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Using rational functions of the form{
t12m(t − (2−

√
3))12m

1+ t2

}
m∈N

we produce a family of efficient polynomial approximations to arctangent on
the interval [0, 2−

√
3], and hence provide approximations to π via the identity

arctan(2−
√

3)= π/12. We turn the approximations of π into a series that gives
about 21 more decimal digits of accuracy with each successive term.

1. Introduction

Two of the best-known series for π are

1
π
=

2
√

2
9801

∞∑
k=0

(4k)! (1103+ 26390k)
(k!)4 3964k ,

devised by Ramanujan about a century ago (see [Baruah et al. 2007; 2009] for
history), and

1
π
=

√
10005

4270934400

∞∑
k=0

(−1)k(6k)! (13591409+ 545140134k)
(3k)! (k!)3

,

from the 1980s [Chudnovsky and Chudnovsky 1988]. These series are interesting
and important because they converge so rapidly. Indeed, the Ramanujan series gives
about 6 more decimal places for π with each successive term and the Chudnovsky
series about 13 more decimal places per term [Weisstein n.d.]. The Chudnovsky
series was in fact the formula used recently by Yee and Kondo [2011] to compute 10
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trillion digits of π , and a modified version of it is used by Mathematica to compute
a large number of digits of π [Vardi 1991].

Here, in Theorem 2, we present a new series for π that yields about 21 more
decimal places per term. The new series is derived from polynomial approximations
to the classical arctangent function that come from the integration of rational
functions.

2. Polynomial approximations to arctangent

The integration of certain rational functions has proven useful in the approximation
of the classical arctangent function, and, because of identities such as arctan 1=π/4,
these can produce approximations to π . For example, the family{

t4m(t − 1)4m

1+ t2

}
m∈N

was recently studied in [Medina 2006], where it is shown that it can be used to
produce polynomial approximations to arctan x on the interval [0, 1] whose error
is governed by the size of the rational functions on that interval. In this section,
we use these methods to produce polynomial approximations to arctan x on a
smaller interval where the size of the integrand is much smaller, and hence the
approximations converge much faster.

Consider the sequence of rational functions

tan (t − (2−
√

3))bn

1+ t2 ,

where an and bn are integers chosen so that the polynomial division yields a constant
remainder, and hence after integration, the arctangent function. We use 2−

√
3

because arctan(2−
√

3) = π/12; thus, if we can approximate arctangent at that
value, we can approximate π .

Through trial and error, one finds that 12 is the smallest integer value of the bn

above that yields a constant remainder when the polynomial division is performed.1

The smallest value for an is 2, but in what follows we choose 12 for the sake of
symmetry. As Lemma 2 will show, the same is true for multiples of 12; thus, we
explore the family of functions{

t12m(t −α)12m

1+ t2

}
m∈N

(1)

where we let α = 2−
√

3 to facilitate the notation.

1All computations were done using Mathematica 7.0.
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The following two lemmas, whose proofs are immediate via initial computations
and induction, will facilitate our exploration of the family of rational functions.

Lemma 1. For any m ∈ N,

t12m

1+t2=t12m−2
−t12m−4

+t12m−6
−t12m−8

+· · ·−1+
1

1+t2=

6m−1∑
n=0

(−1)n+1t2n
+

1
1+t2 .

Lemma 2. For any m ∈ N,

t12m(t −α)12m

1+ t2 = qm(t)+
rm

1+ t2 , (2)

where rm = (−1)m(4α)6m
= (−1)m(5533696 − 3194880

√
3)m , and the qm are

polynomials given recursively by

qm(t)= t12(t −α)12 qm−1(t)+ rm−1 q1(t),

with the initial quotient

q1(t)=−(4α)6+ (4α)6t2
− (4α)6t4

+ (4α)6t6
− (4α)6t8

+ (4α)6t10

+ (9184097− 5302440
√

3)t12
+ 12(564719

√
3− 978122)t13

+ (8113645− 4684416
√

3)t14
+ 8(267909

√
3− 464032)t15

+ (1200770− 693264
√

3)t16
+ 208(780

√
3− 1351)t17

+ (47554− 27456
√

3)t18
+ 8(411

√
3− 712)t19

+ (461− 264
√

3)t20

+ 12(
√

3− 2)t21
+ t22.

