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Refined inertias of tree sign patterns
of orders 2 and 3

D. D. Olesky, Michael F. Rempel and P. van den Driessche

(Communicated by Charles R. Johnson)

Sign patterns are matrices with only the sign of each entry specified. The refined
inertia of a matrix categorizes the eigenvalues as positive, negative, zero or
nonzero imaginary, and the refined inertia of a sign pattern is the set of all
refined inertias allowed by real matrices with that sign pattern. The complete
sets of allowed refined inertias for all tree sign patterns of orders 2 and 3 (up to
equivalence and negation) are determined.

1. Introduction

The inertia of an n× n real matrix A, denoted by i(A), is the triple (n+, n−, n0),
where n+, n− and n0 are the numbers of eigenvalues with positive, negative and zero
real part, respectively. Note that n++n−+n0= n. The refined inertia of A, ri(A), is
the 4-tuple (n+, n−, nz, 2n p) with n+ and n− as above, nz the number of zero eigen-
values and n p the number of nonzero imaginary complex conjugate pairs of eigenval-
ues; see [Kim et al. 2009]. The refined inertia of A distinguishes between zero and
nonzero imaginary eigenvalues, which is important for linear dynamical systems.

A sign pattern A= [αi j ] of order n is an n× n matrix with entries in {+,−, 0}.
A real matrix A is a realization of A if the signs of the entries in A correspond to the
entries in A. The sign pattern class of A is Q(A)= {A | A is a realization of A}.
A sign pattern B = [βi j ] is a superpattern of A if βi j = αi j for all αi j ∈ {+,−}.
The inertia of a sign pattern A is i(A)= {i(A) | A ∈ Q(A)} and the refined inertia
of A is ri(A) = {ri(A) | A ∈ Q(A)}. A sign pattern A allows a refined inertia
(n+, n−, nz, 2n p) if there exists some A ∈ Q(A) having this refined inertia. See,
for example, [Catral et al. 2009; Johnson and Summers 1989] for related allow
problems on sign patterns.

Sign patterns have applications in areas where dynamical systems arise (see, for
example, [Logofet 1993]), but characterizing sign patterns that have a particular

MSC2010: 15A18, 15B35.
Keywords: sign pattern, inertia, refined inertia, allow problems, characteristic equation, eigenvalues.
This research was supported in part by NSERC Discovery grants.
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property can be challenging since each nonzero entry is free to take on any value
in one half of the real line. Section 2 introduces more definitions and concepts
required for our analysis of sign patterns. Sections 3 and 4 identify the refined
inertias allowed by all tree sign patterns of orders 2 and 3, respectively, and these
are listed in Appendices A and B.

2. Fundamentals

Given an n× n sign pattern A= [αi j ], the transpose of A is AT
= [α j i ]. A permu-

tation similarity transformation is A 7→ PAPT where P is an n× n permutation
matrix. A signature similarity transformation is A 7→ DAD−1 where D = D−1

is an n × n diagonal matrix with each diagonal entry equal to ±1. The refined
inertia of a sign pattern A is preserved by each of these three transformations,
which define equivalence classes of sign patterns. Two sign patterns A and B are
equivalent, and therefore in the same equivalence class, if B can be derived from A

by some sequence of the three transformations. One other important transformation
is negation. Since ri(−A) = {(n−, n+, nz, 2n p) | (n+, n−, nz, 2n p) ∈ ri(A)}, the
refined inertia (and inertia) of −A is easily obtained from that of A.

An n× n sign pattern A is a spectrally arbitrary pattern (SAP) if, given any set
of n complex numbers closed under complex conjugation, there exists a realization
A ∈ Q(A) having these n numbers as its eigenvalues [Drew et al. 2000], and A is
a refined inertially arbitrary pattern (rIAP) if, given any 4-tuple (n+, n−, nz, 2n p)

with n++ n−+ nz + 2n p = n, there exists a realization of A having this 4-tuple as
its refined inertia [Kim et al. 2009]. An inertially arbitrary pattern (IAP) is defined
similarly [Drew et al. 2000]. The properties of being an IAP, rIAP and SAP are
invariant with respect to equivalence and negation. Any SAP is obviously an rIAP,
and any rIAP is also an IAP. Conversely, for n = 2 and 3, A is a SAP if it is an
rIAP [Kim et al. 2009], but it is not known if this holds for larger n.

A tree sign pattern A= [αi j ] is a sign pattern that is combinatorially symmetric
(i.e., αi j 6= 0 whenever α j i 6= 0) and has αi1i2αi2i3 · · ·αik i1 = 0 for all k ≥ 3. As in
[Johnson and Summers 1989], associated with an n×n tree sign pattern A is a signed
tree graph with n vertices labeled 1, 2, . . . , n and an edge between vertices i and
j 6= i if and only if αi j is not 0; the sign on the edge is the sign of the product αi jα j i .
In addition, if αi i 6= 0 the graph has a loop at vertex i , signed as the sign of αi i .
The negation of the sign pattern changes the signs of the loops of the graph, but
not the signs of its edges. Every graph in the appendices uniquely represents those
sign patterns that are the same up to equivalence, with one such sign pattern shown
for each class. For n = 2 every irreducible sign pattern is a tree sign pattern. For
n = 3, a tree sign pattern is equivalent to an irreducible tridiagonal sign pattern.
We consider only irreducible sign patterns because the refined inertia of a reducible
sign pattern is the sumset of the refined inertias of its irreducible components.
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3. Sign patterns of order 2

For completeness, the refined inertias and graphs of all irreducible sign patterns
of order 2 up to equivalence and negation are given in Appendix A. These can be
determined simply by considering the trace and determinant of a real matrix with
each sign pattern. The trace of a matrix is equal to the sum of its eigenvalues, and
its determinant is equal to the product of its eigenvalues. For the 2× 2 case the
possible signs of the trace and determinant provide complete information on the
refined inertia. For example, for an order 2 sign pattern, if the trace must be positive
and the determinant must be negative, the only allowed refined inertia is (1, 1, 0, 0),
with the positive eigenvalue larger in magnitude than the negative one. Note that
only one sign pattern of order 2 is an rIAP.

4. Tree sign patterns of order 3

Since there are a total of 39 sign patterns of order 3, a computer program was
written to identify the set of all irreducible order 3 sign patterns up to equivalence
and negation. This set was determined by examining in turn every possible 3× 3
irreducible sign pattern and checking for equivalence or negation with each sign
pattern already in the set. The program identified 187 sign patterns, of which 34
were tree sign patterns. The equivalence classes corresponding to the 34 tree sign
patterns are each represented by a graph in Appendix B, along with their refined
inertias, a representative sign pattern and its associated characteristic equation, and
references to techniques used for finding the refined inertias.

We now present our techniques and methods for finding the exact set of refined
inertias allowed by each sign pattern. For every sign pattern, each refined inertia
was either proved to not be allowed or shown to be allowed either by a proof or a
numerical realization, respectively.

A tree sign pattern can be represented by a tridiagonal matrix with (real) variables
for each nonzero entry. The generic 3× 3 tridiagonal matrix is±e ±a 0

±b ± f ±c
0 ±d ±g

 . (4-1)

Here a, b, c, d > 0 for an irreducible tree sign pattern and e, f , g ≥ 0. For the
moment we let a′ =±a, and similarly for the other variables, but when working
with specific sign patterns, we always use strictly positive variables.

We can normalize the matrix in (4-1) to reduce the number of unknowns by
up to three, setting them to ±1. If e 6= 0 we set e = 1 by multiplying the matrix
by 1/e, and if e= 0 and f 6= 0 we multiply by 1/ f to set f = 1. By Lemma 2.3 in
[Britz et al. 2004] we can also set a = c = 1, and since each 3× 3 tree sign pattern
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has a′, c′ > 0 up to equivalence, a′ = c′ = 1. Thus the characteristic polynomial
can be simplified to

x3
− (e′+ f ′+g′)x2

+ (e′ f ′+e′g′+ f ′g′−b′−d ′)x+e′d ′+b′g′−e′ f ′g′, (4-2)

with one of e′, f ′ equal to 1 or −1, or e′ = f ′ = g′ = 0.
In terms of the characteristic polynomial, the trace is the negative of the coefficient

of x2 and the determinant is the negative of the constant term. Each refined inertia
corresponds to a unique product of three linear factors, i.e., to a unique factorization
of a monic cubic polynomial. The 13 possible refined inertias for 3×3 matrices are
listed in Table 1 with their factorizations. After expanding each factorization, the
coefficients of the resulting polynomial can be compared directly to the coefficients
of the characteristic polynomial in (4-2). If there is no solution to the resulting
set of equations, then the corresponding refined inertia is not allowed by the sign
pattern with the given characteristic polynomial.

The real parts of α, β are positive and γ > 0. Note that for refined inertias
(a)–(d), (g) and (i) in Table 1, the unknowns α and β may be complex conju-
gate pairs. However, since αβ and α + β are always real and positive, when
used in these combinations the fact that α and β are possibly complex can be
ignored.

The following list summarizes the techniques that we used to determine the
refined inertias. Each sign pattern in Appendix B references the techniques used
for that sign pattern.

T1. The rIAPs (equivalently SAPs for n = 3) were found by determining which
of the 34 tree sign patterns are equivalent to one of the two 3× 3 SAPs that are

refined
inertia factorization characteristic polynomial

(a) (3,0,0,0) (x −α)(x −β)(x − γ ) x3
− (α+β + γ )x2

+ (αβ + (α+β)γ )x −αβγ
(b) (2,1,0,0) (x −α)(x −β)(x + γ ) x3

− (α+β − γ )x2
+ (αβ − (α+β)γ )x +αβγ

(c) (1,2,0,0) (x +α)(x +β)(x − γ ) x3
+ (α+β − γ )x2

+ (αβ − (α+β)γ )x −αβγ
(d) (0,3,0,0) (x +α)(x +β)(x + γ ) x3

+ (α+β + γ )x2
+ (αβ + (α+β)γ )x +αβγ

(e) (1,0,0,2) (x −α)(x2
+β) x3

−αx2
+βx −αβ

(f) (0,1,0,2) (x +α)(x2
+β) x3

+αx2
+βx +αβ

(g) (2,0,1,0) x(x −α)(x −β) x3
− (α+β)x2

+αβx
(h) (1,1,1,0) x(x +α)(x −β) x3

+ (α−β)x2
−αβx

(i) (0,2,1,0) x(x +α)(x +β) x3
+ (α+β)x2

+αβx
(j) (0,0,1,2) x(x2

+α) x3
+αx

(k) (1,0,2,0) x2(x −α) x3
−αx2

(l) (0,1,2,0) x2(x +α) x3
+αx2

(m) (0,0,3,0) x3 x3

Table 1. All refined inertias for matrices of order 3.
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trees, namely T3 and U3 in [Britz et al. 2004] (see also [Cavers and Vander Meulen
2005]), or are equivalent to a superpattern of one of them.

T2. If e = g = 0, then the determinant must be zero and the trace is ±1 or 0. The
characteristic polynomial factors into a zero root and a quadratic, and the possible
refined inertias are easily determined.

T3. In order to find a realization of a given sign pattern that has a refined inertia with
nz = n p = 0, a random matrix with that sign pattern was generated in MATLAB,
and its eigenvalues were computed. This ad hoc technique was used for many sign
patterns to find an example of refined inertias (a)–(d) in Table 1 that each allows,
although it does not show the nonexistence of those that are not allowed.

T4. If a tridiagonal sign pattern A is symmetric, then any A ∈ Q(A) is diagonally
similar to a symmetric matrix, so its eigenvalues are real. Thus the refined inertias
(e)–(f) and (j) in Table 1 are not allowed for such sign patterns.

T5. If the determinant must be positive or must be negative, then the sign pattern
does not allow (g)–(m) in Table 1, as well as either (b), (d), (f) if positive, or (a),
(c), (e) if negative.

T6. If the trace must be positive, then the sign pattern does not allow (d), (f), (i), (j),
(l) and (m) in Table 1, and if negative it does not allow (a), (e), (g), (j), (k) and (m).

T7. If the sign pattern is such that the coefficient of the x term in (4-2) is negative,
then only refined inertias (b), (c) and (h) in Table 1 can be allowed.

Note. The next four techniques are algebraic, involving the characteristic polyno-
mial (4-2) and equations in Table 1. There are many possible ways of proceeding;
however, we found the following techniques to be the most straightforward.

T8. To show that one of (e) or (f) in Table 1 is not allowed, equate the coefficients
of the characteristic polynomial (4-2) to the coefficients of the polynomial corre-
sponding to the refined inertia being considered. If this leads to a contradiction,
then that refined inertia is not allowed.

For example, consider sign pattern (4e) in Appendix B. Equating its characteristic
polynomial to the polynomial associated with (0, 1, 0, 2) ((f) in Table 1) gives

1− f = α =⇒ α < 1, d − f − b = β⇔ d = β + b+ f, d = αβ.

A contradiction is immediate since 0< α < 1 implies d < β from the last equation,
but the second equation implies d > β. Therefore this sign pattern does not allow
refined inertia (0, 1, 0, 2).

A more complicated argument shows that sign pattern (5d) in Appendix B does
not allow refined inertia (1, 0, 0, 2). In this case

1+ f + g = α =⇒ α > g and α > 1,
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while
f + g+ f g+ b+ d = β =⇒ β > f g+ d + b

and d+bg+ f g=αβ. From the inequality for β it follows that αβ>α( f g+d+b)=
α( f g+ d)+αb and from the inequalities for α it follows that α( f g+ d)+αb >
f g+d+ gb= αβ, which is a contradiction. This method can also be used to show
that (a) or (d) in Table 1 are not allowed, but it is easier to invoke continuity when
appropriate (see T12).

T9. This technique is for eliminating or identifying allowed refined inertias with at
least one eigenvalue equal to zero (refined inertias (g)–(m) in Table 1) when the
determinant is not necessarily zero (hence differing from T2). The objective is to
determine inequalities between unknowns in the characteristic equation that require
the coefficient of x to have a certain sign.

If the coefficient of x must be positive, only (g), (i) and/or (j) in Table 1 can be
allowed, while if it must be negative, only (h) is allowed. This argument can also
be viewed in terms of the discriminant of the quadratic that arises after factoring
out the zero root from the characteristic polynomial.

As a simple example, consider sign pattern (10a) in Appendix B with the co-
efficient of x equal to f + g + f g − b − d. Here we are interested in the case
d + bg− f g = 0 (i.e., at least one zero eigenvalue). This equation gives

f g = d + bg =⇒ f g > d and f > b.

These imply that f −b+ f g−d+g> 0. Since the trace 1+ f +g must be positive,
(2, 0, 1, 0) is the only refined inertia with a zero eigenvalue that sign pattern (10a)
allows, eliminating (h)–(m) in Table 1.

A more complex use of this technique is needed for sign pattern (11d) in Ap-
pendix B, with the coefficient of x equal to g− f − f g+ b+ d . Again we set the
determinant to zero: f g− d − bg = 0. Considering the case with trace not positive
( f ≥ 1+ g) gives f > 1, f > g, so:

• If g ≤ 1, then

f g = bg+ d =⇒ f g ≥ bg+ dg =⇒ f ≥ b+ d

and f g > g. Therefore the coefficient of x is negative.

• If g > 1, then
f g = bg+ d =⇒ f g > b+ d

and f > g. Therefore the coefficient of x is negative.

Thus, when the trace is negative or zero and the determinant is zero, only (1, 1, 1, 0)
is allowed, eliminating (i)–(j) and (l)–(m) in Table 1.
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For certain sign patterns, this technique can also be used to show that when the
determinant and trace are taken to be negative, then the coefficient of x is also
negative, and therefore (d) and (f) in Table 1 are not allowed. For sign pattern (11d)
the argument follows as in the above example, except that the equality f g = bg+d
is replaced by the inequality f g > bg+ d .

Note. The next two techniques are for finding realizations with certain refined
inertias when continuity cannot be obviously invoked. This could be done simply
by trial and error, but it is easier to do some algebra first.

T10. The first technique is for finding realizations with a zero eigenvalue. First fix
the trace to be either positive or negative, and then find inequalities that ensure that
the coefficient of x is positive, negative and/or zero.

As an example, consider sign pattern (11c) in Appendix B with the coefficient
of x equal to f − g− f g− b+ d . For this sign pattern f g− d − bg = 0 ensures a
zero eigenvalue while 1+ f > g implies a positive trace.

To find a realization with refined inertia (k) in Table 1, set

f + d = g+ b+ f g = g+ b+ d + bg =⇒ f − g = b(g+ 1).

This reduces the number of unknowns by one, and further note that a solution to
the last equation ensures that the trace is positive; therefore that condition can be
ignored. Also, a solution implies f > b, and since d = g( f − b), d is positive for
all solutions. An obvious solution is then b = 1, g = 1, f = 3.

Similarly, to show that (g) in Table 1 is allowed, a realization is required with
positive trace, positive coefficient of x and zero determinant, which imply that
f − g > b(g+ 1). Thus, in the above solution, increase the value of f . Similarly,
to show that (h) in Table 1 is allowed, increase b so that f − g < b(g+ 1) while
maintaining b < f .

T11. In order to determine a realization with refined inertia (e) or (f) in Table 1,
begin as in T8, but now instead of trying to reach a contradiction, the goal is to find
a reduced set of expressions that will ensure that all unknowns are positive, and
therefore show that the refined inertia exists.

For example consider sign pattern (11c) as in the previous example. Equating
the coefficients of the characteristic polynomial with those of (e) in Table 1 gives

1+ f − g = α =⇒ f − g = α− 1,

f − g− f g− b+ d = β, d + bg− f g = αβ.

From the last equation, choosing f >b ensures d>0. Combining all three equations
to eliminate d and f gives

b(1+ g)= αβ +α−β − 1= (α− 1)(β + 1).
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Therefore, by choosing g > β, necessarily b< α−1< α−1+ g = f , which gives
two simple expressions, namely α > 1 and g > β > 0, that ensure all variables
remain positive. A solution is, for example, α = 2, β = 1, g = 3 giving f = 4,
b = 0.5, d = 12.5.

