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We explain the PageRank algorithm and its application to the ranking of football
teams via the GEM method. We then modify and extend the GEM method
with the addition of more football statistics to look at the possibility of using
this method to more accurately rank teams. Lastly, we compare both methods
by aggregating each statistical ranking using the cross-entropy Monte Carlo
algorithm.

1. Introduction

Over the last few decades, abundant research has been done in the mathematics of
rankings. There are numerous ranking methods in the field of sports, such as the
Massey ratings and Colley matrix, which have been used by the Bowl Championship
Series to rank Division I collegiate football teams [BCS 2011]. The search engine
Google also uses a mathematical algorithm to compute PageRank, a ranking method
used to determine which websites should appear above others in its search results.
Google receives 71% of all internet search requests, while the next leading search
engine receives only 14% of the requests [SEO 2010], and its PageRank algorithm
is one of the main reasons it is the leading search engine on the internet.

There are many factors that determine which websites come up first when you
search for something through an internet search engine. On Google, one of those
factors is a webpage’s PageRank score, and it is this idea of PageRank that set Google
apart from other search engines when it was created. The PageRank algorithm
assigns a score to each webpage in order to rank the pages according to usefulness.
In theory, the most relevant and important pages should come up first in the search
results [Wills 2006].

The general concept of the algorithm is to model a random web surfer, starting
on one webpage and then clicking on different links to make his or her way through
the web. The most “important” webpages are those that have a higher probability of
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being seen by the random surfer [Wills 2006]. For a page to have higher probability
of being seen, either more webpages have to link to that page, or other highly ranked
webpages have to link to it.

2. The mathematics behind PageRank

The exact code and formula for Google’s PageRank algorithm are kept secret and it
is only known what was first used during the development of Google and PageRank.
The algorithm that will be used throughout this paper to show how PageRank is
calculated is the one that was originally used by Sergey Brin and Lawrence Page
[Brin and Page 1998; Page et al. 1999], the creators of Google, and is most likely not
the same one used today. To show how Google calculates PageRank let’s consider
an internet with only four webpages: A, B, C , and D. The web link diagram below
shows how the webpages link to each other, where each arrow represents a link
from one page to another. For example, webpage C links to both A and D, but not
to B.

A // B

��~~
D

OO

Coo

``

This web link diagram is turned into a web hyperlink matrix H , where

Hi j =

{
1 if i links to j,
0 if i does not link to j.

Therefore,

H =


0 1 0 0
0 0 1 1
1 0 0 1
1 0 0 0


for this example.

Next, a row stochastic matrix S is formed from H and is then used to model the
random web surfer with the equation G = αS+(1−α)yv, where α is defined as the
dampening factor, y is a column vector of ones, and v is called the personalization
vector. The vector v is a probability distribution vector, and is currently unknown,
but during the development of Google v =

( 1
n

1
n · · ·

1
n

)
was used [Brin and Page

1998; Page et al. 1999]. The dampening factor models the random web surfer’s
ability to move to a different webpage by means other than following a link, with
probability (1− α). The dampening factor used by Brin and Page during early
development was α = 0.85. In most research done since 1998, values of α range
between 0.85 and 0.99 [Wills 2006]. For this example and throughout the paper,
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α = 0.85 will be used, and, because there are four webpages in this example,
v =

( 1
4

1
4

1
4

1
4

)
. Using the equation G = 0.85S+ 0.15yv we obtain the Google

matrix G:

G =


3
80

71
80

3
80

3
80

3
80

3
80

37
80

37
80

37
80

3
80

3
80

37
80

71
80

3
80

3
80

3
80

 .
The PageRank vector π is then found by computing the corresponding left

eigenvector satisfying πG = π , and, since G is row stochastic, 1 is the dominant
eigenvalue, which means π can always be computed [Bryan and Leise 2006]. The
i-th entry of π is known as the PageRank score for webpage i . For this particular
matrix, the PageRank vector is approximately (0.306 0.297 0.164 0.233). There-
fore, the webpage ranking listed from most important to least important is A, B,
D, C .

It should be noted that this method is highly inefficient for large matrices, and
in 2010 it was estimated that there were approximately a trillion webpages [Kelly
2010]. With such a large and sparse matrix, the power method can be used fairly
efficiently to approximate eigenvectors (i.e., to find the PageRank vector) [Bryan
and Leise 2006].