The following proposition provides a closed-form formula for the quotients.

Proposition 1. For each m ∈N, define the polynomial quotient qm(t)=
24m−2∑

n=0
antn

and the polynomial remainder rm ∈ R via (2). Then

(i) a2n = (−1)m+1+n(4α)6m and a2n+1 = 0 for 0≤ n ≤ 6m− 1;

(ii) a24m−2 = 1 and a24m−3 = −
(12m

1

)
α (these being the coefficients of the two

highest powers of t in the quotient);

(iii) a24m−3−2n =−a24m−3−2(n−1)−
( 12m

2n+1

)
α2n+1 for 1≤ n ≤ 6m− 1; and

(iv) a24m−2−2n =−a24m−2−2(n−1)+
(12m

2n

)
α2n for 1≤ n ≤ 6m− 1.

Proof. (i) We can rewrite and simplify the function to get

t12m(t −α)12m

1+ t2 = t12m
(
(t −α)12m

1+ t2

)
= t12m

(
pm(t)+

(−1)m(4α)6m

1+ t2

)
,
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where pm(t) is some other quotient polynomial; we also note that Lemmas 1 and 2
together imply that the remainder (−1)m(4α)6m is indeed correct. Using Lemma 1,
we make another substitution and obtain

t12m pm(t)+(−1)m(4α)6m
(

t12m−2
− t12m−4

+ t12m−6
− t12m−8

+· · ·−1+
1

1+ t2

)
,

which is the result of (i).

(ii) We write t12m(t−α)12m

1+t2 =
t12m

1+t2 (t −α)
12m . Use Lemma 1 to obtain(

t12m−2
− t12m−4

+− · · ·− 1+
1

1+ t2

)
(t −α)12m,

and the binomial theorem to arrive at(
t12m−2

− t12m−4
+− · · ·− 1+

1
1+ t2

) 12m∑
k=0

(
12m

k

)
tkα12m−k(−1)k . (3)

The coefficients of the two highest powers of t will come from multiplying the two
highest powers of t in (t −α)12m with t12m−2 in the first factor above.

(iii) To find each new odd coefficient we take the coefficient of the previous highest-
order odd term and pair it with one lower power of t on the left of (3); since the signs
of t alternate, we negate this. Each new coefficient will have a new lower-order
term from the right paired with the highest power on the left. Adding these two, we
get the coefficients of the new odd power of t .

(iv) The same argument as in (iii) gives the coefficients of the even powers. �

Since the functions (1) are small in the interval [0, α], integration of (2), after
division by rm , will yield approximations to arctangent on [0, α]. That is,

1
rm

∫ x

0

t12m(t −α)12m

1+ t2 dt =
1

rm

∫ x

0
qm(t) dt + arctan x, (4)

and hence

Pm(x)=
−1
rm

∫ x

0
qm(t) dt

will approximate arctangent on [0, α] with the error of the approximation given
by the integral on the left side of (4), the maximum error occurring when x = α.
Proposition 1 provides a way to directly compute (after integration) these approxi-
mating polynomials; we will provide examples after we analyze their accuracy.

Substituting the largest and smallest values of t into the denominator of the left
side of (4), we arrive at the inequality

1
rm

∫ α

0

t12m(t−α)12m

1+α2 dt<
1

rm

∫ α

0

t12m(t−α)12m

1+t2 dt<
1

rm

∫ α

0
t12m(t−α)12m dt. (5)
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It is now evident that, to further analyze the approximation, we need to compute

Im :=

∫ α

0
t12m(t −α)12m dt.

This is done via repeated integration by parts:

Im =

∫ α

0
t12m(t −α)12m dt =

((12m)!)2

(24m+ 1)!
α24m+1. (6)

Since, as already noted, the left side of (4) is the error when Pm(x) approximates
arctan x on [0, α], we will use

em =
1

rm

∫ α

0

t12m(t −α)12m

1+ t2 dt;

that is, em denotes the error when Pm(α) is used to approximate arctanα = π/12.
Using this notation, we use (5) with m and m+ 1 to get

1
(1+α2)rm

Im < em <
1

rm
Im and

1
(1+α2)rm+1

Im+1< em+1<
1

rm+1
Im+1. (7)

Combining these two inequalities we arrive at

em+1

em
<
(1+α2) rm Im+1

rm+1 Im
, (8)

which provides the estimate on how much better the next iterate is compared to the
previous one.

