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We prove that the ordered subgraph number of a connected graph that has no
duplicate vertices is at most three if and only if the complement does not contain
a cycle on four vertices. The duality between zero forcing and ordered subgraphs
then provides a complementary characterization for positive semidefinite zero
forcing. We also provide some necessary conditions for when the minimum
semidefinite rank can be computed using tree size.

1. Introduction

Graph theory provides a natural way to describe patterns in the entries of matrices
and a large body of research and terminology to help study those patterns. Con-
versely, matrices that are associated to graphs can provide structural information
about the graph. For example, the second-smallest eigenvalue of the Laplacian
matrix of a graph is nonzero if and only if the graph is connected [Merris 1995].

The research described in this paper was inspired by the question of finding the
smallest possible rank among matrices with a given zero/nonzero (off-diagonal)
entry pattern. Depending on the type of matrices one allows (for example, real or
complex, symmetric or not), different answers for the same pattern are possible
[Berman et al. 2008; IMA-ISU 2010; Barioli et al. 2009], and a complete solution
to this problem for any large class of matrices seems difficult. On the other hand,
for certain types of patterns (graphs), there are very satisfying complete answers.
For example, for trees and positive semidefinite (psd) real symmetric or complex
Hermitian matrices, the minimum rank is equal to one less than the number of
vertices [van der Holst 2003; Johnson and Duarte 2006]; for trees and symmetric
matrices over any field, the minimum rank plus the zero forcing number gives the
number of vertices [Chenette et al. 2007; Johnson and Duarte 1999].
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One part of our work, described in Section 4, seeks to use the detailed knowledge
we have for trees in general graphs. In particular, if a graph contains a tree as
an induced subgraph, under what conditions will matrices associated to the larger
graph behave like those for the tree with respect to minimum rank?

Rather than looking for trees, participants in the 2004 Research Experience for
Undergraduates at Central Michigan University sought to find an alternative that
would provide just as much rank information. The result, designed specifically
for Hermitian psd matrices, was called ordered subgraphs [Hackney et al. 2009].
For some time, it was conjectured that ordered subgraphs would in fact determine
minimum rank, but a counterexample on eight vertices was found: the Möbius ladder
on eight vertices has psd minimum rank (msr) five and an ordered subgraph (OS)
number of four [Mitchell et al. 2010].

Results on ordered subgraphs are of additional interest thanks to their connection
to “zero forcing.” Defined by the AIM Minimum Rank-Special Graphs Work Group
[AIM 2008], zero forcing was also the result of looking for approaches to solving
a minimum rank problem, but has since been shown to be of interest in quantum
physics [Burgarth et al. 2011]. It turns out that the OS number and the positive
semidefinite zero forcing number are two sides of the same coin, as for any graph
they sum to the number of vertices [Barioli et al. 2010]. Moreover, the complement
of an OS set is a zero forcing set and vice versa. This duality means that our OS
results have an equivalent formulation in terms of zero forcing.

One of the many open questions concerning ordered subgraphs (and zero forcing)
is how large the class of graphs is for which minimum rank and the ordered subgraph
number differ. If the msr of a graph is one or two, then so is the OS number. The
Möbius ladder example means that msr three is the remaining case1 in which we
might hope that msr and the ordered subgraph number coincide. In Section 3, we
study graphs that have msr 3, show that msr 3 implies OS number 3, and give a
characterization of those graphs with OS number 3. Whether OS number equal to 3
implies msr 3 remains open, although we are able to use our work on maximum
induced trees from Section 4 to present some partial results in Section 5.

2. Preliminaries

A graph G is an ordered pair (V (G), E(G)), where V (G) is a set of vertices
and E(G) is a set of unordered pairs of vertices. In this paper, we assume all graphs
are simple (that is, have no multiple edges or loops). Two vertices u and v are said
to be adjacent if they share an edge. If u and v are adjacent, we write uv ∈ E(G).

1For small rank, that is — some results are known for small nullity as well; see for example
[van der Holst 2003].
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For any n× n Hermitian matrix A = [ai j ], we associate a simple graph G(A)
with vertex set V (G)= {v1, . . . , vn} and viv j ∈ E(G) if and only if ai j 6= 0 in A.
Note that G(A) is independent of the diagonal elements of A. For a given graph G,
we define P(G) to be the set of all positive semidefinite matrices with graph G.
The minimum semidefinite rank of G is

msr(G)=min{rank A : A ∈ P(G)}.

