and number of leaves, let T ∗π denote a
greedy tree with degree sequence

π =
(
|L(T )|, 2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸

|L(T )| 1’s

)
.

Then pk(T ∗π ) ≥ pk(T ) for any k ≥ 1. Hence S f (T ) is minimized by the same tree
by Remark 2.2.

Remark 3.3. Such a tree is called “star-like”, achieved by attaching exactly one
pendant edge to each of the leaves of a greedy tree with degree sequence

(|L(T )|, 2, . . . , 2, 1, . . . , 1).
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Here is an example:

Proof. Consider the subtree T ′ induced by the internal vertices of T . We have
that pk(T ′) is maximized by a greedy tree with |V (T )| − |L(T )| vertices and at
most |L(T )| leaves (each of the leaves in T ′ has at least one vertex in L(T ) as a
neighbor in T ).

Among the degree sequences of such trees,(
|L(T )|, 2, . . . , 2,︸ ︷︷ ︸

|V (T )|−2|L(T )|−1 2’s

1, . . . , 1︸ ︷︷ ︸
|L(T )| 1’s

)
majorizes all others. Then T is a greedy tree with degree sequence(

|L(T )|, 2, . . . , 2,︸ ︷︷ ︸
|V (T )|−|L(T )|−1 2’s

1, . . . , 1︸ ︷︷ ︸
|L(T )| 1’s

)
. �

Theorem 3.4. Among trees with given order and degree sequence, pk(T ) is maxi-
mized by the greedy tree. Consequently, S f (T ) is minimized by the greedy tree.

Proof. First note that with given degree sequence, |L(T )| is determined.
To minimize S f (T ), note that pk(T ′) is minimized by a greedy tree with the

degree sequence of T ′. Let the degree sequence of T be (d1, d2, . . . ). Then the
degree sequence of T ′ is (d1 − k1, d2 − k2, . . . ) where ki ≥ 0 is the number of
leaf-neighbors of the vertex corresponding to the degree di . The degree sequence
(of T ′) of this form that majorizes all others is when k1 = k2 = · · · = ki = 0 for i as
large as possible. Note that this is the case only when all the vertices (in T ) of large
degrees have no leaf-neighbors, or in other words, the leaves of T are adjacent only
to (as few as possible) internal vertices of the smallest degrees in T . This happens
only if T is the greedy tree. Thus the conclusion follows from Proposition 2.4. �

The complete k-ary tree with a given maximum degree k is defined in a similar
way as the greedy tree, except that the vertices v, v1, . . . take the maximum degree k
until there are not enough vertices (see figure on the next page). As a result,
the complete k-ary tree has degree sequence (k, k, . . . , k,m, 1, . . . , 1) for some
1< m ≤ k.

The extremality of the complete k-ary tree follows in the same way as previous
arguments.
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A complete 4-ary tree.

Theorem 3.5. Among trees with given order and maximum degree k, pk(T ) is
maximized and S f (T ) is minimized by the complete k-ary tree.

4. Concluding remarks

We have shown, for any nonnegative, nondecreasing function f , that the sum of
f (d(u, v)) over all pairs of internal vertices is minimized by the same trees as the
ones that minimize the original spinal index. The analogue can be easily obtained
for nonincreasing functions. These results, providing a much stronger generalization
on this study, were obtained by utilizing tools from previous studies. We also hope
that we have illustrated the power of the established approaches in the study of such
extremal graphs with respect to distance-based graph invariants.
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