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We investigate the length-biased inverse Weibull (LBIW) distribution, deriving
its density function, hazard and reverse hazard functions, and reliability function.
The moments, moment-generating function, Fisher information and Shannon
entropy are also given. We discuss parameter estimation via the method of
moments and maximum likelihood, and hypothesis testing for the LBIW and
parent distributions.

1. Introduction

Weighted distributions occur in many areas, including medicine, ecology, reliability,
and branching processes. Results and applications in these and other areas can be
seen in [Patil and Rao 1978; Gupta and Kirmani 1990; Gupta and Keating 1986;
Oluyede 1999]. In a weighted distribution problem, a realization x of X enters into
the investigator’s record with probability proportional to a weight function w(x).
The recorded x is not an observation of X , but rather an observation of a weighted
random variable Xw.

In this article we are interested in the case where w(x)= x . This is called length
bias; it approximates situations common in practice (see [Arratia and Goldstein
2009] for an introductory discussion). We will apply length bias to the inverse
Weibull distribution (see Section 2 below), which has a wide range of applications
in diverse areas such as medicine, reliability and ecology; for example, Keller et
al. [1985] found it to be a good fit in their investigation of failures of mechanical
components subject to degradation. As a result, the inverse Weibull distribution is
well studied; see [Johnson et al. 1994] or [Rinne 2009] for a tabulation of results.

To proceed, we need some standard terminology. If X is a continuous, nonnega-
tive random variable with distribution function F and probability density function
(pdf) f (so that f (u) = d F(u)/du), we call F(x) = 1 − F(x) the associated
reliability function, from the situation where F(x) describes the probability that
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some piece of equipment, say, will still be working at time x . The hazard function
λF (x) and mean residual life function δF (x) are defined by

λF (x)=
f (x)

F(x)
and δF (x)=

∫
∞

x

F(u)

F(x)
du. (1)

The reverse hazard function is τF (x)= f (x)/F(x). When λF is monotone increas-
ing, we say that F is an increasing hazard rate (IHR) distribution. Likewise, a
decreasing mean residual life (DMRL) distribution is one where δF is monotone
decreasing. It can be shown that IHR implies DMRL. IHR distributions have a
number of nice properties, including finiteness of moments of all orders.

Now let w(x), x ≥ 0, be a positive function, and assume that the expectation of
w(X) is positive and finite:

0< E[w(X)] :=
∫
∞

0
f (x)w(x) dx <∞. (2)

We define the weighted random variable Xw by specifying its pdf:

fw(x)=
w(x) f (x)
E[w(X)]

, x ≥ 0. (3)

(The denominator ensures that the total mass is 1.)
As mentioned, we will be interested in the case of length bias, where w(x)= x .

In Section 2 we apply this weighting to the inverse Weibull distribution to obtain
our main object of study, the LBIW (length-biased inverse Weibull) distribution.
We briefly study the shape of the LBIW pdf. In Section 3 we calculate the LBIW
moments and moment-generating function, together with the variance, skewness
and kurtosis. Section 4 deals with Fisher information and Shannon entropy. In
Section 5 we discuss the estimation of the parameters of an LBIW, and describe a
test for the detection of length bias. Section 6 showcases a numerical example.

2. The inverse Weibull distribution and its length-biased version

The inverse Weibull distribution function is defined by

F(x; x0, α, β)= exp
(
−(α(x − x0))

−β
)
, x ≥ 0, α > 0, β > 0, (4)

where α, x0 and β are the scale, location and shape parameters, respectively. We
will consider only the case x0 = 0, so our distribution function of departure is

F(x;α, β)= exp
(
−(αx)−β

)
, x ≥ 0, α > 0, β > 0. (5)

(When α = 1, this is known as the Fréchet distribution, and its value at x = 1 is
independent of β; it equals e−1

= 0.3679, and is known as the characteristic life of
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the distribution.) By differentiation we get the corresponding pdf:

f (x;α, β)= βα−βx−β−1 exp
(
−(αx)−β

)
, x ≥ 0, α > 0, β > 0. (6)

To introduce the length bias we first multiply this pdf by the weighting function
w(x)= x , obtaining

x f (x;α, β)= βα−βx−β exp
(
−(αx)−β

)
= βF(x;α, β)

(
−log F(x;α, β)

)
, x ≥ 0, α > 0, β > 0. (7)

As we saw in (3), we need to divide this function by its integral (2), which is of
course the mean of the original distribution, denoted by µF . Evaluation yields

µF =
0
(
1− 1

β

)
α

.