3. Dangling node

With the internet constantly growing, many webpages do not link to the majority
of the others. In fact, many of them have no out links at all (e.g, postscript files,
images). These webpages are known as dangling nodes, and their prevalence leads
to a hyperlink matrix which contains mostly zeros. For example, suppose we have
the following web link diagram:

A // B

��~~
D Coo

``

Webpage D would be considered a dangling node, and, in the hyperlink matrix H ,
row four would be a row of zeros; therefore the matrix would no longer be row
stochastic and 1 would no longer be a possible dominant eigenvalue. To fix this,
several options exist, one of which is to insert a personalization vector, w, into the
dangling node rows. It is unknown what Google actually does, but, for this paper,
we model the random web surfer’s options when on webpage D by assuming he
or she has an equal chance to select any other webpage by typing in its URL or
to just stay on webpage D, making w =

( 1
4

1
4

1
4

1
4

)
. With D being our dangling
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NO 48 PHL 22 NO 10 CAR 23 NO 30 CAR 20
NO 35 ATL 27 NO 26 ATL 23 PHL 38 CAR 10
PHL 34 ATL 7 ATL 28 CAR 20 ATL 19 CAR 28

Table 1. Sample 2009 scores.

node we would obtain the following new web hyperlink matrix:

H =


0 1 0 0
0 0 1

2
1
2

1
2 0 0 1

2
1
4

1
4

1
4

1
4

 .
Calculating as before, the PageRank vector becomes (0.197 0.271 0.219 0.312),
producing the ranking D, B, C , A.

4. Using PageRank to rank football teams: GEM 1 method

Applying a similar method to the PageRank algorithm, Govan, Meyer, and Albright
[Govan et al. 2008] developed a method called the GEM method (which we de-
noted here by GEM 1), using the margin of victory (v1− v2) to weight the “link”
between two football teams, where v1 and v2 are the teams’ scores against each
other. As a small sample, the scores in Table 1 were taken from games played
in 2009.

By calculating the margin of victory we can create the following link diagram,
where each link has a weight equal to the margin of victory:

NO
26

6

11

28

13

10 27

8

PHL

CAR ATL

For example, if New Orleans (NO) played Philadelphia (PHL) and the score was
NO-48 and PHL-22, a directed arrow would point towards NO with a weight of
26. If a pair of teams played two games and the same team won both times, the
weight assigned to the link is the sum of the margins of victory for the two games.

This link diagram then corresponds to the following hyperlink matrix:
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H =


NO PHL ATL CAR

NO 0 0 0 13
PHL 26 0 0 0
ATL 11 27 0 9
CAR 10 28 8 0

.
Next, we continue as before to make it row stochastic and follow the PageRank

algorithm to get the final ranking. We obtain (0.330 0.252 0.087 0.332) for the
PageRank vector, which produces the ranking 1. CAR, 2. NO, 3. PHL, 4. ATL.

5. Ranking football teams: GEM 2 method

We then modified the GEM method to create what we have termed the GEM 2
method. Instead of using the margin of victory to weight one arrow for each game,
we used both scores to produce two weighted arrows. Since NO scored 48 points
against PHL and PHL scored 22 points against NO, the link diagram will now have
one arrow directed from PHL to NO with a weight of 48 and another directed from
NO to PHL with a weight of 22. If a pair of teams played two games, we summed
each team’s scores from the two games. Using the data provided in Table 1, we
created a new link diagram as follows:

NO

48

22

48

10

61

38

50

43

40

7

34

47

PHL

CAR ATL

From this diagram the following hyperlink matrix H was then created:

H =


NO PHL ATL CAR

NO 0 22 50 43
PHL 48 0 7 10
ATL 61 34 0 48
CAR 40 38 47 0

.
The PageRank algorithm gives the PageRank vector (0.317 0.200 0.248 0.335)
and the ranking 1. CAR, 2. NO, 3. ATL, 4. PHL.
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Total Time of Actual NFL
Score Yardage Possession Turnovers Ranking

1. NO DAL GB PHL NO
2. NYG NO MIN CAR MIN
3. PHL NYG DAL NO DAL
4. MIN MIN NO GB GB
5. ATL ATL NYG SF PHL
6. GB GB CAR TB ARI
7. CAR PHL ATL CHI ATL
8. DAL CAR DET DET CAR
9. CHI CHI TB ATL SF

10. ARI TB ARI ARI NYG
11. TB WAS WAS DAL CHI
12. SF SEA CHI NYG SEA
13. WAS ARI STL MIN WAS
14. DET DET SF WAS TB
15. SEA STL SEA SEA DET
16. STL SF PHL STL STL

Table 2. Final rankings compared to actual rankings using GEM 2.

