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Theoretical properties of the length-biased
inverse Weibull distribution
Jing Kersey and Broderick O. Oluyede

(Communicated by Kenneth S. Berenhaut)

We investigate the length-biased inverse Weibull (LBIW) distribution, deriving
its density function, hazard and reverse hazard functions, and reliability function.
The moments, moment-generating function, Fisher information and Shannon
entropy are also given. We discuss parameter estimation via the method of
moments and maximum likelihood, and hypothesis testing for the LBIW and
parent distributions.

1. Introduction

Weighted distributions occur in many areas, including medicine, ecology, reliability,
and branching processes. Results and applications in these and other areas can be
seen in [Patil and Rao 1978; Gupta and Kirmani 1990; Gupta and Keating 1986;
Oluyede 1999]. In a weighted distribution problem, a realization x of X enters into
the investigator’s record with probability proportional to a weight function w(x).
The recorded x is not an observation of X , but rather an observation of a weighted
random variable Xw.

In this article we are interested in the case where w(x)= x . This is called length
bias; it approximates situations common in practice (see [Arratia and Goldstein
2009] for an introductory discussion). We will apply length bias to the inverse
Weibull distribution (see Section 2 below), which has a wide range of applications
in diverse areas such as medicine, reliability and ecology; for example, Keller et
al. [1985] found it to be a good fit in their investigation of failures of mechanical
components subject to degradation. As a result, the inverse Weibull distribution is
well studied; see [Johnson et al. 1994] or [Rinne 2009] for a tabulation of results.

To proceed, we need some standard terminology. If X is a continuous, nonnega-
tive random variable with distribution function F and probability density function
(pdf) f (so that f (u) = d F(u)/du), we call F(x) = 1 − F(x) the associated
reliability function, from the situation where F(x) describes the probability that

MSC2010: 62E15, 62F03, 62N05, 62N01.
Keywords: inverse Weibull distribution, weighted reliability functions, integrable function.
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380 JING KERSEY AND BRODERICK O. OLUYEDE

some piece of equipment, say, will still be working at time x . The hazard function
λF (x) and mean residual life function δF (x) are defined by

λF (x)=
f (x)

F(x)
and δF (x)=

∫
∞

x

F(u)

F(x)
du. (1)

The reverse hazard function is τF (x)= f (x)/F(x). When λF is monotone increas-
ing, we say that F is an increasing hazard rate (IHR) distribution. Likewise, a
decreasing mean residual life (DMRL) distribution is one where δF is monotone
decreasing. It can be shown that IHR implies DMRL. IHR distributions have a
number of nice properties, including finiteness of moments of all orders.

Now let w(x), x ≥ 0, be a positive function, and assume that the expectation of
w(X) is positive and finite:

0< E[w(X)] :=
∫
∞

0
f (x)w(x) dx <∞. (2)

We define the weighted random variable Xw by specifying its pdf:

fw(x)=
w(x) f (x)
E[w(X)]

, x ≥ 0. (3)

(The denominator ensures that the total mass is 1.)
As mentioned, we will be interested in the case of length bias, where w(x)= x .

In Section 2 we apply this weighting to the inverse Weibull distribution to obtain
our main object of study, the LBIW (length-biased inverse Weibull) distribution.
We briefly study the shape of the LBIW pdf. In Section 3 we calculate the LBIW
moments and moment-generating function, together with the variance, skewness
and kurtosis. Section 4 deals with Fisher information and Shannon entropy. In
Section 5 we discuss the estimation of the parameters of an LBIW, and describe a
test for the detection of length bias. Section 6 showcases a numerical example.

2. The inverse Weibull distribution and its length-biased version

The inverse Weibull distribution function is defined by

F(x; x0, α, β)= exp
(
−(α(x − x0))

−β
)
, x ≥ 0, α > 0, β > 0, (4)

where α, x0 and β are the scale, location and shape parameters, respectively. We
will consider only the case x0 = 0, so our distribution function of departure is

F(x;α, β)= exp
(
−(αx)−β

)
, x ≥ 0, α > 0, β > 0. (5)

(When α = 1, this is known as the Fréchet distribution, and its value at x = 1 is
independent of β; it equals e−1

= 0.3679, and is known as the characteristic life of
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the distribution.) By differentiation we get the corresponding pdf:

f (x;α, β)= βα−βx−β−1 exp
(
−(αx)−β

)
, x ≥ 0, α > 0, β > 0. (6)

To introduce the length bias we first multiply this pdf by the weighting function
w(x)= x , obtaining

x f (x;α, β)= βα−βx−β exp
(
−(αx)−β

)
= βF(x;α, β)

(
−log F(x;α, β)

)
, x ≥ 0, α > 0, β > 0. (7)

As we saw in (3), we need to divide this function by its integral (2), which is of
course the mean of the original distribution, denoted by µF . Evaluation yields

µF =
0
(
1− 1

β

)
α

.

Therefore the LBIW (length-biased inverse Weibull) pdf is

gw(x;α, β) :=
α

0
(
1− 1

β

)βF(x;α, β)
(
−log F(x;α, β)

)
=
βα−β+1x−β

0
(
1− 1

β

) exp
(
−(αx)−β

)
x ≥ 0, α > 0, β > 1. (8)

(We use the notation gw instead of fw as in (3) to make it more distinctive.) The
corresponding distribution function is given by

Gw(x;α, β)=
∫ x

0
gw(u;α, β) du =

1

0
(
1− 1

β

) ∫ (αx)−β

0
y−1/β exp(−y) dy, (9)

the last equality resulting from rewriting the integral in the variable y = (αu)−β .
We now turn to the shape of gw. From (8) we see that limx→0 gw(x;α, β)= 0

and limx→∞ gw(x;α, β)= 0. Next we look for extrema. It is easier to work with
the logarithmic derivative. Since

ηw(x) :=
∂ log gw(x;α, β)

∂x
=
β

x

(
(αx)−β − 1

)
, (10)

we see that an extremum requires that (αx)−β = 1. Thus the only extremizer is
x = 1/α; the pdf increases to a maximum at 1/α and then decreases.

For the study of the hazard function it will be useful to consider the second
derivative of log gw(x;α, β), namely

η′w(x)=−β
(β + 1)(αx)−β − 1

x2 . (11)

The numerator on the right has only one zero, at x = x∗ := (β + 1)1/β/α, so the
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same is true of η′w. More precisely, we have

η′w(x) < 0 if x < x∗,
η′w(x)= 0 if x = x∗,
η′w(x) > 0 if x > x∗.

(12)

A criterion of Glaser [1980, Theorem on p. 668, case (d)(i), and Lemma on p. 669,
case (iii)] then implies that the hazard function is “upside-down bathtub-shaped”;
that is, it is initially increasing, reaches a maximum, and decreases thereafter. The
conditions of the criterion are that the pdf is twice differentiable and positive for
x > 0, that it tends to 0 as x→ 0+, and that the second derivative of its log satisfies
(12) for some x∗. (Note that our ηw differs from Glaser’s η by a sign.)

With the qualitative behavior of the hazard function in hand, there remains to
write its formula. Recalling the definition in (1), we write

Gw(x;α, β)=
βα−β+1

0
(
1− 1

β

) ∫ ∞
x

t−β exp(−(αt)−β) dt (13)

and

λGw
(x;α, β)=

gw(x;α, β)

Gw(x)
=

x−β exp(−(αx)−β)∫
∞

x t−β exp(−(αt)−β) dt
. (14)

3. Moments and moment-generating function

In this section we derive the moments, moment-generating function, mean, variance,
coefficients of variation, skewness, and kurtosis for the LBIW distribution.

The moments of a length-biased random variable Xw are related to those of the
original or parent random variable X by

EGw
[X k

w] =
EF [X k+1

]

EF [X ]
, k = 1, 2, . . . , (15)

provided EF [X k+1
] exists. Noting that the moments of F are given by

EF [X k
] = γk :=

0
(
1− k

β

)
αk , k ≥ 1, β > k, (16)

we obtain the moments of Xw as follows:

EGw
[X k

w] =

0
(
1− k+1

β

)
αk0

(
1− 1

β

) = γk+1

γ1
, k ≥ 1, β > k. (17)

In particular, the mean of Xw is

µGw
= EGw

[Xw] =
0
(
1− 2

β

)
α0
(
1− 1

β

) = γ2

γ1
(18)
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and the variance is

σ 2
Gw
= EGw

[X2
w] − EGw

[Xw]2 =
γ1γ3− γ

2
2

γ 2
1

, (19)

where γk = 0(1− k/β)/αk . The coefficient of variation (CV) is

CV=
σGw

µGw

=

√
γ3γ1

γ 2
2
− 1. (20)

The coefficients of skewness (CS) and kurtosis (CK) are given by

CS=
E[(Xw −µGw

)3]

E[(Xw −µGw
)2]3/2

=
γ 2

1 γ4− 3γ1γ2γ3+ 2γ 3
2

(γ1γ3− γ
2
2 )

3/2
(21)

and

CK=
E[(Xw −µGw

)4]

E[(Xw −µGw
)2]2
=
γ 3

1 γ5− 4γ 2
1 γ2γ4+ 6γ1γ

2
2 γ3− 3γ 4

2

γ 2
1 γ

2
3 − 2γ1γ

2
2 γ3+ γ

4
2

. (22)

The moment-generating function is given by

MXw(t)=
βα−β+1

0
(
1− 1

β

) ∫ ∞
0

et y y−βe−(αy)−β dy

=
βα−β+1

0
(
1− 1

β

) ∞∑
j=0

t j

j !

∫
∞

0
y j−βe−(αy)−β dy=

βα−β+1

0
(
1− 1

β

) ∞∑
j=0

t j

j !
9 j,α,β, (23)

where

9 j,α,β =

∫
∞

0
y j−βe−(αy)−β dy.

4. Fisher information and Shannon entropy

The information (or Fisher information) that a random variable X contains about
the parameter θ is given by

I (θ)= E
[(

∂

∂θ
log f (X, θ)

)2 ]
. (24)

If, in addition, the second derivative with respect to θ of f (x, θ) exists for all x
and θ , and if the second derivative with respect to θ of

∫
f (x, θ) dx = 1 can be

obtained by differentiating twice under the integral sign, then

I (θ)=−Eθ

[
∂2

∂θ2 log f (X, θ)
]
. (25)

The Shannon entropy of a random variable X is a measure of the uncertainty and is
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given by EF [−log f (X)], where f (x) is the pdf of the random variable X .
For the LBIW distribution, the Fisher information that Xw (now renamed X for

simplicity) contains about the parameters θ = (α, β) is obtained as follows:

E
[(
∂ log gw(X;α, β)

∂α

)2 ]
=

∫
∞

0

(
1−β
α
+βα−β−1x−β

)2

gw(x;α, β) dx

= (1−β)2α−2
∫
∞

0
gw(x;α, β) dx +

2β2(1−β)α−2β−1

0
(
1− 1

β

) ∫
∞

0
x−2βe−(αx)−β dx

+
β3α−3β−1

0
(
1− 1

β

) ∫ ∞
0

x−3βe−(αx)−β dx

= (1−β)2α−2
+

2β(1−β)α−2

0
(
1− 1

β

) 0
(
2− 1

β

)
+

β2α−2

0
(
1− 1

β

)0(3− 1
β

)
= β(β − 1)α−2, (26)

E
[(
∂ log gw(X;α, β)

∂β

)2 ]

=

∫
∞

0

(
1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

) + log(αx)
(
(αx)−β − 1

))2

gw(x;α, β) dx

=

(
1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

))2

− 2
(

1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

))0′(2− 1
β

)
−0′

(
1− 1

β

)
β0
(
1− 1

β

)
+

β2
(
0′′
(
3− 1

β

)
− 20′′

(
2− 1

β

)
+0′′

(
1− 1

β

))
0
(
1− 1

β

) , (27)

E
[
∂2 log gw(X;α, β)

∂α∂β

]
= E

[
∂2 log gw(X;α, β)

∂β∂α

]
=

∫
∞

0

(
α−β−1x−β(1−β logα−β log x)− 1

α

)
gw(x;α, β) dx

= α−β−1(1−β logα)
∫
∞

0
x−βgw(x;α, β) dx

−
α−2ββ2

0
(
1− 1

β

) ∫ ∞
0

x−2β log xe−(αx)−β dx −
1
α

∫
∞

0
gw(x;α, β) dx

=α−1β−2(1−β)+α−1β−3(β−1)
0′
(
1− 1

β

)
0
(
1− 1

β

) = β − 1
αβ3

(
0′
(
1− 1

β

)
0
(
1− 1

β

) −β). (28)
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Thus the information matrix, namely

I(α, β)=


E
[(
∂ log gw(X;α, β)

∂α

)2 ]
E
[
∂2 log gw(X;α, β)

∂α ∂β

]
E
[
∂2 log gw(X;α, β)

∂β ∂α

]
E
[(
∂ log gw(X;α, β)

∂β

)2 ]
 , (29)

is given by

I(α, β)=


E
[(
∂ log gw(X;α, β)

∂α

)2 ]
β − 1
αβ3

(
0′
(
1− 1

β

)
0
(
1− 1

β

) −β)
β − 1
αβ3

(
0′
(
1− 1

β

)
0
(
1− 1

β

) −β) E
[(
∂ log gw(X;α, β)

∂β

)2 ]
 , (30)

where the diagonal entries are stated in (26) and (27).
Note that, for fixed β, the top left entry of this matrix is monotonically decreasing

in α, since

β(β − 1)
α2

1
≥
β(β − 1)
α2

2
⇐⇒ α2

2 ≥ α
2
1 ⇐⇒ α2 ≥ α1. (31)

On the other hand, for fixed α, the same function is monotonically increasing in β,
since

β1(β1−1)
α2 ≥

β2(β2−1)
α2 ⇐⇒ β1(β1−1)≥β2(β2−1) ⇐⇒ β2

1−β
2
2−(β1−β2)≥0

⇐⇒ (β1−β2)(β1+β2−1)≥0 ⇐⇒ β1≥β2, (32)

the last equivalence being a consequence of the inequalities β1 > 1, β2 > 1.
Under the LBIW distribution, the Shannon entropy is given by

EG(−log gw(X;α;β))

=

∫
∞

0

(
−log

βα−β+1

0
(
1− 1

β

) +β log x + (αx)−β
)

gw(x;α, β) dx

=−log
βα−β+1

0
(
1− 1

β

) +β∫ ∞
0
(log x)gw(x;α, β) dx+

∫
∞

0
(αx)−βgw(x;α, β) dx

=−log
βα−β+1

0
(
1− 1

β

) +β(−logα−
0′
(
1− 1

β

)
β0
(
1− 1

β

))+ β − 1
β

= log
0
(
1− 1

β

)
αβ

−

0′
(
1− 1

β

)
0
(
1− 1

β

) + β − 1
β

. (33)
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5. Estimation of parameters

In this section we derive formulas to estimate the parameters α and β for an unknown
LBIW distribution. We also present a test for the detection of length bias in a sample.

(For the inverse Weibull parent distribution, Calabria and Pulcini [1990; 1994]
derived maximum likelihood, least squares and Bayes estimates for the parameters.
They also obtained confidence limits for reliability and tolerance limits for the same
distribution [Calabria and Pulcini 1989].)

We continue to use X for the LBIW random variable whose parameters α and β
we wish to estimate. We use two standard methods to obtain the estimators: the
method of moments and maximum likelihood.

Method of moments estimators. The method of moments with two parameters
involves setting the first two moments E[X ] and E[X2

] equal to the corresponding
moments of an independent sample X1, X2, . . . , Xn of the LBIW random variable.
In view of (18) and (19), this leads to the equations

0
(
1− 2

β

)
α0
(
1− 1

β

) = 1
n

n∑
j=1

X j and
0
(
1− 3

β

)
α20

(
1− 1

β

) = 1
n

n∑
j=1

X2
j . (34)

These equations are then solved (numerically, for example) for α and β, leading to
the estimators α̂ and β̂.

If β is known, we only need the first equation in (34). In that case (i.e., for fixed
β > 1), the method of moments estimate (MME) of α is given by

α̂ =
n∑n

j=1 X j

0
(
1− 2

β

)
0
(
1− 1

β

) . (35)

Maximum likelihood estimators. In this method we take the log-likelihood func-
tion of the distribution, take its partial derivatives with respect to the parameters, and
equate their expectations to 0. The log-likelihood function for a single observation
x of X is

l(α, β)= log
(
βα−β+1

0
(
1− 1

β

) x−β exp(−(αx)−β)
)

= logβ − (β − 1) logα−β log x − (αx)−β −log0
(
1− 1

β

)
, (36)

which leads to

∂l
∂α
=−

β − 1
α
+
β(αx)−β

α
, (37)

∂l
∂β
=

1
β
−logα−log x + (αx)−β log(αx)+

0′
(
1− 1

β

)
β20

(
1− 1

β

) . (38)



PROPERTIES OF THE LENGTH-BIASED INVERSE WEIBULL DISTRIBUTION 387

From E[∂l/∂α] = 0, we obtain

E[X−β] =
αβ(β − 1)

β
, (39)

and from E[∂l/∂β] = 0, we have

E[−log X + (αX)−β log(αX)] = logα−
1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

) . (40)

The full log-likelihood function is given by

L(α, β)= n logβ − n(β − 1) logα−β
n∑

j=1

log x j −

n∑
j=1

(αx j )
−β
− n log0

(
1− 1

β

)
.

The normal equations are

∂L(α, β)
∂α

=
−n(β̂ − 1)

α̂
+ β̂α̂−β̂−1

n∑
j=1

x−β̂j = 0, (41)

∂L(α, β)
∂β

=
n

β̂
−n log α̂−

n∑
j=1

log x j−

n∑
j=1

log(α̂x j )

(α̂x j )β̂
−

n

β̂2
9(1−1/β̂)= 0. (42)

From (41), the MLE of α is

α̂ =

(
n(β̂ − 1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

. (43)

Now replace α̂ in (42) to obtain

∂L(α, β)
∂β

∣∣∣∣∣
α̂,β̂

=
n

β̂
−n log

(
n(β̂−1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

−

n∑
j=1

log x j

−

n∑
j=1

((
n(β̂−1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

x j

)−β̂
log

((
n(β̂−1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

x j

)

−
1

β̂2

n∑
j=1

0′(1−1/β̂)

0(1−1/β̂)
= 0. (44)

This equation does not have a closed form solution and must be solved iteratively
to obtain the MLE of the scale parameter β. When α is unknown and β is known,
the MLE of α is obtained from (41) with the value of β in place of β̂. When
both α and β are unknown the MLEs of α and β are obtained by solving the normal
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equations in (41) and (42). The MLEs of the reliability and hazard functions can
be obtained by replacing α and β by their MLEs α̂ and β̂.

The expectations in the Fisher information matrix (FIM) can be obtained numer-
ically. Under the conditions that the parameters are in the interior of the parameter
space, but not on the boundary, we have

√
n
(
α̂−α

β̂ −β

)
d
−→ N

((
0
0

)
, I−1(α, β)

)
as n→∞,

where I (α, β)= limn→∞ n−1 In(α, β) and

In(α, β)= n
(

I (1, 1) I (1, 2)
I (2, 1) I (2, 2)

)
.

The entries I (i, j), i = 1, 2 and j = 1, 2, are given in (30). The multivariate normal
distribution with mean vector (0, 0)T and covariance matrix In(α, β) can be used
to construct confidence intervals for the model parameters.

Test for generalized length bias. We now seek to discriminate whether a random
variable, represented by a random sample of size n, is likely to be the result of
length-biased sampling. More precisely, we compare the null hypothesis H0, to the
effect that the random variable has the inverse Weibull pdf (6) with given α and β,
to the alternative hypothesis Hc, which says that the random variable is LBIW
(c = 1) or perhaps inverse Weibull with some other power weighting w(x) = xc.
In this context it’s natural to allow this extra generality (and in our particular case
this doesn’t demand much extra effort). A calculation similar to the one leading
to (8) shows that the pdf under the alternative hypothesis is

gw(x;α, β, c)=
βαc−β

0(1− c/β)
xc−β−1 exp

(
−(αx)−β

)
,

x ≥ 0, α > 0, β > 0, c > 0. (45)

To decide whether it’s plausible that our random sample x1, . . . , xn represents
the parent inverse Weibull distribution (null hypothesis H0) relative to the weighted
inverse Weibull distribution (alternative hypothesis Hc), we use the following test
statistic, where α and β are assumed known and c is also fixed (several values can
be tried, including c = 1 for the LBIW):

3=

n∏
i=1

gw(xi ;α, β, c)
f (xi ;α, β)

=

n∏
i=1

βαc−β

0(1− c/β)
xc−β−1

i exp(−(αxi )
−β)

βα−βx−β−1
i exp(−(αxi )−β)

=

n∏
i=1

αcxc
i

0
(
1− 1

β

) = αnc ∏n
i=1 xc

i(
0
(
1− 1

β

))n . (46)
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We reject H0 when

3=
αnc ∏n

i=1 xc
i(

0
(
1− 1

β

))n > K , (47)

where K >0 is some threshold chosen beforehand, indicating the level of confidence
we want to have in our prediction. Equivalently, we reject the null hypothesis when

3∗ =

n∏
i=1

xc
i > K ∗, where K ∗ =

K0(1− c/β)n

αnc > 0. (48)

The choice of K is related to the p-value, defined as the probability that, under
H0, the expected value of the test statistic 3∗ is at least as high as the one actually
observed. For large n we have 2 log3∗ ∼ χ2, and from the χ2 one obtains the
p-value using the χ2 table (or software). The p-value can also be readily computed
via Monte Carlo simulation: simulate N samples from the distribution under H0,
for some large value of N , and compute the test statistic 3∗i for each sample. Then
take

p-value=
#{i :3∗i >3

∗
}

N
.

Reject the null hypothesis if the p-value is less than the desired level of significance
(typically 5% or 1%).

6. Examples

In this section we apply the formulas obtained in the previous section to two
examples from the literature. The first set of data, given in Table 1, represents the
waiting times (in minutes) before service of 100 bank customers [Ghitany et al.
2008]. The second data set, shown in Table 2, represents the number of millions of
revolutions before failure of each of 23 ball bearings in a life testing experiment
[Lawless 2003].

We modeled these data sets using the weighted inverse Weibull distribution
with unknown parameters α and β (we keep the assumption made after (4) that
x0 = 0). The normal equations were solved by numerical methods to estimate the
model parameters. Specifically, the MLEs of the parameters were computed by
maximizing the objective function with the trust-region algorithm in the NLPTR
subroutine in SAS. We present in Table 3 the estimated values of the parameters α
and β and corresponding gradient objective functions (normal equations) under the
length-biased inverse Weibull distribution for both sets of data.

We also conducted, for each set of data, a test for the detection of length bias,
to compare the hypothesis that the waiting time distribution follows the LBIW
distribution is to be preferred to the null hypothesis that the distribution is unweighted
inverse Weibull.
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0.8 0.8 4.3 5.0 6.7 8.2 9.7 11.9 14.1 19.9
0.8 0.8 4.3 5.3 6.9 8.6 9.8 12.4 15.4 20.6
1.3 1.3 4.4 5.5 7.1 8.6 10.7 12.5 15.4 21.3
1.5 1.5 4.4 5.7 7.1 8.6 10.9 12.9 17.3 21.4
1.8 1.8 4.6 5.7 7.1 8.8 11.0 13.0 17.3 21.9
1.9 1.9 4.7 6.1 7.1 8.8 11.0 13.1 18.1 23.0
1.9 1.9 4.7 6.2 7.4 8.9 11.1 13.3 18.2 27.0
2.1 2.1 4.8 6.2 7.6 8.9 11.2 13.6 18.4 31.6
2.6 2.6 4.9 6.2 7.7 9.5 11.2 13.7 18.9 33.1
2.7 2.7 4.9 6.3 8.0 9.6 11.5 13.9 19.0 38.5

Table 1. Waiting times of 100 bank customers, from [Ghitany et al. 2008].

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84 51.96 54.12
55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84

127.92 128.04 173.40 – – – – – – –

Table 2. Lifetimes of 23 ball bearings, from [Lawless 2003].

Data α β ∂L/∂α ∂L/∂β

I (n = 100) 0.400 1.819 7.46 × 10−4
−5.98 × 10−5

II (n = 23) 0.02795 2.4610 1.990× 10−9 1.930× 10−11

Table 3. Estimated values of the parameters.

For the set of waiting times given in Table 1, where (as shown in Table 3) the
estimated values of the parameters α and β are α̂ = 0.3997 and β̂ = 1.81887, we
obtained for the test statistic the value 2 log3= 270.927, and the p-value for the
test was less than 0.000001. Therefore, we have strong statistical evidence that the
hypothesis that the waiting time distribution follows the LBIW distribution is to be
preferred to the null hypothesis.

For the second set of data, the estimated values of the parameters are α̂=0.027952
and β̂ = 2.46097. The value of the test statistic is 2 log3 = 170.893, and the p-
value is less than 0.00001. Again, the null hypothesis corresponding to the parent
distribution is rejected.
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The firefighter problem for
regular infinite directed grids

Daniel P. Biebighauser, Lise E. Holte and Ryan M. Wagner

(Communicated by Ann Trenk)

We investigate the firefighter problem for regular infinite directed grids. We pro-
vide a complete classification of these grids by dividing them into two categories:
grids where a single outbreak of fire can be contained with one firefighter per
time step and grids that require a second firefighter at some time step. We then
investigate infinite directed grids where the degrees of a single vertex are different
from the degrees of all other vertices in the grid.

1. Introduction

The firefighter problem was introduced by Bert Hartnell at a conference talk [1995].
A fire breaks out at one or more vertices of a graph G at time zero. At each subse-
quent time step, one or more defenders are placed on nonburning and undefended
vertices, and then the fire spreads from each burning vertex to all of its undefended
neighbors. Once a vertex is burning or defended, it remains in that state for the dura-
tion of the problem. In particular, firefighters cannot move. The goal is to place fire-
fighters in a way that achieves a desired optimal result, such as containing the fire in
as few time steps as possible or minimizing the total number of burned vertices. For
a comprehensive introduction to the problem, see [Finbow and MacGillivray 2009].

Question 26 in this last reference suggests investigating the firefighter problem
for directed graphs. In this paper, we study infinite directed grids. An infinite grid
is the graph with vertex set Z×Z where (x1, y1) is adjacent to (x2, y2) if and only
if |x1− x2| + |y1− y2| = 1. We consider the firefighter problem on regular infinite
directed grids, which are infinite grids where a direction is assigned to each edge in
such a way that every vertex has in-degree two and out-degree two. We will always
consider our grids to be embedded in the plane such that each vertex (x, y) is on
the lattice point (x, y).

MSC2010: 05C20, 05C75.
Keywords: fire, firefighter, containment strategy, directed graphs.
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In this paper, we are concerned with the number of firefighters needed at each
time step to eventually contain a fire that starts at a single vertex in a regular infinite
directed grid. By “contain,” we mean that there is some time step where no new
vertices are burned. We are not necessarily interested in containing the fire as soon
as possible, but in determining the minimum number of firefighters per time step
needed for containment.

Fogarty [2003] proved that two firefighters per time step is necessary and sufficient
to contain any finite outbreak of fire in an infinite grid. (Wang and Moeller [2002]
had proved earlier that this number was necessary and sufficient for a single vertex
initially on fire.) This number is sufficient for infinite directed grids, since directions
on the arcs potentially restrict the movement of the fire. If there is an arc joining
a burning vertex to an undefended vertex, the fire will spread to the undefended
vertex on the next time step (as it would in an undirected graph), but if the arc
points in the opposite direction, the fire will not spread along that arc. We will
prove that, for regular infinite directed grids with a single vertex initially on fire,
we can always contain the fire with fewer defenders.

Our main result is the following theorem, which we prove in Section 3. Without
loss of generality, assume that the fire begins at the origin. We will say that an
infinite directed grid is a category A grid if one firefighter per time step is sufficient
to contain the fire. An infinite directed grid is a category B grid if one firefighter
per time step is not enough to contain the fire, but one firefighter per time step and
a second firefighter at any single time step is sufficient to contain the fire.

Theorem 1.1. Let G be a regular infinite directed grid. Then G is either a cate-
gory A or a category B grid.

At the end of this paper, we consider infinite directed grids where at least one
vertex has degrees other than in-degree two and out-degree two.

2. A lemma

Fogarty [2003] introduced a theorem with a “Hall-type condition” that is useful for
proving that a certain number of defenders per time step is not enough to contain an
outbreak of fire in an infinite graph. Her applications of this theorem were mostly
to two-dimensional grids. Hartke [2004] extended Fogarty’s result using a more
general Hall-type condition that allowed him to make stronger statements about
infinite grids in higher dimensions. We will use a modified version of Fogarty’s
theorem that applies to directed graphs. The proof is nearly identical to Fogarty’s
original proof and will not be included here.

Let G be a directed graph. Assume that one vertex catches on fire at time t = 0.
Let Dk denote the set of vertices of distance k from the original burned vertex,
where the distance from v to w is the length of a shortest directed path from v to w.
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Let Bk ⊆ Dk be the set of vertices in Dk that have been burned after time k. Let fk

denote the number of new firefighters available at time step k. Let rk be the number
of firefighters in Dk+1, Dk+2, . . . after time k. We call these reserve firefighters.
Let N (S) be the neighborhood of a set of vertices S, that is, the set of vertices
which are distance 1 from any vertex in S in the underlying undirected graph of G.
For any subset A ⊆ Dk let N+(A)= N (A)∩ Dk+1.

Theorem 2.1. Let G be a directed graph. For each k, if every A ⊆ Dk satisfies
|N+(A)| ≥ |A| + fk , then |Bn| ≥ 1+ rn for all n.

We will now apply this theorem to prove the following lemma. An infinite
quarter-plane is the subgraph of the infinite grid that includes all of the vertices
and edges in the first quadrant, including the origin and the positive x- and y-axes.

Lemma 2.2. Consider an infinite directed quarter-plane where all horizontal arcs
point right and all vertical arcs point up. If the fire starts at the origin, one firefighter
per time step is not enough to contain the fire. If we are given at least one firefighter
per time step, and a second firefighter at any time step, then the fire can be contained.

Proof. We first prove that one firefighter per time step is not enough to contain the
fire. For each k, if A ⊆ Dk , we can see that

|N+(A)| ≥ |A| + 1,

since each vertex in Dk has exactly two neighbors in Dk+1 and any two vertices in
Dk can share at most one neighbor in Dk+1. So from Theorem 2.1, since the origin
is initially on fire, for every k, we have |Bk | ≥ 1. Thus one firefighter per time step
is not enough to contain the fire.