T12. Since the eigenvalues are continuous functions of the matrix entries, continuity
can require that a sign pattern allow or not allow a particular refined inertia. This
can often be used after the set of possible refined inertias is narrowed down.

For an example of the first case, if a sign pattern has been shown to allow
(3, 0, 0, 0) and (1, 2, 0, 0) and the determinant is nonzero, then the sign pattern
must also allow (1, 0, 0, 2).

For an example of the second case, if a sign pattern allows (3, 0, 0, 0) but no
others except possibly (2, 1, 0, 0), as in Appendix B(5), by continuity (2, 1, 0, 0) is
also not possible since an eigenvalue would have to cross the imaginary axis, and
therefore (2, 0, 1, 0) would also have to be allowed.

For each tree sign pattern of order 3 (up to equivalence and negation), the above
techniques determine the set of all allowed refined inertias. Appendix B contains a
list of sign patterns arranged according to these sets, and also includes the graph
corresponding to each equivalence class. This list suggests some open questions.
Given a list of refined inertias, what classes of sign patterns allow exactly these
refined inertias, and which lists have at least one such sign pattern?

Appendix A. Refined inertias of all 2 × 2 irreducible sign patterns
up to equivalence and negation

(1) ri(A)= {(0, 0, 0, 2)}
(1a)[

0 +
− 0

]
−

(2) ri(A)= {(1, 1, 0, 0)}
(2a)[

0 +
+ 0

]
+

(2b)[
+ +

+ 0

]
+ +

(2c)[
+ +

+ −

]
+ −+

(3) ri(A)= {(2, 0, 0, 0)}
(3a)[

+ +

− 0

]
+ −

(3b)[
+ +

− +

]
+ +−

(4) ri(A)= {(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0)}
(4a)[

+ +

+ +

]
+ ++
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(5) rIAP (allows all 7 refined inertias)
(5a)[

+ +

− −

]
+ −−

Appendix B. Refined inertias of all 3 × 3 tree sign patterns
up to equivalence and negation

(1) ri(A)= {(1, 1, 1, 0), (0, 0, 3, 0), (0, 0, 1, 2)}

(1a)

0 + 0
+ 0 +
0 − 0

 + −

x3
− (b− d)x

Technique: T2

(2) ri(A)= {(1, 1, 1, 0)}

(2a)

0 + 0
+ 0 +
0 + 0

 + +

x3
− (b+ d)x

Technique: T2

(2b)

0 + 0
+ + +

0 + 0

 ++ +

x3
− x2
− (b+ d)x

Technique: T2

(3) ri(A)= {(0, 0, 1, 2)}

(3a)

0 + 0
− 0 +
0 − 0

 − −

x3
+ (b+ d)x

Technique: T2

(4) ri(A)= {(2, 1, 0, 0)}

(4a)

+ + 0
− 0 +
0 + 0

 + − +

x3
− x2
+ (b− d)x + d

Techniques: T3, T5, T6

(4b)

+ + 0
+ 0 +
0 + 0

 + + +

x3
− x2
− (b+ d)x + d

Techniques: T5, T7

(4c)

+ + 0
+ + +

0 + 0

 + ++ +

x3
− (1+ f )x2

+ ( f − b− d)x + d
Techniques: T3, T5, T6

(4d)

+ + 0
− + +

0 + 0

 + +− +

x3
− (1+ f )x2

+ ( f + b− d)x + d
Techniques: T3, T5, T6

(4e)

− + 0
+ + +

0 − 0

 − ++ −

x3
+ (1− f )x2

− ( f + b− d)x + d
Techniques: T3, T5, T8, T12
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(4f)

+ + 0
+ 0 +
0 + +

 + ++ +

x3
− (1+ g)x2

+ (g− b− d)x + d + bg
Techniques: T3, T5, T6

(4g)

+ + 0
+ − +

0 + +

 + − ++ +

x3
−(1− f +g)x2

−( f −g+ f g+b+d)x+d+bg+ f g
Techniques: T3, T4, T5, T12

(4h)

− + 0
+ 0 +
0 − 0

 − + −

x3
+ x2
− (b− d)x + d

Techniques: T3, T5, T8, T12

(4i)

+ + 0
+ − +

0 + 0

 + −+ +

x3
− (1− f )x2

− ( f + b+ d)x + d
Techniques: T5, T7

(4j)

+ + 0
− 0 +
0 + −

 + −− +

x3
− (1− g)x2

− (g− b+ d)x + d + bg
Techniques: T3, T5, T8, T12

(4k)

+ + 0
− + +

0 + −

 + − ++ −

x3
−(1+ f −g)x2

+( f −g− f g+b−d)x+d+bg+ f g
Techniques: T3, T5, T8, T12

(5) ri(A)= {(3, 0, 0, 0)}

(5a)

+ + 0
− 0 +
0 − 0

 + − −

x3
− x2
+ (b+ d)x − d

Techniques: T3, T5, T8, T12

(5b)

+ + 0
− + +

0 − 0

 + +− −

x3
− (1+ f )x2

+ ( f + b+ d)x − d
Techniques: T3, T5, T8, T12

(5c)

+ + 0
− 0 +
0 − +

 + +− −

x3
− (1+ g)x2

+ (g+ b+ d)x − d − bg
Techniques: T3, T5, T8, T12

(5d)

+ + 0
− + +

0 − +

 + + +− −

x3
−(1+ f +g)x2

+( f +g+ f g+b+d)x−d−bg− f g
Techniques: T3, T5, T8, T12

(6) ri(A)= {(2, 0, 1, 0)}

(6a)

0 + 0
− + +

0 − 0

 +− −

x3
− x2
+ (b+ d)x

Technique: T2

(7) ri(A)= {(1, 0, 2, 0), (1, 1, 1, 0), (2, 0, 1, 0)}
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(7a)

0 + 0
+ + +

0 − 0

 ++ −

x3
− x2
− (b− d)x

Technique: T2

(8) ri(A)= {(3, 0, 0, 0), (1, 2, 0, 0), (1, 0, 0, 2)}

(8a)

− + 0
− + +

0 + 0

 − +− +

x3
+ (1− f )x2

− ( f − b+ d)x − d
Techniques: T3, T5, T12

(8b)

+ + 0
+ + +

0 − 0

 + ++ −

x3
− (1+ f )x2

+ ( f − b+ d)x − d
Techniques: T3, T5, T12

(8c)

+ + 0
− − +

0 − 0

 + −− −

x3
− (1− f )x2

− ( f − b− d)x − d
Techniques: T3, T5, T12

(9) ri(A)= {(2, 1, 0, 0), (1, 2, 0, 0), (1, 1, 1, 0)}

(9a)

+ + 0
+ 0 +
0 + −

 + −+ +

x3
− (1− g)x2

− (g+ b+ d)x + d − bg
Techniques: T3, T7, T12

(9b)

+ + 0
+ + +

0 + −

 + + −+ +

x3
−(1+ f −g)x2

+( f −g− f g−b−d)x+d−bg+ f g
Techniques: T3, T4, T9, T12

(10) ri(A)= {(3, 0, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0)}

(10a)

+ + 0
+ + +

0 + +

 + + ++ +

x3
−(1+ f +g)x2

+( f +g+ f g−b−d)x+d+bg− f g
Techniques: T3, T4, T5, T9, T12

(11) ri(A)= {(3, 0, 0, 0), (1, 2, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0),
(1, 0, 2, 0), (1, 1, 1, 0), (1, 0, 0, 2)}

(11a)

+ + 0
+ 0 +
0 − +

 + ++ −

x3
− (1+ g)x2

+ (g− b+ d)x − d + bg
Techniques: T3, T6, T10, T11

(11b)

+ + 0
+ + +

0 − +

 + + ++ −

x3
−(1+ f +g)x2

+( f +g+ f g−b+d)x−d+bg− f g
Techniques: T3, T6, T10, T11

(11c)

+ + 0
+ + +

0 − −

 + + −+ −

x3
−(1+ f −g)x2

+( f −g− f g−b+d)x−d−bg+ f g
Techniques: T3, T9, T10, T11

(11d)

+ + 0
− − +

0 − +

 + − +− −

x3
−(1− f +g)x2

−( f −g+ f g−b−d)x−d−bg+ f g
Techniques: T3, T9, T10, T11
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(12) rIAP (allows all 13 refined inertias)

(12a)

− + 0
− 0 +
0 − +

 − +− −

x3
+ (1− g)x2

− (g− b− d)x + d − bg
Technique: T1

(12b)

− + 0
− + +

0 + −

 − + −− +

x3
+(1− f +g)x2

−( f −g+ f g−b+d)x−d+bg− f g
Technique: T1

(12c)

− + 0
− − +

0 − +

 − − +− −

x3
+(1+ f −g)x2

+( f −g− f g+b+d)x+d−bg− f g
Technique: T1
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The group of primitive almost pythagorean triples
Nikolai A. Krylov and Lindsay M. Kulzer

(Communicated by Scott Chapman)

We consider the triples of integer numbers that are solutions of the equation
x2
+ qy2

= z2, where q is a fixed, square-free arbitrary positive integer. The set
of equivalence classes of these triples forms an abelian group under the operation
coming from complex multiplication. We investigate the algebraic structure of
this group and describe all generators for each q ∈ {2, 3, 5, 6}. We also show that
if the group has a generator with the third coordinate being a power of 2, such
generator is unique up to multiplication by ±1.

1. Introduction and the group of PPTs

The set of pythagorean triples has various interesting structures. One of such
structures is induced by a binary operation introduced by Taussky [1970]. Recall
that a pythagorean triple (PT from now on) is an ordered triple (a, b, c) of natural
numbers satisfying the identity a2

+b2
= c2, and given two such triples (a1, b1, c1)

and (a2, b2, c2) we can produce another one using

A := a1a2+ b1b2, B := |a1b2− a2b1|, C := c1c2. (1)

The natural relation (a, b, c)' (λa, λb, λc) for all λ∈N, called projectivization,
is an equivalence relation on this set. The operation mentioned above induces an
abelian group structure on the set of equivalence classes of PTs where the identity
element is the class of (1, 0, 1). When a, b and c have no common prime divisors,
the triple (a, b, c) is called primitive. It’s easy to see that every equivalence class
contains exactly one primitive pythagorean triple. Thus the set of all primitive
pythagorean triples (PPTs from now on) forms an abelian group under the operation
given in (1). The algebraic structure of this group, denoted by P, was investigated by
Eckert [1984], who proved that the group of PPTs is a free abelian group generated
by all primitive triples (a, b, c), where a > b and c is a prime number of the linear
form c = 4n+ 1. Every pythagorean triple (a, b, c) naturally gives a point on the
unit circle with rational coordinates (a/c, b/c) and the equivalence class of PTs

MSC2010: 11D09, 20K20.
Keywords: pythagorean triples, infinitely generated commutative groups.
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corresponds to a unique point on the circle. Operation (1) on the pythagorean triples
corresponds to the “angle addition” of rational points on S1 and thus the group
of PPTs is identified with the subgroup of all rational points on S1. Analysis of
this group was done by Tan [1996] and his Theorem 1 (p. 167) is equivalent to the
proposition on page 25 of [Eckert 1984].

It is not hard to see that the composition law (1) naturally extends to the solutions
of the Diophantine equation

X2
+ q · Y 2

= Z2 (2)

where q is a fixed, square-free arbitrary positive integer. Via projectivization, we
obtain a well defined binary operation on the set of equivalence classes of solutions
to (2), and the set of such classes forms an abelian group as well. For some special
values of q, including all q ∈ {2, 3, 5, 6, 7, 15}, such a group has been considered
by Baldisserri [1999]. However, it seems that the generators (3, 1, 4) for q = 7, and
(1, 1, 4) for q = 15, are missing in [Baldisserri 1999].

With the above in mind, we will consider in this paper the set of triples we call
almost pythagorean triples, which are solutions to the equation (2). As in the case of
PTs, each equivalence class here contains exactly one primitive almost pythagorean
triple and therefore the set of equivalence classes is the set of primitive almost
pythagorean triples (PAPTs).

In the next two sections we give a complete description of this group for
q ∈ {2, 3, 5, 6}, similar to the one given in [Eckert 1984]. We also prove that for all
q 6= 3 the group of PAPTs is free abelian of infinite rank. In the last section we will
discuss solutions (a, b, c) where c is even. Please note that some of the results we
prove here have been obtained earlier by Baldisserri; however, our proof of existence
of elements of finite order is different from the one given in [Baldisserri 1999]. We
also explain that if (a, b, 2k) is a nontrivial solution of (2) with q 6= 3, the set of
all such solutions makes an infinite cyclic subgroup of the group of PAPTs. When
q = 7 and q = 15 such a subgroup is missing in Theorem 2 of [Baldisserri 1999].

2. Group of PAPTs

Let Tq denote the set of all integer triples (a, b, c)∈Z×Z×N such that a2
+q·b2

=c2.
We introduce the following relation on Tq : two triples (a, b, c) and (A, B,C) are
equivalent if there exist m, n ∈ Z \ {0} such that m(a, b, c) = n(A, B,C), where
m(a, b, c)= (ma,mb, |mc|). It is a straightforward check that this is an equivalence
relation (also known as projectivization). We will denote the equivalence class
of (a, b, c) by [a, b, c]. Note that [a, b, c] = [−a,−b, c], but [a, b, c] 6= [−a, b, c].
We will denote the set of these equivalence classes by Pq . Now we define a binary
operation on Pq that generalizes the one on the set of PPTs defined by (1).
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Definition 1. For two arbitrary classes [a, b, c], [A, B,C] ∈ Pq , define their sum
by the formula

[a, b, c] + [A, B,C] := [a A− qbB, aB+ bA, cC].

It is a routine check that this definition is independent of a particular choice of a
triple and thus the binary operation is well defined. Here are two examples:

If q = 7,

[3, 1, 4]+[3, 1, 4]+[3, 1, 4] = [3, 1, 4]+[2, 6, 16] = [−36, 20, 64] = [−9, 5, 16].

If q = 14,

[5, 2, 9] + [13, 2, 15] = [9, 36, 135] = [1, 4, 15].

Since [a, b, c]+[1, 0, 1]= [a, b, c] and [a, b, c]+[−a, b, c]= [−a2
−qb2, 0, c2

]=

[c2, 0, c2
], and the operation is associative (this check is left for the reader), we

obtain the following result (compare [Baldisserri 1999, Section 2] or [Weintraub
2008, Section 4.1]):

Theorem 1. (Pq ,+) is an abelian group. The identity element is [1, 0, 1] and the
inverse of [a, b, c] is [a,−b, c] = [−a, b, c].

The purpose of this paper is to see what the algebraic structure of (Pq ,+) is, and
how it depends on q . From now on we will denote this group simply by Pq . Please
note that every equivalence class [a, b, c] ∈ Pq can be represented uniquely by a
primitive triple (α, β, γ ) ∈ Tq , where α > 0. In particular, this gives us freedom to
refer to primitive triples to describe elements of the group.

Remark 1. The group Pq is a natural generalization of the group P of PPTs. How-
ever, P1 is not isomorphic to P. The key point here is that the triple (0, 1, 1) /∈ Tq ,
when q > 1, and the inverse of [a, b, c] is [a,−b, c] = [−a, b, c]. In particular,
it forces the consideration of triples with a and b being all integers and not only
positive ones. As a result, the triples (1, 0, 1) and (0, 1, 1) are not equivalent in
T1. In order for the binary operation on the set of PPTs to be well defined, the
triple (0, 1, 1) must be equivalent to the identity triple (1, 0, 1) [Eckert 1984, (5),
p. 23]. The relation between our group P1 and the group P of PPTs is given by the
following direct sum decomposition:

P1 ∼= P⊕Z/2Z,

where the 2-torsion subgroup Z/2Z is generated by the element [0, 1, 1]. To prove
this, one uses the map f : P⊕Z/2Z−→ P1 defined by

f
(
(a, b, c), n

)
:=

{
[a, b, c] + [1, 0, 1] = [a, b, c] if n = 0,
[a, b, c] + [0, 1, 1] = [−b, a, c] if n = 1.
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It’s easy to see that this f is an isomorphism.

Remark 2. The group Pq also has a geometric interpretation: consider the set P(Q)

of all points (X, Y ) ∈Q×Q that belong to the conic X2
+qY 2

= 1. Let N = (1, 0)
and take any two A, B ∈P(Q). Draw the line through N parallel to the line (AB);
then its second point of intersection with the conic X2

+ qY 2
= 1 will be A+ B

(see [Lemmermeyer 2003b, Section 2.2; 2003a, Section 1] for the details). Via
such geometric point of view, Lemmermeyer draws a close analogy between the
groups P(Z) of integral points on the conics in the affine plane and the groups E(Q)
of rational points on elliptic curves in the projective plane. One of the key charac-
teristics of P(Z) and E(Q) is that both of the groups are finitely generated. Note
however that if q > 0, the curve X2

+qY 2
= 1 has only two integer points, (±1, 0).

One could consider the solutions of X2
+ qY 2

= 1 over a finite field Fq or over
the p-adic numbers Zp. In each of these cases the group of all solutions is also
finitely generated and we refer the reader to [Lemmermeyer 2003a, Section 4.2]
for the exact formulas. In the present paper we investigate the group structure of
all rational points on the conic X2

+ qY 2
= 1 when q ≥ 2 and such group is never

finitely generated, as we explain below.

3. Algebraic structure of Pq

The classical enumeration of primitive pythagorean triples in the form

(a, b, c)= (u2
− v2, 2uv, u2

+ v2) or
(

u2
− v2

2
, uv,

u2
+ v2

2

)
is a useful component in understanding the group structure on the set of PPTs.
We assume here that integers u and v have no common prime divisors; other-
wise (a, b, c) won’t be primitive. One could use the Diophantus chord method
(see, for example, [Stillwell 2003, Section 1.7]) to derive such enumeration of all
PPTs. This method can be generalized to enumerate all solutions to (2) for all
square-free q > 1. In particular, if a primitive triple (a, b, c) ∈ Tq , then there exists
a pair (u, v) of integers with no common prime divisors, such that

(a, b, c)=
(
±(u2

− qv2), 2uv, u2
+ qv2) or

(
±

u2
− qv2

2
, uv,

u2
+ qv2

2

)
.