Theorem 1. Define em =
∣∣π/12− Pm(α)

∣∣, the error produced in approximating
π/12 by the m-th iterate of the new sequence of approximating polynomials. Then,
as m→∞,

em+1

em
<
α19

234 ≈7.9063628967×10−22
=0.00000000000000000000079063628967.

That is, each iterate gives about 21 more decimal places of accuracy in approxi-
mating π/12.

Proof. Use |rm | = (4α)6, 1+α2
= 4α, (6) and (8) to get

em+1

em
<
((12(m+ 1))!)2α24(m+1)+1

(4α)6(m+1)(24(m+ 1)+ 1)!
·
(4α)6m+1 (24m+ 1)!
((12m)!)2 α24m+1

=
((12m+ 12)(12m+ 11) · · · (12m+ 1))2α24

(4α)5 (24m+ 25)(24m+ 24) · · · (24m+ 2).

As m→∞, this becomes

(1212 m12)2α24

45 α5 2424 m24 =
α19

45 224 =
α19

234 . �
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Example 1. We use the coefficient formulas of Proposition 1 to find approximating
polynomials. With m = 1,

P1(x)= x−
x3

3
+

x5

5
−

x7

7
+

x9

9
−

x11

11
+
(419−60

√
3)x13

4096
−

3(362−209
√

3)x14

14336

−
(2916

√
3−955)x15

61440
−
(172−99

√
3)x16

8192
+
(1255+468

√
3)x17

34816
−

13x18

4608

−
13(61+36

√
3)x19

38912
−
(172+99

√
3)x20

10240
+
(5051+2916

√
3)x21

86016

−
3x22

22528(2−
√

3)5
+

x23

94208(2−
√

3)6
.

Then

P1(2−
√

3)=
57423810140− 22529108583

√
3

70291415040
,

and numerically we verify that
∣∣P1(2−

√
3)−π/12

∣∣< 4.81587× 10−23, or, after
multiplication by 12,∣∣∣∣57423810140− 22529108583

√
3

5857617920
−π

∣∣∣∣< 5.779054023× 10−22.

Example 2. With m = 2,

P2(α)=
3013932255372315189770935− 1155363167301686928932166

√
3

3868552012005059812392960
,

and
∣∣P2(α)−π/12

∣∣≈ 2.55× 10−44.

3. Converting the iteration into a series

Theorem 1 requires the computation of a new set of polynomial coefficients when
we want to obtain an approximation to π with more accuracy. For example, if we
have a polynomial that gives n digits of accuracy for π when evaluated at α, then
we need to compute a whole new polynomial, and hence a new set of coefficients,
in order to obtain (n + 21) more digits of accuracy. Following a technique first
developed in [Dalzell 1944] and used recently in [Lucas 2009] to produce a rational
series that gives 3–4 more decimal places of accuracy for π with each successive
term, we now focus on developing a series that provides the same number of
digits (i.e., about 21) per term in computing π as each iteration of the polynomial
sequence.

We know that
t12(t −α)12

1+ t2 = q1(t)−
(4α)6

1+ t2 , (9)
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which can be rewritten as

1
1+ t2 =

q1(t)
t12(t −α)12+ (4α)6

.

Next we factor out (4α)6 on the denominator to get

1
1+ t2 =

q1(t)
(4α)6

·
1

1+
( t (t−α)

2
√
α

)12
.

Expanding the right side in a geometric series gives

1
1+ t2 =

(
q1(t)
(4α)6

) ∞∑
n=0

(−1)n
(

t (t −α)
2
√
α

)12n

. (10)

We integrate both sides on [0, α] and bring the integral inside the sum to get

arctanα =
1

(4α)6

∞∑
n=0

(−1)n

(4α)6n

∫ α

0
q1(t) t12n(t −α)12n dt. (11)

The polynomial q1(t) is of degree 22 so we need to compute integrals of the form∫ α

0
t12n+k(t −α)12n dt

for k = 0, . . . , 22. This is done using repeated integration by parts; we get∫ α

0
t12n+k(t −α)12n dt =

(12n+ k)! (12n)!α24n+k+1

(24n+ k+ 1)!
. (12)

If we write q1(t)=
∑22

k=0 ak tk , then

π

12
=

1
(4α)6

∞∑
n=0

(−1)n α18n+1 (12n)!
46n

22∑
k=0

ak
(12n+ k)!αk

(24n+ k+ 1)!
. (13)

Simplification of the inside sum leads to the following theorem.