If we are given at least one firefighter per time step, we can force the fire along
an axis of the grid until we get a second firefighter, at which point the fire can be
contained by placing this defender on the axis directly ahead of the fire. �

In terms of our categories, the grid in Lemma 2.2 is an example of a category B
grid.

3. Regular infinite directed grids

We now prove Theorem 1.1 for regular infinite directed grids.
There are two cases that we must consider. First is the case in which the origin

has two consecutive arcs (in cyclic order) facing out. The second case is where the
two arcs facing out point in opposite directions. Without loss of generality, in the
first case we can assume that the two arcs coming from the origin point along the
positive x-axis and the positive y-axis and in the second case they point along the
positive and negative y-axes.

The following theorem proves Theorem 1.1 for the first case.
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Theorem 3.1. Let G be a regular infinite directed grid where the two arcs coming
from the origin point along the positive x-axis and the positive y-axis. If each arc
in the first quadrant (including the axes) is facing either right or up, then G is a
category B grid. If at least one arc in the first quadrant (including the axes) faces
down or left, then G is a category A grid unless it is the exception shown in Figure 1,
which is a category B grid.

Proof. Suppose first that each arc in the first quadrant (including the axes) faces
either right or up. Then the fire cannot leave this quadrant, and by Lemma 2.2, one
firefighter per time step is not enough to contain the fire, but a second firefighter at
any time step will allow us to contain the fire.

In most of the grids in the rest of this proof, we will show that we can contain
the fire with one firefighter per time step. Our strategy will often be to “steer” the
fire into a directed cycle. Then we can place defenders on outward neighbors not in
the cycle until the fire returns to the first vertex in the cycle. In this way, we can
always contain a fire once it reaches a directed cycle.

From now on, suppose that at least one arc in the first quadrant (including the
axes) faces either left or down. Consider a closest arc in the first quadrant to the
origin (where the distance is measured in the undirected grid from the origin to the
head of the arc) that faces either left or down. Call such an arc e. The vertex, v,
incident to the head of e must be on an axis, because, if it is not, then since v has
in-degree two and out-degree two, at least one of the arcs coming from v must face
down or left, and the vertex incident to the head of this arc must be closer to the
origin than v was, contrary to our definitions of v and e.

Figure 1. The exception to Theorem 3.1.
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v

e

Figure 2. The grid when e is facing down.

Assume that the arc between (0, 1) and (1, 1) points right or the arc between (1, 0)

and (1, 1) points up (or both). Thus at least one of these arcs could not be chosen
as e. The special case when both of these arcs point toward the axes will be
considered at the end of the proof.

Without loss of generality, assume v is on the positive x-axis. If there are multiple
edges which could have v as their heads and could be considered to be e, we will
break the tie by choosing the vertical arc that is pointing down. There are two cases
that we must now consider. First, we will consider the case where e is facing down
onto the axis. Since e is the closest arc facing down or to the left, all arcs closer
to the origin than e must be facing either up or to the right. A picture of what this
grid must look like is shown in Figure 2.

Let v1 be the vertex directly above v, and label the vertices besides v and v1 in
the four faces containing v in the planar embedding of the grid in a clockwise cycle
around v with v2 through v8 (so that v8 is directly to the left of v1). Let v9 be the
vertex directly above v8, and let v10 be the vertex directly above v1. See Figure 3.

We will defend along the line y = 1, forcing the fire to continue spreading to the
right until the fire is at v7, which is directly to the left of v. (It is possible for v7 to
be the origin.) Then we will defend on v, forcing the fire to spread up to v8, and
then defend on v9 in order to force the fire to spread to v1. Now we will defend on
either v10 or v2, whichever is incident with an arc coming from v1. Then the fire
could only spread to v, but since v is already defended, the fire is contained.

Next we will consider the case where e is horizontal on the x-axis, facing left
toward v. See Figure 4. By our choice of e, the arc between v and v1 must come
from v (if not, we would have chosen this arc as e by our tie-breaking procedure).
Also, the arc between v1 and v2 must come from v1, because otherwise there would

v

v1 v2

v3

v4v5v6

v7

v8

v9 v10

e

Figure 3. The vertices near v when e is facing down.
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v

v1 v2

v3

v4v5v6

v7

v8

v9 v10

e

Figure 4. The vertices near v when e is facing left.

be either a downward arc with its head on the positive x-axis to the left of v, or
there would be a path of leftward arcs from v1 that would necessarily follow the
line y = 1 to the positive y-axis at the point (1, 0). In either case, this contradicts
our choices of v and e. (We are still assuming that at least one of the two arcs
between (1, 1) and the axes points away from the axis the arc touches.) There are
now two subcases that must be considered. The subcases are the arc between v2

and v3 facing up or facing down.
If the arc faces down, then there is a directed cycle from v to v1 to v2 to v3 and

back to v. We will defend along the line y = 1 until the fire spreads to v. Next we
defend the outward neighbors of v, v1, v2, and v3 that are not in the cycle until the
fire returns to v, at which point we have contained the fire.

If the arc between v2 and v3 faces up, then since every vertex has in-degree two
and out-degree two, the arc between v3 and v4 must face up, the arc between v

and v5 must face down, and the arc between v6 and v7 must face up because of our
choice of v. The arc between v4 and v5 can face either left or right. If it faces right,
then there is a directed cycle from v to v5 to v4 to v3 and back to v. If it faces left,
then the arc between v5 and v6 must also face left because v5 must have out-degree
two. This gives a directed cycle from v7 to v to v5 to v6 and back to v7. In either
case, we can defend along y = 1 until the fire reaches v or v7, respectively, and
then contain the fire once it enters the directed cycle.

We are now left with the case where the arc between (0, 1) and (1, 1) points left
and the arc between (1, 0) and (1, 1) points down. We will show that any grid in
this case can be defended with one firefighter per time step except for the exception
in Figure 1. We now have three subcases to consider. The first subcase is when at
least one arc on the positive x-axis is pointing left or at least one arc on the positive
y-axis is pointing down. The second subcase is when all arcs on the positive x-axis
face right, all arcs on the positive y-axis face up, and at least one arc in the first
quadrant (not including the axes) faces up or right. The third subcase is when all
arcs on the positive x-axis face right, all arcs on the positive y-axis face up, and no
arcs in the first quadrant (not including the axes) face up or right.
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For the first subcase, consider a nearest arc on a positive axis facing the origin.
Without loss of generality, assume it is on the x-axis. Let the vertex at the head of
this arc be called u. All arcs to the left of u on the positive x-axis must point right.
The arc directly above u must point up. The arc between (2, 1) and (1, 1) must
point left. If the arc between (2, 0) and (2, 1) points up, then we have a directed
cycle and we can contain the fire. If not, then the arc between (3, 1) and (2, 1) must
face left. Again, if the arc between (3, 0) and (3, 1) points up, we have a directed
cycle. The only way we might not be able to contain the fire is if all arcs face down
from the line y = 1 to the positive x-axis. However, as we said, the arc directly
above u must face up. Therefore, we will have a directed cycle at or before u, and
we can defend the fire so that it spreads along the positive x-axis until it reaches
this directed cycle. Therefore, we can contain the fire with one defender per time
step for any grid in this subcase.

For the second subcase, when all arcs on the positive x-axis face right, all arcs on
the positive y-axis face up, and at least one arc in the first quadrant (not including the
axes) faces up or right, choose a closest arc (in terms of the underlying undirected
grid) to the origin in the first quadrant (not including the axes) facing up or right
and call it e′. We claim that e′ has its tail on an axis. Suppose not. Then the arcs
directly below the tail and directly to the left of the tail must be facing down and
left, respectively, because e′ was the closest arc facing up or right. However, then
the tail of e′ has out-degree at least three, which is not possible. Therefore, e′ must
have its tail on an axis.

Without loss of generality, assume the tail of e′ is on the x-axis and therefore e′

is pointing up. All other vertical arcs directly to the left of e′ between the positive
x-axis and y = 1 and to the right of the positive y-axis must point down by our
choice of e′. All arcs on y = 1 to the left of e′ and to the right of the positive y-axis
must point left, or there would be an up or right arc closer to the origin than e′.
Thus there is a directed cycle along the positive x-axis, starting at (1, 0), through e′,
then back along y = 1 to the downward arc from (1, 1) to (1, 0). By first defending
(0, 1), we force the fire into this directed cycle, and therefore can contain the fire.

For the third subcase, when all arcs on the positive x-axis face right, all arcs on
the positive y-axis face up, and no arcs in the first quadrant (not including the axes)
face up or right, Figure 5 shows all of the arcs that have predetermined directions.

If the arc between (1,−1) and (0,−1) points left, it completes a directed cycle
including these vertices and (0, 0) and (1, 0). In this case, we could contain the fire
with one firefighter per time step. If this arc points right, then it forces all of the
arcs on y =−1 to the right of this arc to point right as well. It also forces the arc
between (0,−2) and (0,−1) to point up, while all other vertical arcs directly to
the right of this arc point down. This is shown in Figure 6.
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Figure 5. The directions of the arcs in the third subcase.

Figure 6. Another level of arcs in the third subcase.

We can continue this process, inductively going level by level down in the fourth
quadrant. We will always be able to contain the fire, unless all vertical arcs on the
negative y-axis point up, all vertical arcs to the right of the negative y-axis point
down and all horizontal arcs below the positive x-axis point right.

By a similar argument to that of the fourth quadrant, in the second quadrant we
can always contain the fire unless all horizontal arcs on the negative x-axis point
right, all horizontal arcs above the negative x-axis point left, and all vertical arcs in
the second quadrant point up.

Notice that, at this point, the arcs in the first, second, and fourth quadrants are
the same as in the exception in Figure 1. Since every vertex has in-degree two and
out-degree two, the arcs in the third quadrant are forced to be the same as the arcs
in the third quadrant of the exception. We can see this by arguing inductively out
from the second and fourth quadrants.

Finally, we prove that this exception is in category B. Assume we have one
defender per time step. No matter where we put the first defender, the fire will
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Figure 7. The exception to Theorem 3.2.

spread to at least one of (1, 0) and (0, 1). Without loss of generality, assume the fire
moves to (1, 0). By Lemma 2.2, considering (1, 0) to be the origin of an infinite
directed quarter-plane contained in the fourth quadrant, one firefighter per time step
cannot contain the fire, but a second firefighter at some time step will allow us to
contain the fire. If we get the second firefighter at time step t = 1, then we can
immediately contain the fire. �

The second case is when the two arcs facing out point in opposite directions.
Without loss of generality, assume they point along the positive and negative y-axis.
The following theorem classifies which grids are in category A and which grids are
in category B in this case.

Theorem 3.2. Let G be a regular infinite directed grid where the vertical arc
directly above the origin faces up and the vertical arc directly below the origin
faces down. Then G is a category A grid unless the grid is the exception shown
in Figure 7 or a reflection of this figure across the y-axis. These exceptions are in
category B.

Proof. Two cases must be considered. The first case is when both of the horizontal
arcs incident on at least one of (0, 1) and (0,−1) point away from the vertex. The
second case is when both (0, 1) and (0,−1) have one of their horizontal arcs facing
them and one pointing away. These two cases are shown in Figure 8.

In the first case, assume without loss of generality that both horizontal arcs
at (0, 1) point away from (0, 1). At least one of the horizontal arcs at (0,−1) points
away from (0,−1), and we can assume, without loss of generality, that this arc is
the arc directly to its right. If the arc between (1, 0) and (1, 1) faces down, there is
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Case 1 Case 2

Figure 8. Two cases for Theorem 3.2.

a directed cycle from (0, 0) to (0, 1), to (1, 1), to (1, 0), and back to (0, 0). If this
arc faces up, though, it forces the arc between (1, 0) and (1,−1) to face up as well.
We then have a directed cycle from (0, 0) to (0,−1), to (1,−1), to (1, 0), and back
to (0, 0). Therefore, for any arrangement of the remaining arcs in this first case, the
grid can be defended by one firefighter per time step.

For the second case, if the horizontal arcs that point away from (0, 1) and (0,−1)

point in the same direction, then by the same argument as that of the first case,
the grid can be defended by one firefighter per time step. If the horizontal arcs
pointing away from (0, 1) and (0,−1) point in opposite directions, without loss of
generality, we can assume the arc between (0, 1) and (1, 1) points right and the arc
between (0,−1) and (−1,−1) points left.

Suppose one or more arcs lying in the quarter-plane determined by x ≥ 0
and y ≥ 1 points left or down, or one or more arcs lying in the quarter-plane
determined by x ≤ 0 and y ≤ −1 points right or up. Without loss of generality
assume one or more arcs lying in the quarter-plane determined by x ≥ 0 and y ≥ 1
points left or down. We place our first defender at (0,−1), forcing the fire to spread
to (0, 1). Unless all arcs lying in the quarter-plane determined by x ≥ 0 and y ≥ 1
look like the first quadrant in the exception of Theorem 3.1 (i.e., all arcs lying in
the quarter-plane determined by x > 0 and y > 1 point left or down, all arcs directly
to the right of (0, 1) point right, and all arcs directly above (0, 1) point up), we now
know by Theorem 3.1 that we can contain the fire, treating the arcs lying in the
quarter-plane determined by x ≥ 0 and y ≥ 1 as the first quadrant in Theorem 3.1.

If all arcs lying in the quarter-plane determined by x > 0 and y > 1 point left
or down, all arcs directly to the right of (0, 1) point right, and all arcs directly
above (0, 1) point up, then the arc between (1, 0) and (1, 1) must point down,
completing a directed cycle from (0, 0) to (0, 1), to (1, 1), to (1, 0), and back
to (0, 0). This case can therefore be defended by one firefighter per time step.
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Finally, if all arcs lying in the quarter-plane determined by x ≥ 0 and y ≥ 1
point up or right, and all arcs lying in the quarter-plane determined by x ≤ 0
and y ≤−1 point down or left, then all of the directions of these arcs are the same
as the directions of these arcs in the exception in Figure 7. Since every vertex has
in-degree two and out-degree two and we know the direction of the arcs at the
origin, we can see that the remaining vertical arcs in the first quadrant must point
up and the remaining vertical arcs in the third quadrant must point down. Then,
level by level, the remaining arcs in the second and fourth quadrants (including the
axes) are forced to match the directions of the arcs in the exception.

We now prove that this exception is a category B grid. Assume we have one
firefighter per time step. No matter where we put the first defender, the fire will
spread to at least one of (0, 1) and (0,−1). Without loss of generality, assume
the fire moves to (0, 1). If we treat (0, 1) as the origin, then by Lemma 2.2, one
firefighter per time step is not enough to contain the fire. By this same lemma, a
second firefighter at any time step allows us to contain the fire. If we get the second
firefighter at time step t = 1, we can contain the fire immediately. Thus this grid is
a category B grid. Notice that if we had assumed the arc between (0, 1) and (1, 1)

points left and the arc between (0,−1) and (−1,−1) points right, then we would
have the reflection of this exception over the y-axis. �

4. Other infinite directed grids

As a variation of the work done in the previous section, we will now consider an
infinite directed grid where all vertices have in-degree two and out-degree two
except for a single vertex. We will only investigate the cases when this vertex has
in-degree three and out-degree one or in-degree four and out-degree zero. We will
think of the construction of one of these grids as a process, starting with a grid
where each vertex has in-degree two and out-degree two. We will then change the
directions of one or more arcs at a single vertex so that it has the desired degrees
and then change arcs at other vertices in such a way that all other vertices still have
in-degree two and out-degree two. Note that we may not always make a minimum
number of changes in order for this to be the case.

Any time a single arc between u and v is changed in a grid, if all vertices
except v are required to maintain their original in-degree and out-degree, then a
trail of vertices from v must be changed. If the arc had been facing from v to u,
then, when it is changed to point toward v, one of the arcs that had previously
been facing away from u must be changed to point toward it. Call the vertex that
this arc had previously been facing w. Now, in order for w to continue to have
the same in-degree and out-degree, another arc that had previously been facing
away from w must now face towards it. This continues, forming a trail of changed
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arcs. Moreover, this trail is directed in such a way that, from any point on the trail,
we could follow the arcs on the trail back to v. In the other case, when the arc
between u and v was facing toward v, then the trail would face the other way, and
following the arcs would take us away from v.

Let us now consider the case where v changes to have in-degree three and out-
degree one. We will consider this case for most of the rest of this section. Since
all vertices except v still have in-degree two and out-degree two, the grid is very
similar to the type of grids investigated in Section 3. For this reason, we will refer
often to the defense strategies provided for those grids.

Even though it is possible to form more than one trail of changed arcs as we
change the degrees of v, we will now suppose that our grid where v has in-degree
three and out-degree one contains only one trail of changed arcs. The situation
where more than one trail is formed is considered later in this section — in particular,
in Figures 10–13. We will show that the single changed trail can only either help
move a grid from category B to category A or keep a grid in its original category.
It can never bring a grid from category A to category B. We will first prove that a
grid cannot go from category A to category B, which implies that all of the grids in
category A must remain in category A. We will then determine which category B
grids move to category A, and which category B grids stay in category B.

Theorem 4.1. Suppose we have a category A infinite directed grid where each
vertex has in-degree two and out-degree two. If one vertex, v, changes to have
in-degree three and out-degree one in such a way that it creates only one trail of
changed arcs, then this grid must remain in category A.

Proof. As discussed above, if there is only one trail of changed arcs, then it must
be an infinite directed trail where the arcs point toward v. Call this trail T .

We need to make an observation about how we defend the fire in category A
grids where every vertex has in-degree two and out-degree two. In our proofs of
Theorems 3.1 and 3.2, when we are able to contain the fire with one firefighter per
time step, at each time step the fire could possibly move from a burning vertex to
two neighbors since that vertex has out-degree two. We always place our firefighter
at one of these two neighbors, and the fire moves to the other neighbor unless
that other neighbor has already been burned or defended, in which case we finish
containing the fire. Since this is true at every time step, there is at most one new
burning vertex at each time step. Thus the burned vertices in all of our containment
strategies follow a single directed path from the origin, which we will call P .

If T and P have no vertices in common, then we can use the same defense
strategy as would have been used in Theorems 3.1 or 3.2, following P until it has
been contained. Otherwise, consider the first vertex on P that is also on T . This
situation is shown in Figure 9. This vertex could be v itself, or any other vertex
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v

P

T

Figure 9. T intersects P (the dashed arcs are T ).

on T . We begin by defending as we would have before, forcing the fire along P ,
until the fire reaches this first shared vertex. At this point we will force the fire to
follow T until it reaches v. This is possible because every vertex of T other than v

has in-degree two and out-degree two. Once the fire has spread to v, there is at most
one vertex to which it can spread since v has out-degree one. We then defend this
vertex, if necessary, and therefore contain the fire. In either case, we are still able
to contain the fire with one firefighter per time step. The changed grid is therefore
still in category A. �

We will now determine which category B grids are able to become category A
grids after the change to v results in one changed trail, T . From Theorem 3.1, one
type of category B grid is the grid where all arcs in a single quadrant (including its
axes) face away from the origin (without loss of generality, assume this is the first
quadrant); the directions of the arcs in the remaining quadrants are irrelevant. If v

is in the first quadrant (including its axes), then the fire can be forced to v, at which
point we are able to contain the fire. If v is not in the first quadrant, but T contains
any arcs that are in the first quadrant, then the vertex w of T that is both in the first
quadrant and is closest to v on T must be on an axis. We can force the fire along
this axis until it reaches w and then force the fire to follow T to v, where we can
contain the fire. If, however, v is not in the first quadrant and T does not affect any
arcs in the first quadrant (as an example, consider when v is any vertex in the third
quadrant and T consists of precisely the edges to the left of v), then one firefighter
per time step will still not be enough to contain the fire. This is the only situation
where a category B grid of this type remains in category B.

The other category B grid from Theorem 3.1 is the exception in that theorem (see
Figure 1). We will show that, wherever v is on the grid, it will become a category A
grid. If v is in the second or fourth quadrants (not including their axes), then we
are able to force the fire to v, at which point we are able to contain the fire. If v is
in the first quadrant (including the axes), then the construction will create a trail, T ,
of changed arcs that must intersect an axis at some vertex. We are able to force the
fire along that axis to the first vertex on the axis that is also on T . Now we force
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the fire along T until we reach v, where the fire can be contained. If v is in the
third quadrant (including the axes), since T is changing arcs in such a way that the
trail points toward v, it will at some point either enter the second or fourth quadrant
(not including their axes) or it will pass through the origin. If T reaches the second
or fourth quadrant, we can force the fire to T and then follow T to v, where the fire
is contained. If T passes through the origin, then from the very first time step we
should force the fire to follow T until it reaches v.

The exception in Figure 7 from Theorem 3.2 is the only category B grid in that
theorem (along with its reflection across the y-axis). This grid also becomes a
category A grid, regardless of the position of v. For clarity in this proof, we will
identify four regions in this grid. Region 1 is where x ≥ 0 and y ≥ 1; Region 2
is where x ≤ 0 and y ≥ −1; Region 3 is where x ≤ 0 and y ≤ −1; Region 4 is
where x ≥ 0 and y ≤ 1. If v is in Regions 1 or 3 (including the boundaries), then
we can force the fire to v and it can be contained. If v is in Regions 2 or 4 (not
including the boundaries), then T must either reach Region 1 or 3 or it must pass
through the origin. If T reaches Region 1 or 3, then it must reach a boundary in that
region; we can force the fire along that boundary to T , and then force the fire to
follow T to v. If T passes through the origin, then from the first time step we can
force the fire to follow T to v. The only remaining case is when v is at the origin, in
which case we are able to contain the fire on the first time step with one firefighter.

We can now see that the only type of category B grid that stays in category B is
the grid where all arcs in a quadrant face away from the origin and v does not lie in
that quadrant nor does T affect any arcs in that quadrant.

When changing v so that it has in-degree three, out-degree one, and only one
trail, T , of changed arcs, we have seen that all category A grids remain in category A,
some category B grids remain in category B, and some category B grids become
category A grids. It might appear that changing v so that it has in-degree three and
out-degree one could only help us contain the fire with one firefighter per time step
since it has out-degree one, never permitting category A grids to become category B.
However, if v creates more than one trail of changed arcs, it is possible for grids in
either category to stay in that category or to switch to the other category. We now
provide examples of each situation below. In each example, the white vertex is the
origin, and the dashed arcs are the arcs that changed directions.

If we change vertex v so that it has in-degree four and out-degree zero, it creates
an even number of two or more trails of changed arcs throughout the grid. If only
two trails are created, then they both face toward v, so, similar to Theorem 4.1,
they can never change a category A grid to category B. If, however, there are four
or more trails created by changing v, it is possible for grids in either category to
stay in that category or switch to the other category. Examples of this are similar to
those in Figures 10–13.
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v v

Figure 10. A category A grid that becomes a category B grid.

v v

Figure 11. A category B grid that becomes a category A grid.

v v

Figure 12. A category A grid that stays category A.

We close with a conjecture for general infinite directed grids. As mentioned in
the introduction, we know that two firefighters per time step is sufficient to contain
the fire if it begins at the origin. If the grid is regular, by Theorem 1.1, we know that
either one firefighter per time step or one firefighter per time step with an additional
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v v

Figure 13. A category B grid that stays category B.

firefighter at some time step is sufficient to contain the fire. In general, we believe
the following conjecture holds.

Conjecture 4.2. Let G be an infinite directed grid, and assume that the fire begins
at the origin. If we are given one firefighter per time step and an occasional second
firefighter is given on some finite number of time steps (the number may depend on
the grid), the fire can be contained.

In some related work, Messinger [2008] and Ng and Raff [2008] provide contain-
ment strategies for undirected grids utilizing one firefighter on some time steps and
two firefighters on other time steps. Their strategies, however, make assumptions as
to which time steps a second firefighter will be available. Thus their strategies can
be used for some instances of our conjecture, but they do not settle the general case.

The worst possible scenario for an infinite directed grid appears to be the grid
where all horizontal arcs in the half-plane x > 0 point right, all horizontal arcs in
the half-plane x < 0 point left, all vertical arcs in the half-plane y > 0 point up,
and all vertical arcs in the half-plane y < 0 point down, seemingly allowing the fire
to spread as much as possible. All four of the origin’s incident arcs are directed
away from the origin, and all other vertices on the x- and y-axes are in-degree one
and out-degree three. The remaining vertices have in-degree two and out-degree
two. Here is a defense strategy for this grid. In the first time step, we place a
firefighter directly to the left of the origin, and we continue to place firefighters
vertically above this vertex until a second firefighter is available, which allows us
to push the fire to the right instead of simply maintaining it with this continuing
vertical line of firefighters. Single firefighters are then again used to maintain the
fire in a horizontal fashion until extra firefighters allow us to begin to push the line
of defense downwards. In this general pattern, we can corral the fire quadrant by
quadrant in a clockwise direction, maintaining the direction of the fire when given
only one firefighter, and steering it in a clockwise direction when given an extra
firefighter. Using this strategy, we will contain the fire after finitely many time steps.
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We prove that the ordered subgraph number of a connected graph that has no
duplicate vertices is at most three if and only if the complement does not contain
a cycle on four vertices. The duality between zero forcing and ordered subgraphs
then provides a complementary characterization for positive semidefinite zero
forcing. We also provide some necessary conditions for when the minimum
semidefinite rank can be computed using tree size.

1. Introduction

Graph theory provides a natural way to describe patterns in the entries of matrices
and a large body of research and terminology to help study those patterns. Con-
versely, matrices that are associated to graphs can provide structural information
about the graph. For example, the second-smallest eigenvalue of the Laplacian
matrix of a graph is nonzero if and only if the graph is connected [Merris 1995].

The research described in this paper was inspired by the question of finding the
smallest possible rank among matrices with a given zero/nonzero (off-diagonal)
entry pattern. Depending on the type of matrices one allows (for example, real or
complex, symmetric or not), different answers for the same pattern are possible
[Berman et al. 2008; IMA-ISU 2010; Barioli et al. 2009], and a complete solution
to this problem for any large class of matrices seems difficult. On the other hand,
for certain types of patterns (graphs), there are very satisfying complete answers.
For example, for trees and positive semidefinite (psd) real symmetric or complex
Hermitian matrices, the minimum rank is equal to one less than the number of
vertices [van der Holst 2003; Johnson and Duarte 2006]; for trees and symmetric
matrices over any field, the minimum rank plus the zero forcing number gives the
number of vertices [Chenette et al. 2007; Johnson and Duarte 1999].
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One part of our work, described in Section 4, seeks to use the detailed knowledge
we have for trees in general graphs. In particular, if a graph contains a tree as
an induced subgraph, under what conditions will matrices associated to the larger
graph behave like those for the tree with respect to minimum rank?

Rather than looking for trees, participants in the 2004 Research Experience for
Undergraduates at Central Michigan University sought to find an alternative that
would provide just as much rank information. The result, designed specifically
for Hermitian psd matrices, was called ordered subgraphs [Hackney et al. 2009].
For some time, it was conjectured that ordered subgraphs would in fact determine
minimum rank, but a counterexample on eight vertices was found: the Möbius ladder
on eight vertices has psd minimum rank (msr) five and an ordered subgraph (OS)
number of four [Mitchell et al. 2010].

Results on ordered subgraphs are of additional interest thanks to their connection
to “zero forcing.” Defined by the AIM Minimum Rank-Special Graphs Work Group
[AIM 2008], zero forcing was also the result of looking for approaches to solving
a minimum rank problem, but has since been shown to be of interest in quantum
physics [Burgarth et al. 2011]. It turns out that the OS number and the positive
semidefinite zero forcing number are two sides of the same coin, as for any graph
they sum to the number of vertices [Barioli et al. 2010]. Moreover, the complement
of an OS set is a zero forcing set and vice versa. This duality means that our OS
results have an equivalent formulation in terms of zero forcing.

One of the many open questions concerning ordered subgraphs (and zero forcing)
is how large the class of graphs is for which minimum rank and the ordered subgraph
number differ. If the msr of a graph is one or two, then so is the OS number. The
Möbius ladder example means that msr three is the remaining case1 in which we
might hope that msr and the ordered subgraph number coincide. In Section 3, we
study graphs that have msr 3, show that msr 3 implies OS number 3, and give a
characterization of those graphs with OS number 3. Whether OS number equal to 3
implies msr 3 remains open, although we are able to use our work on maximum
induced trees from Section 4 to present some partial results in Section 5.

2. Preliminaries

A graph G is an ordered pair (V (G), E(G)), where V (G) is a set of vertices
and E(G) is a set of unordered pairs of vertices. In this paper, we assume all graphs
are simple (that is, have no multiple edges or loops). Two vertices u and v are said
to be adjacent if they share an edge. If u and v are adjacent, we write uv ∈ E(G).

1For small rank, that is — some results are known for small nullity as well; see for example
[van der Holst 2003].
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For any n× n Hermitian matrix A = [ai j ], we associate a simple graph G(A)
with vertex set V (G)= {v1, . . . , vn} and viv j ∈ E(G) if and only if ai j 6= 0 in A.
Note that G(A) is independent of the diagonal elements of A. For a given graph G,
we define P(G) to be the set of all positive semidefinite matrices with graph G.
The minimum semidefinite rank of G is

msr(G)=min{rank A : A ∈ P(G)}.

If there is a path between two vertices u and v in G, the distance from u to v,
dG(u, v), is the length of the shortest path between u and v. If no such path exists,
we say dG(u, v)=∞.

The tree size of a graph G, ts(G), is the maximum size of a subset of V (G) that
induces a tree [Erdős et al. 1986]. Since msr(G) = |G| − 1 if and only if G is a
tree, this gives a general lower bound of msr(G)≥ ts(G)− 1 [Booth et al. 2008].

Let the neighborhood of a vertex v in G be N (v)= {w ∈ V (G) : vw ∈ E(G)},
and let the closed neighborhood of v be N [v] = N (v) ∪ {v}. We say vertices u
and w are duplicate vertices if N [u] = N [w].

If S ⊆ V (G) such that all of the vertices in S are pairwise nonadjacent, we
say S is an independent set. The maximum cardinality of all independent sets of a
graph G is called the independence number of G and is denoted by α(G) [West
1996, p. 113].

The union of two graphs G1 and G2, denoted by G1 ∪G2, is the disconnected
graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪ E(G2). We frequently
write the union of k copies of a graph G as kG. The join of G1 and G2, written
G1∨G2, is the graph with vertex set V (G1)∪V (G2) and edge set consisting of all
of the edges in E(G1) and E(G2) as well as the edges {uv : u ∈ V (G1), v ∈ V (G2)}

[West 1996, p. 118].
Suppose EV = {Ev1, . . . , Evn} is an n-tuple of vectors in Cm such that, for i 6= j , we

have 〈Evi , Ev j 〉 = 0 if and only if viv j /∈ E(G). We call EV a vector representation of
G [Parsons and Pisanski 1989]; the rank of EV is defined as the dimension of the
span of the vectors.