Therefore the LBIW (length-biased inverse Weibull) pdf is

gw(x;α, β) :=
α

0
(
1− 1

β

)βF(x;α, β)
(
−log F(x;α, β)

)
=
βα−β+1x−β

0
(
1− 1

β

) exp
(
−(αx)−β

)
x ≥ 0, α > 0, β > 1. (8)

(We use the notation gw instead of fw as in (3) to make it more distinctive.) The
corresponding distribution function is given by

Gw(x;α, β)=
∫ x

0
gw(u;α, β) du =

1

0
(
1− 1

β

) ∫ (αx)−β

0
y−1/β exp(−y) dy, (9)

the last equality resulting from rewriting the integral in the variable y = (αu)−β .
We now turn to the shape of gw. From (8) we see that limx→0 gw(x;α, β)= 0

and limx→∞ gw(x;α, β)= 0. Next we look for extrema. It is easier to work with
the logarithmic derivative. Since

ηw(x) :=
∂ log gw(x;α, β)

∂x
=
β

x

(
(αx)−β − 1

)
, (10)

we see that an extremum requires that (αx)−β = 1. Thus the only extremizer is
x = 1/α; the pdf increases to a maximum at 1/α and then decreases.

For the study of the hazard function it will be useful to consider the second
derivative of log gw(x;α, β), namely

η′w(x)=−β
(β + 1)(αx)−β − 1

x2 . (11)

The numerator on the right has only one zero, at x = x∗ := (β + 1)1/β/α, so the



382 JING KERSEY AND BRODERICK O. OLUYEDE

same is true of η′w. More precisely, we have

η′w(x) < 0 if x < x∗,
η′w(x)= 0 if x = x∗,
η′w(x) > 0 if x > x∗.

(12)

A criterion of Glaser [1980, Theorem on p. 668, case (d)(i), and Lemma on p. 669,
case (iii)] then implies that the hazard function is “upside-down bathtub-shaped”;
that is, it is initially increasing, reaches a maximum, and decreases thereafter. The
conditions of the criterion are that the pdf is twice differentiable and positive for
x > 0, that it tends to 0 as x→ 0+, and that the second derivative of its log satisfies
(12) for some x∗. (Note that our ηw differs from Glaser’s η by a sign.)

With the qualitative behavior of the hazard function in hand, there remains to
write its formula. Recalling the definition in (1), we write

Gw(x;α, β)=
βα−β+1

0
(
1− 1

β

) ∫ ∞
x

t−β exp(−(αt)−β) dt (13)

and

λGw
(x;α, β)=

gw(x;α, β)

Gw(x)
=

x−β exp(−(αx)−β)∫
∞

x t−β exp(−(αt)−β) dt
. (14)

3. Moments and moment-generating function

In this section we derive the moments, moment-generating function, mean, variance,
coefficients of variation, skewness, and kurtosis for the LBIW distribution.

The moments of a length-biased random variable Xw are related to those of the
original or parent random variable X by

EGw
[X k

w] =
EF [X k+1

]

EF [X ]
, k = 1, 2, . . . , (15)

provided EF [X k+1
] exists. Noting that the moments of F are given by

EF [X k
] = γk :=

0
(
1− k

β

)
αk , k ≥ 1, β > k, (16)

we obtain the moments of Xw as follows:

EGw
[X k

w] =

0
(
1− k+1

β

)
αk0

(
1− 1

β

) = γk+1

γ1
, k ≥ 1, β > k. (17)

In particular, the mean of Xw is

µGw
= EGw

[Xw] =
0
(
1− 2

β

)
α0
(
1− 1

β

) = γ2

γ1
(18)
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and the variance is

σ 2
Gw
= EGw

[X2
w] − EGw

[Xw]2 =
γ1γ3− γ

2
2

γ 2
1

, (19)

where γk = 0(1− k/β)/αk . The coefficient of variation (CV) is

CV=
σGw

µGw

=

√
γ3γ1

γ 2
2
− 1. (20)