We can use this enumeration right away to prove that if c is prime, and (a,b,c)∈Tq ,
then such a pair of integers (a, b) is essentially unique. Here is the precise statement.

Claim 1. If c is prime and

x2
+ qy2

= c2
= a2
+ qb2, where abxy 6= 0,

then (x, y)= (h1a, h2b), where hi =±1.
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Proof. We apply Lemma 5.48 from Section 5.5 of [Weintraub 2008]. When
2c= u2

+qv2, the proof needs an additional argument explaining why not just β/α0

but also β/(2α0) will be in the ring of integers. It can be easily done considering
separate cases of even and odd q and using the fact that if q is odd, then u and v
used in the enumeration are both odd, and if q is even, then u will be even and v
will be odd. We leave details to the reader. �

We will use these results when we discuss generators of Pq below, but first we
will find for which q > 1 the group Pq will have elements of finite order.

3.1. Torsion in Pq . We follow Eckert’s geometric argument [1984, p. 24] to un-
derstand the torsion of Pq .

Lemma 1. If q = 2 or q > 3, then Pq is torsion-free. P3 ∼= F3⊕Z/3Z, where F3

is a free abelian group.

Proof. Let us assume that q ≥ 2, and suppose the triple (a, b, c) is a solution of (2);
that is, we can identify point (a/c,

√
q · b/c) with eiα on the unit circle U. Then a

circle S1
r with radius r = α/(2π) is made to roll inside U in the counterclockwise

direction. The radius r is chosen this way so that the length of the circle S1
r equals

the length of the smaller arc of U between the points eiα and e0
= (1, 0). Let us

denote the point (1, 0) by P and assume that this point moves inside the unit disk
when S1

r rolls inside U. When 1= kr for some positive integer k, this point P traces
out a curve known as a hypocycloid. In this case the point P will mark off k− 1
distinct points on U and will return to its initial position (1, 0) so the hypocycloid
will have exactly k cusps. If P doesn’t return to (1, 0) after the first revolution
around the origin, it might come back to (1, 0) after, say, n such revolutions. In
that case n · 2π = m ·α for some m ∈ N. Thus, α is a rational multiple of π , or, to
be more precise,

α = π ·
2n
m
.

Due to Corollary 3.12 of [Niven 1956, Chapter 3, Section 5], in such a case the
only possible rational values of cos(α) are 0, ±1/2, ±1. Since cos(α) = a/c,
where a 6= 0, we see that Pq might have a torsion only if a/c=±1/2 or a/c=±1.
In the latter case we must have q · b2

= 0, which implies that the element [a, b, c]
is the identity of Pq . Suppose now a/c =±1/2. Then qb2

= 3a2 and if 3 6= q we
will have a prime t 6= 3 dividing q. We can assume without loss of generality that
gcd(a, b)= 1; hence we obtain t | a and therefore t2

| qb2. Since q is square-free,
we must have t | b2, which contradicts that gcd(a, b) = 1. Therefore if q = 2
or q > 3, Pq is torsion-free. Suppose now q = 3. Then we obtain a = ±b and
we can multiply [a, b, c] by −1, if needed, to conclude that [a, b, c] = [1, 1, 2] or
[a, b, c] = [1,−1, 2]. We have 〈[a, b, c]〉 ∼= Z/3Z in both these cases. This implies
that P3/(Z/3Z) is free abelian and hence P3 ∼= F3⊕Z/3Z. �
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Remark 3. There is a another way to obtain this lemma via a different approach to
the group Pq , q > 0. The authors are very thankful to Wladyslaw Narkiewicz who
explained this alternative viewpoint to us (compare also with [Baldisserri 1999]).
Consider an imaginary quadratic field Q(

√
−q) and the multiplicative subgroup of

nonzero elements whose norm is a square of a rational number. Let us denote this
subgroup by Aq . Obviously Q∗ ⊂Aq (Q∗ denotes the group of nonzero rational
numbers). It is easy to see that Pq ∼=Aq/Q

∗, and it follows from Theorem A of
[Schenkman 1964] that Aq is a direct product of cyclic groups. Hence the same
holds for Pq . If q = 1 or q = 3 the group Aq will have elements of finite order since
the field Q(

√
−q) has units different from ±1. These units will generate in Pq the

torsion factors Z/2Z or Z/3Z, when q = 1 or q = 3, respectively.

3.2. On generators of Pq when q ≤ 6. In this subsection we assume that 2≤ q ≤ 6
and will describe the generators of Pq similar to the way it was done in the
proposition on pages 25 and 26 of [Eckert 1984]. We will use Fq to denote the
free subgroup of Pq . As follows from Section 3.1 above, Fq = Pq for q 6= 3, and
P3 ∼= F3⊕ (Z/3Z).

The key point in Eckert’s description of the generators of the group of primitive
pythagorean triples is the fact that a prime p can be a hypotenuse in a pythagorean
triangle if and only if p ≡ 1 (mod 4). Our next lemma generalizes this fact to the
cases of primitive triples from Tq , with q ∈ {2, 3, 5, 6}.

Lemma 2. If (a, b, c) ∈ T2 is primitive and p is a prime divisor of c, then there
exist u, v ∈ Z such that p = u2

+ 2v2. If (a, b, c) ∈ T3 is primitive and p is a prime
divisor of c, then either p = 2 or there exist u, v ∈ Z such that p = u2

+ 3v2. If
(a, b, c) ∈ Tq is primitive where q = 5 or q = 6, and p is a prime divisor of c, then
there exist u, v ∈ Z such that p = u2

+ qv2 or 2p = u2
+ qv2.

Proof. Consider (a, b, c)∈ Tq . Since a2
+qb2

= c2 where q ∈ {2, 3, 5, 6}, it follows
from the generalized Diophantus chord method that there exist s, t ∈ Z such that
c= s2

+qt2 or 2c= s2
+qt2. Suppose c= pn1

1 · · · p
nk
k is the prime decomposition

of c.

Case 1: q = 2. We want to show that each prime pi dividing c can be written in
the form pi = u2

+ 2v2 for some u, v ∈ Z (note that if q is even, pi 6= 2). It is well
known that a prime p can be written in the form

p = u2
+ 2v2

⇐⇒ p = 8n+ 1 or p = 8n+ 3 for some integer n

(see [Stillwell 2003, Chapter 9] or [Cox 1989, Chapter 1]). Thus it’s enough to show
that if a prime p | c then p = 8n+ 1 or p = 8n+ 3. Since p | c, and c = s2

+ qt2

or 2c= s2
+qt2, we see that there exists m ∈ Z such that pm = s2

+2t2 and hence
−2t2

≡ s2 (mod p); that is, the Legendre symbol
(
−2t2

p

)
equals 1. Using basic
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properties of the Legendre symbol, this implies that
(
−2
p

)
= 1. But

(
−2
p

)
= 1 if and

only if p = 8n + 1 or p = 8n + 3 as follows from the supplements to quadratic
reciprocity law. This finishes the case with q = 2.

Case 2: Suppose now that q = 3. Then (1, 1, 2) ∈ T3 gives an example when c is
divisible by prime p = 2. Note also that prime p = 2 is of the form 2p = u2

+ 3v2.
Assuming from now on that prime p dividing c is odd, we want to show that there
exist u, v ∈ Z such that p = u2

+3v2, which is true if and only if there exists n ∈ Z

such that p = 3n+ 1 (again, see [Stillwell 2003] or [Cox 1989]). Hence, in our
case, it suffices to show that if p | c then there exists n ∈ Z such that p = 3n+ 1.
As in Case 1, there exists m ∈ Z such that pm = s2

+ 3t2 for some s, t ∈ Z.
Therefore, we have that the Legendre symbol

(
−3
p

)
= 1, which holds if and only if

p = 3n+ 1. One can prove this using the quadratic reciprocity law (e.g., [Stillwell
2003, Section 6.8]).

Case 3: Suppose now that q = 5. Note that in this case c must be odd. Indeed, if c
were even, x2

+ 5y2 would be divisible by 4, but on the other hand, since both of x
and y must be odd when q is odd and c is even, we see that x2

+ 5y2
6≡ 0 (mod 4).

Since p | c then again there exists m ∈ Z such that pm = s2
+5t2 for some s, t ∈ Z;

that is,
(
−5
p

)
= 1. It is true that for any integer n and odd prime p not dividing n

the Legendre symbol
(
−n
p

)
= 1 if and only if p is represented by a primitive form

ax2
+ bxy + cy2 of discriminant −4n such that a, b, and c are relatively prime

[Cox 1989, Corollary 2.6]. Following an algorithm in Section 2.A of [Cox 1989] to
show that every primitive quadratic form is equivalent to a reduced form one can
show that the only two primitive reduced forms of discriminant −4 · 5=−20 are
x2
+ 5y2 and 2x2

+ 2xy+ 3y2. Through a simple calculation it’s easy to see that a
prime p is of the form

p = 2x2
+ 2xy+ 3y2

⇐⇒ 2p = x2
+ 5y2.

This finishes the third case.

Case 4: Lastly, let’s consider the case when q = 6. Once again since p 6= 2 and p | c
then

(
−6
p

)
= 1. Using the same corollary used in Case 3, we see that p must be

represented by a primitive quadratic form of discriminant −4 · 6 = −24. Also,
following the same algorithm used in Case 3 to determine such primitive reduced
forms, we find that there are only two: x2

+ 6y2 and 2x2
+ 3y2. Through a simple

calculation it can be determined that a prime p is of the form

p = 2x2
+ 3y2

⇐⇒ 2p = x2
+ 6y2.

Thus, the lemma is proven. �
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Remark 4. One could write prime divisors from this lemma in a linear form if
needed. It is a famous problem of classical number theory which primes can be
expressed in the form x2

+ ny2. The reader will find a complete solution of this
problem in [Cox 1989]. For example, if p is prime, then for some n ∈ Z we have

p =


20n+ 1,
20n+ 3,
20n+ 7,
20n+ 9,

if and only if p = x2
+ 5y2 or p = 2x2

+ 2xy+ 3y2. We refer the reader for the
details to [Cox 1989, Chapter 1].

Now we are ready to describe all generators of Pq , where q ∈ {2, 3, 5, 6}. Our
proof is similar to the proof given by Eckert [1984], where he decomposes the
hypotenuse of a right triangle into the product of primes and after that peels off
one prime at a time, together with the corresponding sides of the right triangle. His
description of prime p ≡ 1 (mod 4) is equivalent to the statement that p can be
written in the form p = u2

+ v2, for some integers u and v, which is the case of
Fermat’s two square theorem. In the theorem below we also use quadratic forms
for the primes.

Theorem 2. Let us fix q ∈ {2, 3, 5, 6}. Then Pq is generated by the set of all
triples (a, b, p) ∈ Tq where a > 0, and p is prime such that there exist u, v ∈ Z with
p = u2

+ qv2, or 2p = u2
+ qv2.

Proof. Take arbitrary [r, s, d] ∈ Pq and let us assume that (r, s, d) ∈ Tq will be
the corresponding primitive triple with r > 0. Let d = pn1

1 · · · p
nk
k be the prime

decomposition of d . It is clear from what we’ve said above that d will be odd when
[r, s, d] ∈ Fq , and d will be even only if q = 3 and [r, s, d] /∈ F3. Our goal is to
show that

[r, s, d] =
k∑

i=1

ni · [ai , bi , pi ],

where
ai > 0, ni · [ai , bi , pi ] := [ai , bi , pi ] + · · · + [ai , bi , pi ]︸ ︷︷ ︸

ni times

,

and pi is either of the form u2
+ qv2 or of the form (u2

+ qv2)/2. We deduce
from Lemma 2 that each prime pi | d can be written in one of these two forms.
Hence, for all pi , there exist ai , bi ∈ Z such that a2

i +qb2
i = p2

i . Indeed, if we have
2p = u2

+ qv2, then
4p2
= (u2

− qv2)2+ 4q(uv)2
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and since u2
+ qv2 is even, u2

− qv2 will be even as well, and therefore we could
write α2

+ qβ2
= p2, where α = (u2

− qv2)/2 and β = uv. Thus [ai , bi , pi ] ∈ Pq .
Since Pq is a group, the equations

[r, s, d] =
{
[X1, Y1, D1] + [ak, bk, pk],

[X2, Y2, D2] + [−ak, bk, pk]

always have a solution with (X i , Yi , Di )∈Z×Z×N. The key observation now is that
only one of the triples (X i , Yi , Di ) will be equivalent to a primitive triple (x, y, d1),
with d1 < d . Indeed, we have [r, s, d] = [X, Y, D] ± [a, b, p] or

[X, Y, D] = [r, s, d] ± [−a, b, p] =
{
[−ra− qsb, rb− sa, dp],
[ra− qsb, rb+ sa, dp].

Since p | d, we have dp ≡ 0 (mod p2) and hence it is enough to show that either
ra+qsb≡ rb−sa≡ 0 (mod p2), or ra−qsb≡ rb+sa≡ 0 (mod p2) (see lemma
on page 24 of [Eckert 1984]). From the identity

(sa− rb)(sa+ rb)= s2a2
− r2b2

= s2(a2
+ qb2)− b2(r2

+ qs2)≡ 0 (mod p2),

we deduce that either p divides each of sa− rb and sa+ rb, or p2 divides exactly
one of these two terms. In the first case p | 2sa, which is impossible if p is odd,
since then either a2 > p2 or (r, s, d) won’t be primitive. If we assume p = 2,
then, as we explained in Lemma 2, q = 3 and therefore (a, b, p) = (1, 1, 2) so
(ra − qsb, rb + sa, dp) = (r − 3s, r + s, 2d). But r + s ≡ r − 3s (mod 4) and
if 4 | r + s we can write (ra − qsb, rb+ sa, 2d) = 4

(
(r − 3s)/4, (r + s)/4, d1

)
,

where d1 = d/2. If r + s ≡ 2 (mod 4), we will divide each element of the other
triple by 4.

Thus we can assume from now on that p is an odd prime and that either p2
|sa−rb

or p2
| sa+ rb. Let us assume without loss of generality that sa− rb = kp2 for

some k ∈ Z. Since the triple (−ra− qsb, rb− sa, dp) is a solution of (2), and the
last two elements are divisible by p2, it is obvious that the first element must be
divisible by p2 too, that is, that ra+ qsb = tp2. This implies that

[X, Y, D] = [−ra− qsb, rb− sa, dp] = [−t,−k, d1],

where d1 = d/p < d , which we wanted to show. The other case is solved similarly.
Note that only one of the two triples will have all three elements divisible by 4,
which means that only [a, b, p] or [−a, b, p] can be subtracted from the original
element [r, s, d] in such a way that the result will be in the required form.

Thus we can “peel off” the triple [ak, bk, pk] from the original one [r, s, d]
ending up with the element [x, y, d1], where now d1 < d . Note that we can always
assume that ak > 0 by using either [ak, bk, pk] or [−ak,−bk, pk]. Then simply
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keep peeling off until all prime divisors of d give the required presentation of the
element [r, s, d] as a linear combination of the generators [ai , bi , pi ]. �

Remark 5. Since these primes are the generators of Pq when q ∈ {2, 3, 5, 6}
and each prime (with exception p = 2 when q = 3) generates an infinite cyclic
subgroup, it is obvious that Pq contains an infinite number of elements. The
same holds for Pq when q ≥ 7. This can be shown through properties of Pell’s
equation c2

− qb2
= 1 where q is a square-free positive integer different from 1.

This equation can be rewritten as c2
= 12
+ qb2, which is in fact Equation (2) with

specific solutions (1, b, c). It is a classical fact of number theory that this equation
always has a nontrivial solution and, in result, has infinitely many solutions (see
[Weintraub 2008, Section 4.2] or [Stillwell 2003, Section 5.9]).

Note that it is not obvious that Pell’s equation has a nontrivial solution for
arbitrary q. For example, the smallest solution of the equation

12
+ 61b2

= c2 is b = 226,153,980, c = 1,766,319,049.

Let us observe that the equation a2
+61b2

= c2, where a is allowed to be any integer,
has many solutions with “smaller” integer triples. Three examples are [3, 16, 125],
[6, 7, 55], and [10, 9, 71].

3.3. On generators of Pq when q ≥ 7 and the triples (a, b, 2k). It is interesting
to see how the method of peeling off breaks down in specific cases of q for q ≥ 7.
Here are some examples of PAPTs (a, b, c) ∈ Tq , where c is divisible by a prime p
but there exist no nontrivial pair r , s ∈ Z such that (r, s, p) ∈ Tq .

The primitive triple (9, 1, 10)∈T19 is a solution, where 10 is divisible by primes 2
and 5; however, it is impossible to find nonzero a, b ∈ Z such that a2

+ 19b2
= 52.

The primitive triple (3, 1, 4) ∈ T7 is a solution, where 4 is divisible by prime 2,
however, it is impossible to solve a2

+ 7b2
= 22 in integers. In T15 the primitive

triple (1, 1, 4) is a problematic solution for the same reason.
Baldisserri [1999, Observation 2, p. 304] mentions that if a nontrivial and primi-

tive (a, b, c) solves (2), then c can be even only when q ≡ 3 (mod 4). Moreover,
if q ≡ 3 (mod 8), we must have c = 2 · odd, but if q ≡ 7 (mod 8) we can have c
divisible by any power of 2. Indeed, as we just mentioned above, the triple (3, 1, 4)
solves (2) with q = 7, and clearly can not be presented as a sum of two “smaller”
triples. Since P7 is free, we see that (3, 1, 4) must generate a copy of Z inside P7,
and one can easily check that we have

2·[3,1,4]=±[1,3,23
], 3·[3,1,4]=±[9,5,24

], 4·[3,1,4]=±[31,3,25
], ....

The same holds for the triple (1, 1, 4) ∈ T15 but somehow these two generators
of P7 and P15 are not mentioned in Theorem 2 of [Baldisserri 1999].
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Can we have more than one such generator for a fixed q? In other words, how
many nonintersecting Z-subgroups of Pq can exist, provided that each subgroup
is generated by a triple where c is a power of 2? The following theorem shows
that there can be only one such generator (for the definition of irreducible solution
we refer the reader to [Baldisserri 1999, p. 304], but basically it means that this
solution is a generator of the group of PAPTs).