Let EV = {Ev1, . . . , Evn} be a vector representation of G. If V = [Ev1 · · · Evn],
then V ∗V ∈ P(G). If A ∈ P(G), then A = B∗B for some matrix B with the
same rank [Horn and Johnson 1990, p. 407]. Thus, for any A ∈ P(G), we can find
a vector representation of G that produces A. This implies that finding a vector
representation for a graph is equivalent to finding a positive semidefinite matrix of
the graph.

Let G be a graph on n vertices and let S = (v1, . . . , vm) be an ordered set of
vertices of G. Let Gk be the subgraph of G induced by {v1, . . . , vk} for k ≤ m,
and let Hk be the connected component of Gk containing vk . If for each k there
exists a vertex wk of G such that wk /∈ Gk , wkvk ∈ E(G), and wkvl /∈ E(G) for
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all vl ∈ V (Hk) with l 6= k, we say S is a vertex set of ordered subgraphs (OS-set)
of G [Hackney et al. 2009].

For every vk in an OS-set, we call its corresponding wk its OS-neighbor. The
maximum cardinality of all OS-sets of a graph G is called the OS-number of G,
denoted by OS(G).

Example 2.1. In the cycle C4, OS(C4)= 2. Here are some examples of OS-sets
of C4:

v1 w1

v2 w2

v1 w1, w2

v2

v1 w1, v2

w2

Proposition 2.2 [Hackney et al. 2009]. If G is a connected graph then msr(G)≥
OS(G)≥ ts(G)− 1. In particular, if T is a tree, for every v ∈ V (T ), V (T )\{v} is
an OS-set.

If H is an induced subgraph of G, then OS(H)≤OS(G). The OS-number is re-
lated to the positive semidefinite zero forcing number, Z+(G), by OS(G)+Z+(G)=
|G| [Barioli et al. 2010].

3. Graphs with minimum semidefinite rank three

An open question that has been of interest is a complete characterization of all
graphs for which msr(G)= 3. Some prior results [Booth et al. 2011; AIM 2008]
give sufficient conditions, including if G = Pn with n ≥ 4 or G = Cn with n ≥ 5
then msr(G)= 3, and a sufficient condition for when msr(G)≤ 3:

Proposition 3.1 [Booth et al. 2011]. If the cycle Cm is not a subgraph of G for all
m ≥ 4, then msr(G)≤ 3.

From examples, however, it seems that avoiding C4 in the complement is enough.

Conjecture 3.2. Let G be a connected graph with no duplicate vertices. Then
msr(G)≤ 3 if and only if C4 is not a subgraph of G.

Remark 3.3. Conjecture 3.2 is not true if the duplicate vertices condition is removed.
For example, if G is the graph obtained by identifying an edge of the complete
graph on four vertices with an edge of a C4 (resulting in a graph on six vertices),
then a C4 is a subgraph of G but msr(G)= 3.

We now prove several results that are related to this conjecture, including that
this result holds for the OS-number.

Lemma 3.4. Let G be a simple connected graph. If S= (v1, v2, v3, v4) is an OS-set
of G, then there is an OS-set S′ of G of size four such that G[S′] has at least two
components and each component has at most two vertices.
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Proof. If G[S] has three or four connected components, the conclusion follows.
Otherwise, we consider two cases:

Case 1: G[S] has two connected components, G[{v1, v2, v3}] and G[{v4}]. Then
w3 /∈ N [v1]∪ N [v2] and G[{v1, v2, w3, v4}] has at least two components with each
component having at most two vertices. Also, S′ = (v1, v2, v4, w3) is an OS-set
with OS-neighbors (w1, w2, w4, v3).

Case 2: Suppose G[S] is connected. Then w4 /∈
⋃3

i=1 N [vi ], and therefore
G[{v1,v2,v3,w4}] has at least two components. Furthermore, S1= (v1,v2,v3,w4) is
an OS-set with OS-neighbors (w1, w2, w3, v4), reducing the problem to case 1. �

Remark 3.5. If S1 and S2 are OS-sets of G such that there are no edges vw ∈ E(G)
with v ∈ S1 and w ∈ S2, then S1 ∪ S2 is an OS-set.

Lemma 3.6. Let G be a connected graph with no duplicate vertices. If an induced
subgraph H of G is isomorphic to sK2∪ t K1, then the vertices of H form an OS-set.

Proof. Clearly, K1 is an OS-set since G is connected. Let K2 = {v,w}. Since G
has no duplicate vertices, N [v] 6= N [w]. Without loss of generality, we can assume
there is a vertex u adjacent to v but not adjacent to w. Then (w, v) is an OS-set
with neighbors (v, u). �

Proposition 3.7. Let G be a connected graph with no duplicate vertices. Then
OS(G)≥ 4 if and only if G contains C4 as a subgraph.

Proof. Lemma 3.4 and Lemma 3.6 imply that OS(G)≥ 4 if and only if G contains
4K1, 2K1 ∪ K2, or 2K2 as an induced subgraph. However, 4K1 is K4, 2K1 ∪ K2

is K4 minus an edge, and 2K2 is C4, giving the desired result. �

As a consequence of Proposition 3.7, we see the absence of a C4 subgraph in G
is necessary for msr(G)≤ 3. We believe that this condition is sufficient and can be
shown by proving OS(G) = 3 if and only if msr(G) = 3. We do know, however,
that if G is a connected graph without duplicate vertices and msr(G) ≤ 3, then
msr(G)= ts(G)− 1 [Booth et al. 2011]. As a result, we have:

Proposition 3.8. If msr(G)= 3, then OS(G)= 3 (and Z+(G)= |G| − 3).

Conjecture 3.9. Suppose G is a connected graph without duplicate vertices. If
OS(G)= 3, then msr(G)= 3.

4. Maximum induced trees

Let T be a maximum induced tree of a graph G. For a vertex w in V (G) such
that w is not on T , we define E(w) to be the edge set of all paths in T between
every pair of vertices of T that are adjacent to w.

Prior work on minimum semidefinite rank has yielded a sufficient, but not
necessary, condition for when msr(G)= ts(G)− 1 [Booth et al. 2008]:
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~ There exists a maximum induced tree T such that for u and w not on T ,
E(u)∩E(w) 6=∅ if and only if u and w are adjacent in G.

We now present some sufficient conditions for strict inequality.

Proposition 4.1. Let T be a maximum induced tree of a graph G. If u and w
are vertices not on T such that uw /∈ E(G), |E(u) ∩ E(w)| = 1, and u and w
are only adjacent to the longest path P of T that contains E(u) ∩ E(w), then
msr(G) > ts(G)− 1.

Proof. The vertices of T not on P belong to an OS-set S. We enlarge S by
adding the vertices on P . Let P = v1v2 · · · vi xyvi+1 · · · vk−1vk , and without loss
of generality assume xw ∈ E(G) and yu ∈ E(G), where {xy} = E(u)∩E(w). We
add vertices vk, vk−1, . . . , vi+2, vi+1 to the set S since we can find OS-neighbors
vk−1, vk−2, . . . , vi+1, y, respectively. Then we add w, y, and x in that order to the
set followed by vi , . . . , v2 since these vertices have OS-neighbors x, u, vi , . . . , v1

respectively. The size of this enlarged OS-set is ts(G). Thus, msr(G)≥ OS(G) >
ts(G)− 1. �

This leads us to the following result.

Corollary 4.2. Let T be a maximum induced tree of a graph G. Suppose u and w
are vertices not on T such that uw /∈ E(G), E(u)∩E(w) contains only the edge xy
where xw ∈ E(G), P = v1v2 · · · vi xyvi+1 · · · vk−1vk is the longest path P of T
that contains E(u) ∩ E(w), there exists a path P ′ on T where P ′ = yt1t2 · · · tl
and tlu ∈ E(G), and u and w are adjacent only to vertices of P ∪ P ′. Then
msr(G) > ts(G)− 1.

Proof. The vertices of T not on P or P ′ belong to an OS-set S. We enlarge S
by adding the vertices of P and P ′. We add vertices vk, vk−1, . . . , vi+1 to the
set S since the set of OS-neighbors is vk−1, vk−2, . . . , y, respectively. Then we add
w, y, t1, . . . , tl in that order since these vertices have OS-neighbors x, t1, t2, . . . ,
tl, u, respectively. Also, we add x, vi , vi−1, . . . , v2 since the set of OS-neighbors is
vi , vi−1, . . . , v1, respectively. Thus, by the same argument as in Proposition 4.1,
msr(G)≥ OS(G) > ts(G)− 1. �

Proposition 4.3. Let T be a maximum induced tree of a graph G such that T is
a star graph. If there exist vertices u and w not on T such that uw /∈ E(G) and
|E(u)∩E(w)| = 1, then msr(G) > ts(G)− 1.

Proof. The vertices of T that are not the center of T and are not adjacent to u or w
belong to an OS-set. Let the center vertex of T be x and E(u)∩E(w)= {xy}. We
add vertices of T which are adjacent to u and not on E(u)∩E(w) to the OS-set
since all of these vertices have OS-neighbor x . Then we add u and y in that order
since they have OS-neighbors y and w. Next, we add vertices that are adjacent
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to w and not on E(u)∩ E(w) to the OS-set since they also have OS-neighbor x .
Thus, the size of OS-set is ts(G), so msr(G)≥ OS(G) > ts(G)− 1. �

If E(u)∩E(w)=∅, we have the following result.

Proposition 4.4. Let T be a maximum induced tree of a graph G. If there are two
vertices u, w ∈ V (G) such that u, w /∈ V (T ), uw ∈ E(G), and E(u)∩E(w) = ∅,
then OS(G) > ts(G)− 1. In particular, msr(G) > ts(G)− 1.

Proof. Let G ′ = G[V (T )∪ {u, w}]. By constructing an OS-set of size ts(G) in G ′,
we will show that OS(G) > ts(G)−1. Let v1, . . . , va ∈ V (T ) be vertices of degree
one in G ′. Then (v1, . . . , va) forms an OS-set of G ′ with each vi having correspond-
ingwi such thatwi is the only vertex adjacent to vi . Let F=G[V (G ′)\{v1, . . . , va}].
If va+1, . . . , vl ∈ V (T ) such that degF (vi ) = 1 for all i ∈ {a + 1, . . . , l}, then
(v1, . . . , va, va+1, . . . , vl) forms an OS-set of G ′ where, for all i ∈ {a+ 1, . . . , l},
wi is the unique vertex in F such that viwi ∈ E(F). We can repeat this process
until all vertices of degree one in G[V (G ′)\{v1, . . . , vl}] have been included in an
OS-set of G ′, say S = (v1, . . . , vk).

Let V(u) = {v ∈ V (T ) : vv′ ∈ E(u) for some v′} and V(w) = {v ∈ V (T ) :
vv′ ∈ E(w) for some v′}. Without loss of generality, assume that |V(u)| ≥ |V(w)|.
Because |V(u)∩V(w)|≥2 would imply E(u)∩E(w) 6=∅, there are two possibilities:

Case 1: |V(u) ∩ V(w)| = 1. Note that if |V(u)| = n and |V(w)| = m, then
ts(G) = k + n +m − 1. Suppose v ∈ V(u)∩V(w). Since G[V(u)] is a tree, by
Proposition 2.2, V(u)\{v} = (vk+1, . . . , vk+n−1) forms an OS-set. Furthermore,
(v1, . . . , vk+n−1, u) forms an OS-set since uw ∈ E(G) but viw /∈ E(G) for all
i ∈ {1, . . . , k+ n− 1}.

Now order vertices {x1, . . . , xm−1}=V(w)\{v} such that dH (xi ,u)≤dH (xi+1,u)
where H = G[V (T )∪ {u}]. Since for every i ≤ m − 1 there is a j > i such that
dH (xi , u) = dH (x j , u)+ 1 and where x j xi ∈ E(G) but x j is not adjacent to any
other vertex in the connected component of G[{x1, . . . , x j−1}], we now have an
OS-set (v1, . . . , vk+n−1, u, x1, . . . , xm−1) of size ts(G).

Case 2: V(u)∩V(w)=∅. Begin by ordering vertices ui ∈ V(u) by dJ (ui , w)≥

dJ (ui+1, w) for i = 1, . . . , n− 1 where J = G[V (T )∪ {w}].
Let H=G[V (T )∪{u}] and define V′(w)=V (T )\(V(u)∪S). Let v be the unique

vertex in V′(w) such that dH (v, u) < dH (x, u) for every x ∈ V′(w) where x 6=
v. If V(u) = {u1, . . . , un}, then, because {u1, . . . , un, v} induces a tree on G,
(u1, . . . , un) forms an OS-set. Moreover, (v1, . . . , vk, u1, . . . , un, u) forms an OS-
set, as uw ∈ E(G) but uiw /∈ E(G) and v jw /∈ E(G) for any i, j .

Order the vertices in V′(w)= {x1, . . . , x j , v} such that dH (xi , u)≥ dH (xi+1, u)
for i=1, . . . , j−1. Then S∪(u1, . . . , un, u, x1, . . . , x j ) is an OS-set that includes u
and all vertices on the maximum induced tree except for v. �
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5. OS number three

In this final section, we use our work on maximum induced trees, and, in particular,
the condition ~, to prove that OS(G)= 3 implies msr(G)= 3 for certain graphs.

Proposition 5.1. Let G be a connected graph without duplicate vertices. If G does
not contain C4 as a subgraph then msr(G)≤ 3 or there exists a connected graph G ′

without duplicate vertices such that

(1) G is an induced subgraph of G ′,

(2) G ′ does not contain C4 as a subgraph,

(3) K1,3 is an induced subgraph of G ′, and

(4) G ′ is not (|G ′| − 3)-connected.

Proof. For the last claim, if G ′ is (|G ′| − 3)-connected then msr(G) ≤ 3 [van der
Holst 2008; Lovász et al. 1989; 2000].

Case 1: α(G) = 3. If necessary, form G ′ by adding a new vertex adjacent to all
vertices of G.

Case 2: α(G)= 2. Let {u, v} ⊂ V (G) induce 2K1 in G. Form G ′ by adding a new
vertex adjacent to all vertices of G except for u and v. As G does not contain K3

as an induced subgraph, G ′ does not contain C4 as a subgraph.

Case 3: α(G)= 1. Then G is complete and msr(G)≤ 1. �

Suppose that G is a connected graph without duplicate vertices such that G does
not contain C4 as a subgraph and OS(G)= 3. From Proposition 5.1, we may assume
without loss of generality that K1,3 is an induced subgraph of G. Therefore K1,3 is
a maximum induced tree T of G.

Remark 5.2. Since G does not contain C4 as a subgraph, there are at most three
vertices in G not belonging to T that are pairwise disjoint.

Remark 5.3. If u and v are not on T and satisfy ~, then there exists a vector
representation of G[V (T )∪ {u, v}] of rank three.

Proposition 5.4. Suppose G is a connected graph without duplicate vertices such
that G does not contain C4 as a subgraph and OS(G) = 3. Let T = K1,3 be a
maximum induced tree of G. If u, v, and w are pairwise nonadjacent vertices
not on T such that no two of them satisfy ~, then H = G[V (T )∪ {u, v, w}] has
minimum semidefinite rank equal to three.
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Proof. If independent vertices u, v, and w are joined to all vertices of K1,3, then
H = K1,3 ∨ 3K1. Thus, its complement consists of 2K3. From this observation,
since G does not contain C4 as a subgraph, the complement of H has to be one of
the following graphs:

1 2

3

4u

v

w

1

2
3

4

u

v

w

1

2
3

4

u

v

w

1

2
3

4

u

v

w

1

2
3

4

u

v

w

Since all of these graphs are Cm-free for m ≥ 4, we can use Proposition 3.1 to
conclude that msr(H)≤ 3. Since OS(H)= 3, it follows that the msr(H)= 3. �
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A new series for π via
polynomial approximations to arctangent
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Using rational functions of the form{
t12m(t − (2−

√
3))12m

1+ t2

}
m∈N

we produce a family of efficient polynomial approximations to arctangent on
the interval [0, 2−

√
3], and hence provide approximations to π via the identity

arctan(2−
√

3)= π/12. We turn the approximations of π into a series that gives
about 21 more decimal digits of accuracy with each successive term.

1. Introduction

Two of the best-known series for π are

1
π
=

2
√

2
9801

∞∑
k=0

(4k)! (1103+ 26390k)
(k!)4 3964k ,

devised by Ramanujan about a century ago (see [Baruah et al. 2007; 2009] for
history), and

1
π
=

√
10005

4270934400

∞∑
k=0

(−1)k(6k)! (13591409+ 545140134k)
(3k)! (k!)3

,

from the 1980s [Chudnovsky and Chudnovsky 1988]. These series are interesting
and important because they converge so rapidly. Indeed, the Ramanujan series gives
about 6 more decimal places for π with each successive term and the Chudnovsky
series about 13 more decimal places per term [Weisstein n.d.]. The Chudnovsky
series was in fact the formula used recently by Yee and Kondo [2011] to compute 10
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trillion digits of π , and a modified version of it is used by Mathematica to compute
a large number of digits of π [Vardi 1991].

Here, in Theorem 2, we present a new series for π that yields about 21 more
decimal places per term. The new series is derived from polynomial approximations
to the classical arctangent function that come from the integration of rational
functions.

2. Polynomial approximations to arctangent

The integration of certain rational functions has proven useful in the approximation
of the classical arctangent function, and, because of identities such as arctan 1=π/4,
these can produce approximations to π . For example, the family{

t4m(t − 1)4m

1+ t2

}
m∈N

was recently studied in [Medina 2006], where it is shown that it can be used to
produce polynomial approximations to arctan x on the interval [0, 1] whose error
is governed by the size of the rational functions on that interval. In this section,
we use these methods to produce polynomial approximations to arctan x on a
smaller interval where the size of the integrand is much smaller, and hence the
approximations converge much faster.

Consider the sequence of rational functions

tan (t − (2−
√

3))bn

1+ t2 ,

where an and bn are integers chosen so that the polynomial division yields a constant
remainder, and hence after integration, the arctangent function. We use 2−

√
3

because arctan(2−
√

3) = π/12; thus, if we can approximate arctangent at that
value, we can approximate π .

Through trial and error, one finds that 12 is the smallest integer value of the bn

above that yields a constant remainder when the polynomial division is performed.1

The smallest value for an is 2, but in what follows we choose 12 for the sake of
symmetry. As Lemma 2 will show, the same is true for multiples of 12; thus, we
explore the family of functions{

t12m(t −α)12m

1+ t2

}
m∈N

(1)

where we let α = 2−
√

3 to facilitate the notation.

1All computations were done using Mathematica 7.0.
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The following two lemmas, whose proofs are immediate via initial computations
and induction, will facilitate our exploration of the family of rational functions.

Lemma 1. For any m ∈ N,

t12m

1+t2=t12m−2
−t12m−4

+t12m−6
−t12m−8

+· · ·−1+
1

1+t2=

6m−1∑
n=0

(−1)n+1t2n
+

1
1+t2 .

Lemma 2. For any m ∈ N,

t12m(t −α)12m

1+ t2 = qm(t)+
rm

1+ t2 , (2)

where rm = (−1)m(4α)6m
= (−1)m(5533696 − 3194880

√
3)m , and the qm are

polynomials given recursively by

qm(t)= t12(t −α)12 qm−1(t)+ rm−1 q1(t),

with the initial quotient

q1(t)=−(4α)6+ (4α)6t2
− (4α)6t4

+ (4α)6t6
− (4α)6t8

+ (4α)6t10

+ (9184097− 5302440
√

3)t12
+ 12(564719

√
3− 978122)t13

+ (8113645− 4684416
√

3)t14
+ 8(267909

√
3− 464032)t15

+ (1200770− 693264
√

3)t16
+ 208(780

√
3− 1351)t17

+ (47554− 27456
√

3)t18
+ 8(411

√
3− 712)t19

+ (461− 264
√

3)t20

+ 12(
√

3− 2)t21
+ t22.

The following proposition provides a closed-form formula for the quotients.

Proposition 1. For each m ∈N, define the polynomial quotient qm(t)=
24m−2∑

n=0
antn

and the polynomial remainder rm ∈ R via (2). Then

(i) a2n = (−1)m+1+n(4α)6m and a2n+1 = 0 for 0≤ n ≤ 6m− 1;

(ii) a24m−2 = 1 and a24m−3 = −
(12m

1

)
α (these being the coefficients of the two

highest powers of t in the quotient);

(iii) a24m−3−2n =−a24m−3−2(n−1)−
( 12m

2n+1

)
α2n+1 for 1≤ n ≤ 6m− 1; and

(iv) a24m−2−2n =−a24m−2−2(n−1)+
(12m

2n

)
α2n for 1≤ n ≤ 6m− 1.

Proof. (i) We can rewrite and simplify the function to get

t12m(t −α)12m

1+ t2 = t12m
(
(t −α)12m

1+ t2

)
= t12m

(
pm(t)+

(−1)m(4α)6m

1+ t2

)
,
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where pm(t) is some other quotient polynomial; we also note that Lemmas 1 and 2
together imply that the remainder (−1)m(4α)6m is indeed correct. Using Lemma 1,
we make another substitution and obtain

t12m pm(t)+(−1)m(4α)6m
(

t12m−2
− t12m−4

+ t12m−6
− t12m−8

+· · ·−1+
1

1+ t2

)
,

which is the result of (i).

(ii) We write t12m(t−α)12m

1+t2 =
t12m

1+t2 (t −α)
12m . Use Lemma 1 to obtain(

t12m−2
− t12m−4

+− · · ·− 1+
1

1+ t2

)
(t −α)12m,

and the binomial theorem to arrive at(
t12m−2

− t12m−4
+− · · ·− 1+

1
1+ t2

) 12m∑
k=0

(
12m

k

)
tkα12m−k(−1)k . (3)

The coefficients of the two highest powers of t will come from multiplying the two
highest powers of t in (t −α)12m with t12m−2 in the first factor above.

(iii) To find each new odd coefficient we take the coefficient of the previous highest-
order odd term and pair it with one lower power of t on the left of (3); since the signs
of t alternate, we negate this. Each new coefficient will have a new lower-order
term from the right paired with the highest power on the left. Adding these two, we
get the coefficients of the new odd power of t .

(iv) The same argument as in (iii) gives the coefficients of the even powers. �

Since the functions (1) are small in the interval [0, α], integration of (2), after
division by rm , will yield approximations to arctangent on [0, α]. That is,

1
rm

∫ x

0

t12m(t −α)12m

1+ t2 dt =
1

rm

∫ x

0
qm(t) dt + arctan x, (4)

and hence

Pm(x)=
−1
rm

∫ x

0
qm(t) dt

will approximate arctangent on [0, α] with the error of the approximation given
by the integral on the left side of (4), the maximum error occurring when x = α.
Proposition 1 provides a way to directly compute (after integration) these approxi-
mating polynomials; we will provide examples after we analyze their accuracy.

Substituting the largest and smallest values of t into the denominator of the left
side of (4), we arrive at the inequality

1
rm

∫ α

0

t12m(t−α)12m

1+α2 dt<
1

rm

∫ α

0

t12m(t−α)12m

1+t2 dt<
1

rm

∫ α

0
t12m(t−α)12m dt. (5)
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It is now evident that, to further analyze the approximation, we need to compute

Im :=

∫ α

0
t12m(t −α)12m dt.

This is done via repeated integration by parts:

Im =

∫ α

0
t12m(t −α)12m dt =

((12m)!)2

(24m+ 1)!
α24m+1. (6)

Since, as already noted, the left side of (4) is the error when Pm(x) approximates
arctan x on [0, α], we will use

em =
1

rm

∫ α

0

t12m(t −α)12m

1+ t2 dt;

that is, em denotes the error when Pm(α) is used to approximate arctanα = π/12.
Using this notation, we use (5) with m and m+ 1 to get

1
(1+α2)rm

Im < em <
1

rm
Im and

1
(1+α2)rm+1

Im+1< em+1<
1

rm+1
Im+1. (7)

Combining these two inequalities we arrive at

em+1

em
<
(1+α2) rm Im+1

rm+1 Im
, (8)

which provides the estimate on how much better the next iterate is compared to the
previous one.

Theorem 1. Define em =
∣∣π/12− Pm(α)

∣∣, the error produced in approximating
π/12 by the m-th iterate of the new sequence of approximating polynomials. Then,
as m→∞,

em+1

em
<
α19

234 ≈7.9063628967×10−22
=0.00000000000000000000079063628967.

That is, each iterate gives about 21 more decimal places of accuracy in approxi-
mating π/12.

Proof. Use |rm | = (4α)6, 1+α2
= 4α, (6) and (8) to get

em+1

em
<
((12(m+ 1))!)2α24(m+1)+1

(4α)6(m+1)(24(m+ 1)+ 1)!
·
(4α)6m+1 (24m+ 1)!
((12m)!)2 α24m+1

=
((12m+ 12)(12m+ 11) · · · (12m+ 1))2α24

(4α)5 (24m+ 25)(24m+ 24) · · · (24m+ 2).

As m→∞, this becomes

(1212 m12)2α24

45 α5 2424 m24 =
α19

45 224 =
α19

234 . �
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Example 1. We use the coefficient formulas of Proposition 1 to find approximating
polynomials. With m = 1,

P1(x)= x−
x3

3
+

x5

5
−

x7

7
+

x9

9
−

x11

11
+
(419−60

√
3)x13

4096
−

3(362−209
√

3)x14

14336

−
(2916

√
3−955)x15

61440
−
(172−99

√
3)x16

8192
+
(1255+468

√
3)x17

34816
−

13x18

4608

−
13(61+36

√
3)x19

38912
−
(172+99

√
3)x20

10240
+
(5051+2916

√
3)x21

86016

−
3x22

22528(2−
√

3)5
+

x23

94208(2−
√

3)6
.

Then

P1(2−
√

3)=
57423810140− 22529108583

√
3

70291415040
,

and numerically we verify that
∣∣P1(2−

√
3)−π/12

∣∣< 4.81587× 10−23, or, after
multiplication by 12,∣∣∣∣57423810140− 22529108583

√
3

5857617920
−π

∣∣∣∣< 5.779054023× 10−22.

Example 2. With m = 2,

P2(α)=
3013932255372315189770935− 1155363167301686928932166

√
3

3868552012005059812392960
,

and
∣∣P2(α)−π/12

∣∣≈ 2.55× 10−44.

3. Converting the iteration into a series

Theorem 1 requires the computation of a new set of polynomial coefficients when
we want to obtain an approximation to π with more accuracy. For example, if we
have a polynomial that gives n digits of accuracy for π when evaluated at α, then
we need to compute a whole new polynomial, and hence a new set of coefficients,
in order to obtain (n + 21) more digits of accuracy. Following a technique first
developed in [Dalzell 1944] and used recently in [Lucas 2009] to produce a rational
series that gives 3–4 more decimal places of accuracy for π with each successive
term, we now focus on developing a series that provides the same number of
digits (i.e., about 21) per term in computing π as each iteration of the polynomial
sequence.

We know that
t12(t −α)12

1+ t2 = q1(t)−
(4α)6

1+ t2 , (9)
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which can be rewritten as

1
1+ t2 =

q1(t)
t12(t −α)12+ (4α)6

.

Next we factor out (4α)6 on the denominator to get

1
1+ t2 =

q1(t)
(4α)6

·
1

1+
( t (t−α)

2
√
α

)12
.

Expanding the right side in a geometric series gives

1
1+ t2 =

(
q1(t)
(4α)6

) ∞∑
n=0

(−1)n
(

t (t −α)
2
√
α

)12n

. (10)

We integrate both sides on [0, α] and bring the integral inside the sum to get

arctanα =
1

(4α)6

∞∑
n=0

(−1)n

(4α)6n

∫ α

0
q1(t) t12n(t −α)12n dt. (11)

The polynomial q1(t) is of degree 22 so we need to compute integrals of the form∫ α

0
t12n+k(t −α)12n dt

for k = 0, . . . , 22. This is done using repeated integration by parts; we get∫ α

0
t12n+k(t −α)12n dt =

(12n+ k)! (12n)!α24n+k+1

(24n+ k+ 1)!
. (12)

If we write q1(t)=
∑22

k=0 ak tk , then

π

12
=

1
(4α)6

∞∑
n=0

(−1)n α18n+1 (12n)!
46n

22∑
k=0

ak
(12n+ k)!αk

(24n+ k+ 1)!
. (13)

Simplification of the inside sum leads to the following theorem.

Theorem 2. We have

π =

∞∑
n=0

(−1)n (2−
√

3)18n+1 ((12n)!)2(p1(n)+ p2(n)
√

3)
212(n+1)−1(24n+ 1)! q(n)

, (14)
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where

p1(n)= 293063424013062144n11
+ 1743144635880815616n10

+ 4603477509110094336n9
+ 7113505268868220800n8

+ 7133195052290432592n7
+ 4863768060244254588n6

+ 2295600628029058188n5
+ 747948981593488485n4

+ 164336063152773014n3
+ 23098444048852896n2

+ 1859706966144526n+ 64510302034815,

p2(n)= 92656102528843776n11
+ 553643573938200576n10

+ 1466739601852815360n9
+ 2269385610499169280n8

+ 2272991576208150528n7
+ 1542973536047871648n6

+ 721853379546109560n5
+ 231741816550236960n4

+ 49765271182018546n3
+ 6762629909208426n2

+ 519049199193830n+ 16879034409510, and

q(n)= 18786186952704n11
+ 111934363926528n10

+ 295980289228800n9

+ 457648310845440n8
+ 458818030927872n7

+ 312432825729024n6

+ 147050553999360n5
+ 47683923189760n4

+ 10399859469824n3

+ 1446143661248n2
+ 114720643240n+ 3904125225.

Moreover, if we define the error between the m-th partial sum of the series and π
by em = |π − Sm |, then, as m→∞,

em+1

em
<
(2−
√

3)19

234 ≈ 7.9063628967× 10−22.