If there is a path between two vertices u and v in G, the distance from u to v,
dG(u, v), is the length of the shortest path between u and v. If no such path exists,
we say dG(u, v)=∞.

The tree size of a graph G, ts(G), is the maximum size of a subset of V (G) that
induces a tree [Erdős et al. 1986]. Since msr(G) = |G| − 1 if and only if G is a
tree, this gives a general lower bound of msr(G)≥ ts(G)− 1 [Booth et al. 2008].

Let the neighborhood of a vertex v in G be N (v)= {w ∈ V (G) : vw ∈ E(G)},
and let the closed neighborhood of v be N [v] = N (v) ∪ {v}. We say vertices u
and w are duplicate vertices if N [u] = N [w].

If S ⊆ V (G) such that all of the vertices in S are pairwise nonadjacent, we
say S is an independent set. The maximum cardinality of all independent sets of a
graph G is called the independence number of G and is denoted by α(G) [West
1996, p. 113].

The union of two graphs G1 and G2, denoted by G1 ∪G2, is the disconnected
graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪ E(G2). We frequently
write the union of k copies of a graph G as kG. The join of G1 and G2, written
G1∨G2, is the graph with vertex set V (G1)∪V (G2) and edge set consisting of all
of the edges in E(G1) and E(G2) as well as the edges {uv : u ∈ V (G1), v ∈ V (G2)}

[West 1996, p. 118].
Suppose EV = {Ev1, . . . , Evn} is an n-tuple of vectors in Cm such that, for i 6= j , we

have 〈Evi , Ev j 〉 = 0 if and only if viv j /∈ E(G). We call EV a vector representation of
G [Parsons and Pisanski 1989]; the rank of EV is defined as the dimension of the
span of the vectors.

Let EV = {Ev1, . . . , Evn} be a vector representation of G. If V = [Ev1 · · · Evn],
then V ∗V ∈ P(G). If A ∈ P(G), then A = B∗B for some matrix B with the
same rank [Horn and Johnson 1990, p. 407]. Thus, for any A ∈ P(G), we can find
a vector representation of G that produces A. This implies that finding a vector
representation for a graph is equivalent to finding a positive semidefinite matrix of
the graph.

Let G be a graph on n vertices and let S = (v1, . . . , vm) be an ordered set of
vertices of G. Let Gk be the subgraph of G induced by {v1, . . . , vk} for k ≤ m,
and let Hk be the connected component of Gk containing vk . If for each k there
exists a vertex wk of G such that wk /∈ Gk , wkvk ∈ E(G), and wkvl /∈ E(G) for
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all vl ∈ V (Hk) with l 6= k, we say S is a vertex set of ordered subgraphs (OS-set)
of G [Hackney et al. 2009].

For every vk in an OS-set, we call its corresponding wk its OS-neighbor. The
maximum cardinality of all OS-sets of a graph G is called the OS-number of G,
denoted by OS(G).

Example 2.1. In the cycle C4, OS(C4)= 2. Here are some examples of OS-sets
of C4:

v1 w1

v2 w2

v1 w1, w2

v2

v1 w1, v2

w2

Proposition 2.2 [Hackney et al. 2009]. If G is a connected graph then msr(G)≥
OS(G)≥ ts(G)− 1. In particular, if T is a tree, for every v ∈ V (T ), V (T )\{v} is
an OS-set.

If H is an induced subgraph of G, then OS(H)≤OS(G). The OS-number is re-
lated to the positive semidefinite zero forcing number, Z+(G), by OS(G)+Z+(G)=
|G| [Barioli et al. 2010].

3. Graphs with minimum semidefinite rank three

An open question that has been of interest is a complete characterization of all
graphs for which msr(G)= 3. Some prior results [Booth et al. 2011; AIM 2008]
give sufficient conditions, including if G = Pn with n ≥ 4 or G = Cn with n ≥ 5
then msr(G)= 3, and a sufficient condition for when msr(G)≤ 3:

Proposition 3.1 [Booth et al. 2011]. If the cycle Cm is not a subgraph of G for all
m ≥ 4, then msr(G)≤ 3.

From examples, however, it seems that avoiding C4 in the complement is enough.

Conjecture 3.2. Let G be a connected graph with no duplicate vertices. Then
msr(G)≤ 3 if and only if C4 is not a subgraph of G.

Remark 3.3. Conjecture 3.2 is not true if the duplicate vertices condition is removed.
For example, if G is the graph obtained by identifying an edge of the complete
graph on four vertices with an edge of a C4 (resulting in a graph on six vertices),
then a C4 is a subgraph of G but msr(G)= 3.