Theorem 3. Fix q as above and assume that the triple (a, b, 2k) is an irreducible
solution of (2). If (x, y, 2r ) ∈ Tq and r ≥ k, then there exists n ∈ Z such that

[x, y, 2r
] = n · [a, b, 2k

].

Proof. Our idea of the proof is to show that given such a triple (x, y, 2r ) ∈ Tq

with r ≥ k, we can always peel off (i.e., add or subtract) one copy of (a, b, 2k)

so the resulting primitive triple will have the third coordinate less than or equal
to 2r−1. Thus we consider

[S, T, V ] := [x, y, 2r
] ± [a, b, 2k

] =

{
[xa− qyb, ay+ xb, 2r+k

],

[xa+ qyb, ay− xb, 2r+k
].

Since a, b, x and y are all odd, either ay+ xb or ay− xb must be divisible by 4.
Let’s assume that 4 | ay− xb and hence we can write ay− xb= 2d

· R, where d ≥ 2.
Clearly, it’s enough to prove that d ≥ k+ 1. We prove it by induction; that is, we
will show that if d ≤ k, then R must be even.

Since S = xa+ qyb we could write(
2d
· R
S

)
=

(
−b a
a qb

)
·

(
x
y

)
and hence

(
x
y

)
=

1
22k ·

(
qb −a
−a −b

)
·

(
2d
· R
S

)
,

which gives bS =−22k y− a2d R. Since (bS, bT, bV ) ∈ Tq , we can also write

(22k y+ a2d R)2+ qb2
· (2d R)2 = b2

· 22r+2k .

This last identity is equivalent to the following one (after using a2
+ qb2

= 22k and
dividing all terms by 22k):

22k y2
+ 2d+1ay R+ 22d R2

= b222r .

Furthermore, we can cancel 2d+1 as well, because 1< d ≤ k ≤ r , and then we will
obtain that

ay R = b222r−d−1
− 2d−1 R2

− 22k−d−1 y2
= even,

which finishes the proof since a and y are odd. �

Remark 6. Please note that if a primitive triple (a, b, 2 ·d)∈ Tq for q ≡ 7 (mod 8),
it is easy to show that d must be even (compare with Observation 2 of [Bald-
isserri 1999], where λ must be at least 2). When q ∈ {7, 15}, we obtain the



24 NIKOLAI A. KRYLOV AND LINDSAY M. KULZER

generators (3, 1, 4) and (1, 1, 4), respectively. However, if, for example q = 23,
the primitive solution (a, b, c) where c is the smallest power of 2 is (7, 3, 16)
but (11, 1, 12) also belongs to P23.
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Properties of generalized derangement graphs
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(Communicated by Ann Trenk)

A permutation on n elements is called a k-derangement (k ≤ n) if no k-element
subset is mapped to itself. One can form the k-derangement graph on the set of
all permutations on n elements by connecting two permutations σ and τ if στ−1

is a k-derangement. We characterize when such a graph is connected or Eulerian.
For n an odd prime power, we determine the independence, clique and chromatic
numbers of the 2-derangement graph.

1. Introduction

Permutations which leave no element fixed, known as derangements, were first
considered in [de Montmort 1708] and have been extensively studied since. A
derangement graph is a graph whose vertices are the elements of the symmetric
group Sn and whose edges connect two permutations that differ by a derangement.
Derangement graphs have been shown to be connected (for n> 3) and Hamiltonian,
and their independence number, clique number, and chromatic number have been
calculated [Renteln 2007].

Here we consider the generalization of derangements known as k-derangements,
which are those permutations in Sn that do not fix any k-element subset of the
set being permuted. A k-derangement graph is defined in an analogous manner
to a derangement graph. We examine some of the graph-theoretical properties of
k-derangement graphs.

2. Preliminaries

Let Sn be the group of permutations on the set {1, 2, . . . , n}. A permutation σ ∈ Sn

maps any k-element subsetof {1, . . . , n} to a k-element subset of {1, . . . , n}; in the
usual notation,

σ({a1, . . . , ak})= {σ(a1), . . . , σ (ak)}.

If {a1, . . . , ak} = {σ(a1), . . . , σ (ak)} (as sets, that is, without regard to order), we
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say that σ fixes the unordered k-tuple {a1, . . . , ak}. (“Unordered k-tuple” is another
name for a k-element set.)

If σ does not map any of the
(n

k

)
possible unordered k-tuples to itself, we say that

σ is a k-derangement. For example, with n = 4, the cyclic permutation σ = (1234)
is a 2-derangement, because (taking k = 2) we have

(1234)({1, 2})= {(1234)(1), (1234)(2)} = {2, 3},

(1234)({1, 3})= {(1234)(1), (1234)(3)} = {2, 4},

(1234)({1, 4})= {(1234)(1), (1234)(4)} = {2, 1} = {1, 2},

(1234)({2, 3})= {(1234)(2), (1234)(3)} = {3, 4},

(1234)({2, 4})= {(1234)(2), (1234)(4)} = {3, 1} = {1, 3},

(1234)({3, 4})= {(1234)(3), (1234)(4)} = {4, 1} = {1, 4}.

This extends the ordinary notion of a derangement, defined as a permutation σ ∈ Sn

such that σ(x) 6= x for all x ∈ {1, . . . , n}.
The set of k-derangements in Sn is denoted by Dk,n , and its cardinality |Dk,n|—

the number of k-derangements in Sn — is denoted by Dk(n). As we have seen,
(1234) is in D2,4. Specifically,

D2,4 =
{
(1234), (1243), (1324), (1342), (1423), (1432), (123)(4), (124)(3),

(132)(4), (134)(2), (142)(3), (143)(2), (234)(1), (243)(1)
}
,

and thus D2(4) = 14. The sequence D2(n) appears as A137482 in the On-Line
Encyclopedia of Integer Sequences; see [Henshaw 2008]. The number D1(n) is
also simply called the derangement number.

The cycle structure of a permutation σ , denoted by Cσ , is the multiset of the
lengths of the cycles in its cycle decomposition (e.g., C(12)(3)(45) = {2, 2, 1}). Note
that the cycle structure of σ ∈ Sn is a partition of n. Given a partition r of n, let Pr

be the set of all permutations in Sn whose cycle structure is r . For example (as usual,
excluding singletons in our notation) P{2,1,1} = {(12), (13), (14), (23), (24), (34)}.

We first note that if the cycle structure of a permutation σ contains a multiset
which partitions k, then σ is not a k-derangement. For example, (12)(34) is a
3-derangement in S4, but (12)(3)(4) is not, because it fixes the set {1, 2, 3}, for
example. And we see that {2, 1} ⊆ C(12)(3)(4) = {2, 1, 1} is a partition of 3. Thus
we observe that the cycle structure of a permutation determines whether or not it is
a k-derangement, and we have the following.

Proposition 1. A permutation σ ∈ Sn is a k-derangement if and only if the cycle
decomposition of σ does not contain a set of cycles whose lengths partition k.

Proof. If {q, r, . . . , s} is a partition of k, and (a1 · · · aq)(b1 · · · br ) · · · (c1 · · · cs) are
cycles of σ , then, for x={a1, . . . , aq , b1, . . . , br , c1, . . . , cs}, σ(x)= x . Conversely,
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e

(132) (123)

(12)(3) (13)(2)

(1)(23)

Figure 1. The 2-derangement graph on 6 vertices, 02,3.

if σ has no set of cycles whose lengths partition k, then, given any k-element subset
x of {1, . . . , n}, there is a cycle in σ which contains at least one element in x and
contains some element not in x . Hence σ sends an element in x to an element not
in x and so σ(x) 6= x . �

Let CDk,n be the set of cycle structures corresponding to k-derangements in Sn;
for example, CD2,4 = {{4}, {3, 1}}. Since a cycle structure Cσ is in CDk,n if and
only if it is in CDn−k,n , we have Dk,n = Dn−k,n .

Let G be a group, and let S be a subset of G that is closed under taking inverses.
The Cayley graph 0(G, S) is the graph whose vertices are the elements of G
such that an edge connects two vertices u, v ∈ G if su = v for some s ∈ S. A
k-derangement graph is a Cayley graph defined by 0k,n := 0(Sn,Dk,n). (Note
that Dk,n is symmetric, as the inverse of a k-derangement is a k-derangement, and
thus satisfies the requirements for a Cayley graph.) It is worth noting that 0k,n is,
by construction, Dk(n)-regular, and that, since Dk,n = D(n−k),n , 0k,n = 0(n−k),n .
Figure 1 illustrates the 2-derangement graph on 6 vertices, 02,3.

It is possible to consider k-derangements in Sn for any positive k and n. However,
if k = n, there will be no k-derangements in Sn , since every partition in Sn will
have a cycle structure such that the cycle lengths partition k. As such, 0k,n will be
the empty (edgeless) graph on n vertices. If k > n, then every permutation in Sn

is a k-derangement vacuously, and thus 0k,n will be the complete graph on |Sn|

vertices. As neither of these cases is particularly interesting, henceforth we will
only consider k-derangements where k < n.

3. Properties of derangement graphs

Figure 1 shows that 02,3 is not a connected graph, and, since 02,3 = 01,3, we see
that 0k,3 is disconnected for all k < n. But this is an exception rather than the rule,
as the following theorem demonstrates.
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Theorem 2. For n > 3 and k < n, 0k,n is connected.

Proof. Every permutation in Sn can be written as the product of adjacent transposi-
tions (h (h+1)). These, in turn, can be expressed as products of two k-derangements,
so long as n > 3, as we will demonstrate. As a result, for n > 3, the elements of
Dk,n generate Sn , which means that every vertex of 0k,n can be reached by a path
from the identity.

We show that the permutation (1 2) can be written as the product of two k-
derangements and then note that, since it is the form and not the individual labels
that are important, any adjacent transposition can be written as the product of two
k-derangements. We consider two cases: k = 1 and k ≥ 2.

Case 1: If k = 1, then (1 2)= (1 2 · · · n)2 · (n (n−1) · · · 1)2(1 2). We claim that
(1 2 · · · n)2 and (n (n−1) · · · 1)2(1 2) are each 1-derangements in Sn for all n > 3.
If n is even, then (1 2 · · · n)2 = (1 3 · · · (n−3) (n−1))(2 4 · · · (n−2) n), which
is a 1-derangement in Sn for all n. Additionally,

(n (n−1) · · · 1)2(1 2)= (1 n (n−2) (n−4) · · · 2 (n−1) (n−3) · · · 3),

which is also a 1-derangement in Sn for any n.
On the other hand, if n is odd, then

(1 2 · · · n)2 = (1 3 · · · (n−2) n 2 4 · · · (n−3) (n−1)),

which is a 1-derangement in Sn for all n. And

(n (n−1) · · · 1)2(1 2)= (n (n−2) (n−4) · · · 3 1 (n−1) (n−3) · · · 4 2)(1 2)

= (1 n (n−2) (n−4) · · · 3)(2 (n−1) (n−3) · · · 4),

which is a 1-derangement in Sn so long as n > 3. (If n = 3, (312)(12)= (13)(2),
which is not a 1-derangement.)

Thus, for n > 3, we have shown that (1 2) can be written as the product of two
1-derangements, and, by extension, every adjacent transposition can be written as
the product of two 1-derangements.

Case 2: For k ≥ 2, (1 2)= (1 2 · · · n)−1(1 3 4 · · · n). We know (1 2 · · · n)−1 is a
k-derangement for all k since the inverse of a k-derangement is a k-derangement.
And, by the cycle structure, we see that (1 3 4 · · · n) = (1 3 4 · · · n)(2) is a k-
derangement for all k, except k = 1 and k = (n−1) (however, since 01,n = 0(n−1),n ,
Case 1 addresses (n−1)-derangements as well as 1-derangements).

So we have shown that, for k ≥ 2, (1 2) can be written as the product of two
k-derangements, and again, by extension, we can write any adjacent transposition
as the product of two k-derangements. Thus every vertex is connected by a path to
the identity, and 0k,n is connected. �
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It is worth noting that Theorem 2 holds for n = 2 as well. Since we are only
interested in k-derangements in Sn such that k < n, when n = 2, k must equal 1,
and so 01,2 is the connected graph on two vertices.

Next, we give a characterization in terms of n and k for when a derangement
graph is Eulerian. We will require the following result.

Lemma 3. If a cycle structure includes a cycle of length greater than 2, then there
are an even number of permutations with that cycle structure.

Proof. Consider Pr , the set of permutations with a given cycle structure, r . We can
pair each σ ∈ Pr with its inverse σ−1

∈ Pr , and, so long as σ 6= σ−1 for any σ ∈ Pr ,
|Pr | will be even. Suppose there exists a σ ∈ Pr such that σ = σ−1. Then σ 2

= e,
and so the order of σ is at most 2. The order of a permutation is the least common
multiple of the orders of the elements of its cycle structure, so σ must not include a
cycle of length greater than 2. This is a contradiction; thus |Pr | is even. �

Theorem 4. For n > 3 and k < n, 0k,n is Eulerian if and only if k is even or k
and n are both odd.

Proof. A graph is Eulerian if and only if it is connected and each vertex has an
even degree. In light of Theorem 2 and the previously noted fact that 0k,n is Dk(n)-
regular, in order to ascertain if 0k,n is Eulerian, we must determine whether Dk(n)
is even or odd.

If k is even, we claim that Dk(n) is the sum of even numbers. Any cycle
structure composed entirely of 2- or 1-cycles will partition an even k, and thus
any permutation which is in Dk,n for an even k will contain a cycle of length 3 or
greater in its cycle decomposition. Now, Dk,n = Pr1∪̇Pr2∪̇ · · · ∪̇Prm (disjoint union)
such that no ri partitions k, and, by Lemma 3, |Pri | is even for all i ∈ {1, . . . ,m}.
Thus, when k is even, Dk(n) is even.

If k and n are both odd, again we see that every permutation in Dk,n will contain
a cycle of length 3 or greater in its cycle decomposition, since an odd k can be
partitioned by a set of cycles of lengths 1 or 2 if there is at least one 1-cycle.
Furthermore, since n is odd, there are no permutations whose cycle structure is
composed only of length-2 cycles. Thus, Dk(n) is even.

Finally, we show that, if k is odd and n is even, then 0k,n is not Eulerian. In
this case, P{2,2,...,2} is in CDk,n . By choosing pairs of elements for the cycles and
dividing by the number of ways to order the cycles, we see that the number of
permutations in P{2,2,...,2} is given by(n

2

)(n−2
2

)
· · ·

(2
2

)( n
2

)
!

=
n(n−1)(n−2) · · · (3)(2)(1)(

2 · n
2

)(
2 ·

(n
2 − 1

))
· · · (6)(4)(2)

=
n(n−1)(n−2) · · · (3)(2)(1)

n(n−2) · · · (6)(4)(2)
= (n−1)(n−3) · · · (5)(3)(1).
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Since n is even, the product (n−1)(n−3) · · · (5)(3)(1) is odd. Every other
k-derangement in Sn will contain a cycle with length greater than 2, since any
combination of 1-cycles or 1- and 2-cycles will partition k. So Dk(n) is the sum of
one odd number and even numbers, and so is odd. �

4. Chromatic, independence and clique numbers for k = 2
and n an odd prime power

For the majority of this section, we will think of permutations in terms of the result
of their application to the ordering {1, 2, 3, . . . , n}. Thus, {2, 3, 1, 4, 5} represents
the permutation which has moved 2 to the first position, 3 to the second, 1 to the
third, and left 4 and 5 fixed; that is, the permutation (132)(4)(5) in cycle notation,
or the inverse of the permutation

(12345
23145

)
in two line notation.

We note that in order for vu−1 (or, equivalently, v−1u) to be a k-derangement,
it is necessary and sufficient that no unordered k-tuple of elements be sent to the
same unordered k-tuple of positions by both u and v. For example, the permu-
tations u = {2, 3, 1, 4, 5} and v = {4, 1, 3, 5, 2} both send the pair {1, 3} to the
second and third positions. Thus (vu−1)({2, 3}) = {2, 3}, and so vu−1 is not a
2-derangement and there is no edge between u and v in the 2-derangement graph.
More formally, suppose u and v both send the k-tuple M ′ = {a′1, a′2, . . . , a′k} to
positions M = {a1, a2, . . . , ak}. Then, (vu−1)(M) = v(M ′) = M . Thus, vu−1 is
not a k-derangement.

On the other hand, if u and v send no k-tuple to the same positions we claim vu−1

is a k-derangement. Consider an arbitrary k-tuple, M = {a1, a2, . . . , ak}, and
suppose u maps the k-tuple M ′={a′1, a′2, . . . , a′k} to the positions given in M . Then
(vu−1)(M)= v(M ′) 6= M since v cannot send the k-tuple M ′ to the same positions
as u does. Thus, vu−1 is a k-derangement.

In Theorem 6, we find the clique number of the 2-derangement graph, ω(02,n),
for n an odd prime power, by constructing a clique of maximal size. Before
establishing this clique number, we note an upper bound on the clique number of a
general k-derangement graph.

Lemma 5. For k < n, ω(0k,n)≤
(n

k

)
.

Proof. The clique number of the k-derangement graph, ω(0k,n), cannot be greater
than

(n
k

)
, since there are only

(n
k

)
subsets of size k and hence at most

(n
k

)
different

unordered k-tuples of positions for an arbitrary k-tuple of elements to be sent under
a permutation. �

Theorem 6. If n is an odd prime power, then ω(02,n)=
(n

2

)
.

Proof. We will explicitly construct a clique with
(n

2

)
elements. Let n = pr , with p

a prime greater than 2, and let Fpr denote the field with pr elements. Rather than
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letting Sn act on {1, . . . , n}, we will let it act on Fpr and construct 02,n accordingly.
Let v = (x1, . . . , xn) be an ordered n-tuple whose entries are the elements of Fpr in
some order. Given any function φ :Fpr→Fpr , we define φ(v)= (φ(x1), . . . , φ(xn)).
Partition the nonzero elements of Fpr by pairing each element with its (additive)
inverse, and let T be a set obtained by choosing exactly one element from each
pair, giving |T | = (pr

− 1)/2.
Define fs,α(x)= sx +α, and consider the set X = { fs,α(v) | s ∈ T and α ∈ Fpr }.