Proof. Because of Theorem 1, it suffices to show that∣∣∣∣ 1
(4α)6

∞∑
n=m

(−1)n

(4α)6n

∫ α

0
q1(t) t12n(t−α)12n dt

∣∣∣∣= ∣∣∣∣ 1
rm

∫ α

0

t12m(t−α)12m

1+t2 dt
∣∣∣∣. (15)

Using (9) to substitute for q1(t) and interchanging integration and summation
in (15), we obtain

1
(4α)6

∫ α

0

∞∑
n=m

(−1)n

(4α)6n

(
t12n(t −α)12n

1+ t2

)
(t12(t −α)12

+ (4α)6) dt,

which we can simplify to

1
(4α)6

∫ α

0

(
t12(t −α)12

+ (4α)6

1+ t2

) ∞∑
n=m

(
(−1)t12(t −α)12

(4α)6

)n

dt.
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The sum is a geometric series; after simplification, we get (15), as desired. �

The new series (14) gives about 21 more decimal places of accuracy with each
successive term, though the terms are significantly more complicated and hence more
“computationally expensive” than those in either the Ramanujan and Chudnovsky
series. We note that all three series require the computation of a single square root,
but the powers of 2−

√
3 in the new series do slow down numerical computations.

Thus, at this stage, it is fair to say that the Chudnovsky series still provides the
fastest numerical tool for computing large numbers of digits of π . Nevertheless,
it should be noted that the series (14) is very easy to program (in any language)
and provides a viable method for computing digits of π ; in fact, we have used it to
compute a million digits on a desktop computer.

4. Further remarks

A similar process can be used with the rational functions{
t4m(t − 1/

√
3)6m

1+ t2

}
m∈N

to produce polynomial approximations to arctangent on the interval [0, 1/
√

3], and
hence approximations to π , because arctan(1/

√
3)= π/6. These approximations

yield 5–6 more decimal places of accuracy with each iteration, and the computations
are significantly “less expensive” than those of the sequence herein. (Our research
in fact began with the exploration of this other family.)

It is our opinion that the series (14) should be seen as a byproduct of the ap-
proximating polynomials Pm which provide good approximations to arctangent
on the entire interval [0, 2−

√
3]. It is possible that the Pm could prove useful

for approximating π when used in conjunction with multiple-angle identities such
as π/4= 5 arctan 1

7 + 2 arctan 3
79 [Calcut 2009].
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In this paper we modify the classical Lotka–Volterra differential equations to
analyze competition between two aquatic plant species, a submersed plant and
a free-floating plant. We formulate and analyze a system of three differential
equations that control the dynamics of the free-floating plant biomass and both
aboveground and belowground biomass for the submersed plant. We investigate
our model to understand how plant competition is affected by grass carp herbivory
on the submersed plant’s aboveground biomass. We analyze both a reduced model,
for which the submersed plant is assumed to have constant belowground biomass,
and the full model. In each case, we compute stability of equilibria and derive a
minimal grass carp stocking rate such that the free-floating plant may dominate
the submersed plant. For the reduced model we show that the rate at which grass
carp are stocked may exhibit a hysteresis effect.

1. Introduction

Hydrilla verticillata, commonly known as hydrilla, is one of the most invasive
aquatic plants in the United States. Hydrilla has a rapid growth rate (as much as
1 inch per day), is typically found in depths up of 15–20 feet, and can grow to be
25 feet long in springs, lakes, marshes, ditches, rivers and tidal zones [Gettys et al.
2009]. Hydrilla is easily spread to a new body of water by just one leaf fragment
attached to a boat. Millions of dollars a year are spent on efforts to control and
eliminate hydrilla, including herbivory by grass carp and insects (e.g., leaf-mining
flies), mechanical harvesters, herbicides, and competition with native aquatic plants
[Gettys et al. 2009; Hanlon et al. 2000]. Thus understanding the biology and control
of hydrilla is a problem of great significance.

Hydrilla is a submersed plant which is attached to the ground with an extensive
root system, but may grow large enough so that its branches form dense mats
of plant matter on the surface of the water [Gettys et al. 2009]. A free-floating
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plant floats on the surface of the water and has roots that collect nutrients from
the water and hang unanchored to the ground. An example of a free-floating
plant is Eichhornia crassipes, commonly known as water hyacinth. Although
water hyacinth is a nonnative, invasive species that must be carefully controlled,
it has some desirable qualities. For example, it can be used to purify wastewater
[Wolverton and McDonald 1979] and is often used as an ornamental plant for ponds
and aquariums [Kay and Hoyle 2001].

When submersed plants and floating plants such as hydrilla and water hyacinth
coexist they compete for light, space, and nutrients. The classic mathematical
model of two species that compete for a common resource is the Lotka–Volterra
differential equations [Edelstein-Keshet 2005; Zeeman 1995; Wangersky 1978]. In
this paper we use the Lotka–Volterra competition model to formulate and analyze
competition between a submersed plant and a free-floating plant.

Grass carp (or white amur) are fish that are native to rivers in Eastern Asia and
may live up to 25 years and grow as much as 10 pounds per year [Gettys et al. 2009].
Large grass carp consume up to 30% of their body weight each day. One of the
main biocontrol agents of hydrilla is the sterilized, triploid grass carp. In fact, the
triploid grass carp will eat many types of aquatic weeds, but prefer submersed plants
such as hydrilla when available [Cuda et al. 2008]. One study [Pine and Anderson
1991] found that given a choice of 12 different types of plants, the water hyacinth
was the triploid grass carp’s least preferred plant while the top three preferred plants
were American pondweed, hydrilla, and elodea, each of which is a submersed plant
species.

The rate at which grass carp should be stocked is an active area of research in
aquatic plant management [Hanlon et al. 2000]. This rate depends on the feeding
rate of the fish and the growth rate and quality of the plants, both of which are
influenced by many factors [Cuda et al. 2008; Sutton et al. 2012]. Too few grass
carp may be ineffective, whereas too many may completely eliminate all submersed
aquatic plants. One study found that 25 to 30 grass carp per hectare of vegetation
was necessary to control the undesirable vegetation while maintaining some amount
of desirable vegetation [Hanlon et al. 2000]. The stocking rate of grass carp is
often recommended based on the percentage of area that has been infested with the
submersed plant [Hanlon et al. 2000; Sutton et al. 2012]. In our model we account
for herbivory of the submersed plant by grass carp using a single parameter to
control the stocking rate of grass carp. We use our model to determine the minimal
stocking rate that may result in significant reduction or elimination of submersed
plant biomass. The minimal stocking rate is expressed in terms of the relevant
parameters that describe the ecosystem.

It is known that plant competition is influenced by herbivory [Van et al. 1998;
Center et al. 2005; Tipping et al. 2009]. Our model shows that herbivory of
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submersed plant aboveground biomass by grass carp may allow a free-floating
plant to out-compete a submersed plant and proliferate. This is an example of
the principle of competitive exclusion [Zeeman 1995; Wangersky 1978]. We show
that, at a critical grass carp stocking rate, a stable ecosystem with large amounts
of submersed plant biomass and no free-floating plant biomass may shift to a
stable ecosystem with large amounts of free-floating plant biomass and small or no
submersed plant biomass. This sudden shift in the stability of an ecosystem has been
observed in lakes, coral reefs, woodlands, deserts, and oceans [Scheffer et al. 2001].

Mathematical models of competing aquatic plants and herbivore-plant ecosystems
can be found throughout the literature. A model of free-floating and submersed plant
dynamics is presented in [Scheffer et al. 2003], but aboveground and belowground
biomass for the submersed plant is not distinguished. Competing aquatic plants are
modeled in [Shukla 1998] when an undesirable plant is subjected to removal in
order to promote the growth of the desirable plant. Experimental data is used in both
of these papers to support the models, but neither use Lotka–Volterra dynamics and
neither consider herbivory as a plant management strategy. Mathematical models of
herbivore-plant dynamics are presented elsewhere, though. For example, in [Wilson
et al. 2001] a model for the biocontrol of water hyacinth by insect (weevil) herbivory
is considered. In [Gurney and Nisbet 1998], a two-variable Lotka–Volterra predator-
prey food chain model is considered for which the herbivore is a predator and the
plant is prey. Neither of these two publications model plant competition.

In this paper, we use existing models to formulate differential equations that
control the dynamics of aboveground and belowground submersed plant biomass and
free-floating plant biomass. We include Lotka–Volterra type competition between
the free-floating plant and the aboveground submersed plant and a parameter that
controls the mortality of the submersed plant aboveground biomass due to grass
carp herbivory. Our paper is outlined as follows. In Section 2 we present the model
and nondimensionalize the equations. In Section 2.1 we assume the submersed
plant has a constant belowground biomass and analyze a reduced (two-equation)
model. In Section 2.2, we consider the full model that incorporates the dynamics
for both belowground and aboveground biomass of the submersed plant. In each
section we present theoretical results that show how the equilibria and stability of
equilibria depend on grass carp stocking rate. In the conclusion, the results are
summarized and weaknesses of the model are discussed.

2. The model equations

The model equations are

d B
dt
= s A− cB

(
1−

A
m A

)
− dB B, (2-1)
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d A
dt
= (cB+ rA A)

(
1−

A
m A

)
−α1 AL − dA A, (2-2)

d L
dt
= rL L

(
1−

L
mL

)
−α2 AL . (2-3)

All of the parameters s, c, dB , rA, m A, α1, dA, rL , mL , α2 are nonnegative.
Here A and B are (respectively) the aboveground and belowground biomass of
the submersed plant species and L is the free-floating species biomass. In order
to ensure biologically feasible solutions, initial data must be nonnegative. The
growth dynamics of the submersed plant in the absence of L are given by the
coupled equations (2-1) and (2-2), and for dA = 0, the model is the same as the
one in [Turchin 2003; Turchin and Batzli 2001]. The aboveground biomass growth
equation (2-2) incorporates logistic growth in the absence of B and exponential
growth (regrowth) from energy supplied by the belowground biomass in the absence
of A. The parameter dA in (2-2) controls the mortality of aboveground biomass of
the submersed plant. The growth dynamics of the floating plant, given by (2-3), are
logistic in the absence of A. Logistic growth has been experimentally verified as a
good growth model for water hyacinth [Wilson et al. 2001; 2005]. Competition is
modeled as the standard Lotka–Volterra type described in [Edelstein-Keshet 2005]
with interaction terms proportional to AL . The competition coefficients α1 and α2

control the ability of each plant species to compete with the other and measure how
efficient one species is compared to the other at capturing the shared resources.

The parameter dA has dimensions (time)−1 and represents the number of grass
carp that are stocked per unit time. As discussed in the introduction, grass carp
prefer submersed plants when available and triploid grass carp are sterilized before
stocking [Hanlon et al. 2000; Cuda et al. 2008; Pine and Anderson 1991]. Fish-
eating predators such as otters and other fish may reduce the number of grass carp,
but large grass carp are not affected by predation [Gettys et al. 2009] and grass carp
may live 20 or more years [Cuda et al. 2008]. Thus our model assumes that grass
carp do not feed on the free-floating plant, there is a limited timespan for biocontrol
with large grass carp, and the natality and mortality of grass carp may be ignored.

In order to reduce the number of parameters and understand the important
relationships between parameters, we nondimensionalize the model equations by
introducing the dimensionless variables and parameters

x1 = dB B(sm A)
−1, y1 = Am−1

A , x2 = Lm−1
L , τ = rL t, (2-4)

ρ= cs(rLdB)
−1, δ2= dBr−1

L , φ= cr−1
L , ψ = rAr−1

L , δ1= dAr−1
L , (2-5)

θ1 = α1mLr−1
L , θ2 = α2m Ar−1

L . (2-6)

After substituting (2-4)–(2-6) into (2-1)–(2-3) we get the system
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dx1/dτ = δ2(y1− x1)−φx1(1− y1), (2-7)

dy1/dτ = (ρx1+ψy1)(1− y1)− θ1 y1x2− δ1 y1, (2-8)

dx2/dτ = x2(1− x2)− θ2 y1x2. (2-9)

Here the variable x1 controls the (nondimensionalized) submerged plant below-
ground biomass dynamics, y1 controls the (nondimensionalized) submerged plant
aboveground biomass dynamics, and x2 controls the (nondimensionalized) floating
plant biomass dynamics.

2.1. Constant belowground biomass. In this section we assume that B is constant
and analyze the regrowth model for the submersed plant in the absence of logistic
growth as in [Gurney and Nisbet 1998]. Here we replace ρx1 with a constant β to
get

dy1/dτ = β(1+ψβ−1 y1)(1− y1)− θ1 y1x2− δ1 y1,

for (2-8). We will make the additional assumption that there is a significant amount
of belowground biomass and ψ � β. Then these simplifications with (2-8), (2-9)
give the system

y′1 = β(1− y1)− θ1 y1x2− δy1, x ′2 = x2(1− x2)− θ2 y1x2, (2-10)

where we have replaced δ1 with δ, and the prime denotes differentiation with respect
to the dimensionless time variable τ . The equilibria are constant solutions and are
found by solving the algebraic system that results by setting the right sides of each
equation in (2-10) to zero. The long-term behavior of a dynamical system may be
determined by equilibria and initial conditions. In general, initial conditions that
are close enough to a stable equilibrium will yield solutions that evolve in time to
these equilibria. In the remainder of this paper, we perform standard equilibrium
and local stability analysis of nonlinear differential equations [Edelstein-Keshet
2005; Strogatz 2001].

For the equilibrium computations, it will be convenient to define the quantities

γ = 1+ δβ−1, α = θ1β
−1. (2-11)

We first consider a graphical analysis of the equilibria in the y1-x2 phase plane. The
nullclines are curves along which either y′1 = 0 or x ′2 = 0. These curves are

x2 = (1− γ y1)/(αy1), x2 = 0, x2 = 1− θ2 y1, (2-12)

where the first equation is the y1-nullcline (when y′1 = 0) and the second two
equations are the x2-nullclines (when x ′2 = 0). When the y1-nullcline intersects
either of the x2-nullclines for y1 ≥ 0 and x2 ≥ 0, the point of intersection is an
equilibrium. Substituting nonnegative values of y1 and x2 into the right side of
(2-10) results in a vector field that describes the flow of (2-10) in the phase plane
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(that is, the direction of increase or decrease of either y1 or x2). The flow along the
y1-nullcline is vertical and the flow along the x2-nullcline is horizontal.

Figure 1 depicts example phase-plane plots. Each phase plane depends on
parameter values. As can be seen from these plots, either one, two, or three
equilibria exist. The free-floating plant extinction equilibrium along the x2 = 0-
nullcline when y1 = γ

−1 exists for all parameter values. There may also be one or
two equilibria where x2 > 0 and y1 > 0. These are the coexistence equilibria. Note
that there are no submersed plant extinction equilibria when y1 = 0. This is clear
as we assumed that the belowground biomass is constant and positive.

Motivated by the phase-plane plots we will analyze the equilibria algebraically.
We denote the equilibria as (ŷ1, x̂2). Substituting x̂2 = 0 from (2-12) into the first
equation from (2-12) yields the free-floating plant extinction equilibrium

(ŷ1, 0)= (γ−1, 0). (2-13)

Substituting x̂2 = 1− θ2 ŷ1 from (2-12) into the first equation from (2-12) gives a
quadratic equation in x̂2 that yields

x̂±2 = (2θ1)
−1(δ̂− δ±√(δ̂− δ)2+ 4θ1(δ− δ0)

)
, ŷ±1 = θ

−1
2 (1− x̂2), (2-14)

where
δ̂ = θ1−β and δ0 = β(θ2− 1). (2-15)

After substituting (2-15) into the radicand in (2-14), simple algebra yields

(δ̂− δ)2+ 4θ1(δ− δ0)= (δ+ θ1+β)
2
− 4θ1θ2β,

which is zero for two values of δ, one of which is negative as θ1, θ2, and β are
positive. The radicand in (2-14) may have a positive zero for δ = δc, in which case
we get that x̂c

2 = x̂+2 = x̂−2 , where

δc = 2
√
θ1θ2β − θ1−β, x̂c

2 = (2θ1)
−1(δ̂− δc). (2-16)

The constants δ̂, δ0, and δc will be used to characterize the stability and existence
of equilibria for (2-10). We consider all parameters except δ fixed and positive and
δ ≥ 0. First, the floating plant equilibria x̂±2 may be nonnegative and real-valued if
and only if δ ≥ δc and x̂+2 = x̂−2 when δ = δc and the radicand is zero. If δ > δc,
x̂+2 increases with δ while x̂−2 decreases with δ. It is easy to show that δc ≤ δ0. If
δ = δ0, then either x̂+2 or x̂−2 equals zero depending on the sign of δ̂− δc.

The dependence of x̂±2 on δ may be plotted in the δ-x̂2 plane with all other
parameters fixed. The resulting curve has the general shape of a parabola which
opens to the right. Figure 2 depicts such curves for δ0 > 0 and two cases where
δc < 0, x̂c

2 < 0 and δc > 0, x̂c
2 > 0.



A MATHEMATICAL MODEL OF BIOCONTROL OF INVASIVE AQUATIC WEEDS 437

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→
↓

→

↓

→ ←

submersed plant (y1)

flo
at

in
g

pl
an

t
(x

2
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→
↓

→

↓

→ ←

submersed plant (y1)

flo
at

in
g

pl
an

t
(x

2
)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

←
↑

→ ↓

→ ↓→ ←

submersed plant (y1)

flo
at

in
g

pl
an

t
(x

2
)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

←↑

→ ↓

→ ←

submersed plant (y1)

flo
at

in
g

pl
an

t
(x

2
)

Figure 1. Plots of the y1-x2 phase plane for (2-10). The y1-
nullcline (curve) and x2-nullclines (lines) are from (2-12). The
arrows indicate the direction of flow of (2-10) along each null-
cline. Equilibria are depicted at the dots where the y1-nullcline
intersects either of the x2-nullclines. Each phase plane shows the
free-floating plant extinction equilibrium at (γ−1, 0). There are no
other equilibria in the top-left. The phase plane in the top-right
shows a coexistence equilibrium for which the nonzero x2-nullcline
is tangential to the y1-nullcline. The phase planes in the bottom
show two (left) and one (right) coexistence equilibria where the
x2-nullcline intersects the y1-nullcline.

The phase planes plotted in Figure 1 can be explained (qualitatively) by observing
the equilibrium curve depicted in the right panel of Figure 2. First, recall that
γ = 1+ β−1δ defines the free-floating plant extinction equilibrium. Define the
functions f1(y1)= (1− γ y1)/(αy1) and f2(y1)= 1− θ2 y1 so that the y1-nullcline
is x2 = f1(y1) and the (nonzero) x2-nullcline is x2 = f2(y1) from (2-12). If
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Figure 2. Plots of x̂±2 as a function of δ from (2-14). The knee
of the curve is (δc, x̂c

2) from (2-16). For the curve on the left,
δ̂ < δc < 0, and for the curve on the right, 0< δc < δ̂. The top half
of each curve (x̂2 > x̂c

2) is x̂2 = x̂+2 while the bottom half of each
curve (x̂2 < x̂c

2) is x̂2 = x̂−2 .

0 ≤ δ < δc < δ̂, then f1(y1) does not intersect f2(y1) and the free-floating plant
extinction equilibrium is unique. In this case, 0< δ < δc so that δ is below the knee
of the curve in the right panel of Figure 2.

If δ is then increased until δ = δc, then f2(y1) is tangent to f1(y1) and f1(y1)=

f2(y1) for exactly one value of y1. This is displayed in the phase plane in the
top-right in Figure 1 and corresponds to the knee of the curve in the right panel
of Figure 2 where δ = δc and x̂−2 = x̂+2 = x̂c

2 . As δ is increased further, both x̂+2
and x̂−2 are real and positive with x̂−2 < x̂+2 . This corresponds to the phase plane in
the bottom-left in Figure 1 and the interval δc <δ < δ0 in the right panel of Figure 2.
As δ continues to increase until δ > δ0 and x̂−2 < 0, there is a single feasible positive
equilibrium given by x̂+2 . This corresponds to the phase plane in the bottom-right
in Figure 1 and the interval δ > δ0 in the right panel of Figure 2.

In order to analyze local stability of the equilibria we compute the linearized
stability (Jacobian) matrix for (2-10) which is given by

J (ŷ1, x̂2)=

(
−β − θ1 x̂2− δ −θ1 ŷ1

−θ2 x̂2 1− θ2 ŷ1− 2x̂2

)
. (2-17)

The eigenvalues λ of this matrix satisfy the characteristic equation

λ2
− tr(J (ŷ1, x̂2))λ+ det(J (ŷ1, x̂2))= 0.

Standard theory [Edelstein-Keshet 2005; Strogatz 2001] is that a necessary and
sufficient condition for stability of (ŷ1, x̂2) is that the eigenvalues of the Jacobian
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have negative real parts or

tr(J (ŷ1, x̂2)) < 0 and det(J (ŷ1, x̂2)) > 0. (2-18)

Substituting the free-floating plant extinction equilibrium ŷ1 = γ
−1 and x̂2 = 0 into

(2-17) gives

tr(J (γ−1, 0))= 1−β − δ− θ2γ
−1, (2-19)

det(J (γ−1, 0))=−(1− θ2γ
−1)(β + δ). (2-20)

Comparing (2-18) and (2-19), (2-20) shows that (γ−1, 0) is stable if and only if
θ2 > γ which is equivalent to δ < δ0 from (2-15).

We next consider stability of the equilibria (ŷ+1 , x̂+2 ) and (ŷ−1 , x̂−2 ) where we
assume x̂−2 > 0. Substitute x̂2 = 1− θ2 ŷ1 and (2-17) reduces to

J (ŷ1, x̂2)=

(
−β − θ1 x̂2− δ −θ1 ŷ1

−θ2 x̂2 −x̂2

)
, (2-21)

so that

tr(J (ŷ1, x̂2))=−β − δ− x̂2(1+ θ1), (2-22)

det(J (ŷ1, x̂2))= x̂2[β + δ− θ1θ2 ŷ1+ θ1 x̂2]. (2-23)

It is clear in this case that tr(J (ŷ1, x̂2)) < 0 as x̂2, δ, β, and θ1 are all positive.
Substitute θ2 ŷ1=1−x̂2 and, after some algebra, we get that a necessary and sufficient
condition for x̂2> 0 and det(J (ŷ1, x̂2))> 0 is x̂2>(1−γβθ−1

1 )/2= (2θ1)
−1(δ̂−δ).

Thus, if δ > δc from (2-16), then x̂+2 is stable and x̂−2 is unstable.
Table 1 summarizes the conditions on δ > 0 for the existence of equilibria for

(2-10) and their (linearized) stability properties. The pair (δc, x̂c
2) describes the

point in the δ-x̂2 plane at the knee of the equilibrium curve when x̂±2 is plotted as a
function of δ, as in Figure 2. The first three rows correspond to δc > δ̂ so that the
knee of the equilibrium curve is below the δ-axis in the δ-x̂2 plane as depicted in
the left panel in Figure 2. The middle three rows correspond to 0< δc < δ̂ and the
knee of the equilibrium curve is in the top-right quadrant of the δ-x̂2 plane as in the
right panel in Figure 2. For the last three rows δc < δ̂ and δc < 0 so that the knee of
the equilibrium curve is in the top-left quadrant of the δ-x̂2 plane.

Inspection of the middle three rows of Table 1 shows that when δc and x̂c
2 are

both positive, as in Figure 2, right, equilibria (x̂±2 , ŷ±2 ) are created as δ increases
through δc. This indicates a saddle-node bifurcation [Strogatz 2001] at δ = δc.
In this case, there is a simple zero eigenvalue for the Jacobian matrix (2-17) for
which tr(J (ŷ1, x̂2)) < 0 and det(J (ŷ1, x̂2))= 0. The bifurcation diagram, plotted in
Figure 3, shows ŷ1 vs. δ and x̂2 vs. δ and the stability properties of these equilibria.
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(δc, x̂c
2) δ0 δ (γ−1, 0) (ŷ+1 , x̂+2 ) (ŷ−1 , x̂−2 )

(−,−) δ0 < 0 δ > 0 unstable stable not feasible
(−,−) or (+,−) δ0 > 0 0< δ < δ0 stable not feasible not feasible
(−,−) or (+,−) δ0 > 0 δ > δ0 unstable stable not feasible

(+,+) δ0 > 0 0< δ < δc stable does not exist does not exist
(+,+) δ0 > 0 δc < δ < δ0 stable stable unstable
(+,+) δ0 > 0 δ > δ0 unstable stable not feasible
(−,+) δ0 < 0 δ > 0 unstable stable not feasible
(−,+) δ0 > 0 0< δ < δ0 stable stable unstable
(−,+) δ0 > 0 δ > δ0 unstable stable not feasible

Table 1. A summary of existence and stability properties of the
equilibria from (2-13) and (2-14) as they depend on δ > 0. Stable
and unstable indicate existence of a positive equilibrium whereas
not feasible indicates the equilibrium exists, but is negative. The
constants δc, x̂c

2 , and δ0 are given by (2-15) and (2-16).

Figure 3 displays a hysteresis effect. If the free-floating plant is extinct so
that (ŷ1, x̂2) = (γ

−1, 0) and δ is increased through δ = δ0, the free-floating plant
extinction equilibrium loses stability. Any small perturbation from the extinction
equilibrium (for example, a small remnant of free-floating plant attached to a boat is
introduced into the lake) will cause a jump in the ecosystem to the stable coexistence
equilibrium (ŷ+1 , x̂+2 ). If (ŷ1, x̂2) = (ŷ+1 , x̂+2 ) and δ is then decreased, the system
does not restabilize to the free-floating plant extinction equilibrium until δ = δc at
the saddle-node bifurcation.

Figure 4 shows simulations of the system (2-10). The parameters obey the middle
three rows of Table 1 corresponding to the bifurcation diagram that is plotted in
Figure 3. In this case, solutions for δ < δc quickly (approximately 30 time units)
achieve equilibrium at (γ−1, 0), while solutions for δ > δ0 achieve equilibrium at
to (ŷ+1 , x̂+2 ) after approximately 100 time units.

In order to draw meaningful biological conclusions from the analysis, the
dimensional forms of the equations and parameters must be considered. The
nondimensionalizations are specified in (2-4), (2-5), and (2-6). Table 1 shows that
for δ > δ0 the free-floating plant extinction equilibrium is unstable. Using (2-5),
(2-6), and (2-15), this inequality becomes

dA > cBr−1
L (α2m Ar−1

L − 1), (2-24)

where δ replaced δ1 in (2-5). That is, the mortality of the aboveground biomass (dA)
should be larger than the production of belowground biomass (cB) scaled by a
factor which increases with the competition efficiency of the submersed plant (α2)
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Figure 3. Bifurcation curves in the δ-ŷ1 plane (left) and δ-x̂2 plane
(right) for δ ≥ 0, ŷ1 ≥ 0, and x̂2 ≥ 0 where β = 1, θ1 = 2, and
θ2= 1.24. Stable equilibria are plotted solid whereas unstable equi-
libria are plotted dashed. The submersed plant carrying capacity
equilibria ŷ1 = (1+β−1δ)−1 is the top curve in the left panel and
the free-floating plant extinction equilibria x̂2 = 0 is the horizontal
line in the right panel. The coexistence equilibria ŷ1 = ŷ±1 make
up the bottom curve (solid ŷ+1 and dashed ŷ−1 ) in the left panel and
x̂2 = x̂±2 make up the top curve (solid x̂+2 and dashed x̂−2 ) in the
right panel. The coexistence equilibria coalesce when ŷ+1 = ŷ−1
and x̂+2 = x̂−2 at a saddle-node bifurcation for δ = δc = 0.15 from
(2-16). Here δ0 = 0.24 and there is a region of bistability for
δc < δ < δ0.

and the carrying capacity of aboveground biomass (m A) and decreases with the
growth rate of the free-floating plant (rL ). The minimal stocking rate is quantified
by (2-24). Any plant management strategy that can reduce the right side of (2-24)
results in a smaller number of grass carp necessary to destabilize the ecosystem
towards free-floating plant dominance. If the quantity in parentheses can be made
negative, for example by increasing the growth rate of rL , grass carp will not be
needed at all as the free-floating plant extinction equilibrium is stable for δA = 0
(corresponding to row 1 and row 7 in Table 1 where δ0 < 0).

2.2. Nonconstant belowground biomass. In the previous section, the belowground
biomass was assumed positive. This precludes the existence of a submersed plant
extinction equilibrium. In this section we investigate the full model (2-7), (2-8),
(2-9) and show that there is a stable submersed plant extinction equilibrium. As in
the case for constant belowground biomass, there are multiple equilibria which will
be denoted by (x̂1, ŷ1, x̂2) and which depend on the various parameters. Setting the
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Figure 4. Simulations of the system (2-10) where the parameters
are as in Figure 3 with β = 1, θ1 = 2, and θ2 = 1.24. For both
plots the initial conditions are (y1(0), x2(0))= (0, 0.01). In the left
panel, δ = 0.0748< δc, and in the right panel, δ = 0.264> δ0. The
dashed horizontal lines are the stable equilibria at y1= (1+β−1δ)−1

and x2 = 0 in the left panel and y1 = ŷ+1 and x2 = x̂+2 in the right
panel.

right side of (2-7) to zero yields

x̂1 = δ̂2 ŷ1(1+ δ̂2− ŷ1)
−1, δ̂2 = φ

−1δ2. (2-25)

If we next substitute (2-25) into the right side of (2-8) and use (2-9), then we get
that the equilibria ŷ1 and x̂2 obey

ŷ1
(
[ψ(1− ŷ1)− δ1− θ1 x̂2](φ+ δ2−φ ŷ1)+ ρδ2(1− ŷ1)

)
= 0, (2-26)

x̂2(1− x̂2− θ2 ŷ1)= 0. (2-27)

We first consider the case ŷ1 = 0 and the submersed plant is extinct. This yields
two possibilities. The case (0, 0, 0) is extinction of both species and the case
(0, 0, 1) is extinction of the submersed plant with the free-floating plant at carrying
capacity.

We now consider the equilibria such that x̂1 > 0, ŷ1 > 0 and the submersed plant
is not extinct. First, note that (2-25) implies that φ+ δ2−φ ŷ1 > 0 and from (2-26)
we see that the feasible equilibria must obey 0< ŷ1 < 1 as all of the parameters are
nonnegative. For the coexistence equilibria x̂1 > 0, ŷ1 > 0, x̂2 > 0 and neither the
submersed plant nor the free-floating plant is extinct. In this case, (2-27) gives that
x̂2 = 1− θ2 ŷ1 and substituting this into (2-27) yields the equation

ν ŷ2
1 + (ξ − 1− ν(1+ δ̂2))ŷ1+ 1+ δ̂2− ξκ = 0, (2-28)
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where

ν = 1− θ1θ2ψ
−1, ξ = ψ−1(δ1+ θ1− ρδ̂2), κ = 1+

(δ1+ θ1)δ̂2

δ1+ θ1− ρδ̂2
. (2-29)

We will use (2-28) in Theorem 1 to examine coexistence equilibria under a con-
strained parameter set.