The coefficients of skewness (CS) and kurtosis (CK) are given by

CS=
E[(Xw −µGw

)3]

E[(Xw −µGw
)2]3/2

=
γ 2

1 γ4− 3γ1γ2γ3+ 2γ 3
2

(γ1γ3− γ
2
2 )

3/2
(21)

and

CK=
E[(Xw −µGw

)4]

E[(Xw −µGw
)2]2
=
γ 3

1 γ5− 4γ 2
1 γ2γ4+ 6γ1γ

2
2 γ3− 3γ 4

2

γ 2
1 γ

2
3 − 2γ1γ

2
2 γ3+ γ

4
2

. (22)

The moment-generating function is given by

MXw(t)=
βα−β+1

0
(
1− 1

β

) ∫ ∞
0

et y y−βe−(αy)−β dy

=
βα−β+1

0
(
1− 1

β

) ∞∑
j=0

t j

j !

∫
∞

0
y j−βe−(αy)−β dy=

βα−β+1

0
(
1− 1

β

) ∞∑
j=0

t j

j !
9 j,α,β, (23)

where

9 j,α,β =

∫
∞

0
y j−βe−(αy)−β dy.

4. Fisher information and Shannon entropy

The information (or Fisher information) that a random variable X contains about
the parameter θ is given by

I (θ)= E
[(

∂

∂θ
log f (X, θ)

)2 ]
. (24)

If, in addition, the second derivative with respect to θ of f (x, θ) exists for all x
and θ , and if the second derivative with respect to θ of

∫
f (x, θ) dx = 1 can be

obtained by differentiating twice under the integral sign, then

I (θ)=−Eθ

[
∂2

∂θ2 log f (X, θ)
]
. (25)

The Shannon entropy of a random variable X is a measure of the uncertainty and is
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given by EF [−log f (X)], where f (x) is the pdf of the random variable X .
For the LBIW distribution, the Fisher information that Xw (now renamed X for

simplicity) contains about the parameters θ = (α, β) is obtained as follows:

E
[(
∂ log gw(X;α, β)

∂α

)2 ]
=

∫
∞

0

(
1−β
α
+βα−β−1x−β

)2

gw(x;α, β) dx

= (1−β)2α−2
∫
∞

0
gw(x;α, β) dx +

2β2(1−β)α−2β−1

0
(
1− 1

β

) ∫
∞

0
x−2βe−(αx)−β dx

+
β3α−3β−1

0
(
1− 1

β

) ∫ ∞
0

x−3βe−(αx)−β dx

= (1−β)2α−2
+

2β(1−β)α−2

0
(
1− 1

β

) 0
(
2− 1

β

)
+

β2α−2

0
(
1− 1

β

)0(3− 1
β

)
= β(β − 1)α−2, (26)

E
[(
∂ log gw(X;α, β)

∂β

)2 ]

=

∫
∞

0

(
1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

) + log(αx)
(
(αx)−β − 1

))2

gw(x;α, β) dx

=

(
1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

))2

− 2
(

1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

))0′(2− 1
β

)
−0′

(
1− 1

β

)
β0
(
1− 1

β

)
+

β2
(
0′′
(
3− 1

β

)
− 20′′

(
2− 1

β

)
+0′′

(
1− 1

β

))
0
(
1− 1

β

) , (27)

E
[
∂2 log gw(X;α, β)

∂α∂β

]
= E

[
∂2 log gw(X;α, β)

∂β∂α

]
=

∫
∞

0

(
α−β−1x−β(1−β logα−β log x)− 1

α

)
gw(x;α, β) dx

= α−β−1(1−β logα)
∫
∞

0
x−βgw(x;α, β) dx

−
α−2ββ2

0
(
1− 1

β

) ∫ ∞
0

x−2β log xe−(αx)−β dx −
1
α

∫
∞

0
gw(x;α, β) dx

=α−1β−2(1−β)+α−1β−3(β−1)
0′
(
1− 1

β

)
0
(
1− 1

β

) = β − 1
αβ3

(
0′
(
1− 1

β

)
0
(
1− 1

β

) −β). (28)
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Thus the information matrix, namely

I(α, β)=


E
[(
∂ log gw(X;α, β)

∂α

)2 ]
E
[
∂2 log gw(X;α, β)

∂α ∂β

]
E
[
∂2 log gw(X;α, β)