Since s 6= 0, fs,α is a bijection and fs,α(v) is a permutation of the elements of Fpr .
We claim that X is a clique in 02,n . Suppose not; that is, suppose there are s, t ∈ T
and α, β ∈ Fpr , (s, α) 6= (t, β), such that fs,α(v) is not a 2-derangement of fs,β(v).
In that case there exist x , y ∈ Fpr , x 6= y, such that either fs,α(x) = ft,β(x) and
fs,α(y) = ft,β(y) or fs,α(x) = ft,β(y) and fs,α(y) = ft,β(x). In the first case,
subtracting the two equations and rewriting yields (s− t)(x− y)= 0. If s = t , then
α=β, giving a contradiction. If s 6= t , then x = y and again we have a contradiction.
In the second case, subtracting and rewriting yields (s+ t)(x − y)= 0 and, since
s+ t 6= 0 for s, t ∈ T , x = y and this also give a contradiction. Thus, X is a clique
of size pr (pr

− 1)/2=
(n

2

)
. �

The next example illustrates the construction when n = 7.

Example 7. We build a clique of size
(7

2

)
in the derangement graph 02,7 consisting

of 7−1
2 blocks, each of which contains 7 permutations. We let v= (1, 2, 3, 4, 5, 6, 7)

(writing 7 instead of 0) and take T = {1, 4, 5}. Then

f1,0(v)= (1, 2, 3, 4, 5, 6, 7), f4,0(v)= (4, 1, 5, 2, 6, 3, 7),

f5,0(v)= (5, 3, 1, 6, 4, 2, 7).

Increasing α from 0 cyclically permutes the 7-tuples. Block 1 consists of the ar-
rangements { f1,α(v) | α ∈ F7}, that is, the arrangement (1, 2, 3, 4, 5, 6, 7) and the re-
maining 6 rotations of this arrangement (e.g., (2, 3, 4, 5, 6, 7, 1), (3, 4, 5, 6, 7, 1, 2),
etc.). Block 2 consists of the arrangement f4,0(v) along with all of its rotations.
Finally, block 3 consists of f5,0(v) and its rotations. To see that these permutations
form a clique, consider, for example, the pair {1, 2}. These elements are one position
apart in block 1, two positions apart in block 2 and three positions apart in block 3
(counting the shortest distance between them either forwards or backwards). So
the pair {1, 2} cannot occupy the same positions in two permutations which appear
in different blocks. Furthermore, within a block, the rotations insure that the pair
never occupies the same positions.

Remark 8. Cliques achieving the upper bound of Lemma 5 are known as sharply
k-homogeneous sets of permutations. A corollary in [Nomura 1985] shows that,
for 2k ≤ n, the existence of such a k-homogeneous set implies n+ 1≡ 0 mod k.
Thus Theorem 6 cannot be extended to even n, and we have the following.
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Corollary 9. For n even and n ≥ 4, ω(02,n) <
(n

2

)
.

A computer search confirms that ω(02,4)= 5<
(4

2

)
.

Next we turn to the independence number α(0k,n) and the chromatic num-
ber χ(0k,n) of the k-derangement graph. We will require the following lemma
which has been adapted from Frankl and Deza’s lemma [1977] and applied to
k-tuples of elements.

Lemma 10. For k < n, α(0k,n)ω(0k,n)≤ n!.

Proof. Let P be a set of permutations in Sn , every pair of which has at least one
unordered k-tuple of elements in the same unordered k-tuple of positions. That
is, for any u, v ∈ P, there exists a set M = {a1, . . . , ak} ⊆ {1, . . . , n} such that
(v−1u)(M)=M . Note that P is an independent set in the k-derangement graph. Let
Q be a set of permutations in Sn such that each pair of permutations has no k-tuple of
elements in the same positions; that is, Q is a clique in the k-derangement graph. We
claim that products of the form P Q with P ∈P and Q ∈Q give distinct permutations
of n. Suppose, for the sake of contradiction, that P1 Q1 = P2 Q2 for P1, P2 ∈P and
Q1, Q2 ∈ Q with P1 6= P2 and Q1 6= Q2. This implies that P−1

1 P2 = Q1 Q−1
2 . Now,

since P1 and P2 are in P, there is a k-tuple of elements M = {a1, . . . , ak} such that
(P−1

1 P2)(M)= M . However, this implies (Q1 Q−1
2 )(M)= M . But we know that

the permutations in Q agree on no k-tuples, and so we must have Q1 = Q2 and,
hence, P1 = P2. Finally, since each product gives a unique permutation of n, there
can be no more than n! such products. �

Theorem 11. For k < n, α(0k,n)≥ k!(n− k)! and χ(0k,n)≤
(n

k

)
.

Proof. Consider H , the set of all permutations in Sn that send {1, 2, . . . , k} to itself
(and hence {k+1, . . . , n} to itself). It is clear that H is a subgroup of Sn isomorphic
to Sk × Sn−k and that |H | = k!(n− k)!. Since the unordered k-tuple {1, 2, . . . , k}
is fixed, none of these are k-derangements of each other, so H is an independent
set and α(0k,n)≥ k!(n− k)!.

The cosets of H partition Sn , and each forms an independent set, since τ1, τ2∈σH
implies that τ−1

1 τ2 ∈ H is not a k-derangement and hence the vertices associated
to τ1 and τ2 are not connected by an edge. Giving each of the n!

k!(n−k)! =
(n

k

)
cosets

a different color results in a valid coloring of 0k,n , so χ(0k,n)≤
(n

k

)
. �

Corollary 12. For n an odd prime power, α(02,n)= 2(n− 2)! and χ(02,n)=
(n

2

)
.

Proof. By Lemma 10 and Theorem 6, we have
(n

2

)
·α(02,n)≤ n!. Thus

α(02,n)≤ n! ·
2(n−2)!

n!
= 2(n−2)!

and Theorem 11 gives the reverse inequality. For any graph G, χ(G)≥ ω(G), so,
by Theorem 6, χ(02,n)≥

(n
2

)
and again Theorem 11 gives the reverse inequality. �
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5. Further questions

In the last section, we showed that the clique number of the 2-derangement graph
is equal to

(n
2

)
when n is an odd prime power and strictly less than that if n is even

(and at least 4). The clique construction of Theorem 6 fails to work when n is odd
and not a prime power since there is no field of that cardinality. We believe that
in this case the clique number is strictly smaller than

(n
2

)
. For arbitrary k, we have

some faint hope that the bounds given in Theorem 11 for α(0k,n) and χ(0k,n) are
actually equalities, but the situation for ω(0k,n) remains unclear.

In another direction, the numerical evidence is overwhelming that the derange-
ment graphs are Hamiltonian. We hope to explore these and other questions in
future work.
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Rook polynomials in three and higher dimensions
Feryal Alayont and Nicholas Krzywonos

(Communicated by Jim Haglund)

The rook polynomial of a board counts the number of ways of placing nonat-
tacking rooks on the board. In this paper, we describe how the properties of the
two-dimensional rook polynomials generalize to the rook polynomials of “boards”
in three and higher dimensions. We also define families of three-dimensional
boards which generalize the two-dimensional triangle boards and the boards
representing the problème des rencontres. The rook coefficients of these three-
dimensional boards are shown to be related to famous number sequences such as
the central factorial numbers, the number of Latin rectangles and the Genocchi
numbers.

Introduction

The theory of rook polynomials provides a way of counting permutations with
restricted positions. This theory was developed in [Kaplansky and Riordan 1946]
and has been researched and studied quite extensively since then. Two rather com-
prehensive resources on it are [Riordan 1958] and [Stanley 1997]. In this paper, we
generalize these properties and theorems of the two-dimensional rook polynomials
to higher dimensions, which was partially done for the three-dimensional case in
[Zindle 2007]. A Maple program to calculate the rook numbers of a given three-
dimensional board using this generalization is included in the Appendix. In Section 1
we review the two-dimensional rook polynomials and their properties, including a
discussion of famous families of boards, namely, the boards corresponding to the
problème des rencontres, and the triangle boards. The results provided in this review
most of the time form the basis of the proofs for the three- and higher-dimensional
cases. In Section 2 we discuss the generalization of the rook polynomials to
three and higher dimensions, starting with a discussion of the three-dimensional
boards and how rooks attack in three dimensions. We provide the generalizations
of the properties and theorems of two-dimensional rook polynomials to three
and higher dimensions as well as the three-dimensional counterparts of the boards

MSC2010: primary 05A05, 05A10; secondary 11B73.
Keywords: rook polynomial, three dimensions, central factorial numbers, Genocchi numbers,

problème des rencontres.
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corresponding to the problème des rencontres and the triangle boards. In Section 2.3
we introduce another family of three-dimensional boards related to the triangle
boards. This family is named Genocchi boards due to its connection to the Genocchi
numbers.

1. Overview of the rook theory in two dimensions

Given a natural number m, let [m] denote the set {1, 2, . . . , m}. In two dimensions,
we define a board B with m rows and n columns to be a subset of [m]×[n]. We call
such a board an m×n board if m and n are the smallest such natural numbers. Each
of the elements in the board is referred to as a cell of the board. The set [m]× [n]
is called the full m× n board. An example of how we visualize a board is this:

Numbering the rows from top to bottom and columns from left to right, the above
picture corresponds to the 2×3 board B = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 3)}. We
sometimes highlight the cells missing from the board by shading them in gray.

The rook polynomial RB(x)= r0(B)+r1(B)x+· · ·+rk(B)xk
+· · · of a board B

represents the number of ways that one can place various numbers of nonattacking
rooks on B; i.e., no two rooks can lie in the same column or row. More specifically,
rk(B) is equal to the number of ways of placing k nonattacking rooks on B. For
any board, r0(B)= 1 and r1(B) is equal to the number of cells in B. For the above
example, r2(B)= 4 as there are four different ways to place 2 nonattacking rooks
on the board. It is not possible to place 3 or more rooks on this board. Hence the
rook polynomial of this board is RB(x)= 1+ 5x + 4x2. In general, the number of
nonattacking rooks placed on an m× n board cannot exceed n or m, and hence the
rook polynomial, as indicated by its name, is a polynomial of degree less than or
equal to min{m, n}. Note that the rook polynomial of a board is invariant under
permuting the rows and columns of the board.

Theorem. The number of ways of placing k nonattacking rooks, with 0 ≤ k ≤
min{m, n}, on the full m× n board is equal to

(m
k

)(n
k

)
k!.

Proof. First choose k of the m rows and k of the n columns on which the rooks will
be placed. This can be done in

(m
k

)(n
k

)
ways. Once we have selected the rows and

columns, we place a rook in each column and row. For the first row, there are k
columns to choose from. Once the first rook is placed, for the second row, there
are k − 1 choices left. Continuing in this way, we find that there are k! ways to
place the k rooks on the chosen rows and columns. Hence we have

(m
k

)(n
k

)
k! ways

to place k nonattacking rooks on a full m× n board. �



ROOK POLYNOMIALS IN THREE AND HIGHER DIMENSIONS 37

We define two boards to be disjoint if the boards do not share any rows or
columns. If a board is composed of two disjoint subboards, the rook polynomial of
the board can be calculated in terms of the rook polynomials of the subboards.

Theorem (disjoint board decomposition). Let A and B be boards that share no
rows or columns. Then the rook polynomial of the board A∪ B consisting of the
union of the cells in A and B is RA∪B(x)= rA(x)× rB(x).

Proof. Let RA(x)=
∑
∞

k=0 rk(A)xk and RB(x)=
∑
∞

k=0 rk(B)xk be the rook poly-
nomials of A and B. Consider the number of ways to place k rooks on A ∪ B.
We can place k rooks on A and 0 rooks on B, in rk(A)r0(B) ways, or place k− 1
rooks on A and 1 rook on B, in rk−1(A)r1(B) ways, and so on. Hence, the number
of ways to place k rooks on A∪ B is

∑k
i=0 rk−i (A)ri (B), which is the coefficient

of xk in rA(x)× rB(x). Therefore RA∪B(x)= RA(x)× RB(x). �

The rook polynomial of a board which can be decomposed into two disjoint
subboards, possibly after permuting rows and/or columns, can thus be calculated
efficiently via this theorem.

Similarly, cell decomposition is another method of expressing the rook poly-
nomial of a board in terms of smaller boards. Consider the board B shown below.

This board cannot be decomposed into two disjoint boards even if we permute the
rows and columns. The cell decomposition method breaks the rook placements
down into cases: when there is a rook in a specific position, say cell (2, 3), and
when there is no rook in that position. If there is a rook on cell (2, 3), we cannot
have another rook in row two or column three. By deleting row two and column
three we create a new board B ′ on which the rest of the rooks can be placed. For
the case that no rook is placed on (2, 3), we create a board B ′′ by deleting the
cell (2, 3).

B ′ B ′′

In order to find rk(B), the number of ways of placing k rooks on B, we
add rk−1(B ′) and rk(B ′′) using the two cases. In terms of the rook polynomial, this
implies that RB(x) = x RB ′(x)+ RB ′′(x). For this specific example, the disjoint
board decomposition can be used to compute the rook polynomials of B ′ and B ′′,
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making them much easier to compute than that of the board B.
The same idea of considering cases in regards to a specific cell as described

above proves the more general cell decomposition.

Theorem (cell decomposition). Let B be a board, B ′ be the board obtained by
removing the row and column corresponding to a cell from B, and B ′′ be the board
obtained by deleting the same cell from B. Then RB(x)= x RB ′(x)+ RB ′′(x).

Another property of rook polynomials relates the rook polynomial of a board to
that of the board consisting of the missing cells. Given an m×n board B, we define
the complement of B, denoted by B, to consist of all cells missing from B so that the
disjoint union of B and B is the full m×n board. In other words B = [m]× [n]\B.
Sometimes we clearly indicate with respect to which board the complement is taken
by saying that the complement is calculated inside [m]× [n].

Theorem (complementary board theorem). Let B be the complement of B inside
[m]× [n] and RB(x)=

∑
ri (B)x i the rook polynomial of B. Then the number of

ways to place k nonattacking rooks on B is

rk(B)=

k∑
i=0

(−1)i
(

m− i
k− i

)(
n− i
k− i

)
(k− i)! ri (B), (1)

taking ri to be 0 for i greater than the degree of RB(x).

Proof. In order to find the number of ways to place k nonattacking rooks on B,
we consider all the placements of k nonattacking rooks on the full m × n board
and remove those where one or more rooks are placed on B using the inclusion-
exclusion principle. We temporarily number the k rooks in our counting process,
which means we will be counting k! rk(B). The total number of ways to place k
numbered rooks on a full m× n board is

(m
k

)(n
k

)
k!2, the additional k! factor coming

from the numbering of the rooks. Let Ai denote the set of placements of the rooks
where the i-th rook is on the board B. We have to remove these placements from
the set of all placements. There are r1(B) ways to place the i-th rook on B and(m−1

k−1

)(n−1
k−1

)
(k−1)!2 ways to place the rest in the other rows and columns. Hence

there are r1(B)
(m−1

k−1

)(n−1
k−1

)
(k−1)!2 elements in Ai and there are k Ai ’s. Similarly,

there are r2(B)2!
(m−2

k−2

)(n−2
k−2

)
(k−2)!2 elements in Ai∩A j for any i 6= j and there are(k

2

)
of these double intersections. There are r3(B)3!

(m−3
k−3

)(n−3
k−3

)
(k−3)!2 elements in(k

3

)
triple intersections Ai∩A j∩A`, and so on. Hence, using the inclusion-exclusion

principle, the number of ways to place k numbered rooks on B is

k∑
i=0

(−1)i
(

k
i

)
i !
(

m− i
k− i

)(
n− i
k− i

)
(k−i)!2ri (B).

Dividing this by k! we arrive at (1). �
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1.1. Problème des rencontres. We now consider the family of boards which cor-
respond to the famous problème des rencontres, or equivalently to derangements.
An example of such a problem is as follows. Suppose that five people enter a
restaurant, each with his or her own hat. As they leave, they each take a hat, but not
necessarily their own. We want to find the number of ways that everyone can leave
the restaurant without their own hats, ignoring the order in which they leave. The
boards which correspond to the problème des rencontres are m×m boards with the
cells along the main diagonal removed. For the hat problem, m = 5 and we obtain
the following board B, where we have highlighted the missing cells with gray.

The number of ways to place 5 rooks on B corresponds with the number of
permutations of five elements where no element is in its original position. Such a
permutation is equivalent to matching each owner with someone else’s hat.

Instead of B, consider its complement. The complement B consists of 5 disjoint
boards, each of which is a single cell. The rook polynomial of each cell is 1+ x .
Hence, using the disjoint board decomposition, we find that the rook polynomial
of B is

(1+ x)5
= 1+ 5x + 10x2

+ 10x3
+ 5x4

+ x5.

Now, using the theorem on rook polynomials of complementary boards, we find
that the number of ways to place 5 rooks on B is equal to(

5
5

)(
5
5

)
5! · 1−

(
4
4

)(
4
4

)
4! · 5+

(
3
3

)(
3
3

)
3! · 10−

(
2
2

)(
2
2

)
2! · 10

+

(
1
1

)(
1
1

)
1! · 5−

(
0
0

)(
0
0

)
0! · 1= 44.

In general, rk of the rook polynomial of an m×m problème des rencontres board is

k∑
i=0

(−1)i
(

m− i
k− i

)2

(k− i)!
(

m
i

)
.

1.2. Triangle boards. We next consider the family of two-dimensional boards
called the triangle boards. A triangle board of size m consists of the cells of the
form (i, j) where j ≤ i and 1≤ i ≤m. The triangle board of size 5 is shown at the
top of the next page.
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The rook numbers of this family correspond with the Stirling numbers of the
second kind. Recall that the Stirling numbers of the second kind, S(n, k), count
the number of ways to partition a set of size n into k nonempty sets, and can be
defined recursively by

S(n, k)= S(n− 1, k− 1)+ kS(n− 1, k)

with S(n, 1)= 1 and S(n, n)= 1.