Theorem 2. We have

π =

∞∑
n=0

(−1)n (2−
√

3)18n+1 ((12n)!)2(p1(n)+ p2(n)
√

3)
212(n+1)−1(24n+ 1)! q(n)

, (14)
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where

p1(n)= 293063424013062144n11
+ 1743144635880815616n10

+ 4603477509110094336n9
+ 7113505268868220800n8

+ 7133195052290432592n7
+ 4863768060244254588n6

+ 2295600628029058188n5
+ 747948981593488485n4

+ 164336063152773014n3
+ 23098444048852896n2

+ 1859706966144526n+ 64510302034815,

p2(n)= 92656102528843776n11
+ 553643573938200576n10

+ 1466739601852815360n9
+ 2269385610499169280n8

+ 2272991576208150528n7
+ 1542973536047871648n6

+ 721853379546109560n5
+ 231741816550236960n4

+ 49765271182018546n3
+ 6762629909208426n2

+ 519049199193830n+ 16879034409510, and

q(n)= 18786186952704n11
+ 111934363926528n10

+ 295980289228800n9

+ 457648310845440n8
+ 458818030927872n7

+ 312432825729024n6

+ 147050553999360n5
+ 47683923189760n4

+ 10399859469824n3

+ 1446143661248n2
+ 114720643240n+ 3904125225.

Moreover, if we define the error between the m-th partial sum of the series and π
by em = |π − Sm |, then, as m→∞,

em+1

em
<
(2−
√

3)19

234 ≈ 7.9063628967× 10−22.

Proof. Because of Theorem 1, it suffices to show that∣∣∣∣ 1
(4α)6

∞∑
n=m

(−1)n

(4α)6n

∫ α

0
q1(t) t12n(t−α)12n dt

∣∣∣∣= ∣∣∣∣ 1
rm

∫ α

0

t12m(t−α)12m

1+t2 dt
∣∣∣∣. (15)

Using (9) to substitute for q1(t) and interchanging integration and summation
in (15), we obtain

1
(4α)6

∫ α

0

∞∑
n=m

(−1)n

(4α)6n

(
t12n(t −α)12n

1+ t2

)
(t12(t −α)12

+ (4α)6) dt,

which we can simplify to

1
(4α)6

∫ α

0

(
t12(t −α)12

+ (4α)6

1+ t2

) ∞∑
n=m

(
(−1)t12(t −α)12

(4α)6

)n

dt.
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The sum is a geometric series; after simplification, we get (15), as desired. �

The new series (14) gives about 21 more decimal places of accuracy with each
successive term, though the terms are significantly more complicated and hence more
“computationally expensive” than those in either the Ramanujan and Chudnovsky
series. We note that all three series require the computation of a single square root,
but the powers of 2−

√
3 in the new series do slow down numerical computations.

Thus, at this stage, it is fair to say that the Chudnovsky series still provides the
fastest numerical tool for computing large numbers of digits of π . Nevertheless,
it should be noted that the series (14) is very easy to program (in any language)
and provides a viable method for computing digits of π ; in fact, we have used it to
compute a million digits on a desktop computer.

4. Further remarks

A similar process can be used with the rational functions{
t4m(t − 1/

√
3)6m

1+ t2

}
m∈N

to produce polynomial approximations to arctangent on the interval [0, 1/
√

3], and
hence approximations to π , because arctan(1/

√
3)= π/6. These approximations

yield 5–6 more decimal places of accuracy with each iteration, and the computations
are significantly “less expensive” than those of the sequence herein. (Our research
in fact began with the exploration of this other family.)

It is our opinion that the series (14) should be seen as a byproduct of the ap-
proximating polynomials Pm which provide good approximations to arctangent
on the entire interval [0, 2−

√
3]. It is possible that the Pm could prove useful

for approximating π when used in conjunction with multiple-angle identities such
as π/4= 5 arctan 1

7 + 2 arctan 3
79 [Calcut 2009].
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