∂β ∂α

]
E
[(
∂ log gw(X;α, β)

∂β

)2 ]
 , (29)

is given by

I(α, β)=


E
[(
∂ log gw(X;α, β)

∂α

)2 ]
β − 1
αβ3

(
0′
(
1− 1

β

)
0
(
1− 1

β

) −β)
β − 1
αβ3

(
0′
(
1− 1

β

)
0
(
1− 1

β

) −β) E
[(
∂ log gw(X;α, β)

∂β

)2 ]
 , (30)

where the diagonal entries are stated in (26) and (27).
Note that, for fixed β, the top left entry of this matrix is monotonically decreasing

in α, since

β(β − 1)
α2

1
≥
β(β − 1)
α2

2
⇐⇒ α2

2 ≥ α
2
1 ⇐⇒ α2 ≥ α1. (31)

On the other hand, for fixed α, the same function is monotonically increasing in β,
since

β1(β1−1)
α2 ≥

β2(β2−1)
α2 ⇐⇒ β1(β1−1)≥β2(β2−1) ⇐⇒ β2

1−β
2
2−(β1−β2)≥0

⇐⇒ (β1−β2)(β1+β2−1)≥0 ⇐⇒ β1≥β2, (32)

the last equivalence being a consequence of the inequalities β1 > 1, β2 > 1.
Under the LBIW distribution, the Shannon entropy is given by

EG(−log gw(X;α;β))

=

∫
∞

0

(
−log

βα−β+1

0
(
1− 1

β

) +β log x + (αx)−β
)

gw(x;α, β) dx

=−log
βα−β+1

0
(
1− 1

β

) +β∫ ∞
0
(log x)gw(x;α, β) dx+

∫
∞

0
(αx)−βgw(x;α, β) dx

=−log
βα−β+1

0
(
1− 1

β

) +β(−logα−
0′
(
1− 1

β

)
β0
(
1− 1

β

))+ β − 1
β

= log
0
(
1− 1

β

)
αβ

−

0′
(
1− 1

β

)
0
(
1− 1

β

) + β − 1
β

. (33)
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5. Estimation of parameters

In this section we derive formulas to estimate the parameters α and β for an unknown
LBIW distribution. We also present a test for the detection of length bias in a sample.

(For the inverse Weibull parent distribution, Calabria and Pulcini [1990; 1994]
derived maximum likelihood, least squares and Bayes estimates for the parameters.
They also obtained confidence limits for reliability and tolerance limits for the same
distribution [Calabria and Pulcini 1989].)

We continue to use X for the LBIW random variable whose parameters α and β
we wish to estimate. We use two standard methods to obtain the estimators: the
method of moments and maximum likelihood.

Method of moments estimators. The method of moments with two parameters
involves setting the first two moments E[X ] and E[X2

] equal to the corresponding
moments of an independent sample X1, X2, . . . , Xn of the LBIW random variable.
In view of (18) and (19), this leads to the equations

0
(
1− 2

β

)
α0
(
1− 1

β

) = 1
n

n∑
j=1

X j and
0
(
1− 3

β

)
α20

(
1− 1

β

) = 1
n

n∑
j=1

X2
j . (34)

These equations are then solved (numerically, for example) for α and β, leading to
the estimators α̂ and β̂.

If β is known, we only need the first equation in (34). In that case (i.e., for fixed
β > 1), the method of moments estimate (MME) of α is given by

α̂ =
n∑n

j=1 X j

0
(
1− 2

β

)
0
(
1− 1

β

) . (35)

Maximum likelihood estimators. In this method we take the log-likelihood func-
tion of the distribution, take its partial derivatives with respect to the parameters, and
equate their expectations to 0. The log-likelihood function for a single observation
x of X is

l(α, β)= log
(
βα−β+1

0
(
1− 1

β

) x−β exp(−(αx)−β)
)

= logβ − (β − 1) logα−β log x − (αx)−β −log0
(
1− 1

β

)
, (36)

which leads to

∂l
∂α
=−

β − 1
α
+
β(αx)−β

α
, (37)

∂l
∂β
=

1
β
−logα−log x + (αx)−β log(αx)+

0′
(
1− 1

β

)
β20

(
1− 1

β

) . (38)
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From E[∂l/∂α] = 0, we obtain

E[X−β] =
αβ(β − 1)

β
, (39)

and from E[∂l/∂β] = 0, we have

E[−log X + (αX)−β log(αX)] = logα−
1
β
−

0′
(
1− 1

β

)
β20

(
1− 1

β

) . (40)

The full log-likelihood function is given by

L(α, β)= n logβ − n(β − 1) logα−β
n∑

j=1

log x j −

n∑
j=1

(αx j )
−β
− n log0

(
1− 1

β

)
.