Theorem. The number of ways to place k nonattacking rooks on a triangle board
of size m is equal to S(m+ 1, m+ 1− k), where 0≤ k ≤ m.

Proof. We will prove this by induction on m and using the recursive definition of
the Stirling numbers.

The rook polynomial of the triangle board of size 1 is equal to 1+ x , which
corresponds to S(2, 1)= 1 and S(2, 2)= 1.

Assume now the theorem is true for some m, i.e., that the number of ways
of placing k rooks on a size m triangle board is equal to S(m + 1, m + 1− k)

for 0 ≤ k ≤ m. We will show that the number of ways of placing k rooks on an
(m+1)×(m+1) board is equal to S((m+1)+1, (m+1)+1−k)= S(m+2, m+2−k)

for 0≤ k ≤ m+ 1.
For k = m + 1, there is only one way to place k nonattacking rooks on a size

m + 1 triangle board: by placing all rooks on the diagonal. This corresponds to
S(m+ 2, m+ 2− k)= S(m+ 2, 1)= 1. For k = 0, placing k rooks on the board
can be done in only one way, which corresponds to S(m+2, m+2)= 1. Therefore
the rook numbers and the Stirling numbers agree for k = 0 and k = m+ 1.

We now show that these numbers agree for 0 < k < m + 1. When finding the
number of ways to place k rooks on the size m + 1 triangle board, we consider
two cases. The first is when all k rooks are placed on the top m rows, forming
a size m triangle board. There are S(m + 1, m + 1 − k) ways to do so by our
inductive hypothesis. The second case is when one rook lies in the bottom row.
In this case, k− 1 rooks must be placed on the top m rows, which can be done in
S(m+1, m+1− (k−1)) ways. We then have m+1− (k−1) cells available in the
last row to place our last rook, resulting in (m+ 2− k)S(m+ 1, m+ 2− k) ways
to place k rooks on the board with one rook in the last row. So there are a total of

S(m+ 1, m+ 1− k)+ (m+ 2− k)S(m+ 1, m+ 2− k)
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ways to place k rooks on a size m+ 1 triangle board. Using the recursive definition
of the Stirling numbers, this sum corresponds to S(m+ 2, m+ 2− k).

Therefore, by induction, the k-th rook number for any size m triangle board is
S(m+ 1, m+ 1− k). �

2. Rook polynomials in three and higher dimensions

The theory of rook polynomials in two dimensions as described above can be
generalized to three and higher dimensions. The theory for three dimensions is
introduced in [Zindle 2007] and the theory we describe in this paper is a more
generalized version of Zindle’s theory.

In three dimensions, our boards will be subsets of [m]× [n]× [p]. We refer to
such a board as an m× n× p board. More generally, a board in d dimensions is a
subset of [m1]× [m2]× · · · × [md ]. A full board is again a board that is the whole
set [m1] × [m2] × · · · × [md ]. In three and higher dimensions, a cell again refers
to an element of the board. In particular, in three dimensions, a cell is a 3-tuple
(i, j, k) with 1≤ i ≤ m, 1≤ j ≤ n, 1≤ k ≤ p.

In two dimensions, rows correspond to cells with the same first coordinate, and
columns correspond to cells with the same second coordinate. We extend this idea
to three dimensions to introduce new groupings of cells. All cells with the same
third coordinate are said to lie in the same layer and we number the layers from
top to bottom. All cells with the same first coordinate are said to be in the same
slab and all cells with the same second coordinate in the same wall. We still have
rows and columns within a layer. We also have towers which correspond to the
cells with the same first and second coordinate. In four and higher dimensions, we
use layer to represent cells along any hyperplane formed by fixing a coordinate.

We generalize the rook theory to three dimensions so that a rook in three di-
mensions will attack along walls, slabs and layers. In higher dimensions, rooks
attack along hyperplanes corresponding to cells with one fixed coordinate. In three
dimensions, when we place a rook in a cell, we can no longer place another rook in
the same wall, slab, or layer. In higher dimensions, a rook placed in a cell means we
cannot place another rook in the fixed coordinate hyperplanes that this cell belongs
to. In other words, if a rook is placed in cell (i1, i2, . . . , id), then a rook may not be
placed in any other cell sharing a coordinate with this cell. With this generalization,
the rook polynomial of a board is invariant under permuting the layers of the board.

In another generalization of rook polynomials to three and higher dimensions, the
rooks attack along lines instead of attacking over hyperplanes. For example, in three
dimensions, a rook placed in cell (i, j, k) prohibits another rook from being placed
in cells (i, j, · ), (i, · , k) and ( · , j, k). This approach has possible applications as
well; however, we will not pursue this generalization in this paper.
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Our first theorem on the generalized rook theory deals with a three-dimensional
board obtained from a two-dimensional board extended in the z-direction. In other
words, if A is a two-dimensional board, the three-dimensional extension of A with p
layers consists of elements of the form (i, j, k) where (i, j) ∈ A and 1≤ k ≤ p. It
is natural that there is a relation between the rook polynomials of the two boards.

Theorem. Let A be an m× n board and B be a three-dimensional extension of A
with p layers. Then, for 0≤ k ≤min{m, n, p},

rk(B)=
p!

(p− k)!
rk(A).

Proof. Given a three-dimensional rook placement on the board B, consider the
projection onto the board A. Since each rook can attack along either coordinate,
when projected onto A no two rooks occupy the same cell in A and we get a
placement of k rooks on A. There are rk(A) such placements. Given such a
placement, we must distribute the k rooks among p layers. This is equivalent to k
permutations of p numbers, which corresponds with p!/(p − k)!. So we have
rk(A)p!/(p− k)! ways to place k rooks on B. Also note that for k > min{m, n, p},
rk(B)= 0 since k rooks cannot fit into the board. �

As a corollary of this theorem, we can obtain the rook numbers of the full
three-dimensional boards, which are extensions of the full two-dimensional boards.
However, we provide a proof similar to the two-dimensional case below which
gives the idea of the proof of the general higher-dimensional theorem.

Theorem. There are
(m

k

)(n
k

)(p
k

)
(k!)2 ways to place k nonattacking rooks on the full

m× n× p board for 0≤ k ≤min{m, n, p}.

Proof. Since we are placing k rooks on m slabs, n walls, and p layers, we have(m
k

)(n
k

)(p
k

)
ways to choose the k slabs, walls, layers to place the rooks on. Since we

have k rooks and k layers, there will be exactly one rook on each layer. For the first
layer, we have k walls and k slabs from which we can choose to place the rook.
After placing the first rook, on the second layer we will have k− 1 slabs and k− 1
walls as options. Continuing this way, we find that we have

k · k · (k− 1) · (k− 1) · (k− 2) · (k− 2) · · · · · 2 · 2 · 1 · 1= (k!)2

ways to place the rooks on the chosen walls, slabs and layers. So there are(m
k

)(n
k

)(p
k

)
(k!)2 ways to place k nonattacking rooks on the full m× n× p board. �

The theorem for the most general case is:

Theorem. There are
(m1

k

)(m2
k

)
· · ·
(md

k

)
(k!)d−1 ways to place k nonattacking rooks,

with 0≤ k ≤mini mi , on a full m1×m2× · · ·×md board in d dimensions.
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The decomposition theorems of the two-dimensional case also generalize natu-
rally to three and higher dimensions. We define two boards in three dimensions to
be disjoint if the boards do not share any walls, slabs or layers. In four and higher
dimensions, the boards are disjoint if they do not share any layers. We then have
the following disjoint board decomposition in the general case.

Theorem (disjoint board decomposition). Let A and B be two boards in three or
higher dimensions that share no layers. Then the rook polynomial of the board
A∪ B consisting of the union of the cells in A and B is RA∪B(x)= RA(x)× RB(x).

The disjoint board theorem allows easy calculation of rook polynomials of a
board which can be decomposed into disjoint subboards, possibly after permuting
layers.

The cell decomposition method from the two-dimensional case generalizes to
three and higher dimensions as follows with the proof being a slight modification
of the proof in Section 1.

Theorem (cell decomposition). Let B be a board, B ′ be the board obtained by
removing the layers that correspond to a cell from B, and B ′′ be the board obtained
by removing the same cell from B. Then RB(x)= x RB ′(x)+ RB ′′(x).

The theorem on complementary boards generalizes to three and higher dimen-
sions, with slight modification:

Theorem (complementary board theorem). Let B be the complement of B inside
[m1]× [m2]× · · · × [md ] and

RB(x)=
∑

i

ri (B)x i

the rook polynomial of B. Then the number of ways to place 0 ≤ k ≤ mini mi

nonattacking rooks on B is

rk(B)=

k∑
i=0

(−1)i
(

m1− i
k− i

)(
m2− i
k− i

)
· · ·

(
md − i
k− i

)
(k− i)!d−1ri (B). (2)

Proof. The proof proceeds as in the two-dimensional case. We number the rooks
and let Ai be the set of placements of the rooks where the i-th rook is on B. There
are (

m1

k

)(
m2

k

)
· · ·

(
md

k

)
k!d

ways to place k numbered rooks on the full board. There are

r1(B)

(
m1− 1
k− 1

)(
m2− 1
k− 1

)
· · ·

(
m3− 1
k− 1

)
(k− 1)!d
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elements in Ai and there are k Ai ’s. Similarly, there are

r2(B)2!
(

m1− 2
k− 2

)(
m2− 2
k− 2

)
· · ·

(
md − 2
k− 2

)
(k− 2)!d

elements in Ai ∩ A j for any i 6= j and there are
(k

2

)
of these double intersections,

and so on. Hence, using the inclusion-exclusion principle, the number of ways to
place k numbered rooks on B is

k∑
i=0

(−1)i
(

k
i

)
i !
(

m1− i
k− i

)(
m2− i
k− i

)
· · ·

(
md − i
k− i

)
(k− i)!dri (B).

Dividing this by k! we arrive at (2). �

2.1. Problème des rencontres in three dimensions. Recall the problème des ren-
contres from earlier. The problème des rencontres dealt with a board with restrictions
along the main diagonal. When creating a three-dimensional version of the problème
des rencontres board, we will again place restrictions along the diagonal. In two
dimensions we explained the problème des rencontres by considering five people
leaving a restaurant without their hats. For this type of problem to make sense in
three dimensions we will have to alter the scenario. We will once again consider
five people entering a restaurant and introduce another
dimension to the story. Let these people each have a hat
and coat. We are now interested in the number of ways
that the five people can leave the restaurant without both
of their items. Let B be an 5×5×5 board with elements
(i, i, i) for i = 1, . . . , 5 removed; we will consider plac-
ing 5 rooks on B. A visual representation of B is shown
on the right.

For this board we let each layer represent a person, and walls and slabs represent
coats and hats, respectively. The missing cells correspond with no person leaving
with both their hat and coat. We refer to this board as the problème des rencontres
board of the first kind. To find the rook numbers of this board, notice that the 5
missing cells form disjoint boards. The rook polynomial for each cell is 1+ x .
Hence, using the cell decomposition, we get

(1+ x)5
= 1+ 5x + 10x2

+ 10x3
+ 5x4

+ x5

as the rook polynomial for the missing cells. Using the complementary board
theorem, we then find that the number of ways to place 5 rooks on B is(5

5

)(5
5

)(5
5

)
(5!)2
−
(4

4

)(4
4

)(4
4

)
(4!)2
· 5+

(3
3

)(3
3

)(3
3

)
(3!)2
· 10

−
(2

2

)(2
2

)(2
2

)
(2!)2
· 10+

(1
1

)(1
1

)(1
1

)
(1!)2
· 5−

(0
0

)(0
0

)(0
0

)
(0!)2
· 1= 11844.
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More generally, the number of ways that we can place k rooks on an m×m×m
problème des rencontres board of this kind is

k∑
i=0

(−1)i
(

m− i
k− i

)3

(k− i)!2
(

k
j

)
.

Another generalization of the problème des rencontres is to remove the rows,
columns, and towers that pass through a diagonal cell, i.e., to remove cells of
the form (i, i, · ), (i, · , i) and ( · , i, i). This second generalization corresponds to
finding the number of ways that the five people can leave the restaurant without
their coats, hats, or any proper pairing of a coat and hat. This means that each
person must leave the restaurant with a hat that is not his or hers, and a coat that
belongs neither to that person nor to the owner of the hat. The rook board for this
problem is a bit more difficult to visualize so we will first discuss how to construct
it. We again let each layer of the board represent a person, and the walls and slabs
represent coats and hats, respectively. For layer 1, corresponding to the first person,
we remove (`, 1, 1) and (1, `, 1) for 1≤ `≤ 5. This removes the column and row
corresponding to the first person not leaving with their own coat or hat. We will
also remove all cells along the main diagonal, meaning cells of the form (`, `, 1)

for 1≤ `≤ 5. This corresponds with person one not leaving with another person’s
coat and hat. The first layer of the board will then appear as follows:

For the second layer we remove (`, 2, 2) and (2, `, 2) for 1≤ `≤ 5. This will
remove the row and column associated with the second person leaving with his or
her own coat or hat. We will also remove (`, `, 2) for 1≤ `≤ 5. This corresponds
with the second person not leaving with another person’s coat and hat. This layer
will appear as follows:

Continuing this method for the final three layers we get:
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The problème des rencontres board of the second kind of any size m is constructed
in a similar fashion.

We use a Maple program to compute the rook polynomials of this type board
of various sizes. The program is included in the Appendix. The rook numbers of
boards of size from 3 up to 7 are given in Table 1.

Notice from the table that the rook numbers for k =m correspond to the number
of 3×m Latin rectangles. In fact, the correspondence between these rook placements
and the Latin rectangles is very natural.

Theorem. The number of ways to place m rooks on the size m problème des
rencontres board of the second kind is equal to the number of 3×m Latin rectangles
in which the first row is in order.

Proof. A 3×m Latin rectangle consists of three rows, each of which is a permutation
of the numbers in [m] and where in each of the m columns no number is repeated.
Given such a rectangle, each column can be represented by an ordered triple
(r1, r2, r3) in which no two entries are the same. These are exactly the cells missing
from the problème des rencontres board of the second kind. We then take these m
ordered triples and place rooks in the corresponding cells of this board. Because
each number appears in each row of the Latin rectangle exactly once, we have
exactly one rook per slab, wall, and layer. Therefore, the rooks are nonattacking.
This shows that any 3×m Latin rectangle corresponds with a valid placement of m
rooks on the size m problème des rencontres board of the second kind.

Now consider an arbitrary placement of m rooks on the size m problème des
rencontres board of the second kind. Since there are m rooks, there is a rook in
each slab. We read the positions of the rooks starting with the rook in the first slab,
and record these into the columns of a 3×m array. In this way, the first row is

m\k 0 1 2 3 4 5 6 7

3 1 6 6 2
4 1 24 132 176 24
5 1 60 960 4580 5040 552
6 1 120 4260 52960 213000 206592 21280
7 1 210 14070 368830 3762360 13109712 11404960 1073160

Table 1. Rook numbers of boards of size 3–7.
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arranged from 1 to m in increasing order, and, as explained above, each row is a
permutation of [m], and no two entries in each column are the same. This also
shows that the correspondence is one-to-one. �

This second kind of the problème des rencontres board can be generalized to
dimensions higher than three as follows: a size m problème des rencontres board
in d dimensions is a subset of the set [m]d where the cells with at least two equal
coordinates are removed. With this generalization, using a method similar to the
proof of the above theorem, we obtain the following theorem:

Theorem. The number of ways to place m rooks on a size m problème des ren-
contres board in d dimensions is equal to the number of d ×m Latin rectangles in
which the first row is in order.

2.2. Triangle boards in three dimensions. In two dimensions the triangle board
of size m contains the cells of the form (i, j) with j ≤ i and 1≤ i ≤m. This board
has the property that there is only one way to place m rooks on a size m triangle
board. Another property of the triangle board is that removing both the row and
column corresponding to a diagonal cell of a size m triangle board results in a
size m − 1 triangle board. We want to replicate these aspects of a triangle board
in three dimensions, and this is how the three-dimensional triangle board evolved.
In three dimensions a size 1 triangle board is simply one cell. The size 2 triangle
board is obtained by placing a 2×2 layer below the size 1 triangle board as follows:

We build the larger triangle boards recursively in a similar way, by adding an
(m+1)×(m+1) layer at the bottom of a size m triangle board. The cells included in
the size m triangle are (i, j, k) with 1≤ i, j ≤ k and 1≤ k ≤m. With this definition,
there is only one way to place m rooks on a size m triangle board. Additionally,
removing the wall, slab and layer including a diagonal cell of a size m triangle
board results in a size m− 1 triangle board. The size 5 triangle board is depicted
below.
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The rook numbers of the triangle boards up to size 8 are calculated using Maple
and are shown in the table on the next page. The numbers turn out to be the central
factorial numbers defined recursively by

T (n, k)= T (n− 1, k− 1)+ k2T (n− 1, k),

with T (n, 1)= 1 and T (n, n)= 1; see Table 2.

Theorem. The number of ways to place k rooks on a size m triangle board in three
dimensions is equal to T (m+ 1, m+ 1− k), where 0≤ k ≤ m.

Proof. We will prove this theorem by induction on m.
For the base case, m = 1, the rook polynomial is 1+ x and the corresponding

central factorial numbers are T (2, 2) = T (2, 1) = 1. Hence the result is true for
m = 1.

Assume now the theorem is true for some m, i.e., that the number of ways
of placing k rooks on a size m triangle board is equal to T (m + 1, m + 1− k)

for 0 ≤ k ≤ m. We will show that the number of ways of placing k rooks on an
(m+1)×(m+1) board is equal to T ((m+1)+1, (m+1)+1−k)=T (m+2, m+2−k)

for 0≤ k ≤ m+ 1.
We know that there is only one way to place no rooks, which corresponds to

T (m+2, m+2)= 1. We also know that there is only one way to place the maximum
number of rooks, m+ 1 rooks, which corresponds to

T (m+ 2, m+ 2− (m+ 1))= T (m+ 2, 1)= 1.