We now prove several results that are related to this conjecture, including that
this result holds for the OS-number.

Lemma 3.4. Let G be a simple connected graph. If S= (v1, v2, v3, v4) is an OS-set
of G, then there is an OS-set S′ of G of size four such that G[S′] has at least two
components and each component has at most two vertices.
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Proof. If G[S] has three or four connected components, the conclusion follows.
Otherwise, we consider two cases:

Case 1: G[S] has two connected components, G[{v1, v2, v3}] and G[{v4}]. Then
w3 /∈ N [v1]∪ N [v2] and G[{v1, v2, w3, v4}] has at least two components with each
component having at most two vertices. Also, S′ = (v1, v2, v4, w3) is an OS-set
with OS-neighbors (w1, w2, w4, v3).

Case 2: Suppose G[S] is connected. Then w4 /∈
⋃3

i=1 N [vi ], and therefore
G[{v1,v2,v3,w4}] has at least two components. Furthermore, S1= (v1,v2,v3,w4) is
an OS-set with OS-neighbors (w1, w2, w3, v4), reducing the problem to case 1. �

Remark 3.5. If S1 and S2 are OS-sets of G such that there are no edges vw ∈ E(G)
with v ∈ S1 and w ∈ S2, then S1 ∪ S2 is an OS-set.

Lemma 3.6. Let G be a connected graph with no duplicate vertices. If an induced
subgraph H of G is isomorphic to sK2∪ t K1, then the vertices of H form an OS-set.

Proof. Clearly, K1 is an OS-set since G is connected. Let K2 = {v,w}. Since G
has no duplicate vertices, N [v] 6= N [w]. Without loss of generality, we can assume
there is a vertex u adjacent to v but not adjacent to w. Then (w, v) is an OS-set
with neighbors (v, u). �

Proposition 3.7. Let G be a connected graph with no duplicate vertices. Then
OS(G)≥ 4 if and only if G contains C4 as a subgraph.

Proof. Lemma 3.4 and Lemma 3.6 imply that OS(G)≥ 4 if and only if G contains
4K1, 2K1 ∪ K2, or 2K2 as an induced subgraph. However, 4K1 is K4, 2K1 ∪ K2

is K4 minus an edge, and 2K2 is C4, giving the desired result. �

As a consequence of Proposition 3.7, we see the absence of a C4 subgraph in G
is necessary for msr(G)≤ 3. We believe that this condition is sufficient and can be
shown by proving OS(G) = 3 if and only if msr(G) = 3. We do know, however,
that if G is a connected graph without duplicate vertices and msr(G) ≤ 3, then
msr(G)= ts(G)− 1 [Booth et al. 2011]. As a result, we have:

Proposition 3.8. If msr(G)= 3, then OS(G)= 3 (and Z+(G)= |G| − 3).

Conjecture 3.9. Suppose G is a connected graph without duplicate vertices. If
OS(G)= 3, then msr(G)= 3.

4. Maximum induced trees

Let T be a maximum induced tree of a graph G. For a vertex w in V (G) such
that w is not on T , we define E(w) to be the edge set of all paths in T between
every pair of vertices of T that are adjacent to w.

Prior work on minimum semidefinite rank has yielded a sufficient, but not
necessary, condition for when msr(G)= ts(G)− 1 [Booth et al. 2008]:
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~ There exists a maximum induced tree T such that for u and w not on T ,
E(u)∩E(w) 6=∅ if and only if u and w are adjacent in G.

We now present some sufficient conditions for strict inequality.

Proposition 4.1. Let T be a maximum induced tree of a graph G. If u and w
are vertices not on T such that uw /∈ E(G), |E(u) ∩ E(w)| = 1, and u and w
are only adjacent to the longest path P of T that contains E(u) ∩ E(w), then
msr(G) > ts(G)− 1.

Proof. The vertices of T not on P belong to an OS-set S. We enlarge S by
adding the vertices on P . Let P = v1v2 · · · vi xyvi+1 · · · vk−1vk , and without loss
of generality assume xw ∈ E(G) and yu ∈ E(G), where {xy} = E(u)∩E(w). We
add vertices vk, vk−1, . . . , vi+2, vi+1 to the set S since we can find OS-neighbors
vk−1, vk−2, . . . , vi+1, y, respectively. Then we add w, y, and x in that order to the
set followed by vi , . . . , v2 since these vertices have OS-neighbors x, u, vi , . . . , v1

respectively. The size of this enlarged OS-set is ts(G). Thus, msr(G)≥ OS(G) >
ts(G)− 1. �

This leads us to the following result.