In order to analyze stability of equilibria, we consider the Jacobian matrix
J (x̂1, ŷ1, x̂2) which is given by−δ2−φ(1− ŷ1) δ2+φ x̂1 0

ρ(1− ŷ1) −ρ x̂1− θ1 x̂2− δ1+ψ − 2ψ ŷ1 −θ1 ŷ1

0 −θ2 x̂2 1− 2x̂2− θ2 ŷ1

 . (2-30)

We will use (2-30) and the results of the equilibria computations to show the
following theorem.

Theorem 1. If δ1 > ψ + ρδ̂2 and θ2 < min{1, θ−1
1 ψ}, then (0, 0, 1) is the only

feasible stable equilibrium of (2-7), (2-8), (2-9).

Proof. First consider the free-floating plant extinction equilibrium (x̂1, ŷ1, 0) where
x̂1 ≥ 0 and ŷ1 ≥ 0. The Jacobian from (2-30) is J (x̂1, ŷ1, 0) whose last row is the
vector (0, 0, 1− θ2 ŷ1). Thus J (x̂1, ŷ1, 0) has one eigenvalue equal to 1− θ2 ŷ1. In
this case, inspection of (2-25) and (2-26) yields that 0≤ ŷ1 < 1 as all parameters
are positive and all equilibria must be nonnegative. The assumption θ2 < 1 shows
that 1− θ2 ŷ1 > 0 so that (x̂1, ŷ1, 0) is unstable.

We next consider (0, 0, 1), the submersed plant extinction equilibrium when the
free-floating plant is at carrying capacity. Substituting this into the Jacobian (2-30)
results in the matrix

J (0, 0, 1)=

−δ2−φ δ2 0
ρ ψ − θ1− δ1 0
0 −θ2 −1

 , (2-31)

and the eigenvalues obey

(1+λ)
(
λ2
+(θ1+δ1−ψ+δ2+φ)λ+(δ2+φ)(θ1+δ1−ψ)−ρδ0

)
= 0. (2-32)

Thus λ=−1 or

λ=
(
−γ ±

√
γ 2
− 4[(δ2+φ)(θ1+ δ1−ψ)− ρδ0]

)
/2, (2-33)

where γ = θ1+ δ1−ψ + δ2+φ which is positive as it was assumed that δ1 > ψ .
Therefore, nonreal eigenvalues have negative real parts. If the eigenvalues are real,
they will both be negative if (δ2+φ)(θ1+ δ1−ψ)− ρδ0 > 0 which is equivalent
to δ1 > ρδ̂2(1+ δ̂2)

−1
+ψ − θ1 where δ̂2 = δ2φ

−1. The assumption δ1 >ψ + ρδ̂2

shows that both eigenvalues are negative in this case and (0, 0, 1) is stable.
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Coexistence equilibria obey x̂1 > 0, ŷ1 > 0, x̂2 > 0 and are found by solving
(2-28) for ŷ1. The solutions of (2-28) are

ŷ± =
ν(1+ δ̂2)+ 1− ξ ±

√
(ν(1+ δ̂2)+ 1− ξ)2− 4ν(1+ δ̂2− ξκ)

2ν
. (2-34)

The parameters ν, ξ , and κ are defined in (2-29). The assumption θ2 < θ−1
1 ψ

implies that ν is positive. The assumption δ1 > ψ + ρδ̂2 implies that ξ > 1 and
κ > 1+ δ̂2. Therefore the radicand in (2-34) is positive, ŷ± are real, y− < 0, and
y+ > 0. Thus y− is not feasible. Expanding the expression in the radicand of (2-34)
yields that

(ξ − 1)2+ ν2(1+ δ̂2)
2
− 2ν(1+ δ̂2)− 2νξ(1+ δ̂2)+ 4νξκ,

which is larger than (ξ − 1+ ν(1+ δ̂2))
2 using the fact that 4νξκ > 4νξ(1+ δ̂2). It

follows that y+ > 1+ δ̂2 so y+ is not feasible since 0< ŷ1 < 1 for coexistence. �

Figure 5 shows the time courses for simulations of (2-7), (2-8), (2-9) when the
hypotheses of Theorem 1 are obeyed. Substituting (2-4), (2-5), and (2-6) into the
assumptions in Theorem 1 yields that

dA > rA+ s, rL >max
{
α2m A,

α1α2m AmL

rA

}
. (2-35)
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Figure 5. Simulation of the system (2-7), (2-8), (2-9) where the
parameters are θ1 = 0.1, ψ = 1, ρ = 1, δ2 = 0.1, φ = 0.25,
δ1 = 1.1 · (ψ + ρδ̂2), and θ2 = 0.9 · min{1, θ−1

1 ψ}. The initial
conditions are (x1(0), y1(0), x2(0))= (1, 0, 0.01). For these values
of δ1 and θ2, the hypotheses of Theorem 1 are obeyed and (0, 0, 1)
is the only feasible stable equilibrium of (2-7)–(2-9).
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If the growth rate of the free-floating plant rL may be enhanced by nutrient loading
as described in [Scheffer et al. 2003], it may be possible that the second inequality
in (2-35) is satisfied.

3. Conclusion

We have presented a modified Lotka–Volterra competition model (2-1)–(2-3) for
two competing aquatic plants where one species is a submersed plant while the
other is a free-floating plant. We investigated how herbivory by grass carp affects
the competitive abilities of the submersed and free-floating plants. In Section 2.1 we
analyzed a reduced model (2-10) by phase-plane methods and computed equilibria
and stability of these equilibria. We derived conditions in (2-35) on the grass carp
stocking rate dA so that the free-floating plant extinction equilibrium is unstable and
free-floating plants may dominate the ecosystem. In addition, we showed that grass
carp stocking may exhibit a hysteresis effect whereby grass carp may be decreased
below the critical level at which the free-floating plant extinction equilibrium loses
stability and suppression of the submersed plant biomass may still be achieved.
This is depicted in the bifurcation diagram in Figure 3. In Section 2.2 we included
the belowground biomass dynamics of the submersed plant. We proved Theorem 1
which provides sufficient conditions (2-35) on the grass carp stocking rate dA and
free-floating plant growth rate rL that guarantee the free-floating plant carrying
capacity equilibrium is the only feasible equilibrium and is locally stable.

Although the model (2-1)–(2-3) is qualitative and not intended to give a de-
tailed quantitative description of the biology, it may be analyzed without extensive
numerical computations and the results are amenable to biological interpretation
and experimentation. For example, (2-35) shows that the minimal stocking rate
is the sum of the growth rate of the aboveground biomass for the submersed
plant (rA) and the rate at which the aboveground biomass supplies energy for
growth of the belowground biomass (s). Both of these quantities depend on the
particular species of submersed and floating plant being considered, but they may
be measured experimentally and an experimentally determined stocking rate may
then be compared with the minimal stocking rate predicted here. Similarly, the
predicted hysteresis effect may be experimentally verified just as in [Scheffer et al.
2003].

Finally, we discuss some model weaknesses and future work. Grass carp were
assumed to graze on aboveground biomass at a rate proportional to the amount of
aboveground biomass, with dA the proportionality constant, resulting in the term
dA A in (2-2). This is a linear functional response [Turchin 2003] in grass carp
herbivory. The hyperbolic or Holling’s type II functional response [Turchin 2003] is
k N A(D+A)−1. Here A is the aboveground biomass of the submersed plant, k is the
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maximum killing rate, N is the number of grass carp, and D is the prey (submersed
plant) density at which the killing rate is half of the maximum. This functional
response models a saturation of the grass carp feeding rate so that grass carp have a
maximum rate of consumption (k N ) of submersed plant biomass. Future work will
include analysis of a model with hyperbolic functional response for the grass carp.
We have also assumed spatial heterogeneity in our formulation of the model using
ordinary differential equations. Future investigations will be to include modeling
spatial heterogeneities in the ecosystem with partial differential equations.
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Irreducible divisor graphs for numerical monoids
Dale Bachman, Nicholas Baeth and Craig Edwards

(Communicated by Scott Chapman)

The factorization of an element x from a numerical monoid can be represented
visually as an irreducible divisor graph G(x). The vertices of G(x) are the monoid
generators that appear in some representation of x , with two vertices adjacent
if they both appear in the same representation. In this paper, we determine
precisely when irreducible divisor graphs of elements in monoids of the form
N = 〈n, n+ 1, . . . , n+ t〉 where 0 ≤ t < n are complete, connected, or have a
maximum number of vertices. Finally, we give examples of irreducible divisor
graphs that are isomorphic to each of the 31 mutually nonisomorphic connected
graphs on at most five vertices.

1. Introduction and preliminaries

Irreducible divisor graphs related to commutative rings were introduced and studied
in [Coykendall and Maney 2007] and later studied in [Maney 2008; Axtell and
Stickles 2008; Axtell et al. 2011]. In these papers, the authors represent elements
of commutative rings using graphs which provide information about factorization
properties of these elements. The general goal is to use graph-theoretic information
to study factorization properties in the ring. As a notable example, it was shown in
[Coykendall and Maney 2007; Axtell et al. 2011] that an atomic domain is a unique
factorization domain precisely when every irreducible divisor graph over that ring
is complete (equivalently, connected). We note that graphical representations of
numerical semigroups have also been useful in computing a minimal set of relations,
as in [Rosales 1996].

In this paper, we study irreducible divisor graphs of elements in numerical
monoids — additive submonoids of the nonnegative integers. Our results indirectly
apply to irreducible divisor graphs of elements of the form xn in a polynomial
ring of the form F [xn1, xn2, . . . , xnt ] where F is a field, x is an indeterminate and
n1 < n2 < · · ·< nt are positive integers. By considering a specific family of monoids
(and hence commutative rings) we are able to provide more precise information

MSC2010: 13A05, 20M13.
Keywords: numerical monoids, factorization, irreducible divisor graph, graphs.
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about which graphs can be realized as irreducible divisor graphs of elements in
various monoids and hence rings.

In this section we formally introduce irreducible divisor graphs of elements
in numerical monoids and give some preliminary results that both motivate and
provide useful tools for later sections. In Section 2 we consider numerical monoids
generated by intervals of positive integers. Using the results of [García-Sánchez and
Rosales 1999], where numerical monoids generated by intervals were thoroughly
studied, we are able to classify exactly when the irreducible divisor graph of an
element is complete and/or connected. We conclude Section 2 by presenting a
method that can be used to determine whether or not a connected graph can be
realized as the irreducible divisor graph of an element in a numerical monoid
generated by a given interval. In Section 3 we show, by way of examples, that
every connected graph with between one and five vertices can be realized as the
irreducible divisor graph of an element in some numerical monoid. This leads us to
ask the following question:

Question 1.1. Can every connected graph be realized as the irreducible divisor
graph of an element in some numerical monoid?

Throughout, N will denote the set of all positive integers and N0 = N∪ {0}.
Recall that a numerical monoid is an additive submonoid of N0. More precisely,
if 0 < n1 < n2 < · · · < nt are t positive integers such that for all i ∈ {2, . . . , t},
ni = a1n1+· · ·+ai−1ni−1 has no nonnegative integer solutions {a1, a2, . . . , ai−1},
then

N = 〈n1, n2, . . . , nt 〉 = {a1n1+· · ·+at nt : ai ∈ N0} ⊆ N0

is the numerical monoid minimally generated by the set {n1, n2, . . . , nt }. We now
give a formal definition of the irreducible divisor graph of an element in a numerical
monoid, mimicking the definition of the irreducible divisor graph of a nonzero
nonunit of an atomic domain.

Definition 1.2. Let N = 〈n1, n2, . . . , nt 〉 be a minimally generated numerical
monoid. If x ∈N, the irreducible divisor graph of x , denoted by G N (x), is defined
as follows:

(1) The vertex set V [G N (x)] of G N (x) consists of the ni for all i such that there
exist a1, a2, . . . , at ∈ N0 with x =

∑t
j=1 a j n j and ai 6= 0.

(2) The edge set E[G N (x)] of G N (x) has an edge from ni to n j for all pairs (i, j)
for which there exist a1, a2, . . . , at ∈ N0 with x =

∑t
k=1 aknk , and ai , a j 6= 0.

(3) We put Ai −1 ≥ 0 loops on vertex ni , where Ai = max{ai : x =
∑t

k=1 aknk

for some a1, . . . , at ∈ N0}.
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Thus, if x 6∈ N , the graph G N (x) is empty (has no vertices or edges). We write
G(x) in place of G N (x) if N is clear from context. Although we represent an edge
as (ni , n j ), this is not to be considered as an ordered pair and (n j , ni ) represents
the same edge.

This definition is consistent with the definition from [Coykendall and Maney
2007], in that if R is the semigroup ring R = F[yn1, yn2, . . . , ynt ] for some field F

and some variable y, the graphs G N (x) and G R(yx) are isomorphic.

Example 1.3. Let N have minimal generating set {5, 11, 12, 13, 14} and let x = 30.
In N we can express x only as x = 5+11+14, x = 5+12+13 and x = 6 ·5. Thus
G(30) contains 5, 11, 12, 13 and 14 as vertices, with edges connecting vertices 5
and 11, 5 and 12, 5 and 13, 5 and 14, 11 and 14, and 12 and 13. Moreover, there are
5 loops on vertex 5, since 30= 6 ·5. Thus, the irreducible divisor graph of x = 30
in N = 〈5, 11, 12, 13, 14〉 is as follows:

11

14 5
5

12

13

The following equivalent definition of an irreducible divisor graph will be useful
when determining which vertices and edges occur in an irreducible divisor graph
G(x) and will be used extensively in the following sections.

Definition 1.4. Let N = 〈n1, n2, . . . , nt 〉 be a numerical monoid. If x ∈ N , the
irreducible divisor graph of x , denoted by G N (x), is defined as follows:

(1) ni ∈ V [G(x)] if and only if x−ni ∈ N .

(2) (ni , n j ) ∈ E[G(x)] if and only if x−(ni+n j ) ∈ N .

Remark 1.5. Let x ∈ N , where N = 〈n1, n2, . . . , nt 〉 and {n1, n2, . . . , nt } is a
minimal generating set for N , and let M = 〈rn1, rn2, . . . , rnt 〉.

(1) Clearly r x ∈ M , and {rn1, rn2, . . . , rnt } is a minimal generating set for M .

(2) For any i ,
ni ∈ V [G N (x)] ⇐⇒ rni ∈ V [G M(r x)].

(3) For any distinct i and j ,

(ni , n j ) ∈ E[G N (x)] ⇐⇒ (rni , rn j ) ∈ E[G M(r x)].

Thus it is sensible, when studying irreducible divisor graphs of numerical
monoids, to study only primitive numerical monoids — those for which the generat-
ing set is relatively prime. For the balance of this article (except for some examples
in Section 3) we consider numerical monoids of the form 〈n, n+1, . . . , n+t〉. These
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are primitive, and the relationship described above allows results to be applied to
associated nonprimitive numerical monoids as well.

For a primitive numerical monoid N , the Frobenius number, F(N ), of N is the
largest natural number not in N . The following easy proposition, whose proof
we leave to the reader, gives extreme conditions for when an irreducible divisor
graph is either complete (all pairs of vertices are adjacent) or is completely devoid
of edges. This result tells us is that the problem of describing G N (x) for a given
numerical monoid N is finite — once x is large enough, it is obvious that G N (x)

contains all possible vertices and edges. We will improve this result for certain
classes of numerical monoids in Section 2.

Proposition 1.6. Let N = 〈n1, n2, . . . , nt 〉 be a primitive minimally generated
numerical monoid with n1 < n2 < · · ·< nt .

(1) If x > F(N )+nt−1+nt , then G(x) is complete.

(2) If x < 2n1, then G(x) has no edges.

An example shows that the converses of (1) and (2) in Proposition 1.6 are false.
Let N = 〈12, 13, 14〉. Then G(65) is complete because 65= (12)+3(13)+(14).
However, F(N ) = 71 and 65 < F(N )+13+14. Moreover, G(29) is an empty
graph since 29 = 12a+13b+14c has no nonnegative integer solutions (a, b, c).
However, 29≥ 2 ·12.

2. Numerical monoids generated by intervals

In this section we study numerical monoids generated by intervals; that is, minimally
generated by the set {n, n+1, . . . , n+ t}, where n ≥ 1 and 0≤ t ≤ n−1. For the
balance of this paper we will use the notation [a, b] (where a ≤ b) to represent the
interval of natural numbers {a, a+1, . . . , b}. We start with two results that we will
apply often.

Proposition 2.1 [García-Sánchez and Rosales 1999, Lemma 1 and Corollary 5].
Let n, t ∈ N and let N = 〈n, . . . , n+ t〉.

(1) x ∈ N if and only if x ∈ [pn, p(n+ t)] for some p ∈ N.

(2) F(N )=
⌈n−1

t

⌉
n−1.

For ease of discussion, we name the intervals (as subsets of the natural numbers)
contained in the monoid. We let Np = [pn, p(n+ t)], where p ∈ N0, and note
that |Np| = pt + 1. We define a gap in N to be a maximal (with respect to set
containment) nonempty interval of natural numbers that is not contained in N .
In order to help with visualization, Figure 1 shows the intervals and gaps for the
monoid N = 〈n, . . . , n+ t〉. Notice in particular that the first gap (between N0 and
N1) has size n−1, and that subsequent gaps decrease in size by t .
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(q � 1� n

(q �1� (n+t) (q+1��n

qn q(n+t)n n+t 2n0 2(n+t)

N0 N1 N2 N (N )q �1 Nq ��NqF

Figure 1. Intervals contained in the monoid N = 〈n, . . . , n+ t〉.

Graph-theoretic properties of G(x). The next result shows that the only irreducible
divisor graphs of elements in a numerical monoid generated by an interval containing
no loops are disjoint unions of components each isomorphic to K1 or K2, the
complete graphs on one and two vertices. Since loops almost always occur, we
omit consideration of loops in the sequel.

Proposition 2.2. Let n ∈N and N = 〈n, n+1, n+2, . . . , n+t〉 where 0≤ t ≤ n−1.
If x ∈ N , then G(x) has no loops if and only if G(x) is isomorphic to a disjoint
union of components each isomorphic to K1 or K2.

Proof. If x ∈ N , then by Proposition 2.1 x ∈ [pn, p(n+t)] for some positive integer
p. Thus x = pn+k where 0≤ k ≤ pt . First assume p≥ 3 and write x = pn+ps+r
where either 0 ≤ s < t and 0 ≤ r < p or else s = t and r = 0. If 0 ≤ s < t and
0 ≤ r < p, then x = r(n+ s+1)+ (p− r)(n+ s). Since p ≥ 3, either r ≥ 2 or
p−r ≥ 2. Thus there is at least one loop on either the vertex n+ s or the vertex
n+s+1. If x = p(n+ t) then there are p−1≥ 2 loops on vertex n+ t . Therefore,
if p ≥ 3, G(x) contains at least one loop.

If p = 1, then x = n+ i where i ∈ [0, t] and G(x) is isomorphic to K1. If p = 2,
then x = 2n+ j where 1≤ j ≤ 2t−1. If j is even, then x = 2n+ j = 2 (n+ j/2),
resulting in a loop on the vertex n + j/2. If j is odd, then note that, for any
n+ i ∈ V [G(x)], x−(n+ i)= 2n+ j−(n+ i)= n+ j− i and hence 0≤ j− i ≤ t .
Thus x− [(n+ i)+(n+ j− i)] = 0 and so n+ i is adjacent only to n+ j− i . As
this holds for all i with n+ i ∈ V [G(x)], G(x) consists of multiple components
isomorphic to K2, which by definition has no loops. �

The next set of theorems — our main results — give complete classifications of
when G(x) has t+1 vertices, is connected with t+1 vertices, or is complete with
t+1 vertices whenever x ∈ 〈n, n+1, . . . , n+ t〉.

Proposition 2.3. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n. Then G(x)

has t+1 vertices if and only if x ∈ [(p+1)n+t, (p+1)n+pt] with p > 0. Moreover,
if x > F(N )+n+ t then G(x) has t+1 vertices.

Proof. By Definition 1.4, vertex n+ i is in the graph if and only if x−n− i ∈ N .
Thus the t+1 vertices {n, . . . , n+ t} are in the graph if and only if

S := [x−n− t, x−n] ⊂ N .
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Since N =
⋃

p≥0 Np (by Proposition 2.1) and since |Np| ≥ t + 1 for p > 0,
we have S ⊂ Np for some p > 0 when pn ≤ x−n− t and x−n ≤ p(n+ t), i.e.,
x ∈ [(p+1)n+ t, (p+1)n+ pt].

The last condition expresses the case when x is sufficiently large that the integers
in S are all larger than F(N ); since there are no gaps above this point, S ⊆ N . This
is also the point above which

[(p+1)n+ t, (p+1)n+ pt]∩[(p+2)n+ t, (p+2)n+(p+1)t] 6=∅. �

Proposition 2.4. Let N = 〈n, . . . , n+t〉, where n > 1 and 0 < t < n. Then G(x) is
complete on t+1 vertices if and only if x ∈[(p+2)n+2t−1, (p+2)n+pt+1] for p≥0
(if t = 1), p > 0 (if t = 2) and p > 1 otherwise. Moreover, if x > F(N )+2n+2t+1
then G(x) is complete on t+1 vertices.

Proof. By Definition 1.4 the graph is complete if and only if x−(n+i)−(n+ j)∈ N
for each pair of distinct i and j in [0, t], that is, when S = [x−(n+t)−(n+t−1),

x − n− (n+ 1)] ⊂ N . Note that |S| = 2t − 1 and |Np| = pt + 1 ≥ 2t − 1 when
p≥ (2t−2)/t , which produces the bounds on p. When Np is large enough to contain
S, it is also required that pn ≤ x−(n+t)−(n+t−1) and x−n−(n+1)≤ p(n+t)
which implies x ∈ [(p+2)n+2t−1, (p+2)n+ pt+1].

As in Proposition 2.3, the second condition occurs when all elements of S are
larger than F(N ), that is, S ⊂ N whenever x−2n−2t+1 > F(N ). �

The goal now is to give a result analogous to Propositions 2.3 and 2.4 for
connected graphs with t+1 vertices. First we require two technical lemmas which
relate the vertex degrees of G(x) to the set S = [x−2n−2t+1, x−2n−1]. We
then use this set to characterize when G(x) is connected on t+1 vertices.

Lemma 2.5. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n, and let S =
[x−2n−2t+1, x−2n−1]. Then

(1) If S contains an interval of length t+1 that is contained in N then G(x) has a
vertex of degree t.

(2) If S contains an interval of length t+1 that is disjoint from N then G(x) has a
vertex of degree 0.

Proof. Let Sk = [x−2n−k− t, x−2n−k] be an interval of length t+1 in S.
For the first statement, we can find k so that Sk ⊂ N . The edge (n+k, n+ j) is

in E[G(x)] if and only if x−2n−k− j ∈ N . Since Sk ⊂ N , x−2n−k− j ∈ N for
0≤ j ≤ t . Thus (ignoring loops on n+k) the vertex n+k has degree t .

For the second statement, we can find k so that Sk is disjoint from N . As above,
we see that vertex n+k is not adjacent to any other vertex. �

If not for the vertices n and n+ t , the preceding statements could each be made
into equivalences. In fact, these vertices will require examination during the course
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of the next proof; we did not complicate the statement of Lemma 2.5 because these
special cases each occur only once.

Lemma 2.6. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n, and let S =
[x−2n−2t+1, x−2n−1]. Then G(x) is connected on t+1 vertices if and only if
|S∩N | ≥ t .

Proof. We note that an edge (n+i, n+ j) is in E(G(x)) when x−(n+i)−(n+ j)∈ N .
Since x−2n−2t+1 ≤ x−2n− i− j ≤ x−2n−1, E(G(x)) is characterized by
the intersection of S and N .

Furthermore, either S ∩ N ⊂ Np or S ∩ N ⊂ Np ∪ Np+1 for some p. To see
this, we assume that S ∩ Np 6= ∅. Then x − 2n− 2t + 1 ≤ p(n+ t), and hence
x−2n−1≤ (p+1)(n+t)−n+t−2 < (p+1)(n+t). Thus the largest element of S
is smaller than the largest element of Np+1. We may therefore consider two cases:

Case 1: S ∩ N = S ∩ Np for some p. We divide this case into three subcases:
|S∩N |> t , |S∩N | = t or |S∩N |< t .

In the first subcase, we notice that there is an interval of length at least t+1 in
S∩ N (in fact, S∩ N is a single interval), so by Lemma 2.5 there is a vertex of
degree t and hence G(x) is connected on t+1 vertices.

For the second subcase we assume |S ∩ N | = t . Since |Np| = pt + 1, we
certainly have |Np| 6= t unless p = 0 and t = 1, in which case G(x)= K2, which
is connected on two vertices. Otherwise, S∩N ⊂ Np, so |Np|> t . Since both Np

and S are intervals, S∩ Np comprises precisely either the first t elements of Np

or the last. If S∩Np = [x−2n−2t+1, x−2n− t] then deg(n+ t) = t , while if
S∩Np = [x−2n− t, x−2n−1] then deg(n)= t .

In the last subcase, we note that if S∩N =∅ then there is an interval of length
at least t+1 (namely, all of S) that is not contained in N , so by Lemma 2.5 G(x)

is not connected. We assume for the balance of this case that S∩N is nonempty.
If |Np|> t , that is, p > 0, then since |S∩Np|< t , S cannot extend the interval

Np in two directions, hence the intersection of S with the complement of N is a
single interval. Thus there is an interval of length at least t+1 that is not in N , so
by Lemma 2.5 there is a vertex of degree 0 and G(x) is not connected.

If p = 0, then S∩N = {0}, and the degree of each vertex is at most 1. If t > 1,
this shows that G(x) is not connected. If t = 1, then the hypothesis of the subcase
|S∩N |< t is not satisfied.

Case 2: S intersects the two intervals Np−1 and Np, as shown in Figure 2. We
choose k so that x−2n−k = pn, the smallest element of Np, and we let S∩N =
[x−2n−2t+1, x−2n−k− j]∪[x−2n−k, x−2n−1].

We divide this case into the three subcases |S∩ N | > t−1 (i.e., |S∩ N | ≥ t),
|S∩N | = t−1 and |S∩N |< t−1.
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x � 2n � k � j
p �1

x � 2n � k

S

N Np 

Figure 2. Case 2: S overlaps two intervals.

n+k

n n+t

n+k+1

n+1

Figure 3. G N (x), in Case 2 when |S∩N | ≥ t , with a connected
subgraph highlighted.

The graph for the first subcase is shown in Figure 3. In this case j ≤ t , and the
verification that the darkened subgraph exists is straightforward. In particular, the
element of S associated with the edge (n+k, n+t) is x−2n−k−t , so this element
and the ones associated with the other darkened edges involving n+ t are contained
in the lower portion of S∩N , while the ones associated with the edges involving n
are contained in the upper portion.

If |S∩N |< t−1, the gap between Np−1 and Np contains at least t+1 consecutive
integers, so by Lemma 2.5 there is a vertex of degree 0, and G(x) is not connected.

We are left with the subcase |S∩N | = t−1. The graph for this case is shown
in Figure 4, and we verify that the subgraph on vertices {n, . . . , n+k} and that on
{n+k+1, . . . , n+t} have no edges between them. Indeed, the missing edges between
the subgraphs are associated with the elements x−(n+k)−(n+t)= x−2n−k−t
through x−n−(n+k+1)= x−2n−k−1, none of which is in N . �

Proposition 2.7. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n. Then G(x)

is connected on t+1 vertices if and only if at least one of the following conditions
holds:

(1) x ∈ [(p+2)n+t, (p+2)n+(p+1)t] for p ≥ 0 (if t = 1) and p > 0 otherwise.

(2) x > C(N ), where C(N ) = F(N )+2n+ t+1 if t divides n−1, and C(N ) =

F(N )+n+ t+1 otherwise.
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n+k

n n+t

n+k+1

n+1

Figure 4. G N (x), in Case 2 when |S∩N | = t−1.

Proof. We define S = [x − 2n− 2t + 1, x − 2n− 1] as before and recall that by
Lemma 2.6, G(x) is connected on t+1 vertices if and only if |S∩N | ≥ t .

If S intersects exactly one interval Np, then |S∩N |≥ t when the smallest element
of S is close enough to the left end of the interval, that is, x−2n−2t+1≥ pn−(t−1),
or is not too close to the right end, that is, x − 2n− 2t + 1 ≤ p(n+ t)− (t − 1).
These inequalities give the first condition, and the conditions on p follow from the
requirement that |Np| ≥ t .

If S spans a gap of size larger than t − 1, then G(x) is not connected, while
if S spans a gap of size at most t−1 then G(x) is connected. Since consecutive
gaps decrease in size by t (refer to Figure 1), the last gap, G, has size at most t .
Assume that S∩G 6=∅. If |S∩G|< t , then G(x) is connected. If |S∩G| = t , that
is, F(N ) ∈ S, then G(x) is not connected. Moreover, the last gap has size less than
t if and only if t does not divide the size of the first gap, namely that between N0

and N1, which has size n−1. In this case, G(x) is connected on t+1 vertices for
all x > y satisfying y−2n−2t +1 = np− (t −1) where Np is the last interval
before F(N ), that is, if F(N )= qn−1, then p = q−1. If the last gap is of size t ,
the relevant p belongs to the interval after F(N ), that is, p = q . �

Note that Proposition 2.7 is worded differently from Propositions 2.3 and 2.4.
In Proposition 2.7, when t does not divide n−1, there are values of x that do not
satisfy the first condition, but do produce connected graphs.

The following corollary is a concise restatement of the previous results in the
case t = n− 1. Though it follows from these results, the direct proof is more
straightforward, so it is sketched.

Corollary 2.8. Let n > 2, N = 〈n, . . . , 2n−1〉 and x ∈ N.

(1) G(x) has n vertices if and only if x ≥ 3n−1.

(2) The following statements are equivalent.
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(a) G(x) is connected with n vertices.
(b) deg (n)= n−1.
(c) x ≥ 4n−1.

(3) G(x) is complete on n vertices if and only if x ≥ 5n−3.

Proof. Notice that N = {0}∪[n,∞).
For (1) we require that [x−(2n−1), x−n] ⊂ N , which is true precisely when

x−(2n−1)≥ n.
For (2) we note that deg (n)= n−1 (omitting loops, as usual), when [x−n−(2n−

1), x−n−(n−1)] ⊂ N , which is true precisely when x−3n+1≥ n, so conditions
(b) and (c) are equivalent. It is clear that in this case G(x) is connected. Conversely,
if G(x) is connected then vertex 2n−1 is adjacent to at least one other vertex, that is,
x−(2n−1)−(n+ j)∈ N for some j ∈ [0, n], so x−(3n−1)≥ x−(3n−1)− j ≥ n,
and the inequality (c) is established.

