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In recent work by Beeler and Hoilman, the game of peg solitaire is generalized to
arbitrary boards. These boards are treated as graphs in the combinatorial sense.
Normally, the goal of peg solitaire is to minimize the number of pegs remaining at
the end of the game. In this paper, we consider the open problem of determining
the maximum number of pegs that can remain at the end of the game, under the
restriction that we must jump whenever possible. In this paper, we give bounds
for this number. We also determine it exactly for several well-known families of
graphs. Several open problems regarding this number are also given.

1. Introduction

Peg solitaire is a table game which traditionally begins with “pegs” in every space
except for one which is left empty (i.e., a “hole”). If in some row or column two
adjacent pegs are next to a hole (as in Figure 1), then the peg in x can jump over
the peg in y into the hole in z. The peg in y is then removed. Usually, the goal is to
remove every peg but one. If this is achieved, then the board is considered solved
[Beasley 1985; Berlekamp et al. 2003]. However, in this paper we consider the
open problem of determining the maximum number of pegs that can remain at the
end of the game under the caveat that we jump whenever possible. We refer to this
variation as the fool’s solitaire problem.

In [Beeler and Hoilman 2011], the notion of peg solitaire was generalized to
graphs. A graph, G = (V, E), is a set of vertices, V , and a set of edges, E . Because
of the restrictions of peg solitaire, we will assume that all graphs are finite undirected
graphs with no loops or multiple edges. In particular, we will always assume that

Figure 1. A typical jump in peg solitaire.
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graphs are connected. For all undefined graph theory terminology, refer to [West
1996]. In particular, n(G) denotes the order of the graph G, that is, the number of
vertices in the graph.

If there are pegs in vertices x and y and a hole in z, then we allow x to jump
over y into z provided that xy, yz ∈ E . The peg in y is then removed. In general,
the game begins with a starting state S⊂ V which is a set of vertices that are empty.
A terminal state T ⊂ V is a set of nonadjacent vertices that have pegs at the end of
the game. A terminal state T is associated with starting state S if T can be obtained
from S by a series of jumps. We will assume that S consists of a single vertex.

The fool’s solitaire number of a graph G, denoted by Fs(G), is the cardinality of
the largest terminal state T that is associated with a starting state consisting of a
single hole. A terminal state T is a fool’s solitaire solution if the cardinality of T
is equal to Fs(G). The dual of a peg configuration T , denoted by T ′, is the state
resulting from reversing the roles of pegs and holes.

The objective of this paper is to gain insight on the fool’s solitaire number
for graphs. To do this, we will determine bounds of the fool’s solitaire number
for graphs and find the fool’s solitaire number for various classes of graphs. In
analyzing the terminal states of a graph, the following theorem is useful.

Theorem 1.1 [Beeler and Hoilman 2011]. Suppose that S is a starting state of G
with associated terminal state T . Let S′ and T ′ be the duals of S and T , respectively.
It follows that T ′ is a starting state of G with associated terminal state S′.

The following is an immediate corollary that will prove useful.

Corollary 1.2. On a graph G, there exists some vertex s ∈ V (G) such that, when
S = {s}, there exists some series of jumps that will yield T as a terminal state if and
only if the dual T ′ of T is solvable to one peg.

This result provides an alternative method of checking if a suspected terminal
state is obtainable. Generally, to determine if a terminal state T of a graph G is
obtainable, you simply solve the dual.

2. Upper bounds on Fs(G)

In this section, we present upper bounds for Fs(G). We begin with a simple, but
useful, theorem involving the independence number of a graph. An independent set
of vertices is a set of mutually nonadjacent vertices. The independence number is
the maximum size of an independent set in a graph [West 1996].

Theorem 2.1. For any graph G, Fs(G)≤ α(G), where α(G) is the independence
number of G.
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Proof. By definition, any terminal state is an independent set of vertices. Thus the
maximum independent set has at least as many vertices as the largest terminal state.
Ergo, Fs(G)≤ α(G). �

While Theorem 2.1 seems almost trivial, the bound given is sharp for many
graphs, as will be discussed in Section 4. Another upper bound involving the
domination number follows. In a graph G, a set S ⊆ V (G) is a dominating set if
every vertex not in S has a neighbor in S. The domination number is the minimum
size of a dominating set in G.

Theorem 2.2. For any graph G, Fs(G)≤ n(G)− γ (G), where γ (G) is the domi-
nation number of G.

Proof. We begin by showing that the dual of any terminal state is a dominating set.
Let T be any terminal state of a graph G. Note that T is an independent set of V (G).
Consider T ′, the dual of T . Since each vertex in a dominating set dominates itself,
every vertex not in T is dominated. Also, by definition of an independent set, every
vertex in T is adjacent only to vertices in T ′, so these vertices are dominated as
well. Thus T ′ is a dominating set.