Corollary 4.2. Let T be a maximum induced tree of a graph G. Suppose u and w
are vertices not on T such that uw /∈ E(G), E(u)∩E(w) contains only the edge xy
where xw ∈ E(G), P = v1v2 · · · vi xyvi+1 · · · vk−1vk is the longest path P of T
that contains E(u) ∩ E(w), there exists a path P ′ on T where P ′ = yt1t2 · · · tl
and tlu ∈ E(G), and u and w are adjacent only to vertices of P ∪ P ′. Then
msr(G) > ts(G)− 1.

Proof. The vertices of T not on P or P ′ belong to an OS-set S. We enlarge S
by adding the vertices of P and P ′. We add vertices vk, vk−1, . . . , vi+1 to the
set S since the set of OS-neighbors is vk−1, vk−2, . . . , y, respectively. Then we add
w, y, t1, . . . , tl in that order since these vertices have OS-neighbors x, t1, t2, . . . ,
tl, u, respectively. Also, we add x, vi , vi−1, . . . , v2 since the set of OS-neighbors is
vi , vi−1, . . . , v1, respectively. Thus, by the same argument as in Proposition 4.1,
msr(G)≥ OS(G) > ts(G)− 1. �

Proposition 4.3. Let T be a maximum induced tree of a graph G such that T is
a star graph. If there exist vertices u and w not on T such that uw /∈ E(G) and
|E(u)∩E(w)| = 1, then msr(G) > ts(G)− 1.

Proof. The vertices of T that are not the center of T and are not adjacent to u or w
belong to an OS-set. Let the center vertex of T be x and E(u)∩E(w)= {xy}. We
add vertices of T which are adjacent to u and not on E(u)∩E(w) to the OS-set
since all of these vertices have OS-neighbor x . Then we add u and y in that order
since they have OS-neighbors y and w. Next, we add vertices that are adjacent
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to w and not on E(u)∩ E(w) to the OS-set since they also have OS-neighbor x .
Thus, the size of OS-set is ts(G), so msr(G)≥ OS(G) > ts(G)− 1. �

If E(u)∩E(w)=∅, we have the following result.

Proposition 4.4. Let T be a maximum induced tree of a graph G. If there are two
vertices u, w ∈ V (G) such that u, w /∈ V (T ), uw ∈ E(G), and E(u)∩E(w) = ∅,
then OS(G) > ts(G)− 1. In particular, msr(G) > ts(G)− 1.

Proof. Let G ′ = G[V (T )∪ {u, w}]. By constructing an OS-set of size ts(G) in G ′,
we will show that OS(G) > ts(G)−1. Let v1, . . . , va ∈ V (T ) be vertices of degree
one in G ′. Then (v1, . . . , va) forms an OS-set of G ′ with each vi having correspond-
ingwi such thatwi is the only vertex adjacent to vi . Let F=G[V (G ′)\{v1, . . . , va}].
If va+1, . . . , vl ∈ V (T ) such that degF (vi ) = 1 for all i ∈ {a + 1, . . . , l}, then
(v1, . . . , va, va+1, . . . , vl) forms an OS-set of G ′ where, for all i ∈ {a+ 1, . . . , l},
wi is the unique vertex in F such that viwi ∈ E(F). We can repeat this process
until all vertices of degree one in G[V (G ′)\{v1, . . . , vl}] have been included in an
OS-set of G ′, say S = (v1, . . . , vk).

Let V(u) = {v ∈ V (T ) : vv′ ∈ E(u) for some v′} and V(w) = {v ∈ V (T ) :
vv′ ∈ E(w) for some v′}. Without loss of generality, assume that |V(u)| ≥ |V(w)|.
Because |V(u)∩V(w)|≥2 would imply E(u)∩E(w) 6=∅, there are two possibilities:

Case 1: |V(u) ∩ V(w)| = 1. Note that if |V(u)| = n and |V(w)| = m, then
ts(G) = k + n +m − 1. Suppose v ∈ V(u)∩V(w). Since G[V(u)] is a tree, by
Proposition 2.2, V(u)\{v} = (vk+1, . . . , vk+n−1) forms an OS-set. Furthermore,
(v1, . . . , vk+n−1, u) forms an OS-set since uw ∈ E(G) but viw /∈ E(G) for all
i ∈ {1, . . . , k+ n− 1}.