For (3) we note that vertices 2n−1 and 2n−2 must be adjacent, so x−4n+3=
x−(2n−1)−(2n−2)≥n, which produces the inequality. Moreover, if the inequality
is satisfied all pairs of vertices are adjacent since x−(n+ i)−(n+ j)≥ x−4n+3
if i and j are distinct integers in [0, n−1]. �

Remark 2.9. For n = 2, statements (2) and (3) in Corollary 2.8 would not quite
be correct, because the set S comprises the single element x − 5, and can thus
coincide with N0 = {0}. Thus, in addition to the ranges listed, G(5) is complete
(and therefore connected).

Constructions. The goal of this section is to address the following question: “When
N is a numerical monoid generated by an interval, which connected graphs occur
as G(x) for some x ∈ N?” Throughout, we assume N = 〈n, n+1, . . . , n+ t〉 with
0≤ t ≤ n−1 and require G(x) to have t+1 vertices. It remains an open question
as to what graphs can be realized when not all generators are required to occur as a
vertex.

There are
(t+1

2

)
ways to choose two distinct values n+ i, n+ j ∈ [n, n+ t] and

yet only 2t −1 distinct sums (n+ i)+ (n+ j). By Definition 1.4, vertices n+ i
and n+ j are adjacent in G(x) if x−[(n+ i)+ (n+ j)] ∈ N . Thus, to determine
the number of edges that can occur in the irreducible divisor graph G(x) for some
x ∈ 〈n, n+1, . . . , n+t〉 we consider the 2t−1 possible sums in [2n+1, 2n+2t−1]
along with Proposition 2.1.

We have no general result for what graphs occur when t > 4, but the methods of
this section may be extended for larger values of t . We now show how to determine
which connected 5-vertex graphs with exactly four edges can be realized as G(x)

for x ∈ N = 〈n, n+1, . . . , n+4〉. The results of the remaining cases are outlined
in Section 3.
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a Number of edges Edges

2n+1 1 (n, n+1)

2n+2 1 (n, n+2)

2n+3 2 (n, n+3), (n+1, n+2)

2n+4 2 (n, n+4), (n+1, n+3)

2n+5 2 (n+1, n+4), (n+2, n+3)

2n+6 1 (n+2, n+4)

2n+7 1 (n+3, n+4)

Table 1. Edges associated with values of x−a.

Using Definition 1.4 we can determine which of the
(4+1

2

)
= 10 possible edges

occur in G(x) by considering which values x−
(
(n+i)+(n+ j)

)
are in N as distinct

i and j range over the set {0, 1, 2, 3, 4}. Since (n+ i)+(n+ j) ∈ [2n+1, 2n+7],
we may summarize the relationships among values x−a and edges in G(x) as in
Table 1.

We will use this table as a guide for constructing irreducible divisor graphs
G(x) with x ∈ 〈n, n+1, n+2, n+3, n+4〉 such that G(x) has exactly 5 vertices
and exactly four edges. By Proposition 2.1, the smallest number of consecutive
positive integers in N is 5. Moreover, the number of consecutive integers in N
must be p(n+4)− pn+1= 4p+1 for some p ∈ N and the length of a sequence
of consecutive integers not in N must be (p+1)n− p(n+4)−1= n−4p−1 for
some integer p with 1≤ p ≤ (n−1)/4; that is, the gap sizes are congruent to n−1
modulo 4.

Referring to Table 1, we see that in order to guarantee exactly 4 edges in G(x),
we need to have either 3 or 4 consecutive integers not in N . Indeed, the set
[x − (2n + 7), x − (2n + 1)], which we called S in Lemmas 2.5 and 2.6, must
intersect N in at most two intervals; see Figure 2. In the former case we are left
with 4 edges exactly when x−(2n+5), x−(2n+4), and x−(2n+3) are not in N .
In the latter case we have 4 edges exactly when either x− (2n+7), x− (2n+6),
x−(2n+5) and x−(2n+4) are not in N or x−(2n+4), x−(2n+3), x−(2n+2)

and x−(2n+1) are not in N .
Suppose first that x−(2n+5), x−(2n+4), and x−(2n+3) are not in N and

hence x−(2n+1), x−(2n+2), x−(2n+6), and x−(2n+7) are in N . That is

E[G(x)] =
{
(n, n+1), (n, n+2), (n+2, n+4), (n+3, n+4)

}
.

To guarantee exactly 3 consecutive integers not in N we need, from Proposition 2.1,
n−4p−1= 3 where p ≥ 1. In order for the correct three consecutive values to be
outside of N , we require x−(2n+6)= p(n+4) since x−(2n+6) is the largest
value in N preceding this sequence. Since n = 4p+4, x = 1

4 n2
+2n+2 and we
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obtain the graph G
( 1

4 n2
+2n+2

)
in N = 〈n, n+1, n+2, n+3, n+4〉 whenever

n = 4k with k > 1.

n+1 n n+2 n+4 n+3

Now suppose that either x−(2n+3), x−(2n+2), x−(2n+1)∈ N or x−(2n+7),
x−(2n+6), x−(2n+5) ∈ N . In the first case,

E[G(x)] = {(n, n+1), (n, n+2), (n, n+3), (n+1, n+2)}

in which case G(x) has only 4 vertices. In the second case,

E[G(x)] = {(n+3, n+4), (n+2, n+4), (n+1, n+4), (n+2, n+3)}

N x

1 〈n〉, n > 0 pn, p > 0
2 〈n, n+1〉, n > 1 2n+1
3 〈n, n+1, n+2〉, n = 2k, k > 1 1

2 n2
+2n

4 〈n, n+1, n+2〉, n > 3 x ∈ [pn+3, p(n+2)−3], p > 3
4 〈3, 4, 5〉 x > 11
6 〈n, . . , n+3〉, n = 3k, k > 1 1

3 n2
+2n+2

7 〈n, . . , n+3〉, n = 3k, k > 1 1
3 n2
+2n+3

8 〈n, . . , n+3〉, n = 3k+2, k > 0 1
3 n2
+

7
3 n+2

9 〈n, . . , n+3〉, n = 3k+2, k > 0 1
3 n2
+

7
3 n

10 〈n, . . , n+3〉, n > 4 x ∈ [pn+5, p(n+3)−5], p > 3
10 〈4, 5, 6, 7〉 x > 16
13 〈n, . . , n+4〉, n = 4k, k > 1 1

4 n2
+2n+2

16 〈n, . . , n+4〉, n = 4k, k > 1 1
4 n2
+2n+3

19 〈n, . . , n+4〉, n = 4k, k > 1 1
4 n2
+2n

22 〈n, . . , n+4〉, n = 4k+3, k > 0 1
4 n2
+

9
4 n+2

26 〈n, . . , n+4〉, n = 4k+3, k > 0 1
4 n2
+

9
4 n+4

28 〈n, . . , n+4〉, n = 4k+3, k > 0 1
4 n2
+

9
4 n+5

29 〈n, . . , n+4〉, n = 4k+2, k > 0 1
4 n2
+

5
2 n+4

30 〈n, . . , n+4〉, n = 4k+2, k > 0 1
4 n2
+

5
2 n+6

31 〈n, . . , n+4〉, n > 5 x ∈ [pn+7, p(n+4)−7], p > 3
31 〈5, 6, 7, 8, 9〉 x > 21

Table 2. Construction families. The first column refers to the
numbering in Figure 5. We use the abbreviation 〈n, . . , n+3〉 for
〈n, n+1, n+2, n+3〉, and likewise for 〈n, . . , n+4〉.
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and again we have a graph with only 4 vertices. Therefore, the graph shown above
is the only graph with 5 vertices and 4 edges that can be realized as G(x) for some
x ∈ 〈n, n+1, n+2, n+3, n+4〉.

Similar arguments can be made to determine which connected graphs on t+1
vertices can be realized as G(x) with x ∈ 〈n, n+1, . . . , n+t〉, and these conditions
are listed in Table 2 on the previous page.

3. Connected graphs with at most five vertices

In this section we give examples showing that each of the 31 nonisomorphic
connected graphs with one to five vertices can be realized as the irreducible divisor
graph of an element in a primitive minimally generated numerical monoid. In
Figure 5, if the positive integers n1, . . . , nt occur as vertices in the graph G(x),

1 G(1)

1

2 G(5)

2 3

3 G(16)
6

4 5

4 G(12)
3

4 5

5 G(32)
5

9 11

17

6 G(26)
7

9 6

8
7 G(27)

6

7 9

8

8 G(22)
5

6 7

8

9 G(20)
7

5 6

8

10 G(17)
4

5 6

7

11 G(46)
10

15 8 19

22

12 G(65)
16

11 21 23

18

13 G(34)
9

8 10 12

11

14 G(47)
16

18 5 22

14

15 G(39)
10

9 11 17

15

16 G(35)
9

10 8 11

12

17 G(96)
21

33 18 26

30

18 G(50)
11

17 16 14

18

19 G(32)
9

11 12 8

10

20 G(78)
21

27 30 18

20

21 G(30)
11

14 5 12

13

22 G(30)
10

9 11 8

7

23 G(216)
22

30 50 75

33

24 G(37)
10

11 6 15

19

25 G(78)
21

12 14 18

30

26 G(32)
11

10 7 9

8

27 G(31)
7

8 12 10

11

28 G(33)
9

7 10 8

11

29 G(28)
7

9 6 8

10

30 G(30)
9

6 7 8

10

31 G(22)
5

6 7 8

9

Figure 5. Connected graphs with at most five vertices.
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then x ∈ N = 〈n1, . . . , nt 〉. In Table 2 we give, when possible, a family of examples
realizing a given graph using the methods of Section 2. When such a family is not
given, it is because that graph cannot be realized as the irreducible divisor graph of
an element in a numerical monoid generated by an interval.
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An application of Google’s PageRank
to NFL rankings

Laurie Zack, Ron Lamb and Sarah Ball
(Communicated by Charles R. Johnson)

We explain the PageRank algorithm and its application to the ranking of football
teams via the GEM method. We then modify and extend the GEM method
with the addition of more football statistics to look at the possibility of using
this method to more accurately rank teams. Lastly, we compare both methods
by aggregating each statistical ranking using the cross-entropy Monte Carlo
algorithm.

1. Introduction

Over the last few decades, abundant research has been done in the mathematics of
rankings. There are numerous ranking methods in the field of sports, such as the
Massey ratings and Colley matrix, which have been used by the Bowl Championship
Series to rank Division I collegiate football teams [BCS 2011]. The search engine
Google also uses a mathematical algorithm to compute PageRank, a ranking method
used to determine which websites should appear above others in its search results.
Google receives 71% of all internet search requests, while the next leading search
engine receives only 14% of the requests [SEO 2010], and its PageRank algorithm
is one of the main reasons it is the leading search engine on the internet.

There are many factors that determine which websites come up first when you
search for something through an internet search engine. On Google, one of those
factors is a webpage’s PageRank score, and it is this idea of PageRank that set Google
apart from other search engines when it was created. The PageRank algorithm
assigns a score to each webpage in order to rank the pages according to usefulness.
In theory, the most relevant and important pages should come up first in the search
results [Wills 2006].

The general concept of the algorithm is to model a random web surfer, starting
on one webpage and then clicking on different links to make his or her way through
the web. The most “important” webpages are those that have a higher probability of

MSC2010: 15A18, 15A99, 68M01.
Keywords: PageRank algorithm, linear algebra, ranking football teams.
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being seen by the random surfer [Wills 2006]. For a page to have higher probability
of being seen, either more webpages have to link to that page, or other highly ranked
webpages have to link to it.

2. The mathematics behind PageRank

The exact code and formula for Google’s PageRank algorithm are kept secret and it
is only known what was first used during the development of Google and PageRank.
The algorithm that will be used throughout this paper to show how PageRank is
calculated is the one that was originally used by Sergey Brin and Lawrence Page
[Brin and Page 1998; Page et al. 1999], the creators of Google, and is most likely not
the same one used today. To show how Google calculates PageRank let’s consider
an internet with only four webpages: A, B, C , and D. The web link diagram below
shows how the webpages link to each other, where each arrow represents a link
from one page to another. For example, webpage C links to both A and D, but not
to B.

A // B

��~~
D

OO

Coo

``

This web link diagram is turned into a web hyperlink matrix H , where

Hi j =

{
1 if i links to j,
0 if i does not link to j.

Therefore,

H =


0 1 0 0
0 0 1 1
1 0 0 1
1 0 0 0


for this example.

Next, a row stochastic matrix S is formed from H and is then used to model the
random web surfer with the equation G = αS+(1−α)yv, where α is defined as the
dampening factor, y is a column vector of ones, and v is called the personalization
vector. The vector v is a probability distribution vector, and is currently unknown,
but during the development of Google v =

( 1
n

1
n · · ·

1
n

)
was used [Brin and Page

1998; Page et al. 1999]. The dampening factor models the random web surfer’s
ability to move to a different webpage by means other than following a link, with
probability (1− α). The dampening factor used by Brin and Page during early
development was α = 0.85. In most research done since 1998, values of α range
between 0.85 and 0.99 [Wills 2006]. For this example and throughout the paper,
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α = 0.85 will be used, and, because there are four webpages in this example,
v =

( 1
4

1
4

1
4

1
4

)
. Using the equation G = 0.85S+ 0.15yv we obtain the Google

matrix G:

G =


3

80
71
80

3
80

3
80

3
80

3
80

37
80

37
80

37
80

3
80

3
80

37
80

71
80

3
80

3
80

3
80

 .
The PageRank vector π is then found by computing the corresponding left

eigenvector satisfying πG = π , and, since G is row stochastic, 1 is the dominant
eigenvalue, which means π can always be computed [Bryan and Leise 2006]. The
i-th entry of π is known as the PageRank score for webpage i . For this particular
matrix, the PageRank vector is approximately (0.306 0.297 0.164 0.233). There-
fore, the webpage ranking listed from most important to least important is A, B,
D, C .

It should be noted that this method is highly inefficient for large matrices, and
in 2010 it was estimated that there were approximately a trillion webpages [Kelly
2010]. With such a large and sparse matrix, the power method can be used fairly
efficiently to approximate eigenvectors (i.e., to find the PageRank vector) [Bryan
and Leise 2006].

3. Dangling node

With the internet constantly growing, many webpages do not link to the majority
of the others. In fact, many of them have no out links at all (e.g, postscript files,
images). These webpages are known as dangling nodes, and their prevalence leads
to a hyperlink matrix which contains mostly zeros. For example, suppose we have
the following web link diagram:

A // B

��~~
D Coo

``

Webpage D would be considered a dangling node, and, in the hyperlink matrix H ,
row four would be a row of zeros; therefore the matrix would no longer be row
stochastic and 1 would no longer be a possible dominant eigenvalue. To fix this,
several options exist, one of which is to insert a personalization vector, w, into the
dangling node rows. It is unknown what Google actually does, but, for this paper,
we model the random web surfer’s options when on webpage D by assuming he
or she has an equal chance to select any other webpage by typing in its URL or
to just stay on webpage D, making w =

( 1
4

1
4

1
4

1
4

)
. With D being our dangling
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NO 48 PHL 22 NO 10 CAR 23 NO 30 CAR 20
NO 35 ATL 27 NO 26 ATL 23 PHL 38 CAR 10
PHL 34 ATL 7 ATL 28 CAR 20 ATL 19 CAR 28

Table 1. Sample 2009 scores.

node we would obtain the following new web hyperlink matrix:

H =


0 1 0 0
0 0 1

2
1
2

1
2 0 0 1

2
1
4

1
4

1
4

1
4

 .
Calculating as before, the PageRank vector becomes (0.197 0.271 0.219 0.312),
producing the ranking D, B, C , A.

4. Using PageRank to rank football teams: GEM 1 method

Applying a similar method to the PageRank algorithm, Govan, Meyer, and Albright
[Govan et al. 2008] developed a method called the GEM method (which we de-
noted here by GEM 1), using the margin of victory (v1− v2) to weight the “link”
between two football teams, where v1 and v2 are the teams’ scores against each
other. As a small sample, the scores in Table 1 were taken from games played
in 2009.

By calculating the margin of victory we can create the following link diagram,
where each link has a weight equal to the margin of victory:

NO
26

6

11

28

13

10 27

8

PHL

CAR ATL

For example, if New Orleans (NO) played Philadelphia (PHL) and the score was
NO-48 and PHL-22, a directed arrow would point towards NO with a weight of
26. If a pair of teams played two games and the same team won both times, the
weight assigned to the link is the sum of the margins of victory for the two games.

This link diagram then corresponds to the following hyperlink matrix:
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H =


NO PHL ATL CAR

NO 0 0 0 13
PHL 26 0 0 0
ATL 11 27 0 9
CAR 10 28 8 0

.
Next, we continue as before to make it row stochastic and follow the PageRank

algorithm to get the final ranking. We obtain (0.330 0.252 0.087 0.332) for the
PageRank vector, which produces the ranking 1. CAR, 2. NO, 3. PHL, 4. ATL.

5. Ranking football teams: GEM 2 method

We then modified the GEM method to create what we have termed the GEM 2
method. Instead of using the margin of victory to weight one arrow for each game,
we used both scores to produce two weighted arrows. Since NO scored 48 points
against PHL and PHL scored 22 points against NO, the link diagram will now have
one arrow directed from PHL to NO with a weight of 48 and another directed from
NO to PHL with a weight of 22. If a pair of teams played two games, we summed
each team’s scores from the two games. Using the data provided in Table 1, we
created a new link diagram as follows:

NO

48

22

48

10

61

38

50

43

40

7

34

47

PHL

CAR ATL

From this diagram the following hyperlink matrix H was then created:

H =


NO PHL ATL CAR

NO 0 22 50 43
PHL 48 0 7 10
ATL 61 34 0 48
CAR 40 38 47 0

.
The PageRank algorithm gives the PageRank vector (0.317 0.200 0.248 0.335)
and the ranking 1. CAR, 2. NO, 3. ATL, 4. PHL.
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Total Time of Actual NFL
Score Yardage Possession Turnovers Ranking

1. NO DAL GB PHL NO
2. NYG NO MIN CAR MIN
3. PHL NYG DAL NO DAL
4. MIN MIN NO GB GB
5. ATL ATL NYG SF PHL
6. GB GB CAR TB ARI
7. CAR PHL ATL CHI ATL
8. DAL CAR DET DET CAR
9. CHI CHI TB ATL SF

10. ARI TB ARI ARI NYG
11. TB WAS WAS DAL CHI
12. SF SEA CHI NYG SEA
13. WAS ARI STL MIN WAS
14. DET DET SF WAS TB
15. SEA STL SEA SEA DET
16. STL SF PHL STL STL

Table 2. Final rankings compared to actual rankings using GEM 2.

6. Extended GEM 1 and GEM 2 methods

We collected data on the score, total yardage, turnovers, and time of possession for
each regular season game for all 16 teams in the NFL National Football Conference
in 2009 [ESPN 2009]. We created four separate H matrices, one for each of
the statistics, then proceeded as in Section 5 following the GEM 2 method and
the PageRank algorithm using v = (1/16 1/16 · · · 1/16) as our personalization
vector. Following the same process as before, we produced a ranking for each
statistic collected. However, when calculating turnovers, since it is a negative
statistic, we chose to orient the directed arrows in the reverse direction.

Table 2 shows the final rankings for each statistic using the GEM 2 method, and
also includes the actual end of the regular season rankings.

In comparison, Table 3 shows the final rankings for each statistic also compared
with the actual end of the regular season rankings using the original GEM 1 method.

7. Results

For both GEM 1 and GEM 2, we compared the Kendall rank correlation for each
statistic versus the actual rankings which are shown in Table 4. The Kendall rank
correlation is defined by r = (nc − nd)/(n(n− 1)/2), where nc is the number of
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Score Total Time of Turnovers Actual NFL
Yardage Possession Ranking

1. DAL GB GB PHL NO
2. GB CHI DAL NO MIN
3. PHL MIN CAR DAL DAL
4. MIN DAL MIN TB GB
5. CAR CAR SEA CAR PHL
6. NYG PHL CHI GB ARI
7. NO ARZ NO NYG ATL
8. ARZ NYG ARZ CHI CAR
9. TB NO ATL SF SF

10. SEA TB TB STL NYG
11. ATL DET NYG MIN CHI
12. SF SEA STL WAS SEA
13. CHI STL DET ARZ WAS
14. WAS SF WAS ATL TB
15. DET ATL PHL DET DET
16. STL WAS SF SEA STL

Table 3. Final rankings compared to actual rankings using GEM 1.

Statistic Correlation

SCORE1 0.63
SCORE2 0.60

YARD1 0.38
YARD2 0.67

TIME1 0.32
TIME2 0.35

TURN1 0.32
TURN2 0.25

Table 4. Kendall rank correlations versus actual rankings.

concordant pairs and nd is the number of discordant pairs in the two rankings. For
simplicity, labels of the form STAT1 refer to the GEM 1 method and labels of the
form STAT2 refer to the GEM 2 method. Based on the r-values, we can see that
each method performed better than the other in different statistics. The ranks were
then aggregated using the cross-entropy Monte Carlo algorithm with the distance
measure equal to the Kendall tau distance, as this algorithm promotes combining
several ordered lists in a proper and efficient manner [Pihur et al. 2009; de Boer et al.
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Aggregate Aggregate Aggregate* Aggregate* Actual NFL
GEM 1 GEM 2 GEM 1 GEM 2 Ranking

1. GB NO GB NO NO
2. DAL GB DAL NYG MIN
3. CAR NYG MIN MIN DAL
4. MIN MIN CAR GB GB
5. PHL DAL CHI DAL PHL
6. NO CAR NO ATL ARZ
7. NYG ATL ARZ CAR ATL
8. CHI CHI TB ARZ CAR
9. ARZ ARZ NYG CHI SF

10. TB TB SEA TB NYG
11. SEA PHL PHL PHL CHI
12. SF DET ATL WAS SEA
13. ATL SF DET DET WAS
14. STL WAS STL SF TB
15. DET STL SF SEA DET
16. WAS SEA WAS STL STL

r -value 0.53 0.55 0.47 0.60 -

Table 5. Aggregated rankings for both GEM 1 and GEM 2 vs.
actual rankings.

2005]. With the aggregate rankings, the GEM 2 method performed only slightly
better than the original GEM 1 method, with respective Kendall rank correlations
of r = 0.55 and r = 0.53.

We then decided to take out the least-correlated statistic and aggregate the
rankings again. We aggregated twice with the GEM 1 method, once without TIME
and once without TURN, since both had equally low r -values, and for the GEM 2
method, we aggregated without TURN. When ignoring the least-correlated statistic,
the GEM 2 method performed considerably better, with a Kendall rank correlation
of r = 0.60, compared to the GEM 1 method, r = 0.45 when omitting TURN and
r = 0.47 when omitting TIME. The aggregated rankings when TIME is omitted
from GEM 1 and TURN is omitted from GEM 2 are shown in Table 5 along with
the original aggregated rankings and the actual end of season rankings and are
denoted by Aggregate*.

There is plenty of other variability in the overall approach to this application of
PageRank. We could use more statistics or choose different statistics which are
better predictors of overall outcome. We also could use a different dampening factor
or modify the personalization vector which could improve the rankings as well.
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Nonetheless, it is possible to use this method to produce and compute rankings for
any sport or anything else from which a link structure can be created.
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Fool’s solitaire on graphs
Robert A. Beeler and Tony K. Rodriguez

(Communicated by Joseph Gallian)

In recent work by Beeler and Hoilman, the game of peg solitaire is generalized to
arbitrary boards. These boards are treated as graphs in the combinatorial sense.
Normally, the goal of peg solitaire is to minimize the number of pegs remaining at
the end of the game. In this paper, we consider the open problem of determining
the maximum number of pegs that can remain at the end of the game, under the
restriction that we must jump whenever possible. In this paper, we give bounds
for this number. We also determine it exactly for several well-known families of
graphs. Several open problems regarding this number are also given.

1. Introduction

Peg solitaire is a table game which traditionally begins with “pegs” in every space
except for one which is left empty (i.e., a “hole”). If in some row or column two
adjacent pegs are next to a hole (as in Figure 1), then the peg in x can jump over
the peg in y into the hole in z. The peg in y is then removed. Usually, the goal is to
remove every peg but one. If this is achieved, then the board is considered solved
[Beasley 1985; Berlekamp et al. 2003]. However, in this paper we consider the
open problem of determining the maximum number of pegs that can remain at the
end of the game under the caveat that we jump whenever possible. We refer to this
variation as the fool’s solitaire problem.

In [Beeler and Hoilman 2011], the notion of peg solitaire was generalized to
graphs. A graph, G = (V, E), is a set of vertices, V , and a set of edges, E . Because
of the restrictions of peg solitaire, we will assume that all graphs are finite undirected
graphs with no loops or multiple edges. In particular, we will always assume that

Figure 1. A typical jump in peg solitaire.

MSC2010: primary 05C57; secondary 91A43.
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graphs are connected. For all undefined graph theory terminology, refer to [West
1996]. In particular, n(G) denotes the order of the graph G, that is, the number of
vertices in the graph.

If there are pegs in vertices x and y and a hole in z, then we allow x to jump
over y into z provided that xy, yz ∈ E . The peg in y is then removed. In general,
the game begins with a starting state S⊂ V which is a set of vertices that are empty.
A terminal state T ⊂ V is a set of nonadjacent vertices that have pegs at the end of
the game. A terminal state T is associated with starting state S if T can be obtained
from S by a series of jumps. We will assume that S consists of a single vertex.

The fool’s solitaire number of a graph G, denoted by Fs(G), is the cardinality of
the largest terminal state T that is associated with a starting state consisting of a
single hole. A terminal state T is a fool’s solitaire solution if the cardinality of T
is equal to Fs(G). The dual of a peg configuration T , denoted by T ′, is the state
resulting from reversing the roles of pegs and holes.

The objective of this paper is to gain insight on the fool’s solitaire number
for graphs. To do this, we will determine bounds of the fool’s solitaire number
for graphs and find the fool’s solitaire number for various classes of graphs. In
analyzing the terminal states of a graph, the following theorem is useful.

Theorem 1.1 [Beeler and Hoilman 2011]. Suppose that S is a starting state of G
with associated terminal state T . Let S′ and T ′ be the duals of S and T , respectively.
It follows that T ′ is a starting state of G with associated terminal state S′.

The following is an immediate corollary that will prove useful.

Corollary 1.2. On a graph G, there exists some vertex s ∈ V (G) such that, when
S = {s}, there exists some series of jumps that will yield T as a terminal state if and
only if the dual T ′ of T is solvable to one peg.

This result provides an alternative method of checking if a suspected terminal
state is obtainable. Generally, to determine if a terminal state T of a graph G is
obtainable, you simply solve the dual.

2. Upper bounds on Fs(G)

In this section, we present upper bounds for Fs(G). We begin with a simple, but
useful, theorem involving the independence number of a graph. An independent set
of vertices is a set of mutually nonadjacent vertices. The independence number is
the maximum size of an independent set in a graph [West 1996].

Theorem 2.1. For any graph G, Fs(G)≤ α(G), where α(G) is the independence
number of G.
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Proof. By definition, any terminal state is an independent set of vertices. Thus the
maximum independent set has at least as many vertices as the largest terminal state.
Ergo, Fs(G)≤ α(G). �

While Theorem 2.1 seems almost trivial, the bound given is sharp for many
graphs, as will be discussed in Section 4. Another upper bound involving the
domination number follows. In a graph G, a set S ⊆ V (G) is a dominating set if
every vertex not in S has a neighbor in S. The domination number is the minimum
size of a dominating set in G.

Theorem 2.2. For any graph G, Fs(G)≤ n(G)− γ (G), where γ (G) is the domi-
nation number of G.

Proof. We begin by showing that the dual of any terminal state is a dominating set.
Let T be any terminal state of a graph G. Note that T is an independent set of V (G).
Consider T ′, the dual of T . Since each vertex in a dominating set dominates itself,
every vertex not in T is dominated. Also, by definition of an independent set, every
vertex in T is adjacent only to vertices in T ′, so these vertices are dominated as
well. Thus T ′ is a dominating set.

We now show that Fs(G)≤ n(G)−γ (G). Note that Fs(G)= |T | = n(G)−|T ′|.
Since T ′ is a dominating set by the argument above, we have that γ (G) ≤ |T ′|.
Hence Fs(G)= n(G)− |T ′| ≤ n(G)− γ (G). �

The upper bound given in Theorem 2.1 can be improved for several classes of
graphs.

Theorem 2.3. Let G be a graph. If for every maximum independent set A the dual
of A is an independent set with at least two vertices, then Fs(G)≤ α(G)− 1.

Proof. Suppose to the contrary that Fs(G)= α(G). This implies that A is a terminal
state for some maximum independent set A. Thus, by Corollary 1.2, G would
be solvable from starting state A′. Because the dual of A is also an independent
set, it follows that no moves are possible from this starting state. Hence either
|A′| = 1 or Fs(G)≤ α(G)− 1. Since we assume that A′ has at least two vertices,
Fs(G)≤ α(G)− 1. �

3. Families of graphs

In this section, we present the fool’s solitaire number of certain families of graphs.
As usual, Pn , Cn , and Kn will denote the path, the cycle, and the complete graph on n
vertices, respectively. Let Kn,m denote the complete bipartite graph with V = X∪Y ,
X = {x1, . . . , xn}, and Y = {y1, . . . , ym}, where n ≥m. In particular, K1,n is called
a star. The n-dimensional hypercube is denoted by Qn .

Note that, if Fs(G)= α(G), it suffices to provide the series of peg solitaire jumps
that will yield a solution. If Fs(G) = α(G)− 1, it suffices to demonstrate that
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Fs(G) 6= α(G) and to provide the series of peg solitaire jumps that will yield a
terminal state with cardinality α(G)− 1.

The following proposition is obvious, but included for the sake of completeness.

Proposition 3.1. The fool’s solitaire number for the complete graph on n vertices
is one.

We now consider complete bipartite graphs.

Proposition 3.2. For the star K1,n , Fs(K1,n)= n.

Proof. Note that α(K1,n) = n. Placing the hole in the center makes it so that no
moves are available. Thus Fs(G)= n. �

Theorem 3.3. For the complete bipartite graph Kn,m , if n, m > 1, then Fs(Kn,m)=

n− 1.