We now show that Fs(G)≤ n(G)−γ (G). Note that Fs(G)= |T | = n(G)−|T ′|.
Since T ′ is a dominating set by the argument above, we have that γ (G) ≤ |T ′|.
Hence Fs(G)= n(G)− |T ′| ≤ n(G)− γ (G). �

The upper bound given in Theorem 2.1 can be improved for several classes of
graphs.

Theorem 2.3. Let G be a graph. If for every maximum independent set A the dual
of A is an independent set with at least two vertices, then Fs(G)≤ α(G)− 1.

Proof. Suppose to the contrary that Fs(G)= α(G). This implies that A is a terminal
state for some maximum independent set A. Thus, by Corollary 1.2, G would
be solvable from starting state A′. Because the dual of A is also an independent
set, it follows that no moves are possible from this starting state. Hence either
|A′| = 1 or Fs(G)≤ α(G)− 1. Since we assume that A′ has at least two vertices,
Fs(G)≤ α(G)− 1. �

3. Families of graphs

In this section, we present the fool’s solitaire number of certain families of graphs.
As usual, Pn , Cn , and Kn will denote the path, the cycle, and the complete graph on n
vertices, respectively. Let Kn,m denote the complete bipartite graph with V = X∪Y ,
X = {x1, . . . , xn}, and Y = {y1, . . . , ym}, where n ≥m. In particular, K1,n is called
a star. The n-dimensional hypercube is denoted by Qn .

Note that, if Fs(G)= α(G), it suffices to provide the series of peg solitaire jumps
that will yield a solution. If Fs(G) = α(G)− 1, it suffices to demonstrate that
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Fs(G) 6= α(G) and to provide the series of peg solitaire jumps that will yield a
terminal state with cardinality α(G)− 1.

The following proposition is obvious, but included for the sake of completeness.

Proposition 3.1. The fool’s solitaire number for the complete graph on n vertices
is one.

We now consider complete bipartite graphs.

Proposition 3.2. For the star K1,n , Fs(K1,n)= n.

Proof. Note that α(K1,n) = n. Placing the hole in the center makes it so that no
moves are available. Thus Fs(G)= n. �

Theorem 3.3. For the complete bipartite graph Kn,m , if n, m > 1, then Fs(Kn,m)=

n− 1.

Proof. We begin by showing that Fs(Kn,m) 6= n. For the complete bipartite
graph Kn,m , note that α(Kn,m)= n. The only maximum independent set of Kn,m

is X , which has independent set Y as its dual. Since |Y | =m > 1, Fs(Kn,m)≤ n−1
by Theorem 2.3.

We claim that T = X − {x1} is the fool’s solitaire solution. Hence we must
show that T ′ = Y ∪ {x1} is reducible to a single peg. For i = 1, . . . , bm/2c, we let
the (2i − 1)-st move be from x1 over y2i−1 into x2. Similarly, the 2i-th jump is
from x2 over y2i into x1. If m is odd, then we make an additional jump from x1

over ym into x2. Since Kn,m is solvable from starting state T ′, it follows that
Fs(Kn,m)= n− 1 by Corollary 1.2. �

We will now consider the solutions to paths and cycles. When discussing
these graphs, we will label the vertices of the graphs with elements of the set
{0, 1, . . . , n − 1} in the obvious way. Also note that P2 and P3 are isomorphic
to K1,1 and K1,2, respectively. As the fool’s solitaire number of these graphs was
determined in Proposition 3.2, we do not consider these cases below.

Theorem 3.4. For the path on n vertices, if n > 3, then Fs(Pn)= bn/2c.

Proof. Note the independence number of a path on n vertices is dn/2e.
We begin by showing that, if n is odd, then Fs(Pn) < dn/2e. There is only one

independent set with cardinality dn/2e, namely {0, 2, 4, . . . , n−3, n−1}. Because
the dual of this set is an independent set with at least two vertices, Fs(P2k+1)≤bn/2c
by Theorem 2.3.

To obtain the fool’s solitaire solution for Pn (regardless of whether n is even
or odd), begin with the hole in 0. The i-th move will be to use the peg in 2i
to jump over 2i − 1 into 2i − 2. This will remove dn/2e pegs. It follows that
Fs(Pn)= bn/2c. �

Theorem 3.5. For the cycle on n vertices, Fs(Cn)= b
n−1

2 c.
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Proof. Note that α(Cn) = bn/2c. We begin by showing that if n is even, then
Fs(Cn) < n/2. Let n = 2k, where k ∈ Z. Up to automorphism on the vertices,
C2k has one maximum independent set of vertices. Since the dual of this set is
an independent set with at least two vertices, it follows that Fs(C2k) ≤ k − 1 by
Theorem 2.3.