Now order vertices {x1, . . . , xm−1}=V(w)\{v} such that dH (xi ,u)≤dH (xi+1,u)
where H = G[V (T )∪ {u}]. Since for every i ≤ m − 1 there is a j > i such that
dH (xi , u) = dH (x j , u)+ 1 and where x j xi ∈ E(G) but x j is not adjacent to any
other vertex in the connected component of G[{x1, . . . , x j−1}], we now have an
OS-set (v1, . . . , vk+n−1, u, x1, . . . , xm−1) of size ts(G).

Case 2: V(u)∩V(w)=∅. Begin by ordering vertices ui ∈ V(u) by dJ (ui , w)≥

dJ (ui+1, w) for i = 1, . . . , n− 1 where J = G[V (T )∪ {w}].
Let H=G[V (T )∪{u}] and define V′(w)=V (T )\(V(u)∪S). Let v be the unique

vertex in V′(w) such that dH (v, u) < dH (x, u) for every x ∈ V′(w) where x 6=
v. If V(u) = {u1, . . . , un}, then, because {u1, . . . , un, v} induces a tree on G,
(u1, . . . , un) forms an OS-set. Moreover, (v1, . . . , vk, u1, . . . , un, u) forms an OS-
set, as uw ∈ E(G) but uiw /∈ E(G) and v jw /∈ E(G) for any i, j .

Order the vertices in V′(w)= {x1, . . . , x j , v} such that dH (xi , u)≥ dH (xi+1, u)
for i=1, . . . , j−1. Then S∪(u1, . . . , un, u, x1, . . . , x j ) is an OS-set that includes u
and all vertices on the maximum induced tree except for v. �
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5. OS number three

In this final section, we use our work on maximum induced trees, and, in particular,
the condition ~, to prove that OS(G)= 3 implies msr(G)= 3 for certain graphs.

Proposition 5.1. Let G be a connected graph without duplicate vertices. If G does
not contain C4 as a subgraph then msr(G)≤ 3 or there exists a connected graph G ′

without duplicate vertices such that

(1) G is an induced subgraph of G ′,

(2) G ′ does not contain C4 as a subgraph,

(3) K1,3 is an induced subgraph of G ′, and

(4) G ′ is not (|G ′| − 3)-connected.

Proof. For the last claim, if G ′ is (|G ′| − 3)-connected then msr(G) ≤ 3 [van der
Holst 2008; Lovász et al. 1989; 2000].

Case 1: α(G) = 3. If necessary, form G ′ by adding a new vertex adjacent to all
vertices of G.

Case 2: α(G)= 2. Let {u, v} ⊂ V (G) induce 2K1 in G. Form G ′ by adding a new
vertex adjacent to all vertices of G except for u and v. As G does not contain K3

as an induced subgraph, G ′ does not contain C4 as a subgraph.

Case 3: α(G)= 1. Then G is complete and msr(G)≤ 1. �

Suppose that G is a connected graph without duplicate vertices such that G does
not contain C4 as a subgraph and OS(G)= 3. From Proposition 5.1, we may assume
without loss of generality that K1,3 is an induced subgraph of G. Therefore K1,3 is
a maximum induced tree T of G.

Remark 5.2. Since G does not contain C4 as a subgraph, there are at most three
vertices in G not belonging to T that are pairwise disjoint.

Remark 5.3. If u and v are not on T and satisfy ~, then there exists a vector
representation of G[V (T )∪ {u, v}] of rank three.

Proposition 5.4. Suppose G is a connected graph without duplicate vertices such
that G does not contain C4 as a subgraph and OS(G) = 3. Let T = K1,3 be a
maximum induced tree of G. If u, v, and w are pairwise nonadjacent vertices
not on T such that no two of them satisfy ~, then H = G[V (T )∪ {u, v, w}] has
minimum semidefinite rank equal to three.
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Proof. If independent vertices u, v, and w are joined to all vertices of K1,3, then
H = K1,3 ∨ 3K1. Thus, its complement consists of 2K3. From this observation,
since G does not contain C4 as a subgraph, the complement of H has to be one of
the following graphs:

1 2

3

4u

v

w

1

2
3

4

u

v

w

1

2
3

4

u

v

w

1

2
3

4

u

v

w

1

2
3

4

u

v

w

Since all of these graphs are Cm-free for m ≥ 4, we can use Proposition 3.1 to
conclude that msr(H)≤ 3. Since OS(H)= 3, it follows that the msr(H)= 3. �
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