Now let 0 < k < m+ 1. Similar to the two-dimensional case, we consider two
cases, when all rooks are on the top m layers and when one of the rooks is on
the bottom layer. The top m layers form a triangle board of size m and hence the
number of ways to place k rooks on the top m layers is T (m+1, m+1−k). If one

n\k 0 1 2 3 4 5 6 7 8

0 1
1 1 1
2 1 5 1
3 1 21 14 1
4 1 85 147 30 1
5 1 341 1408 627 55 1
6 1 1365 13013 11440 2002 91 1
7 1 5461 118482 196053 61490 5278 140 1
8 1 21845 1071799 3255330 1733303 251498 12138 204 1

Table 2. Sequence A008957 in [Sloane 2009], triangle of central
factorial numbers.
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rook is on the bottom layer, the rest of the rooks will be on the top m layers, which
can be done in T (m+1, m+1− (k−1)) ways. Once these k−1 rooks are placed,
the corresponding k− 1 rows and columns in the bottom layer are restricted for the
last rook, leaving (m+ 1− (k− 1))2 cells available for that rook. Hence, there are
a total of (m+2− k)2T (m+1, m+2− k) ways to have k rooks on the board with
one being on the bottom layer. Adding the results from the two cases, we obtain
T (m+1, m+1−k)+(m+2−k)2T (m+1, m+2−k) ways of placing the k rooks
on the size m+ 1 triangle board. By the recursive definition of the central factorial
numbers, this sum corresponds to T (m + 2, m + 2− k), proving the theorem by
induction. �

2.3. Genocchi board. Another possible three-dimensional generalization of the
triangle boards is obtained by generalizing the following property of the two-
dimensional triangle boards. The number of cells in each row of a two-dimensional
triangle board is equal to the row number. We generalize this property by letting the
number of cells in a tower over a fixed row and column be equal to the maximum
of the row and column numbers. In terms of the coordinates, the cells in the size m
three-dimensional triangle board are of the form (i, j, k) with 1 ≤ k ≤max{i, j}
and 1 ≤ i, j ≤ m. The rook numbers of these boards are related to the Genocchi
numbers; hence we call this family the Genocchi boards. Below is the depiction
of the size 5 Genocchi board turned upside down and rotated for clarity. From the
picture, we can see that the complement of the size m Genocchi board inside the
m×m×m cube is the size m− 1 triangle board.

Using Maple, we generated rook numbers for various Genocchi boards. We
found that the number of ways to place m rooks on a board of size m corresponds
with the unsigned (m+ 1)-th Genocchi number; see Table 3.

m 0 1 2 3 4 5 6 7

rm 1 1 3 17 155 2073 38227 929569
Gm+1 −1 1 −3 17 −155 2073 −38227 929569

Table 3. Sequence A001469 in [Sloane 2009], Genocchi numbers
(of first kind).
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Theorem. The number of ways to place m nonattacking rooks on a size m Genocchi
board is the unsigned (m+ 1)-th Genocchi number.

Proof. Recall that the complement of a size m Genocchi board in an m×m×m
cube is a size m− 1 triangle board. Hence, using the theorem of complementary
boards, we can calculate the number of ways to place m rooks on a size m Genocchi
board in terms of the rook numbers of the triangle board. Recall that rk for a size m
triangle board is T (m+1, m+1− k) and that the number of ways to place k rooks
on the complement of a three-dimensional board B in the m×m×m cube is

k∑
i=0

(
m− i
k− i

)3

(k− i)!2ri (B).

Using these two formulas, we find that the number of ways to place k = m rooks
on a size m Genocchi board is

m−1∑
i=0

(
m− i
m− i

)3

(m− i)!2T (m, m− i).

We omitted the term corresponding to i = m in the summation because rm(B)= 0
for the triangle board of size m − 1. This last summation can be rewritten via a
change of variables j = m− i as

(−1)m+1
m∑

j=1

(−1) j+1 j !2T (m, j),

which is shown to equal (−1)m+1Gm+1 in [Dumont 1974]; thus the number of ways
to place m rooks on a size m Genocchi board is the unsigned (m+ 1)-th Genocchi
number. �

Appendix

Rook:=proc(A,m,n,p,B,k,rem)
local C,i,j,h,g,l,count,v;
count:=0;
if k=1 then
for i from 1 to m do
for j from 1 to n do
for g from 1 to p do
if ’not’(’in’([i,j,g],B)) then
if add(add(A[i,a1,a2],a1=1..n),a2=1..p)=0 then
if add(add(A[b1,j,b2],b1=1..m),b2=1..p)=0 then
if add(add(A[c1,c2,g],c1=1..m),c2=1..n)=0 then
count:=count+1
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end if
end if

end if
end if

end do
end do

end do
else
C:=Array(1..m,1..n,1..p);
for i from 1 to m do
for j from 1 to n do
for g from 1 to p do
if ’not’(’in’([i,j,g],B)) then
if add(add(A[i,a1,a2],a1=1..n),a2=1..p)=0 then
if add(add(A[b1,j,b2],b1=1..m),b2=1..p)=0 then
if add(add(A[c1,c2,g],c1=1..m),c2=1..n)=0 then
for h from 1 to m do
for l from 1 to n do
for v from 1 to p do
C[h,l,v]:=A[h,l,v]

end do
end do

end do
C[i,j,g]:=1;
count:=count+Rook(C,m,n,p,B,k-1);
C[i,j,g]:=0

end if
end if

end if
end if

end do
end do

end do
end if
count:=count/k
end proc:
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New confidence intervals for the AR(1) parameter
Ferebee Tunno and Ashton Erwin

(Communicated by Robert B. Lund)

This paper presents a new way to construct confidence intervals for the unknown
parameter in a first-order autoregressive, or AR(1), time series. Typically, one
might construct such an interval by centering it around the ordinary least-squares
estimator, but this new method instead centers the interval around a linear com-
bination of a weighted least-squares estimator and the sample autocorrelation
function at lag one. When the sample size is small and the parameter has magni-
tude closer to zero than one, this new approach tends to result in a slightly thinner
interval with at least as much coverage.

1. Introduction

Consider the causal stationary AR(1) time series given by

X t = φX t−1+ εt , t = 0,±1,±2, . . . , (1-1)

where |φ| < 1, E(X t) = 0 and {εt }
iid
∼ N (0, σ 2). We seek a new way to construct

confidence intervals for the unknown parameter φ.
If X1, X2, . . . , Xn are sample observations from this process, then a point esti-

mate for φ is found by calculating

φ̃p =

∑n
t=2 St−1|X t−1|

p X t∑n
t=2 |X t−1|p+1 ,

where p ∈ {0, 1, 2, . . . } and St is the sign function, defined by

St =


1 if X t > 0,
0 if X t = 0,
−1 if X t < 0.

The estimator φ̃p can be thought of as a weighted least-squares estimator with form∑n
t=2 Wt−1 X t−1 X t∑n

t=2 Wt−1 X2
t−1

MSC2010: 60G10, 62F12, 62F99, 62M10.
Keywords: confidence interval, autoregressive parameter, weighted least squares, linear combination.
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and weight Wt = |X t |
p−1. Note that, when p= 1, we get the ordinary (unweighted)

least-squares estimator (OLSE), and when p= 0, we get what has come to be called
the Cauchy estimator:

φ̃1 =

∑n
t=2 X t−1 X t∑n

t=2 X2
t−1

(OLSE), φ̃0 =

∑n
t=2 St−1 X t∑n
t=2 |X t−1|

(Cauchy).

The OLSE has been studied since the time of Gauss and its optimal properties
for linear models are well known. The eponymously named Cauchy estimator dates
back to about the same time and is sometimes used as a surrogate for the OLSE.
Traditionally, confidence intervals for φ have been centered around the OLSE,
although So and Shin [1999] and Phillips, Park and Chang [Phillips et al. 2004]
showed that the Cauchy estimator has certain advantages over the OLSE when
dealing with a unit root autoregression. Gallagher and Tunno [2008] constructed a
confidence interval for φ centered around a linear combination of both estimators.

Another point estimate for φ comes from the sample autocorrelation function
of {X t } at lag one, given by

ρ̂(1)=
∑n

t=2 X t−1 X t∑n
t=1 X2

t
.

The autocovariance function of {X t } at lag h for an AR(1) series is given by γ (h)=
Cov(X t , X t+h) = φ

|h|σ 2/(1− φ2), which makes the true lag-one autocorrelation
function equal to

ρ(1)=
γ (1)
γ (0)

=
φσ 2/(1−φ2)

σ 2/(1−φ2)
= φ.

Observe that the structure of ρ̂(1) is similar to that of the OLSE. In fact, for an
AR(1) series, the Yule–Walker, maximum likelihood, and least-squares estimators
for φ are all approximately the same [Shumway and Stoffer 2006, Section 3.6].
Note also that, in general, if {X t } is not mean-zero, we would subtract X from each
observation when calculating things like ρ̂(h) and φ̃p.

To get a feel for how φ̃0, φ̃1 and ρ̂(1) behave relative to one another, Figure 1
shows their empirical bias and mean squared error (MSE) when φ ∈ (−1, 1) and
n = 50. The Cauchy estimator has the lowest absolute bias, and ρ̂(1) has the
smallest MSE for parameter values (roughly) between −0.5 and 0.5, while the
OLSE has the smallest MSE elsewhere. Other simulations not shown here reveal
that the MSE and absolute bias of φ̃p keep growing as p gets larger.

The goal of this paper is to construct a confidence interval for φ centered around
a linear combination of an arbitrary weighted least-squares estimator and the sample
autocorrelation function at lag one. That is, the center will take the form

a1φ̃p + a2ρ̂(1), (1-2)
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Bias MSE

φ φ

Figure 1. Empirical bias (left) and mean squared error (right) of
φ̃0, φ̃1 and ρ̂(1) for φ ∈ (−1, 1); 10,000 simulations were run for
each parameter value, with distribution N (0, 1) and n = 50.

where a1+ a2 = 1 and p 6= 1. We first, however, need to take a brief look at how
intervals centered around a single estimator behave in order to find a proper target
for our new interval to outperform.

Theorem 2.1 from [Gallagher and Tunno 2008] states that for the AR(1) series
given in (1-1), we have

√
n(φ̃p −φ)

D
−→ N

(
0,

σ 2 E(X2p
t )

(E |X t |
p+1)2

)
(1-3)

for all p such that E(|X t |
r ) <∞, where r =max(2p, p+1). Since the error terms

in our series are normal, the X t ’s have finite moments of all orders. Thus, this
theorem can be used to create confidence intervals for φ centered at φ̃p for any
choice of p.

Specifically, if X1, X2, . . . , Xn are sample observations from (1-1), then an
approximate (1−α)× 100% confidence interval for φ has endpoints

φ̃p ± zα/2
√

V̂ar(φ̃p),

where

nV̂ar(φ̃p)=
σ 2n−1∑n

t=2 X2p
t−1(

n−1
∑n

t=2 |X t−1|p+1
)2

P
−→

σ 2 E(X2p
t−1)(

E |X t−1|p+1
)2

and zα/2 is the standard normal critical value with area α/2 to its right.
Similarly, we can create confidence intervals for φ centered at ρ̂(1). If we

think of ρ̂(1) as being nearly the equivalent of the OLSE, then an approximate
(1−α)× 100% confidence interval for φ has endpoints

ρ̂(1)± zα/2
√

V̂ar(ρ̂(1)),
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Coverage Length

φ φ

Figure 2. Empirical coverage capability (left) and length (right)
of 95% confidence intervals for φ centered at φ̃0, φ̃1 and ρ̂(1) for
φ ∈ (−1, 1); 10,000 simulations were run for each parameter value,
with distribution N (0, 1) and n = 50.

where

nV̂ar(ρ̂(1))=
nσ 2∑n
t=1 X2

t

P
−→

σ 2

E(X2
t )
.

Figure 2 shows the empirical coverage capability and length of 95% confidence
intervals for φ centered at φ̃0, φ̃1 and ρ̂(1) when φ ∈ (−1, 1) and n = 50. The
thinnest intervals occur when ρ̂(1) is used, although not by much. The OLSE also
has the best overall coverage, except (roughly) for |φ| ≤ 0.5, which is where ρ̂(1)
once again outperforms the OLSE. Other simulations not shown here reveal that the
length of intervals centered at φ̃p keeps growing as p gets larger, while coverage
capability starts to break down for |φ| near 1.

In this paper, we will aim to construct intervals with center (1-2) that outperform
those centered at the OLSE. The next section shows the details of this construction,
while Section 3 presents some simulations. Section 4 closes the paper with an
application and some remarks.

2. Interval construction

Suppose for the moment that we wish to construct a confidence interval for φ
centered at a linear combination of two weighted least-squares estimators. That is,
instead of (1-2), the center would take the form

a1φ̃p + a2φ̃q , (2-1)

where a1+a2= 1 and p 6= q . Minimizing the variance of this quantity is equivalent
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to minimizing the length of the corresponding interval and occurs when

a1 =
Var(φ̃q)−Cov(φ̃p, φ̃q)

Var(φ̃p − φ̃q)
. (2-2)

Theorem 2.1. Let a1 + a2 = 1. If a1 is given by (2-2), then Var(a1φ̃p + a2φ̃q) is
minimized and has upper bound Var(φ̃q).

Proof. Let

f (a1)= Var
(
a1φ̃p + (1− a1)φ̃q

)
= a2

1 Var(φ̃p)+ (1− a1)
2 Var(φ̃q)+ 2a1(1− a1)Cov(φ̃p, φ̃q)

= a2
1 Var(φ̃p − φ̃q)+ 2a1

(
Cov(φ̃p, φ̃q)−Var(φ̃q)

)
+Var(φ̃q).

Then f ′(a1)= 2a1 Var(φ̃p − φ̃q)+ 2
(
Cov(φ̃p, φ̃q)−Var(φ̃q)

)
= 0

⇒ a1 =
Var(φ̃q)−Cov(φ̃p, φ̃q)

Var(φ̃p − φ̃q)
.

Since f ′′(a1)= 2 Var(φ̃p− φ̃q) > 0, then this critical value minimizes f . Note that
this means

a2 = 1− a1 =
Var(φ̃p)−Cov(φ̃p, φ̃q)

Var(φ̃p − φ̃q)
,

where the choices of p and q determine the ranges of a1 and a2. Specifically, we
have

Var(φ̃p) > Var(φ̃q) ⇐⇒ a1 < 0.5 and a2 > 0.5,

Var(φ̃q) > Var(φ̃p) ⇐⇒ a1 > 0.5 and a2 < 0.5,

Var(φ̃p)= Var(φ̃q) ⇐⇒ a1 = a2 = 0.5.

Finally, since the critical value found above minimizes f , we have f (a1)≤ f (0),
which is equivalent to saying

Var
(
a1φ̃p + (1− a1)φ̃q

)
≤ Var(φ̃q),

where the inequality is strict for a1 6= 0. �

We would like for the variance of a1φ̃p+ a2φ̃q to be less than or equal to that of
the OLSE. Setting q = 1 makes this happen since Theorem 2.1 tells us that

Var(a1φ̃p + a2φ̃1)≤ Var(φ̃1).

It turns out, however, that the window where these two variances are distinguishable
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may be brief since a1 goes to zero as the sample size increases. This in turn causes
a1φ̃p + a2φ̃1 to be asymptotically normal.

Theorem 2.2. Let a1+ a2 = 1. If a1 is given by (2-2) with q = 1, then

√
n
(
a1φ̃p + a2φ̃1−φ

) D
−→ N

(
0,

σ 2

E(X2
t )

)
.

Proof. First, we note that

n Cov(φ̃p, φ̃q)
P
−→

σ 2 E |X t |
p+q

E |X t |
p+1 E |X t |

q+1 .

Then

a1 =
Var(φ̃1)−Cov(φ̃p, φ̃1)

Var(φ̃p − φ̃1)

=
n Var(φ̃1)− n Cov(φ̃p, φ̃1)

n Var(φ̃p)+ n Var(φ̃1)− 2n Cov(φ̃p, φ̃1)

P
−→

σ 2

E |X t |
2 −

σ 2

E |X t |
2

σ 2 E |X t |
2p

(E |X t |
p+1)2

+
σ 2

E |X t |
2 −

2σ 2

E |X t |
2

=
0

σ 2 E |X t |
2p

(E |X t |
p+1)2

−
σ 2

E |X t |
2

=: R.

The denominator of R is strictly positive since

plim
n→∞

n Var(φ̃p) > plim
n→∞

n Var(φ̃1) for p 6= 1.

Thus, R = 0.
Since a1

P
−→ 0, we obtain a2

P
−→ 1. Hence, a1φ̃p + a2φ̃1 and φ̃1 have the same

asymptotic distribution. By (1-3), we have

√
n(φ̃1−φ)

D
−→ N

(
0,

σ 2

E(X2
t )

)
.

Thus,
√

n(a1φ̃p + a2φ̃1−φ)
D
−→ N

(
0,

σ 2

E(X2
t )

)
as well. �

If X1, X2, . . . , Xn are sample observations from (1-1), then an approximate
(1−α)× 100% confidence interval for φ centered at a1φ̃p + a2φ̃1 has endpoints

a1φ̃p + a2φ̃1± zα/2
√

V̂ar(a1φ̃p + a2φ̃1).
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Letting

σ̂ 2
i =

σ 2∑n
t=2 |X t−1|

2i(∑n
t=2 |X t−1|i+1

)2 , σ̂i j =
σ 2∑n

t=2 |X t−1|
i+ j∑n

t=2 |X t−1|i+1
∑n

t=2 |X t−1| j+1 ,

â1 =
σ̂ 2

1 − σ̂p1

σ̂ 2
p + σ̂

2
1 − 2σ̂p1

, â2 =
σ̂ 2

p − σ̂p1

σ̂ 2
p + σ̂

2
1 − 2σ̂p1

,

we then have

nV̂ar(a1φ̃p + a2φ̃1)= n
(
â2

1V̂ar(φ̃p)+ â2
2V̂ar(φ̃1)+ 2â2

1 â2
2Ĉov(φ̃p, φ̃1)

)
=

n(σ̂ 2
1 σ̂

2
p − σ̂

2
p1)

σ̂ 2
1 + σ̂

2
p − 2σ̂p1

P
−→

σ 2

E(X2
t )
.