The normal equations are

∂L(α, β)
∂α

=
−n(β̂ − 1)

α̂
+ β̂α̂−β̂−1

n∑
j=1

x−β̂j = 0, (41)

∂L(α, β)
∂β

=
n

β̂
−n log α̂−

n∑
j=1

log x j−

n∑
j=1

log(α̂x j )

(α̂x j )β̂
−

n

β̂2
9(1−1/β̂)= 0. (42)

From (41), the MLE of α is

α̂ =

(
n(β̂ − 1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

. (43)

Now replace α̂ in (42) to obtain

∂L(α, β)
∂β

∣∣∣∣∣
α̂,β̂

=
n

β̂
−n log

(
n(β̂−1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

−

n∑
j=1

log x j

−

n∑
j=1

((
n(β̂−1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

x j

)−β̂
log

((
n(β̂−1)

β̂
∑n

j=1 x−β̂j

)−1/β̂

x j

)

−
1

β̂2

n∑
j=1

0′(1−1/β̂)

0(1−1/β̂)
= 0. (44)

This equation does not have a closed form solution and must be solved iteratively
to obtain the MLE of the scale parameter β. When α is unknown and β is known,
the MLE of α is obtained from (41) with the value of β in place of β̂. When
both α and β are unknown the MLEs of α and β are obtained by solving the normal
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equations in (41) and (42). The MLEs of the reliability and hazard functions can
be obtained by replacing α and β by their MLEs α̂ and β̂.

The expectations in the Fisher information matrix (FIM) can be obtained numer-
ically. Under the conditions that the parameters are in the interior of the parameter
space, but not on the boundary, we have

√
n
(
α̂−α

β̂ −β

)
d
−→ N

((
0
0

)
, I−1(α, β)

)
as n→∞,

where I (α, β)= limn→∞ n−1 In(α, β) and

In(α, β)= n
(

I (1, 1) I (1, 2)
I (2, 1) I (2, 2)

)
.

The entries I (i, j), i = 1, 2 and j = 1, 2, are given in (30). The multivariate normal
distribution with mean vector (0, 0)T and covariance matrix In(α, β) can be used
to construct confidence intervals for the model parameters.

Test for generalized length bias. We now seek to discriminate whether a random
variable, represented by a random sample of size n, is likely to be the result of
length-biased sampling. More precisely, we compare the null hypothesis H0, to the
effect that the random variable has the inverse Weibull pdf (6) with given α and β,
to the alternative hypothesis Hc, which says that the random variable is LBIW
(c = 1) or perhaps inverse Weibull with some other power weighting w(x) = xc.
In this context it’s natural to allow this extra generality (and in our particular case
this doesn’t demand much extra effort). A calculation similar to the one leading
to (8) shows that the pdf under the alternative hypothesis is

gw(x;α, β, c)=
βαc−β

0(1− c/β)
xc−β−1 exp

(
−(αx)−β

)
,

x ≥ 0, α > 0, β > 0, c > 0. (45)

To decide whether it’s plausible that our random sample x1, . . . , xn represents
the parent inverse Weibull distribution (null hypothesis H0) relative to the weighted
inverse Weibull distribution (alternative hypothesis Hc), we use the following test
statistic, where α and β are assumed known and c is also fixed (several values can
be tried, including c = 1 for the LBIW):

3=

n∏
i=1

gw(xi ;α, β, c)
f (xi ;α, β)

=

n∏
i=1

βαc−β

0(1− c/β)
xc−β−1

i exp(−(αxi )
−β)

βα−βx−β−1
i exp(−(αxi )−β)

=

n∏
i=1

αcxc
i

0
(
1− 1

β

) = αnc ∏n
i=1 xc

i(
0
(
1− 1

β

))n . (46)
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We reject H0 when