Proof. We begin by showing that Fs(Kn,m) 6= n. For the complete bipartite
graph Kn,m , note that α(Kn,m)= n. The only maximum independent set of Kn,m

is X , which has independent set Y as its dual. Since |Y | =m > 1, Fs(Kn,m)≤ n−1
by Theorem 2.3.

We claim that T = X − {x1} is the fool’s solitaire solution. Hence we must
show that T ′ = Y ∪ {x1} is reducible to a single peg. For i = 1, . . . , bm/2c, we let
the (2i − 1)-st move be from x1 over y2i−1 into x2. Similarly, the 2i-th jump is
from x2 over y2i into x1. If m is odd, then we make an additional jump from x1

over ym into x2. Since Kn,m is solvable from starting state T ′, it follows that
Fs(Kn,m)= n− 1 by Corollary 1.2. �

We will now consider the solutions to paths and cycles. When discussing
these graphs, we will label the vertices of the graphs with elements of the set
{0, 1, . . . , n − 1} in the obvious way. Also note that P2 and P3 are isomorphic
to K1,1 and K1,2, respectively. As the fool’s solitaire number of these graphs was
determined in Proposition 3.2, we do not consider these cases below.

Theorem 3.4. For the path on n vertices, if n > 3, then Fs(Pn)= bn/2c.

Proof. Note the independence number of a path on n vertices is dn/2e.
We begin by showing that, if n is odd, then Fs(Pn) < dn/2e. There is only one

independent set with cardinality dn/2e, namely {0, 2, 4, . . . , n−3, n−1}. Because
the dual of this set is an independent set with at least two vertices, Fs(P2k+1)≤bn/2c
by Theorem 2.3.

To obtain the fool’s solitaire solution for Pn (regardless of whether n is even
or odd), begin with the hole in 0. The i-th move will be to use the peg in 2i
to jump over 2i − 1 into 2i − 2. This will remove dn/2e pegs. It follows that
Fs(Pn)= bn/2c. �

Theorem 3.5. For the cycle on n vertices, Fs(Cn)= b
n−1

2 c.
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Proof. Note that α(Cn) = bn/2c. We begin by showing that if n is even, then
Fs(Cn) < n/2. Let n = 2k, where k ∈ Z. Up to automorphism on the vertices,
C2k has one maximum independent set of vertices. Since the dual of this set is
an independent set with at least two vertices, it follows that Fs(C2k) ≤ k − 1 by
Theorem 2.3.

To obtain the fool’s solitaire solution of Cn (regardless of whether n is even or
odd), begin with the hole in 0. The i-th move will be to use the peg in 2i to jump
over 2i − 1 into 2i − 2. This can be repeated k times, removing dn/2e pegs. If n
is even, we make an additional jump from 0 over n− 1 into n− 2. In either case,
Fs(Cn)= b

n−1
2 c. �

We will now consider the hypercube on 2n vertices, Qn . As usual, each vertex
will be labeled with an element from the set {0, 1, . . . , 2n

− 1}, with two vertices
being adjacent if and only if their binary expansions differ by one bit.

Theorem 3.6. The fool’s solitaire number of the n-dimensional hypercube for n≥ 2
is Fs(Qn)= 2n−1

− 1.

Proof. We first show that Fs(Qn) 6= α(Qn) = 2n−1. Up to automorphism on the
vertices, there is a unique maximum independent set of vertices, namely the set of
all vertices whose binary expansions have an even number of ones. As the dual of
this set is an independent set with at least two vertices, Fs(Qn)≤ 2n−1

− 1.
Note that Qn is Hamiltonian with an even number of vertices [Harary et al.

1988]. Relabel the vertices of Qn along a Hamiltonian cycle with the numbers
0, 1, . . . , 2n

−1 in the obvious way. Note that the odd-numbered vertices correspond
to the vertices with an odd number of ones in their binary expansions. Hence, the
odd-numbered vertices form a maximum independent set in Qn . We claim that
{1, 3, . . . , 2n

− 3} is the fool’s solitaire solution. Hence we must show that the
dual of this set, {2n

− 1, 0, 2, 4, . . . , 2n
− 2}, is reducible to a single peg. Begin

by jumping from 2n
− 1 over 0 into 1. For the remaining 2n−1

− 1 moves, the
i-th move is from 2i − 1 over 2i into 2i + 1, where i = 1, . . . , 2n−1

− 1. Hence
Fs(Qn)= 2n−1

− 1. �

4. Lower bounds on Fs(G)

In Section 2, we gave several upper bounds on the fool’s solitaire number. Unfortu-
nately, lower bounds on the fool’s solitaire number are more difficult to prove in
general. However, a useful proposition follows.

Proposition 4.1. Suppose that H is obtained from G by appending a vertex that
is not adjacent to any vertex in the fool’s solitaire solution of G. It follows that
Fs(H)≥ Fs(G)+ 1.
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Figure 2. Graphs with n(G)≤ 6 such that Fs(G)= α(G)− 1.

Proof. Suppose that H is obtained from G by appending a vertex v′ to G such that
vv′ /∈ E(G) for all v ∈ T , where T is the fool’s solitaire solution of G. We obtain a
terminal state of H with |T | + 1 vertices by finding the fool’s solitaire solution on
the subgraph induced by the vertices of G. Since v′ is not adjacent to any vertex
in T , it follows that T ∪ {v′} is a valid terminal state of H . This terminal state has
Fs(G)+ 1 vertices. Hence, Fs(H)≥ Fs(G)+ 1. �

To aid in a more general result, an exhaustive computer search of all terminal
states associated with a single vertex starting state was performed on all 143 noniso-
morphic connected graphs with six vertices or less. The algorithm is implemented
on the first author’s website [Beeler and Norwood n.d.].

Lists of graphs of small order were obtained from the appendix of [Harary 1969].
The independence numbers of these graphs were verified using the Small Graph
Database [Grout n.d.].

Of the 143 connected graphs with six vertices or less, 130 of them satisfy
Fs(G) = α(G). The remaining thirteen graphs satisfy Fs(G) = α(G)− 1. These
graphs are given in Figure 2.

Based on this and the results of Section 3, we present the following conjecture.

Conjecture 4.2. For all connected graphs G,

α(G)− 1≤ Fs(G)≤ α(G).

While we were unable to prove this, Proposition 4.1 may prove useful for an
inductive proof of this conjecture.

5. Open problems

Let H be a graph obtained from G by deleting an edge of G. We note that
α(H)≥ α(G) for all graphs G. Thus, a natural conjecture is that Fs(H)≥ Fs(G)
for all graphs G. However, this is not the case. Using the aforementioned exhaustive
computer search on all graphs with six vertices or less, three were found in which
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Fs(G)= 4 Fs(G)= 3 Fs(G)= 3

Figure 3. Graphs in which edge deletion lowers Fs(G).

edge deletion actually lowers the fool’s solitaire number. These graphs are given
in Figure 3. In each of these cases, deleting the dashed edge will lower the fool’s
solitaire number by one.

Some natural open questions motivated by this observation include:

(i) How much can edge deletion lower the fool’s solitaire number?

(ii) Let ED(n) be the number of nonisomorphic graphs with n vertices such that
edge deletion lowers the fool’s solitaire number. If n is large enough, does
ED(n)= 0? Let i(n) be the number of nonisomorphic graphs with n vertices.
What can be said about limn→∞ ED(n)/ i(n)?

One of the major results in [Beeler and Hoilman 2011] was to show that the
cartesian product of solvable graphs was likewise solvable. What can be said about
Fs(G � H) in terms of Fs(G) and Fs(H)?
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Newly reducible iterates in families
of quadratic polynomials
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We examine the question of when a quadratic polynomial f (x) defined over a
number field K can have a newly reducible n-th iterate, that is, f n(x) irreducible
over K but f n+1(x) reducible over K , where f n denotes the n-th iterate of f .
For each choice of critical point γ , we consider the family

gγ,m(x)= (x − γ )2+m+ γ, m ∈ K .

For fixed n ≥ 3 and nearly all values of γ , we show that there are only finitely
many m such that gγ,m has a newly reducible n-th iterate. For n = 2 we show
a similar result for a much more restricted set of γ . These results complement
those obtained by Danielson and Fein (Proc. Amer. Math. Soc. 130:6 (2002),
1589–1596) in the higher-degree case. Our method involves translating the prob-
lem to one of finding rational points on certain hyperelliptic curves, determining
the genus of these curves, and applying Faltings’ theorem.

1. Introduction

Let K be a number field and f (x) ∈ K [x]. By the n-th iterate f n(x) of f (x),
we mean the n-fold composition of f with itself. Determining the factorization
of f n(x) into irreducible polynomials has proven to be an important problem.
From a dynamical perspective, it is a question about the inverse orbit of zero,
namely O−(0) :=

⋃
n≥1 f −n(0). This set has significance in various ways; for

instance, it accumulates at every point of the Julia set of f [Beardon 1991, p. 71].
The field of arithmetic dynamics seeks to understand sets such as O−(0) from an
algebraic perspective, and finding the factorization of f n(x) fits into this scheme:
a nontrivial factorization arises from an “unexpected” algebraic relation among
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elements of O−(0). In addition, understanding the factorization of f n(x) has proven
to be a key obstacle in determining the Galois groups of f n(x) (see [Hamblen
et al. 2013; Jones 2008] or [Jones and Manes 2011] for the case of some rational
functions). These Galois groups provide a sort of dynamical analogue to the
well-studied `-adic Galois representations [Boston and Jones 2007].

In general, the factorization of the iterates of f can exhibit a wide variety of
behaviors. For instance, in [Fein and Schacher 1996, Lemma 1.1] it is shown that for
each n≥ 1 and d ≥ 2, there exists a number field K such that, for some f (x)∈ K [x]
of degree d, f n+1(x) is newly reducible; that is, f n(x) is irreducible over K but
f n+1(x) is reducible over K . More specifically, it follows from [Stoll 1992, p. 243]
and [Fein and Schacher 1996, Lemma 1.1] that if f (x) = x2

+m for m ∈ Z>0,
m ≡ 1, 2 mod 4, then for any fixed n ≥ 1 there exists a number field K such that
f n+1(x) is newly reducible over K . But what happens when we fix the number
field K to start with, and ask about the factorization of f n(x) as n grows? Many
authors have examined this question, in general with the aim of giving criteria that
ensure all iterates are irreducible (see, e.g., [Jones 2012; Odoni 1985, Section 4]).
Most usefully for our purposes, Danielson and Fein [2002] consider the case when
f (x) = xd

+m, for d ≥ 2. They show, for instance, that if m ∈ Z and f (x) is
irreducible, then all iterates of f are irreducible. In fact they only assume that K is
the quotient field of a unique factorization domain R, and in this case they show that
certain strong diophantine conditions must be satisfied when f n(x) is irreducible
and f n+1(x) is reducible. In particular, for K =Q, they take S(d, n) to be the set
of m ∈Q such that f n+1(x) is newly reducible. Further, let S(d)=

⋃
n≥1 S(d, n).

In [Danielson and Fein 2002, Theorem 7] it is shown that S(2, 1) (and thus S(2)) is
infinite, S(3, n) is finite for all n ≥ 1, and S(d) is finite for d odd, d ≥ 5. Moreover,
the abc conjecture implies that S(d) is finite for d even, d ≥ 4.

One goal of the present paper is to determine whether S(2, n) is finite for n ≥ 2.
Our main result, however, is significantly more general. Consider the family of
polynomials

gγ,m(x)= (x − γ )2+m+ γ, γ,m ∈ K , (1-1)

where K is a number field. Denote the ring of integers of K by OK . Our main
result is the following:

Theorem 1. Let K be a number field, vp the valuation attached to a prime p of OK ,
and gγ,m(x) as in (1-1). If one of the following holds, then there are only finitely
many m such that gn

γ,m(x) is irreducible over K and gn+1
γ,m (x) is reducible over K :

(1) n ≥ 3 and there exists a prime p of OK with vp(2)= e ≥ 1 and vp(γ )= s with
s 6= −e2i for all i ≥ 1;

(2) n = 2 and γ = r/4 for for r ∈ Z such that −200≤ r ≤ 200.
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In particular, when K =Q, part (1) of Theorem 1 holds when v2(γ ) is not of the
form −2 j for j ≥ 1. Hence when γ = 0, we obtain that S(2, n) is finite for n ≥ 2
(in the notation of [Danielson and Fein 2002]); in other words, for each n ≥ 2 there
are at most finitely many m ∈Q such that x2

+m has a newly reducible (n+ 1)-st
iterate. In Proposition 10, we show further that S(2, 3) is empty. Note also that
part (1) of Theorem 1 applies whenever γ belongs to the ring of integers of K , and
in particular for γ ∈ Z. In fact, part (1) holds whenever γ is taken so that

gi
γ,m(γ ) ∈ K [m] does not have repeated roots for any i ≥ 1. (1-2)

(See Theorem 6, Proposition 9, and the discussion immediately before Proposition 9.)
Condition (1-2) is the same as the condition appearing in [Faber et al. 2009] for the
preimage curve Y pre(i,−γ ), given by the vanishing of the polynomial

(gi
0,m(x)+ γ ) ∈ K [x,m],

to be nonsingular for all i ≥ 1. In Proposition 9, we give a new criterion ensuring
that (1-2) holds for given γ , thereby improving [Faber et al. 2009, Proposition 4.8].
The full strength of condition (1-2) is not required to prove part (1) of Theorem 1;
see the remark following the proof of Proposition 9.

For given K , denote by S(2, n, γ ) the set of m ∈ K such that gn+1
γ,m (x) is newly

reducible. Thus Theorem 1 establishes the finitude of S(2, n, γ ) for n ≥ 2 and
certain γ . In Theorem 3, we show that for each γ ∈ K , the set S(2, 1, γ ) is infinite,
and we explicitly describe its elements. In the case γ = 0, this result follows from
[Danielson and Fein 2002, Proposition 2]. When n ≥ 2, the sets S(2, n, γ ) may still
be nonempty, even for K =Q. For instance, when f (x)= x2

−x−1, corresponding
to γ = 1

2 and m =− 7
4 , we have that f (x) and f 2(x) are irreducible but

f 3(x)= (x4
− 3x3

+ 4x − 1)(x4
− x3
− 3x2

+ x + 1), (1-3)

and thus − 7
4 ∈ S

(
2, 2, 1

2

)
. For K =Q, the sets S(2, n, γ ) are likely to be empty for

n ≥ 3, since as we will see they correspond to rational points on high-genus curves.
However, without effective algorithms to find such points, a new approach will be
required to precisely determine S(2, n, γ ).

To prove Theorem 1, we first examine the case where n ≥ 3 and use the fact
that comparing constant terms of a hypothetical nontrivial factorization of gn+1

γ,m (x)
gives rise to K -rational points on a hyperelliptic curve (at least for the γ satisfying
part (1) of Theorem 1). This allows us to use Faltings’ theorem to conclude that
S(2, n, γ ) is finite for these γ and for n ≥ 3. We then examine the case n = 2
using a system of equations generated from a factorization of the third iterate. After
defining certain cases for this system, we use Faltings’ theorem on a plane curve
arising from the Gröbner basis of the system to show that S(2, 2, γ ) is finite for
certain γ .
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2. The case n= 1

Before we approach the main theorem, let’s examine the case where n = 1. It is
possible for g2

γ,m(x) to be reducible and gγ,m(x) irreducible:

Example 2. Let γ = 0, m =− 4
3 , and K =Q. Then

g0,− 4
3
(x)= x2

−
4
3

is irreducible over Q since 4
3 is not a rational square. However, we have

g2
0,− 4

3
(x)=

(
x2
−

4
3

)2
−

4
3 =

(
x2
− 2x + 2

3

)(
x2
+ 2x + 2

3

)
.

Because it has degree 4, g2
γ,m(x) could a priori have nontrivial factors of de-

gree 1, 2, or 3. We will show in Corollary 5 that if gγ,m(x) is irreducible, then
the only nontrivial factorization for g2

γ,m(x) is p1(x)p2(x), with deg p1(x) =
deg p2(x)= 2.

Theorem 3. We have gγ,m(x) irreducible and g2
γ,m(x) reducible if and only if either

(1) γ 6= 1
4 and m = (c4

1− 4γ )/(4− 4c2
1), where c1 ∈ K \ {−1, 1} and (4γ − c2

1)/

(1− c2
1) is not a square in K ; or

(2) γ = 1
4 and −4m− 1 is not a square in K .

In particular, for each γ ∈ K , the set S(2, 1, γ ) is infinite.

Remark. It is interesting to note that when γ = 1
4 , we have

g2
1/4,m(x)=

(
x2
−

3
2 x +

(
m+ 13

16

))(
x2
+

1
2 x +

(
m+ 5

16

))
, (2-1)

and so g2
1/4,m(x) is reducible for all m ∈ K . This phenomenon has already been

noticed, albeit in somewhat different language, in [Faber et al. 2009, Remark 2.6
and p. 94].

Proof. Suppose that gγ,m(x) is irreducible and g2
γ,m(x) is reducible, so that

g2
γ,m(x) = p1(x)p2(x). Write p1(x) = (x − γ )2 + b1(x − γ )+ b0 and p2(x) =
(x − γ )2+ c1(x − γ )+ c0, where bi , ci ∈ K , and note that

g2
γ,m(x)= (x − γ )

4
+ 2m(x − γ )2+m2

+m+ γ. (2-2)

Comparing coefficients in the equality g2
γ,m(x)= p1(x)p2(x) gives the following

system of equations:

(a) c1+ b1 = 0;

(b) c0+ b1c1+ b0 = 2m;

(c) b1c0+ b0c1 = 0;

(d) b0c0 = m2
+m+ γ .

Clearly b1 =−c1 from (a), and then from (c) we have c1(b0− c0)= 0. If c1 = 0,
then from (b) we obtain c0+b0=2m. Squaring both sides and subtracting four times
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equation (d), one verifies that −m−γ = 1
4(c0−b0)

2. As this is a square, gγ,m(x) is
reducible (see (1-1) on page 482), and from this contradiction we conclude that c1 6=

0, and hence b0= c0. See (3-1) in the proof of Theorem 6 for a generalization of this
statement. From (b) and (d) we now derive the following system of two equations:

(e) 2c0− c2
1− 2m = 0;

(f) c2
0−m2

−m− γ = 0.

Solving (e) for c0 and substituting the result into (f) gives

c4
1+ 4mc2

1− 4m− 4γ = 0. (2-3)

Note that c1 = ±1 if and only if γ = 1
4 . Thus in the case where γ 6= 1

4 , we may
solve (2-3) for m to obtain m = (c4

1− 4γ )/(4− 4c2
1). Because gγ,m(x) is assumed

to be irreducible, we have that −m − γ is not a square in K , and one computes
−m−γ = (c2

1(4γ−c2
1))/(4(1−c2

1)). In the case where γ = 1
4 , we may take c1=±1

and c0= (1+2m)/2 to get a solution to equations (e) and (f) (this is the same as the
factorization in (2-1)). Hence g2

1/4,m(x) is reducible for all m ∈ K . Since g1/4,m(x)
is assumed to be irreducible, −m− γ =−m− 1

4 cannot be a square in K , which
holds if and only if −4m− 1 is not a square in K .

Assume now that either of the conditions in the statement of Theorem 3 hold.
Then −m− γ is not a square in K , so gγ,m(x) is irreducible. The other hypotheses
ensure that equations (e) and (f) above have solutions in K , and hence g2

γ,m(x) is
reducible. �

Note that when γ = 0, taking c1 = 2 in Theorem 3 yields Example 2. We also
remark that in the case of γ = 0, taking c1 = 2z in Theorem 3 yields Proposition 2
of [Danielson and Fein 2002], at least in the case where K is a number field. (Note
that there the polynomial under consideration is x2

−m, and hence the results differ
by a minus sign.)

3. The case n ≥ 3

Having handled the case n = 1, we now address the case where n ≥ 3. We postpone
the case n = 2 until Section 4 because the curves we must analyze have genus one,
while for n ≥ 3 the curves that arise have genus at least two, allowing us to apply
Faltings’ theorem.

Understanding the roots of gn+1
γ,m (x) is central to our analysis. In general, if βi is a

root of gn
γ,m(x), then the two roots of gγ,m(x)−βi are roots of gn+1

γ,m (x). Calling them
α+i and α−i , we have α+i = γ +

√
βi −m− γ and α−i = γ −

√
βi −m− γ . Note that

2γ −α+i = 2γ −
(
γ +

√
βi −m− γ

)
= γ −

√
βi −m− γ = α−i .
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The following picture summarizes the relation of the roots to one another. Note
that they are arranged in a tree.
Roots
of gn+1

γ,m α1 2γ−α1 α2 2γ−α2 α2n 2γ−α2n

of gn
γ,m β1 β2 β2n

of g2
γ,m γ+

√
−m+

√
−m−γ γ−

√
−m+

√
−m−γ γ+

√
−m−

√
−m−γ γ−

√
−m−

√
−m−γ

of gγ,m γ+
√
−m−γ γ−

√
−m−γ

0

In this section we establish two principal results on the structure of hypothetical
factors in the case where gn+1

γ,m (x) is newly reducible. Our first result is similar to
[Jones and Boston 2012, Proposition 2.6].

Theorem 4. Let gγ,m(x) = (x − γ )2 +m + γ with γ,m ∈ K . Suppose gn
γ,m(x)

is irreducible, and gn+1
γ,m (x) = p1(x)p2(x) where p1(x) and p2(x) are nontrivial

factors. If α is a root of p1(x), then 2γ −α is a root of p2(x) but not a root of p1(x).

Proof. Let Gn+1 =Gal(En+1/K ), where En+1 is the splitting field of gn+1
γ,m (x) over

K . Because gn
γ,m(x) is irreducible over K , Gn+1 acts transitively on the roots of

gn
γ,m(x). Let α be a root of p1(x) and α′ be a root of gn+1

γ,m but not a root of p1. By
the transitivity of the action of Gn+1 on the roots of gn

γ,m , we may take φ ∈ Gn+1

such that φ(gγ,m(α))= gγ,m(α′). Hence

φ((α− γ )2+ γ +m)= (α′− γ )2+ γ +m,

from which we deduce that φ(α)−γ =±(α′−γ ). Indeed, we must have φ(α)−γ =
−(α′− γ ), for otherwise φ(α)= α′, contradicting our assumption that α′ is not a
root of p1. We thus obtain φ(α)= 2γ −α′. In other words, 2γ −α = φ−1(α′), and
is therefore not a root of p1. �

Corollary 5. Let gγ,m(x) = (x − γ )2 +m + γ with γ , m ∈ K . Let n ∈ Z+, and
assume gn

γ,m(x) is irreducible with gn+1
γ,m (x)= p1(x)p2(x), where p1(x) and p2(x)

are nontrivial factors. Then, deg p1(x)= deg p2(x)= 2n , and p1(x) and p2(x) are
irreducible.
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Proof. Observe that deg gn
γ,m(x) = 2n and deg gn+1

γ,m (x) = 2n+1. By Theorem 4,
the roots of p1(x) are in bijection with the roots of p2(x), whence deg p1(x) =
deg p2(x) = 2n . If {α1, . . . , α2n } are all the roots of p1(x), then by Theorem 4,
{2γ −α1, . . . , 2γ −α2n } are all the roots of p2(x). Thus the set

{gγ,m(αi ) : i = 1, . . . , 2n
}

coincides with the set of all roots of gn
γ,m(x). Because gn

γ,m(x) is irreducible, the
action of Gn+1 on {gγ,m(αi ) : i = 1, . . . , 2n

} consists of a single orbit, and thus
the action of Gn+1 on {α1, . . . , α2n } must consist of a single orbit. Hence p1(x) is
irreducible. Similar reasoning gives that p2(x) is irreducible. �

3.1. Curves and Faltings’ theorem. We now use Theorem 4 to show that if gn+1
γ,m (x)

is newly reducible, then there is a K -rational point, depending on m, on a certain
curve.

Theorem 6. If gn
γ,m(x) is irreducible and gn+1

γ,m (x) is reducible for some n ≥ 1, then
there exist x , y ∈ K with x = m such that

y2
= tn+1(x),

where the polynomials ti (x) are defined by the recurrence relation t1(x) = x + γ
and, for i ≥ 2,

ti (x)= (ti−1(x)− γ )2+ x + γ.

Remark. Note that ti (x) = (gi
γ,m(γ ))|m=x , as will be shown below (or can be

easily seen by induction).

Proof. Assume gn
γ,m is irreducible and gn+1

γ,m (x) = p1(x)p2(x) for some p1(x),
p2(x) ∈ K [x] of positive degree. By Theorem 4, if {α1, . . . , α2n } are all the roots
of p1(x), then {2γ −α1, . . . , 2γ −α2n } are all the roots of p2(x). Then,

p1(x)= (x −α1)(x −α2) · · · (x −α2n ) and

p2(x)= (x − (2γ −α1))(x − (2γ −α2)) · · · (x − (2γ −α2n ))

= (x − 2γ +α1)(x − 2γ +α2) · · · (x − 2γ +α2n ).

So we have

p1(γ )= (γ −α1)(γ −α2) · · · (γ −α2n ) and

p2(γ )= (−γ +α1)(−γ +α2) · · · (−γ +α2n )

= (−1)2
n
(γ −α1)(γ −α2) · · · (γ −α2n ), (3-1)

and therefore p1(γ )= p2(γ ). Set y = p1(γ )= p2(γ ), so gn+1
γ,m (γ )= y2. We have

gn+1
γ,m (γ )= gγ,m(g

n
γ,m(γ ))= (g

n
γ,m(γ )− γ )

2
+m+ γ.
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Moreover, gγ,m(γ )=m+γ , and thus gi
γ,m(γ ) satisfies the same recurrence relation

as ti (x), with x replaced by m. �

The polynomials ti (x) play a critical role in our argument. The first few are

t1(x)= x + γ, t2(x)= x2
+ x + γ, t3(x)= x4

+ 2x3
+ x2
+ x + γ,

t4(x)= x8
+ 4x7

+ 6x6
+ 6x5

+ 5x4
+ 2x3

+ x2
+ x + γ. (3-2)

Equations of the form y2
= ti (x) may be interpreted geometrically as plane curves.

A plane curve defined over a field F is the set of solutions (x, y) ∈ F × F of an
equation of the form h(x, y)= 0, where h(x, y) ∈ F[x, y]. If K is a subfield of F ,
a K -rational point on the curve is one whose coordinates lie in K . For instance,
(1,−1) is a Q-rational point on the curve y2

= x3
+ x−1, while (−1,

√
−3) is not

(though it is K -rational for K =Q(
√
−3)).

The genus of a plane curve is a measure of its geometric complexity, and for
curves of the form y2

= r(x), which is the case of interest to us in light of Theorem 6,
there is a convenient way to calculate it — at least, when the roots of r(x) in the
algebraic closure of K are distinct.

Theorem 7 [Goldschmidt 2003]. Consider the curve C : y2
= r(x). If r(x) is

separable and of degree d, then the genus g of C is given by

g =
{
(d − 1)/2 for d odd,
(d − 2)/2 for d even.

Assume that r(x) is separable. A curve of the form y2
=r(x) of genus at least two

is called a hyperelliptic curve, while when such a curve has genus one it is known
as a elliptic curve. The reason we care about the genus of a curve is that Faltings’
theorem famously connects it to the number of K -rational points on the curve:

Theorem 8 (Faltings; see [Hindry and Silverman 2000, Theorem E.0.1]). Let K
be a number field, and let C be a curve defined over K of genus g ≥ 2. Then the set
of K -rational points on C is finite.

Suppose for a moment that all of the polynomials ti (x) in Theorem 6 are separable.
Clearly deg ti (x)= 2i−1. By Theorem 7, the genus gi of the curve y2

= ti (x) then
satisfies

gi =

{
0 for i = 1,
2i−2
− 1 for i ≥ 2.

(3-3)

Therefore, by Faltings’ theorem, the curve y2
= tn+1(x) has only finitely many

K -rational points for n ≥ 3. In particular, there are only finitely many x ∈ K such
that (x, y) is a K -rational point on y2

= tn+1(x). Thus, by Theorem 6, when n ≥ 3
there are only finitely many m ∈ K with gn

γ,m(x) irreducible and gn+1
γ,m (x) reducible

over K .



NEWLY REDUCIBLE ITERATES IN FAMILIES OF QUADRATIC POLYNOMIALS 489

Hence the lone remaining obstacle to proving part (1) of Theorem 1 is to establish
that the ti (x) in Theorem 6 are separable. Note that this is not true for all γ ∈ K .
Indeed, if γ = 1

4 , then t2(x)=
(
x + 1

2

)2. The set

S := {γ ∈Q : ti (x) is separable for all i ≥ 1}

is the same as the set of a ∈ Q such that the preimage curves Y pre(N ,−a)N≥1

defined in [Faber et al. 2009] are all nonsingular. In general, the set Q \ S is poorly
understood. One result [Faber et al. 2009, Proposition 4.8] gives a criterion for
membership in S. Here we give an improvement on that result.

Proposition 9. Let K be a number field with ring of integers OK , and let ti (x) be
as in Theorem 6. Suppose there exists a prime p of OK with vp(2) = e ≥ 1 and
vp(γ )= s with s 6= −e2 j for all j ≥ 1. Then ti (x) is separable over K for all i ≥ 1.

Remark. When K = Q, Proposition 9 says that if v2(γ ) 6= −2 j for all j ≥ 1,
then ti (x) is separable for all i ≥ 1.

Proof. It suffices to establish that ti (x) and t ′i (x) have no common roots in K , which
we do through the use of Newton polygons with respect to the valuation vp (we
abbreviate these by NP). We assume the reader is familiar with the relationship
between slopes of the Newton polygon of a polynomial and the p-adic valuation of
the polynomial’s roots (see, e.g., [Silverman 2007, Theorem 5.11]). The proposition
is obvious for i =1, so we take i ≥2. We first claim that for each r with 0≤ r ≤ i−2,
t ′i (x) has 2r roots in K with p-adic valuation −e/2r . The statement is trivial for
i = 2, so we assume inductively that it holds for given i ≥ 3, and we consider the
NP of t ′i (x) with respect to the p-adic valuation. By the chain rule,

t ′i+1(x)= 2(ti (x)− γ )t ′i (x)+ 1.