To obtain the fool’s solitaire solution of Cn (regardless of whether n is even or
odd), begin with the hole in 0. The i-th move will be to use the peg in 2i to jump
over 2i − 1 into 2i − 2. This can be repeated k times, removing dn/2e pegs. If n
is even, we make an additional jump from 0 over n− 1 into n− 2. In either case,
Fs(Cn)= b

n−1
2 c. �

We will now consider the hypercube on 2n vertices, Qn . As usual, each vertex
will be labeled with an element from the set {0, 1, . . . , 2n

− 1}, with two vertices
being adjacent if and only if their binary expansions differ by one bit.

Theorem 3.6. The fool’s solitaire number of the n-dimensional hypercube for n≥ 2
is Fs(Qn)= 2n−1

− 1.

Proof. We first show that Fs(Qn) 6= α(Qn) = 2n−1. Up to automorphism on the
vertices, there is a unique maximum independent set of vertices, namely the set of
all vertices whose binary expansions have an even number of ones. As the dual of
this set is an independent set with at least two vertices, Fs(Qn)≤ 2n−1

− 1.
Note that Qn is Hamiltonian with an even number of vertices [Harary et al.

1988]. Relabel the vertices of Qn along a Hamiltonian cycle with the numbers
0, 1, . . . , 2n

−1 in the obvious way. Note that the odd-numbered vertices correspond
to the vertices with an odd number of ones in their binary expansions. Hence, the
odd-numbered vertices form a maximum independent set in Qn . We claim that
{1, 3, . . . , 2n

− 3} is the fool’s solitaire solution. Hence we must show that the
dual of this set, {2n

− 1, 0, 2, 4, . . . , 2n
− 2}, is reducible to a single peg. Begin

by jumping from 2n
− 1 over 0 into 1. For the remaining 2n−1

− 1 moves, the
i-th move is from 2i − 1 over 2i into 2i + 1, where i = 1, . . . , 2n−1

− 1. Hence
Fs(Qn)= 2n−1

− 1. �

4. Lower bounds on Fs(G)

In Section 2, we gave several upper bounds on the fool’s solitaire number. Unfortu-
nately, lower bounds on the fool’s solitaire number are more difficult to prove in
general. However, a useful proposition follows.

Proposition 4.1. Suppose that H is obtained from G by appending a vertex that
is not adjacent to any vertex in the fool’s solitaire solution of G. It follows that
Fs(H)≥ Fs(G)+ 1.
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Figure 2. Graphs with n(G)≤ 6 such that Fs(G)= α(G)− 1.

Proof. Suppose that H is obtained from G by appending a vertex v′ to G such that
vv′ /∈ E(G) for all v ∈ T , where T is the fool’s solitaire solution of G. We obtain a
terminal state of H with |T | + 1 vertices by finding the fool’s solitaire solution on
the subgraph induced by the vertices of G. Since v′ is not adjacent to any vertex
in T , it follows that T ∪ {v′} is a valid terminal state of H . This terminal state has
Fs(G)+ 1 vertices. Hence, Fs(H)≥ Fs(G)+ 1. �

To aid in a more general result, an exhaustive computer search of all terminal
states associated with a single vertex starting state was performed on all 143 noniso-
morphic connected graphs with six vertices or less. The algorithm is implemented
on the first author’s website [Beeler and Norwood n.d.].

Lists of graphs of small order were obtained from the appendix of [Harary 1969].
The independence numbers of these graphs were verified using the Small Graph
Database [Grout n.d.].

Of the 143 connected graphs with six vertices or less, 130 of them satisfy
Fs(G) = α(G). The remaining thirteen graphs satisfy Fs(G) = α(G)− 1. These
graphs are given in Figure 2.

Based on this and the results of Section 3, we present the following conjecture.

Conjecture 4.2. For all connected graphs G,

α(G)− 1≤ Fs(G)≤ α(G).

While we were unable to prove this, Proposition 4.1 may prove useful for an
inductive proof of this conjecture.

5. Open problems

Let H be a graph obtained from G by deleting an edge of G. We note that
α(H)≥ α(G) for all graphs G. Thus, a natural conjecture is that Fs(H)≥ Fs(G)
for all graphs G. However, this is not the case. Using the aforementioned exhaustive
computer search on all graphs with six vertices or less, three were found in which
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Fs(G)= 4 Fs(G)= 3 Fs(G)= 3

Figure 3. Graphs in which edge deletion lowers Fs(G).

edge deletion actually lowers the fool’s solitaire number. These graphs are given
in Figure 3. In each of these cases, deleting the dashed edge will lower the fool’s
solitaire number by one.

Some natural open questions motivated by this observation include:

(i) How much can edge deletion lower the fool’s solitaire number?

(ii) Let ED(n) be the number of nonisomorphic graphs with n vertices such that
edge deletion lowers the fool’s solitaire number. If n is large enough, does
ED(n)= 0? Let i(n) be the number of nonisomorphic graphs with n vertices.
What can be said about limn→∞ ED(n)/ i(n)?

One of the major results in [Beeler and Hoilman 2011] was to show that the
cartesian product of solvable graphs was likewise solvable. What can be said about
Fs(G � H) in terms of Fs(G) and Fs(H)?
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