6. Extended GEM 1 and GEM 2 methods

We collected data on the score, total yardage, turnovers, and time of possession for
each regular season game for all 16 teams in the NFL National Football Conference
in 2009 [ESPN 2009]. We created four separate H matrices, one for each of
the statistics, then proceeded as in Section 5 following the GEM 2 method and
the PageRank algorithm using v = (1/16 1/16 · · · 1/16) as our personalization
vector. Following the same process as before, we produced a ranking for each
statistic collected. However, when calculating turnovers, since it is a negative
statistic, we chose to orient the directed arrows in the reverse direction.

Table 2 shows the final rankings for each statistic using the GEM 2 method, and
also includes the actual end of the regular season rankings.

In comparison, Table 3 shows the final rankings for each statistic also compared
with the actual end of the regular season rankings using the original GEM 1 method.

7. Results

For both GEM 1 and GEM 2, we compared the Kendall rank correlation for each
statistic versus the actual rankings which are shown in Table 4. The Kendall rank
correlation is defined by r = (nc − nd)/(n(n− 1)/2), where nc is the number of
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Score Total Time of Turnovers Actual NFL
Yardage Possession Ranking

1. DAL GB GB PHL NO
2. GB CHI DAL NO MIN
3. PHL MIN CAR DAL DAL
4. MIN DAL MIN TB GB
5. CAR CAR SEA CAR PHL
6. NYG PHL CHI GB ARI
7. NO ARZ NO NYG ATL
8. ARZ NYG ARZ CHI CAR
9. TB NO ATL SF SF

10. SEA TB TB STL NYG
11. ATL DET NYG MIN CHI
12. SF SEA STL WAS SEA
13. CHI STL DET ARZ WAS
14. WAS SF WAS ATL TB
15. DET ATL PHL DET DET
16. STL WAS SF SEA STL

Table 3. Final rankings compared to actual rankings using GEM 1.

Statistic Correlation

SCORE1 0.63
SCORE2 0.60

YARD1 0.38
YARD2 0.67

TIME1 0.32
TIME2 0.35

TURN1 0.32
TURN2 0.25

Table 4. Kendall rank correlations versus actual rankings.

concordant pairs and nd is the number of discordant pairs in the two rankings. For
simplicity, labels of the form STAT1 refer to the GEM 1 method and labels of the
form STAT2 refer to the GEM 2 method. Based on the r-values, we can see that
each method performed better than the other in different statistics. The ranks were
then aggregated using the cross-entropy Monte Carlo algorithm with the distance
measure equal to the Kendall tau distance, as this algorithm promotes combining
several ordered lists in a proper and efficient manner [Pihur et al. 2009; de Boer et al.
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Aggregate Aggregate Aggregate* Aggregate* Actual NFL
GEM 1 GEM 2 GEM 1 GEM 2 Ranking

1. GB NO GB NO NO
2. DAL GB DAL NYG MIN
3. CAR NYG MIN MIN DAL
4. MIN MIN CAR GB GB
5. PHL DAL CHI DAL PHL
6. NO CAR NO ATL ARZ
7. NYG ATL ARZ CAR ATL
8. CHI CHI TB ARZ CAR
9. ARZ ARZ NYG CHI SF

10. TB TB SEA TB NYG
11. SEA PHL PHL PHL CHI
12. SF DET ATL WAS SEA
13. ATL SF DET DET WAS
14. STL WAS STL SF TB
15. DET STL SF SEA DET
16. WAS SEA WAS STL STL

r -value 0.53 0.55 0.47 0.60 -

Table 5. Aggregated rankings for both GEM 1 and GEM 2 vs.
actual rankings.

2005]. With the aggregate rankings, the GEM 2 method performed only slightly
better than the original GEM 1 method, with respective Kendall rank correlations
of r = 0.55 and r = 0.53.

We then decided to take out the least-correlated statistic and aggregate the
rankings again. We aggregated twice with the GEM 1 method, once without TIME
and once without TURN, since both had equally low r -values, and for the GEM 2
method, we aggregated without TURN. When ignoring the least-correlated statistic,
the GEM 2 method performed considerably better, with a Kendall rank correlation
of r = 0.60, compared to the GEM 1 method, r = 0.45 when omitting TURN and
r = 0.47 when omitting TIME. The aggregated rankings when TIME is omitted
from GEM 1 and TURN is omitted from GEM 2 are shown in Table 5 along with
the original aggregated rankings and the actual end of season rankings and are
denoted by Aggregate*.

There is plenty of other variability in the overall approach to this application of
PageRank. We could use more statistics or choose different statistics which are
better predictors of overall outcome. We also could use a different dampening factor
or modify the personalization vector which could improve the rankings as well.
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Nonetheless, it is possible to use this method to produce and compute rankings for
any sport or anything else from which a link structure can be created.
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