Observe that ti (x)−γ is monic, has integer coefficients, and has linear coefficient 1
(and constant term 0). Thus its NP consists of a single horizontal line segment
from (1, 0) to (2i−1, 0). From our inductive hypothesis, it follows that the NP of
2(ti (x)− γ )t ′i (x) consists of a horizontal line segment from (1, e) to (2i−1, e),
followed by a sequence of segments of slope e/2i−2, e/2i−3, . . . , e and respective
lengths 2i−2, 2i−3, . . . , 1. Hence the NP of 2(ti (x)−γ )t ′i (x)+1 consists of a line seg-
ment from (0, 0) to (2i−1, e), having slope e/2i−1, and otherwise is identical to the
NP of 2(ti (x)−γ )t ′i (x), since e/2i−1< e/2c for 0≤ c≤ i−2. This proves the claim.

For each i ≥ 1, ti (x) is a monic polynomial with degree 2i−1 and constant term γ ,
whose nonconstant coefficients are all integers. If vp(γ )≥ 0, then the NP of ti (x)
consists of nonpositive slopes, and hence all its roots have nonnegative p-adic
valuation, and therefore cannot coincide with roots of t ′i (x) by the above claim. If
vp(γ ) = s < 0, the NP for ti (x) consists of a single line segment from (0, s) to
(2i−1, 0), with length 2i−1 and slope −s/2i−1. Hence if ti (x) and t ′i (x) have a root
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in common, then by the above claim, −s/2i−1
= e/2r with 0≤ r ≤ i − 2. But this

holds if and only if s=−e2i−1−r , and since i−1−r ≥ 1, the proof is complete. �

Remark. To show that the genus of the curve y2
= ti (x) is at least two, we can get

by with a much weaker statement than Proposition 9. Indeed, the genus of y2
= ti (x)

depends on the degree of ti (x)/ f (x), where f (x) is the square polynomial of largest
degree dividing ti (x). It suffices to show that the degree of ti (x)/ f (x) is at least
five, for each i ≥ 4.

4. The case n= 2

Consider now the case where n = 2. From (3-3), we know that when t3(x) is
separable, g3 = 1, and so y2

= t3(x) is an elliptic curve. (When t3(x) is not
separable, y2

= t3(x) gives a curve of genus 0.) Thus we cannot directly apply
Faltings’ theorem, and we must use a different approach to determine the set
S(2, 2, γ ) of m ∈ K such that g2

γ,m(x) is irreducible and g3
γ,m(x) is reducible over K .

Now for some number fields K and some γ ∈ K , it may still be the case that
y2
= t3(x) has only finitely many K -rational points, proving the finiteness of

S(2, 2, γ ) over K . This is the case for γ = 0 and K =Q, as we now show:

Proposition 10. Let γ = 0 and C3 be the curve given by

y2
= t3(x)= x4

− 2x3
+ x2
− x .

The only Q-rational points on C3 are (0, 0) and the point at infinity. In particular,
there are no m ∈Q such that x2

+m has a newly reducible third iterate.

Proof. Let y = u/v2 and x =−1/v define a birational map φ from

C ′3 : u
2
= v3
+ v2
+ 2v+ 1

to C3. We compute the conductor of the elliptic curve C ′3 to be 92, and locate it
as curve 92A1 in [Cremona]. From the same reference, we know that it has rank
zero over Q and torsion subgroup of order 3. Hence the obvious points (0,±1)
together with the point at infinity give all Q-rational points on C ′3. If (x, y) is an
affine rational point on C3 with x 6= 0, then φ−1(x, y) is an affine rational point
(v, u) on C ′3 with v 6= 0. But there are no such points. �

The strategy of Proposition 10, however, won’t even work for all number fields K
in the case γ = 0. Indeed, let K = Q(i) and let φ be the same transformation
as in Proposition 10. One can check that (−1, i) is a nontorsion point of C ′3 in
many ways. One of the more interesting, if not the simplest computationally, is
to show that (−1, i) has positive canonical height. Silverman [1990] gives upper
and lower bounds for the difference between the canonical height ĥ(P) and the
Weil height h(P) of a K -rational point P on an elliptic curve, computed in terms
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of the discriminant and j-invariant of the curve. For C ′3, we have −1.5484 ≤
ĥ(P)− h(P) ≤ 1.4577. In particular, ĥ(P) ≥ h(P)− 1.5484, so h(P) > 1.5484
would imply that P is a nontorsion point. Using MAGMA [Bosma et al. 1997],
we find that although h(P)= 0 for P = (−1, i) on C ′3, we have h([2]P)= 1.6094.
Thus ĥ(P)= 1

4 ĥ([2]P) > 0, using algebraic properties of canonical height.
Since (−1, i) is a nontorsion point on C ′3, the curve C3 has infinitely many

K -rational points. However, when we check some corresponding x-values on C3

as our choices for m in x2
+m, we don’t find a newly reducible third iterate over

Q(i). Thus we must adopt a different approach to have any hope of proving the
case n = 2 of Theorem 1, even for γ = 0.

Let K be a number field and γ ∈ K . Suppose that g3
γ,m(x) is newly reducible,

so that by Corollary 5, g3
γ,m(x) = p1(x)p2(x) for irreducible polynomials p1(x),

p2(x) ∈ K [x] with deg p1(x)= deg p2(x)= 4. Put

p1(x)= (x − γ )4+ a3(x − γ )3+ a2(x − γ )2+ a1(x − γ )+ a0,

p2(x)= (x − γ )4+ b3(x − γ )3+ b2(x − γ )2+ b1(x − γ )+ b0

with ai , bi ∈ K . We also have

g3
γ,m(x)= (x − γ )

8
+ 4m(x − γ )6+ (6m2

+ 2m)(x − γ )4

+ (4m3
+ 4m2)(x − γ )2+m4

+ 2m3
+m2

+m+ γ.

Multiplying p1(x) and p2(x) together, setting this product equal to g3
γ,m(x) and

comparing coefficients, we obtain a system of eight equations. By simplifying this
system using Theorem 6, and noting that a0 6= 0 by the irreducibility of p1(x), we
get two cases:

Case I: a1 6= 0, which implies b1 =−a1, b2 = a2:

(1) 2a2− a2
3 − 4m = 0;

(2) 2a0+ a2
2 − 2a1a3− 6m2

− 2m = 0;

(3) 2a2a0− a2
1 − 4m3

− 4m2
= 0;

(4) a2
0 −m4

− 2m2
−m2

−m− γ = 0.

Case II: a1 = b1 = 0:

(1) b2− a2
3 + a2− 4m = 0;

(2) (b2− a2)a3 = 0;

(3) 2a0+ a2b2− 6m2
− 2m = 0;

(4) (a2+ b2)a0− 4m3
− 4m2

= 0;

(5) a2
0 −m4

− 2m2
−m2

−m− γ = 0.
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We use Gröbner bases to find the solutions to these systems of nonlinear equations.
We dispense with Case II first, noting that it consists of five equations in five variables
so we expect it will have only finitely many solutions in K . We assign an ordering
to the variables in which γ is last, and using MAGMA [Bosma et al. 1997] to
compute a Gröbner basis for each system, we find that the system in Case II has
one K -rational solution for each m ∈ K with

0= m14
+m13γ + 13

3 m13
+

13
3 m12γ + 22

3 m12
+

22
3 m11γ + 57

8 m11
+

33
4 m10γ

+ 5m10
+

9
8 m9γ 2

+
23
3 m9γ + 9

4 m9
+

8
3 m8γ 2

+
25
6 m8γ + 7

12 m8
+

23
12 m7γ 2

+
17
12 m7γ − 1

24 m7
+

13
12 m6γ 2

−
1

12 m6γ − 1
12 m6

+
1
4 m5γ 3

−
1

24 m5γ 2

−
1
4 m5γ − 1

24 m5
−

1
4 m4γ 2

−
1
6 m4γ − 1

12 m3γ 3
−

1
4 m3γ 2

−
1
6 m2γ 3

−
1

24 mγ 4.

Clearly for any γ ∈ K , there are at most 14 such m, and so case II does not affect the
finiteness of the number of m for which gγ,m(x) has a newly irreducible third iterate.

Case I proves more interesting. We compute that for fixed γ ∈ K , Case I has
precisely one solution (a0, a1, a2, a3,m) ∈ K 5 for each K -rational point (a3,m)
on the curve

Cγ : 0= a16
3 +32a14

3 m+352a12
3 m2
−32a12

3 m+1792a10
3 m3
−256a10

3 m2

+4352a8
3m4
−1536a8

3m3
−1792a8

3m2
−2176a8

3m−2176a8
3γ

+4096a6
3m5
−8192a6

3m4
−12288a6

3m3
−10240a6

3m2
−10240a6

3mγ

−16384a4
3m5
−32768a4

3m4
−38912a4

3m3
−22528a4

3m2γ−14336a4
3m2

−14336a4
3mγ−16384a2

3m4
−16384a2

3m3γ−16384a2
3m3
−16384a2

3m2γ

+4096m2
+8192mγ+4096γ 2.

For instance, when γ = 1
2 , one checks that Cγ has the rational point (1,− 7

4), which
corresponds to the newly reducible example given in (1-3). The actual Gröbner
basis is far too long to include here; however, we have included the Gröbner basis in
the case γ = 1 in the Appendix to this article. Thus when Cγ has genus at least two,
there can be only finitely many K -rational solutions to the system given in Case I,
and hence only finitely many m ∈ K such that gγ,m(x) has a newly irreducible third
iterate. Part (2) of Theorem 1 is thus proved when the genus Cγ is at least two.

Using MAGMA again, we checked that Cγ has genus 11 for γ = r/4, −200≤
r ≤ 200, except for the cases g(C−2) = 9, g(C0) = 9, g(C1/4) = 7, g(C1) = 10.
Note that we chose γ to have denominator 4 in order to include the case γ = 1

4 ,
where we strongly suspected degeneracies to occur. The map ψ sending Cγ to γ
has fibers whose genus appears generally to be 11. Even the degenerate fibers seem
to have genus greater than 1, and hence part (2) of Theorem 1 holds even in those
cases. Interestingly, if we take a section of ψ by fixing a value of m and letting γ
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vary, we appear always to get a curve of genus at most 1. This phenomenon was first
noticed by Michael Zieve (personal correspondence). In other words, writing Cγ,m
instead of Cγ , and choosing ψ ′ to be the map sending Cγ,m to m, the surface Cγ,m
is (birational to) an elliptic surface. This observation may pave the way for a full
understanding of Cγ,m , and hence improvements to part (2) of Theorem 1.
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Appendix

We report the Gröbner basis for Case I from page 491 with γ = 1 as calculated by
MAGMA [Bosma et al. 1997]:

(1) a0− a1a3+
1
8 a4

3 − a2
3q − q2

+ q

(2) a2
1 − a1a3

3 + 4a1a3q + 1
8 a6

3 −
3
2 a4

3q + 3a2
3q2
+ a2

3q

(3) a1a5
3+

1920
571 a1a3q6

−
35582
1713 a1a3q5

+
641146
15417 a1a3q4

−
173966

5139 a1a3q3

+
254212
15417 a1a3q2

−
4322
571 a1a3q+ 35

30834 a14
3 q− 1

1152 a1
34− 4265

123336 a12
3 q2

+
200467
7893504 a12

3 q+ 4199
2631168 a12

3 +
1775
5139 a10

3 q3
−

191455
986688 a10

3 q2
−

75881
986688 a10

3 q

−
22705
15417 a8

3q4
+

516139
986688 a8

3q3
+

315853
493344 a8

3q2
+

54587
986688 a8

3q− 7
48 a8

3

+
36880
15417 a6

3q5
+

76901
61668 a6

3q4
−

148475
30834 a6

3q3
+

219505
61668 a6

3q2
−

11
18 a6

3q

−
240
571 a4

3q6
−

429961
61668 a4

3q5
+

677423
61668 a4

3q4
−

402371
61668 a4

3q3
−

75667
123336 a4

3q2

+
131047
41112 a4

3q+ 1920
571 a2

3q7
−

35582
1713 a2

3q6
+

641146
15417 a2

3q5
−

374378
15417 a2

3q4

+
152233
15417 a2

3q3
−

189763
15417 a2

3q2
+

960
571 q5

−
14911
1713 q4

+
186374
15417 q3

−
104975
15417 q2

+
4
3 q

(4) a1a2
3q+ 720

571 a1q6
−

17791
2284 a1q5

+
320573
20556 a1q4

−
86983
6852 a1q3

+
53275
10278 a1q2

−
4199
2284 a1q

−
45

292352 a15
3 q3
+

14911
18710528 a15

3 q2
−

93187
84197376 a15

3 q+ 104975
168394752 a15

3

+
45

9136 a13
3 q4
−

14911
584704 a13

3 q3
+

93187
2631168 a13

3 q2
−

11415
584704 a13

3 q− 1
3072 a13

3

−
495
9136 a11

3 q5
+

161141
584704 a11

3 q4
−

1915915
5262336 a11

3 q3
+

300037
1754112 a11

3 q2
+

206789
7016448 a11

3 q

+
4199

7016448 a11
3 +

315
1142 a9

3q6
−

101497
73088 a9

3q5
+

1170419
657792 a9

3q4
−

154417
219264 a9

3q3

−
203785
877056 a9

3q2
−

75881
2631168 a9

3q− 765
1142 a7

3q7
+

236207
73088 a7

3q6
−

545431
164448 a7

3q5

−
142777
109632 a7

3q4
+

4272259
877056 a7

3q3
−

4322155
1315584 a7

3q2
+

3623737
2631168 a7

3q+ 360
571 a5

3q8

−
9151
4568 a5

3q7
−

19973
5139 a5

3q6
+

128675
6852 a5

3q5
−

4341377
164448 a5

3q4
+

1413245
82224 a5

3q3

−
830245
164448 a5

3q2
−

41
48 a5

3q− 1440
571 a3

3q8
+

20671
1142 a3

3q7
−

258976
5139 a3

3q6

+
12676049
164448 a3

3q5
−

3880925
54816 a3

3q4
+

688435
18272 a3

3q3
−

881653
109632 a3

3q2
+

172159
109632 a3

3q

+
2160
571 a3q7

−
53373
2284 a3q6

+
320573
6852 a3q5

−
85543
2284 a3q4

+
177007
13704 a3q3

−
148651
41112 a3q2
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(5) a1q7
−

68
9 a1q6

+
1606
81 a1q5

−
578
27 a1q4

+
853
81 a1q3

−
50
9 a1q2

+a1q− 1
8192 a15

3 q4

+
59

73728 a15
3 q3
−

1075
663552 a15

3 q2
+

377
331776 a15

3 q− 25
73728 a15

3 +
1

256 a13
3 q5

−
59

2304 a13
3 q4
+

1075
20736 a13

3 q3
−

83
2304 a13

3 q2
+

35
3456 a13

3 q− 11
256 a11

3 q6

+
5

18 a11
3 q5
−

5647
10368 a11

3 q4
+

9341
27648 a11

3 q3
−

847
13824 a11

3 q2
−

275
27648 a11

3 q

−
1

3072 a11
3 +

7
32 a9

3q7
−

101
72 a9

3q6
+

3497
1296 a9

3q5
−

5249
3456 a9

3q4
+

203
1728 a9

3q3

+
365

10368 a9
3q2
+

11
1152 a9

3q− 17
32 a7

3q8
+

949
288 a7

3q7
−

7261
1296 a7

3q6
+

1103
3456 a7

3q5

+
19607
3456 a7

3q4
−

58525
10368 a7

3q3
+

15673
5184 a7

3q2
−

863
1152 a7

3q+ 1
2 a5

3q9
−

41
18 a5

3q8

−
115
81 a5

3q7
+

4409
216 a5

3q6
−

23737
648 a5

3q5
+

19853
648 a5

3q4
−

2225
162 a5

3q3
+

427
216 a5

3q2

−2a3
3q9
+

154
9 a3

3q8
−

37351
648 a3

3q7
+

8318
81 a3

3q6
−

11993
108 a3

3q5
+

3571
48 a3

3q4

−
776
27 a3

3q3
+

3539
432 a3

3q2
−

41
48 a3

3q+3a3q8
−

68
3 a3q7

+
1606
27 a3q6

−
1147
18 a3q5

+
778
27 a3q4

−
2075
162 a3q3

+
49
18 a3q2

(6) a2−
1
2 a2

3 + 2q

(7) a16
3 − 32a14

3 q + 352a12
3 q2
+ 32a12

3 q − 1792a10
3 q3
− 256a10

3 q2

+ 4352a8
3q4
+ 1536a8

3q3
− 1792a8

3q2
+ 2176a8

3q − 4096a6
3q5

− 8192a6
3q4
+ 12288a6

3q3
− 10240a6

3q2
+ 16384a4

3q5
− 32768a4

3q4

+ 38912a4
3q3
− 14336a4

3q2
− 16384a2

3q4
+ 16384a2

3q3
+ 4096q2
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Positive symmetric solutions of a second-order
difference equation

Jeffrey T. Neugebauer and Charley L. Seelbach

(Communicated by Johnny Henderson)

Using an extension of the Leggett–Williams fixed-point theorem due to Avery,
Henderson, and Anderson, we prove the existence of solutions for a class of
second-order difference equations with Dirichlet boundary conditions, and discuss
a specific example.

1. Introduction

Many fixed-point theorems have applications in proving the existence of positive
solutions of boundary value problems. One class of such theorems, originating with
[Krasnoselskii 1964], involves an operator defined on a “wedge” — a portion of a
Banach space bounded by level surfaces of positive functionals — and satisfying
certain criteria. In Krasnoselskii’s original theorem, the functional was the norm;
that is, the wedge conditions where a ≤ ‖x‖ and ‖x‖ ≤ b, for 0< a < b. A later
variant, in [Leggett and Williams 1979], replaced the lower wedge condition by
a ≤ α(x), where α is a concave positive functional with α(x) ≤ ‖x‖; this allows
more flexibility in the choice of the wedge in applications. The Leggett–Williams
theorem was extended by Avery, Henderson, and Anderson [Avery et al. 2009] to
allow flexibility also in the upper wedge condition, which gets replaced by β(x)≤ b,
where β is a convex positive functional. This is the result of primary interest to this
paper; other related results can be found in [Guo 1984; Avery and Henderson 2001;
Anderson et al. 2010; Mavridis 2010].

Applications of such fixed-point theorems have been seen in works dealing with
ordinary differential equations [Avery et al. 2000; 2010; Erbe and Wang 1994] and
dynamic equations on time scales [Erbe et al. 2005; Liu et al. 2012; Prasad and
Sreedhar 2011]. Most relevant to this paper, these theorems have been utilized for
results that involve finite difference equations [Anderson et al. 2011; Cai and Yu
2006; Henderson et al. 2010].

MSC2010: 39A10.
Keywords: difference equation, boundary value problem, fixed-point theorem, positive symmetric

solution.
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Here we give an application of the fixed-point theorem of [Avery et al. 2009],
stated below as Theorem 2.1, to obtain at least one positive solution of the difference
equation

12u(k)+ f (u(k)), k ∈ {0, . . . , N−2}, (1-1)

with boundary conditions
u(0)= u(N )= 0. (1-2)

Here f : [0,∞)→[0,∞) is any continuous function and12 is the second-difference
operator, defined by (12u)(k)= u(k)−2u(k+1)+u(k+2). In fact we will obtain
a symmetric solution, in the sense that u(k)= u(N−k) for each k.

In Section 2 we present the fixed-point theorem of Avery et al. Section 3 contains
preliminaries needed for our result on the difference equation (1-1), (1-2). That
result is stated and proved in Section 4, and applied to a particular case in Section 5.

2. Statement of the fixed-point theorem

Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a
cone if it contains the origin, is closed under multiplication by positive scalars, and
has no overlap with its negative (apart from the origin). In symbols,

u ∈ P, λ≥ 0 =⇒ λu ∈ P and u ∈ P,−u ∈ P =⇒ u = 0.

Let P be a cone in E . A map α : P → [0,∞) is said to be a nonnegative
continuous concave functional on P if it is continuous and satisfies

α(tu+(1− t)v)≥ tα(u)+(1− t)α(v),

for all u, v ∈ P and t ∈ [0, 1]. Replacing ≥ by ≤ we obtain the definition of a
nonnegative continuous convex functional on P.

In the statement of the theorem, there appear two concave functionals, α and φ,
and two convex ones, β and γ . The functionals α and β delimit the wedge where
the operator is defined; the other two ensure additional flexibility in applications, in
comparison with the Leggett–Williams theorem.

Theorem 2.1 [Avery et al. 2009]. Let P be a cone in a real Banach space E.
Suppose that α and ψ are nonnegative continuous concave functionals on P and
that β and δ are nonnegative continuous convex functionals on P. For nonnegative
real numbers a, b, c, and d , define

A := A(α, β, a, d)= {x ∈ P : a ≤ α(x) and β(x)≤ d} , (2-1)

and suppose that A is a bounded subset of P. Let T : A→ P be a completely
continuous operator (that is, it is continuous and maps bounded sets into precompact
sets). Then T has a fixed point in A provided that the following conditions hold:
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A0. {x ∈ P : α(x) < a and d < β(x)} =∅.

A1. {x ∈ A : c <ψ(x) and δ(x) < b} 6=∅.

A2. α(T x)≥ a for all x ∈ A with δ(x)≤ b.

A3. α(T x)≥ a for all x ∈ A with b < δ(T x).

A4. β(T x)≤ d for all x ∈ A with c ≤ ψ(x).

A5. β(T x)≤ d for all x ∈ A with ψ(T x) < c.

3. Application of the theorem to a difference equation

In this section we return to the system (1-1), (1-2), stating in Theorem 3.2 sufficient
conditions for the existence of a solution. This result is proved in the next section
using Theorem 2.1. First, however, we set up some of the objects that appear in the
statement of Theorem 2.1. Throughout the discussion we use the abbreviations

N =
⌊N

2

⌋
and N =

⌈N
2

⌉
.

Define the Banach space E to be the space of functions u : {0, . . . , N }→R with
the norm

‖u‖ = max
k∈{0,1,...,N }

|u(k)|.

Within E , consider the cone P consisting of all u that are nonnegative, symmetric,
nondecreasing on {0, 1, . . . , N }, and satisfy wu(y) ≥ yu(w) for w ≥ y, where
y, w ∈ {0, 1, . . . , N }.

Set

H(k, l)=
1
N

{
k(N− l), k ∈ {0, . . . , l},
l(N−k), k ∈ {l+1, . . . , N }.

(This is the Green’s function for −12 satisfying the boundary conditions (1-2).)
Define the operator T by

(T u)(k) :=
N−1∑
l=1

H(k, l) f (u(l)).

By direct checking one sees that the condition T u = u is equivalent to (1-1) and
(1-2). Thus any fixed point of T is a solution of our problem.

Lemma 3.1. The operator T maps A into P.

Proof. Let u ∈ A. We first need to show that T u(N− k) = T u(k). Notice that
H(N−k, N− l)= H(k, l). Now

T u(N−k)=
N−1∑
l=1

H(N−k, l) f (u(l)).
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Applying the substitution r = N− l, we can write

T u(N−k)=
N−1∑
r=1

H(N−k, N−r) f (u(N−r))

=

N−1∑
r=1

H(k, r) f (u(r))= T u(k).

Next we need to show T u(k) is nonnegative and nondecreasing on {0, 1, . . . , N }.
Since H(k, l)≥ 0 for k, l ∈ {0, . . . , N } and f only takes nonnegative values, T u(k)
is nonnegative for all k ∈ {0, . . . , N }.

To prove that T u(k) is nondecreasing on {0, 1, . . . , N }, we show that1T u(k) :=
T u(k−1)−T u(k) is nonnegative on {0, 1, . . . , N }. Now

H(k+1, l)−H(k, l)=
1
N
×

{
N− l if k ∈ {0, . . . , l},
−l if k ∈ {l, . . . , N−1}.

So

1T u(k)=
N−1∑
l=1

(
H(k+1, l)−H(k, l)

)
f (u(l))

=

k−1∑
l=1

−l
N

f (u(l))+
N−1∑
l=k

N− l
N

f (u(l))

=

k−1∑
l=1

−l
N

f (u(l))+
N−1∑
l=k

N− l
N

f (u(N− l))

=

k−1∑
l=1

−l
N

f (u(l))+
N−k∑
r=1

r
N

f (u(r))

=

k−1∑
l=1

−l
N

f (u(l))+
N−k∑
l=1

l
N

f (u(l)).

Since k ∈ {0, 1, . . . , N },

1T u(k)=
k−1∑
l=1

−l
N

f (u(l))+
N−k∑
l=1

l
N

f (u(l))=
N−k∑
l=k

l
N

f (u(l))≥ 0,

as needed.
Lastly, we have wT u(y) ≥ yT u(w), since H(k, l) satisfies H(y, l)

H(w, l)
≥

y
w

for
all l and all w ≥ y. Thus T maps A into P. �
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Theorem 3.2. Assume that τ, µ, ν ∈ {1, . . . , N } are fixed with τ ≤ µ < ν, that d
and m are positive real numbers with 0<m< dµ/N , and that f : [0,∞)→[0,∞)
is a continuous function such that

(i) f (w)≥
2Nd

(ν−τ)(2N−1−τ−ν)N
for w ∈ [τd/N , νd/N ],

(ii) f (w) is decreasing for w ∈ [0,m] and f (m)≥ f (w) for w ∈ [m, d], and

(iii) 2
µ∑

l=1

l N
N

f
(

ml
µ

)
≤ d− f (m)

1
N
(N )(N−µ)(µ+1+N ).

Set a= τd/N. Then (1-1), (1-2) has at least one positive symmetric solution u∗ ∈ A,
where A is given by (2-1).

4. Proof of Theorem 3.2

Let a = τd/N , b = νd/N , c = µd/N . By Lemma 3.1, T maps A into P. Let
u ∈ A. Then β(u)= u(N )≤ d . But u achieves its maximum at N , so A is bounded.
By the Arzelà–Ascoli theorem, T is a completely continuous operator.

Now define the functionals appearing in the theorem as follows, where u ∈ P:

α(u)= min
k∈{τ,...,N }

u(k)= u(τ ), ψ(u)= min
k∈{µ,...,N }

u(k)= u(µ),

δ(u)= max
k∈{0,...,ν}

u(k)= u(ν), β(u)= max
k∈{0,...,N }

u(k)= u(N ).

It is easy to check that α and ψ are concave and β and δ are convex.
We check conditions A0–A5 in turn. Let u ∈ P and let β(u) > d. Then

α(u)= u(τ )≥
τ

N
u(N )=

τ

N
β(u) >

τd
N
= a.

So {u ∈ P : α(u) < a and d < β(u)} =∅, which is A0.

Now let K ∈
(

2d
N (3N−4−µ)

,
2d

N (3N−4−ν)

)
. Define

uK (k)= K
N−1∑
l=1

H(k, l)=
K k
2
(3N−4−k).

Then

α(uk)= uk(τ )=
K τ
2
(3N−4−τ) >

2dτ(3N−4−τ)
2N (3N−4−µ)

≥
τd
N
= a

and

β(uk)= uk(N )=
K N

2
(3N−4−N ) <

2Nd(3N−4−N )
2N (3N−4−ν)

≤
Nd
N
= d.
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So uk ∈ A.
Since

ψ(uk)= uk(µ)=
Kµ
2
(3N−4−µ) >

2dµ(3N−4−µ)
2N (3N−4−µ)

=
µd
N
= c

and

δ(uk)= uk(ν)=
Kν
2
(3N−4−ν) <

2dν(3N−4−ν)
2N (3N−4−ν)

=
νd
N
= b,

we have {u ∈ A : c <ψ(u) and δ(u) < b} 6=∅. Therefore A1 holds.
To show that A2 holds, take u ∈ A with δ(u) < b. By (i),

α(T u)=
N−1∑
l=1

H(τ, l) f (u(l))≥
ν∑

l=τ+1

H(τ, l) f (u(l))

≥
2Nd

(ν−τ)(2N−1−τ−ν)N
·
τ(ν−τ)(2N−1−τ−ν)

2N
≥
τd
N
= a.

To show that A3 holds, let u ∈ A with δ(T u) > b. Then

α(T u)= T u(τ )=
N−1∑
l=1

H(τ, l) f (u(l))≥
τ

ν

N−1∑
l=1

H(ν, l) f (u(l))

=
τ

ν
δ(T u) >

τ

ν
b =

dτ
N
= a.

Now we show that A4 holds. Let u ∈ A satisfy c ≤ φ(x). By the concavity of u
and since c = µd/N , for all k ∈ {0, 1, . . . , µ}, we have

u(k)≥
ck
µ
≥

mk
µ
.

So, by (ii) and (iii), we have

β(T u)=
N−1∑
l=1

H(N , l) f (u(l))≤ 2
N∑

l=1

l(N−N )
N

f (u(l))

= 2
µ∑

l=1

l(N )
N

f (u(l))+2
N∑

l=µ+1

l(N )
N

f (u(l))

≤ 2
µ∑

l=1

l(N )
N

f (u(ml/µ))+2
N∑

l=µ+1

l(N )
N

f (m)

≤ d− f (m)
N
N
(N−µ)(µ+1+N )+ f (m)

N
N
(N−µ)(µ+1+N )= d.
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Thus A4 is satisfied.
Last, we show that A5 is satisfied. Let u ∈ A with ψ(T u) < c. Then

β(T u)=
N−1∑
l=1

H(N , l) f (u(l))≤
N
µ

N−1∑
l=1

H(µ, l) f (u(l))≤
N
µ
ψ(T u) <

cN
µ
= d.

Therefore T has a fixed point and (1-1), (1-2) has at least one positive symmetric
solution u∗ ∈ A.

5. Example

Example 1. Let N = 20, τ = 1, µ = 9, ν = 10, d = 5, and m = 4.4. Notice that
0< τ ≤ µ < ν ≤ 10= N , and 0< m = 4.4 ≤ 4.5= dµ/N . Define a continuous
function f : [0,∞)→ [0,∞) by

f (w)=


1

500(45−w) if 0≤ w ≤ 40,
1

100 if w ≥ 40.

Then,

(i) for w ∈ [ 12 , 5], f (w)≥ f (5)=
2
25
>

5
63
=

2 ·20 ·5
(10−1) ·(3+2 ·18−1−10)(10)

,

(ii) f (w) is decreasing for w ∈ [0, 4.4] and f (m)≥ f (w) for w ∈ [4.4, 5], and

(iii) 2
9∑

l=1

10l
20

f
(

4.4l
9

)
=

5657
1500

<
1047
250
= 5− f (4.4)

( 1
20

)
(10)(10−9)(9+1+10).

So the hypotheses of Theorem 3.2 are satisfied. Therefore, the difference equation

12u(k)+ f (u(k)), k ∈ {0, 1, . . . , 18},

with boundary conditions
u(0)= u(20)= 0,

has a positive symmetric solution u∗ with u(1)≥ 1
2 and u(10)≤ 5.
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