3=
αnc ∏n

i=1 xc
i(

0
(
1− 1

β

))n > K , (47)

where K >0 is some threshold chosen beforehand, indicating the level of confidence
we want to have in our prediction. Equivalently, we reject the null hypothesis when

3∗ =

n∏
i=1

xc
i > K ∗, where K ∗ =

K0(1− c/β)n

αnc > 0. (48)

The choice of K is related to the p-value, defined as the probability that, under
H0, the expected value of the test statistic 3∗ is at least as high as the one actually
observed. For large n we have 2 log3∗ ∼ χ2, and from the χ2 one obtains the
p-value using the χ2 table (or software). The p-value can also be readily computed
via Monte Carlo simulation: simulate N samples from the distribution under H0,
for some large value of N , and compute the test statistic 3∗i for each sample. Then
take

p-value=
#{i :3∗i >3

∗
}

N
.

Reject the null hypothesis if the p-value is less than the desired level of significance
(typically 5% or 1%).

6. Examples

In this section we apply the formulas obtained in the previous section to two
examples from the literature. The first set of data, given in Table 1, represents the
waiting times (in minutes) before service of 100 bank customers [Ghitany et al.
2008]. The second data set, shown in Table 2, represents the number of millions of
revolutions before failure of each of 23 ball bearings in a life testing experiment
[Lawless 2003].

We modeled these data sets using the weighted inverse Weibull distribution
with unknown parameters α and β (we keep the assumption made after (4) that
x0 = 0). The normal equations were solved by numerical methods to estimate the
model parameters. Specifically, the MLEs of the parameters were computed by
maximizing the objective function with the trust-region algorithm in the NLPTR
subroutine in SAS. We present in Table 3 the estimated values of the parameters α
and β and corresponding gradient objective functions (normal equations) under the
length-biased inverse Weibull distribution for both sets of data.

We also conducted, for each set of data, a test for the detection of length bias,
to compare the hypothesis that the waiting time distribution follows the LBIW
distribution is to be preferred to the null hypothesis that the distribution is unweighted
inverse Weibull.
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0.8 0.8 4.3 5.0 6.7 8.2 9.7 11.9 14.1 19.9
0.8 0.8 4.3 5.3 6.9 8.6 9.8 12.4 15.4 20.6
1.3 1.3 4.4 5.5 7.1 8.6 10.7 12.5 15.4 21.3
1.5 1.5 4.4 5.7 7.1 8.6 10.9 12.9 17.3 21.4
1.8 1.8 4.6 5.7 7.1 8.8 11.0 13.0 17.3 21.9
1.9 1.9 4.7 6.1 7.1 8.8 11.0 13.1 18.1 23.0
1.9 1.9 4.7 6.2 7.4 8.9 11.1 13.3 18.2 27.0
2.1 2.1 4.8 6.2 7.6 8.9 11.2 13.6 18.4 31.6
2.6 2.6 4.9 6.2 7.7 9.5 11.2 13.7 18.9 33.1
2.7 2.7 4.9 6.3 8.0 9.6 11.5 13.9 19.0 38.5

Table 1. Waiting times of 100 bank customers, from [Ghitany et al. 2008].

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84 51.96 54.12
55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84

127.92 128.04 173.40 – – – – – – –

Table 2. Lifetimes of 23 ball bearings, from [Lawless 2003].

Data α β ∂L/∂α ∂L/∂β

I (n = 100) 0.400 1.819 7.46 × 10−4
−5.98 × 10−5

II (n = 23) 0.02795 2.4610 1.990× 10−9 1.930× 10−11

Table 3. Estimated values of the parameters.

For the set of waiting times given in Table 1, where (as shown in Table 3) the
estimated values of the parameters α and β are α̂ = 0.3997 and β̂ = 1.81887, we
obtained for the test statistic the value 2 log3= 270.927, and the p-value for the
test was less than 0.000001. Therefore, we have strong statistical evidence that the
hypothesis that the waiting time distribution follows the LBIW distribution is to be
preferred to the null hypothesis.

For the second set of data, the estimated values of the parameters are α̂=0.027952
and β̂ = 2.46097. The value of the test statistic is 2 log3 = 170.893, and the p-
value is less than 0.00001. Again, the null hypothesis corresponding to the parent
distribution is rejected.
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