However, observe that σ̂p1 = σ̂
2
1 which implies that V̂ar(a1φ̃p + a2φ̃1)= V̂ar(φ̃1).

Thus, our choice of asymptotic estimators when q = 1 has the unintended conse-
quence of causing our interval to be equivalent to that of the OLSE.

Herein lies the motive to go with center (1-2) in lieu of center (2-1). By replac-
ing φ̃1 with ρ̂(1), we avoid this asymptotic equivalence, while preserving some of
the desirable properties associated with (2-1). In the upcoming simulations, we
also replace σ̂ 2

1 = V̂ar(φ̃1) with

V̂ar(ρ̂(1))=
σ 2∑n

t=1 X2
t
,

but retain σ̂p1 = Ĉov(φ̃p, φ̃1).

3. Simulations

We now look at the length and coverage capability of 95% confidence intervals
for φ centered at the OLSE and a1φ̃p + a2ρ̂(1) for various p 6= 1. Each figure
reflects 10,000 simulation runs of n= 50 independent observations with distribution
N (0, 1).

In Figure 3, top, we see that the a1φ̃0 + a2ρ̂(1) interval has at least as much
coverage as the OLSE interval when (roughly) |φ| ≤ 0.5. The a1φ̃0 + a2ρ̂(1)
interval is also slightly shorter over this same region. In Figure 3, bottom, p has
increased to 2, but the coverage of the a1φ̃2+ a2ρ̂(1) interval has degenerated with
no meaningful difference in interval lengths.

In Figure 4, p has increased to 3 (top two graphs) and 4 (middle row of graphs).
The a1φ̃3+a2ρ̂(1) and a1φ̃4+a2ρ̂(1) intervals both return back to the performance
level of the a1φ̃0+a2ρ̂(1) interval, with (roughly) |φ| ≤ 0.5 again being the domain
of interest.
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Coverage Length

φ φ

Coverage Length

φ φ

Figure 3. Top row: Empirical coverage capability (left) and length
(right) of 95% confidence intervals for φ centered at the OLSE and
a1φ̃0+a2ρ̂(1) for φ ∈ (−1, 1). Bottom row: Same information, for
a1φ̃2+ a2ρ̂(1).

In Figure 4, bottom, we create intervals whose centers are simply unweighted
averages of the OLSE and the sample correlation coefficient. That is, the intervals’
endpoints take the form

0.5φ̃1+ 0.5ρ̂(1)± 1.96
√

V̂ar
(
0.5φ̃1+ 0.5ρ̂(1)

)
.

Using the fact that 2Ĉov(φ̃1, ρ̂(1))≈ V̂ar(φ̃1)+ V̂ar(ρ̂(1)), this is approximately

0.5φ̃1+ 0.5ρ̂(1)± 1.96
√

0.5
(
V̂ar(φ̃1)+ V̂ar(ρ̂(1))

)
.

There is no significant difference between the 0.5φ̃1+ 0.5ρ̂(1) and OLSE intervals.
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Coverage Length

φ φ

Coverage Length

φ φ

Coverage Length

φ φ

Figure 4. Top row: Empirical coverage capability (left) and length
(right) of 95% confidence intervals for φ centered at the OLSE
and a1φ̃3 + a2ρ̂(1) for φ ∈ (−1, 1). Middle row: Same, for
a1φ̃4+ a2ρ̂(1). Bottom row: Same, for 0.5φ̃1+ 0.5ρ̂(1).
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4. Closing remarks

The performance of the confidence interval centered at a1φ̃p + a2ρ̂(1) presented in
this paper is modest, but not unimportant. For parameter values (roughly) between
−0.5 and 0.5, its coverage tends to be at least as good as that of the OLSE interval
while having a slightly smaller margin of error. This interval also does not require
a large sample size, which can be good for certain practical purposes.

For example, consider the daily stock prices for Exxon Mobil Corporation during
the fall quarter of 2011 (i.e., September 23 to December 21). A reasonable model
for this time series is an ARIMA(1, 1, 0), where {X t } ∼ ARIMA(p, 1, q) implies
{X t − X t−1} ∼ ARMA(p, q). Thus, if X t stands for the price at time t and Yt =

X t−X t−1, it follows that {Yt }∼AR(1)with estimated model Yt =−0.0444Yt−1+εt .
Both the {X t } and {Yt } processes are shown in Figure 5.

Figure 5. The original (left) and differenced (right) stock prices
for Exxon Mobil (XOM) from 9/23/11 to 12/21/11. The sample
sizes are 63 and 62, respectively.

If we supplement this model with 95% confidence intervals for φ, we get the
following:

Center Interval Length

φ̃1 (−0.2089871, 0.1719117) 0.3808988
ρ̂(1) (−0.2076522, 0.1710108) 0.3786630

0.5φ̃1+ 0.5ρ̂(1) (−0.2083205, 0.1714621) 0.3797825
a1φ̃0+ a2ρ̂(1) (−0.2036185, 0.1749948) 0.3786133
a1φ̃2+ a2ρ̂(1) (−0.2127095, 0.1658015) 0.3785110
a1φ̃3+ a2ρ̂(1) (−0.2100079, 0.1686098) 0.3786177
a1φ̃4+ a2ρ̂(1) (−0.2092005, 0.1694378) 0.3786383
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All seven intervals contain the point estimate φ̂ = −0.0444, but the last four are
slightly thinner than the first three.

One extension of the research presented in this paper would be to create con-
fidence intervals centered around a linear combination of an arbitrary number of
weighted least-squares estimators. For example, it can be shown that the variance
of a1φ̃p + a2φ̃q + a3φ̃r is minimized when

a1 =
σ ∗qr (σ

2
r − σpr )+M(σ 2

r − σqr )

σ ∗prσ
∗
qr −M2 , a2 =

σ ∗pr (σ
2
r − σqr )+M(σ 2

r − σpr )

σ ∗prσ
∗
qr −M2 ,

and a3 = 1− a1− a2, where σ 2
i = Var(φ̃i ), σi j = Cov(φ̃i , φ̃ j ), σ ∗i j = Var(φ̃i − φ̃ j ),

and M = σpr + σqr − σpq − σ
2
r . However, once the number of estimators in the

center goes beyond two, the work required to construct and analyze the interval
may outweigh any benefits it would bestow.

Another (less tedious) extension would be to find a new sequence {a1,n} that
converges to zero while yielding a linear combination of estimators with smaller
MSE than the OLSE. This new combination would still have the same distributional
limit as the OLSE and could then serve as the center for another competitive interval
for φ. Specifically, if we simply set the standard error equal to the square root of the
asymptotic variance of the OLSE, the resulting interval should have length equal to
that of the OLSE, but with better coverage capability.
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Knots in the canonical book representation
of complete graphs

Dana Rowland and Andrea Politano

(Communicated by Joel Foisy)

We describe which knots can be obtained as cycles in the canonical book rep-
resentation of the complete graph Kn , and we conjecture that the canonical
book representation of Kn attains the least possible number of knotted cycles
for any embedding of Kn . The canonical book representation of Kn contains
a Hamiltonian cycle that is a composite knot if and only if n ≥ 12. When p
and q are relatively prime, the (p, q) torus knot is a Hamiltonian cycle in the
canonical book representation of K2p+q . For each knotted Hamiltonian cycle α
in the canonical book representation of Kn , there are at least 2k

(n+k
k

)
Hamiltonian

cycles that are ambient isotopic to α in the canonical book representation of Kn+k .
Finally, we list the number and type of all nontrivial knots that occur as cycles in
the canonical book representation of Kn for n ≤ 11.

1. Introduction

In Kn , the complete graph on n vertices, every pair of distinct vertices is joined by
an edge. An embedding or spatial representation of Kn is a particular way of joining
the n vertices in three-dimensional space. Conway and Gordon [1983] proved that
every spatial representation of K6 contains at least one pair of linked triangles and
every spatial representation of K7 contains at least one knotted Hamiltonian cycle.
They included examples of embeddings of K6 and K7 that were minimally linked
or knotted — their embedding of K6 contained exactly one pair of linked triangles
and their embedding of K7 contained exactly one knotted Hamiltonian cycle.

Otsuki [1996] introduced a family of spatial representations of Kn that generalized
these examples of Conway and Gordon. Otsuki’s spatial representation of Kn is
an example of a book representation. Projections of book representations prevent
complicated interactions between edges. In particular,
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Keywords: spatial graph, intrinsically knotted, canonical book.
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• no edge crosses itself;

• a pair of edges cross at most once;

• if edge e1 crosses over edge e2 and edge e2 crosses over edge e3, then edge e1

crosses over edge e3.

Because book representations minimize the entanglement among the edges in a
graph, they are good candidates for minimizing the linking and knotting in an
embedding of a graph.

Otsuki called his family of embeddings the canonical book representations of Kn ,
which in this paper we denote by K̃n . He showed that any subcollection of m vertices
of K̃n induces a subgraph that is ambient isotopic to K̃m . Note this implies that, for
n ≥ 6, K̃n contains exactly

(n
6

)
linked triangles, all of which are ambient isotopic to

the Hopf link, and for n ≥ 7, K̃n contains exactly
(n

7

)
knotted 7-cycles, all of which

are trefoil knots. Since Conway and Gordon’s theorem implies that any spatial
embedding of Kn contains at least

(n
6

)
linked triangles and at least

(n
7

)
nontrivially

knotted 7-cycles, a canonical book representation is minimally linked and knotted
in this sense.

In addition, Fleming and Mellor [2009] proved that a canonical book represen-
tation of Kn attains 14

(n
7

)
triangle-square links, and showed this is the minimum

possible for any embedding of Kn . They also conjectured that for any graph G
there is some book representation that realizes the minimal number of nontrivial
links possible in an embedding of G.

Similarly, the canonical book representation K̃n is a candidate for the minimal
number of knotted cycles in an embedding.

In this paper, we focus on which knots arise as knotted Hamiltonian cycles in
the canonical book representation for n > 7. In Section 2 we review the definitions
of book representations and Otsuki’s canonical book representation, and show how
knotted cycles in K̃n are related to knotted cycles in K̃n+1. In Section 3 we show
that K̃n contains a (p, q) torus knot (or link) when n ≥ q+2p. In Section 4 we
examine composite knots in the canonical book representation, and in Section 5 we
give a listing of all the knots that appear as cycles in K̃n for 8 ≤ n ≤ 11 and we
conjecture about the ways in which K̃n may achieve the minimal possible knotting
complexity.

2. The canonical book representation of Kn

In this section, we review the right canonical book representation, as defined in
[Otsuki 1996]. (In the right canonical book representation, the knotted 7-cycles
are right-handed trefoil knots. The left canonical book representation is the mirror
image of the one presented here.)
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Definition 1. A k-book is a subset of R3 consisting of a line L and distinct half-
planes S1, S2, . . . , Sk with boundary L . The line L forms the spine of the book and
the half-planes Si form the pages, or sheets. We denote a k-book by Bk . Let G be a
graph, and let f : G→ Bk ⊂R3 be a tame embedding of G. We say that the spatial
representation f (G) is a k-book representation of G if:

(1) each vertex of f (G) is on the line L;

(2) each edge of f (G) is contained in exactly one sheet Si .

If G̃ is a k-book representation of G, then G̃ can be deformed by an ambient
isotopy so that the vertices lie on a circle C and the edges are chords on k internally
disjoint topological disks, all of which have C as their boundary. For the remainder
of this paper, we will treat the sheets Si for 1 ≤ i ≤ k as topological disks. In a
projection of the embedding onto the plane containing C , we assume that the sheets
are labeled so that sheet Si is “above” sheet S j if i < j . A k-book embedding is
determined, up to ambient isotopy, by specifying which edges are in which sheet.

The sheet-number of a graph G is the smallest possible k for which G has a
k-book representation.

For Kn , the sheet-number is dn/2e, the smallest integer greater than or equal
to n/2; see [Bernhart and Kainen 1979] or [Kobayashi 1992] for proofs. Otsuki’s
right canonical book representation, K̃n , provides an example of a minimal-sheet
book embedding of Kn [Otsuki 1996].

To describe K̃n , it suffices to list which sheet contains each edge. Label the n
vertices with the integers 1 through n.

Case 1: The number of vertices is even. When n = 2m, there are m sheets and
each of the sheets S1, S2, . . . , Sm contains 2m−1 edges. Sheet Si contains the edges
joining vertex i to vertex i+ j , for 1≤ j ≤m, and the edges joining vertex i+m to
(i+m+ j)mod 2m, for 1≤ j ≤ m−1. See Figure 1.

i

i-1

i+1

i+2

i+m

i+m-1

i+m+1

i+m+2

Figure 1. Sheet Si in the canonical book representation of K2m .
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i

i-1

i+1

i+2

i+m

i+m-1

i+m+1

i+m+2

1

2

2m+1

2m

m+1 m

m+2

m+3

Figure 2. Sheets Si (i ≤ m) and Sm+1 in the canonical book rep-
resentation of K2m+1.

Alternatively, if we are given an edge joining vertex i to vertex j , we can
determine which sheet the edge is in:

Lemma 2. Let n = 2m and let (i, j), with i < j , be the edge joining vertices i
and j in the projection of K̃n . Then we can determine which sheet contains (i, j):

• If i ≤ m and j−i ≤ m, then (i, j) is in Si .

• If i ≤ m and j−i ≥ m+1, then (i, j) is in S j−m .

• If i ≥ m+1, then (i, j) is in Si−m .

Furthermore, suppose the edge (i, j) crosses the edge (k, l) in the projection. We
may assume without loss of generality that 1 ≤ i < k < j < l ≤ 2m. Then edge
(k, l) is on top of edge (i, j) if and only if i ≤ m and k ≥ m+1.

Case 2: The number of vertices is odd. When n = 2m+1, the sheets S1, S2, . . . ,
Sm each contain 2m edges and sheet Sm+1 is a “half-sheet” containing m edges. For
each 1≤ i ≤ m, sheet Si contains the edges joining vertex i to vertex i+ j , and the
edges joining vertex i+m+1 to (i+m+ j+1)mod (2m+1), for 1≤ j ≤m. Sheet
Sm+1 contains the edges joining vertex m+1 to vertex m+1+ j , for 1 ≤ j ≤ m.
See Figure 2.

If we are given an edge joining vertex i to vertex j , we can determine which
sheet the edge is in:

Lemma 3. Let n = 2m+1, and let (i, j), with i < j , be the edge joining vertices i
and j in the projection of K̃n . Then we can determine which sheet contains (i, j).

• If i ≤ m+1 and j−i ≤ m+1, then the edge is in Si .

• If i ≤ m+1 and j−i ≥ m+2, then the edge is in S j−m−1.

• If i ≥ m+2, then the edge is in Si−m−1.
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Furthermore, suppose the edge (i, j) crosses the edge (k, l) in the projection. We
may assume without loss of generality that 1≤ i < k < j < l ≤ 2m+1. Then edge
(k, l) is on top of edge (i, j) if and only if i ≤ m+1 and k ≥ m+2.

Otsuki [1996] proved that the canonical book representation has the property
that any subgraph induced by a subcollection of vertices is ambient isotopic to a
canonical book representation. In particular, we have the following:

Proposition 4. Let α= (α1, α2, . . . , αn) be an n-cycle through the vertices 1, . . . , n
in K̃N . Then the n-cycle (α1, α2, . . . , αn) through the vertices 1, . . . , n in K̃N+1 is
ambient isotopic to α.

Proof. Let (i, j) and (k, l) be edges of the cycle α in K̃N , labeled so that i < j ,
k < l, and i < k. Two edges cross in the projection of K̃N if and only if they cross
in the projection of K̃N+1, which occurs if and only if i < k < j < l.

First, consider the case N = 2m+1. We can use Lemmas 2 and 3 to verify that:

(1) If i < k ≤ m+1 or if m+2≤ i < k, then (i, j) crosses over (k, l) in both K̃N

and K̃N+1.

(2) If i ≤m+1 and k ≥m+2, then (k, l) crosses over (i, j) in both K̃N and K̃N+1.

Since there are no crossing changes between edges, the cycle (α1, α2, . . . , αn)

represents the same knot in both K̃2m+1 and K̃2m+2.
Now suppose that N = 2m. Using Lemmas 2 and 3 we observe that:

(1) If i < k ≤m or if m+2≤ i < k, then (i, j) crosses over (k, l) in both K̃N and
K̃N+1.

(2) If i ≤ m and k ≥ m+2, then (k, l) crosses over (i, j) in both K̃N and K̃N+1.

(3) If i =m+1 or if k =m+1 then a crossing change occurs between edges (i, j)
and (k, l) when moving from K̃N to K̃N+1.

Notice that if i = m+1 (or k = m+1), then (i, j) (or, respectively, (k, l)) is in
the top sheet in K̃N and the bottom sheet in K̃N+1. An edge in the bottom sheet
of K̃N+1 is under all other edges and can be moved by an ambient isotopy so that it
lies over all other edges. Thus, the only crossing changes that occur do not change
the knot type, and the cycle (α1, α2, . . . , αn) represents the same knot in both K̃2m

and K̃2m+1. �

We also know that, if a Hamiltonian cycle with a certain knot type appears in K̃n ,
then K̃N must contain a Hamiltonian cycle with the same knot type for any N > n.
The following theorem indicates one way to find such a cycle:

Theorem 5. Let α = (α1, α2, . . . , αn) denote an n-cycle through all the vertices
1, 2, . . . , n+1 except i+1 in K̃n+1. Suppose that αk = i and αk+1 = j . Then the
Hamiltonian cycle (α1, . . . , αk, i+1, αk+1, . . . , αn) is ambient isotopic to α.
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Proof. It suffices to check that in K̃n any edge (i, j) is at most one sheet apart
from the edge (i+1, j). This will guarantee that the edge (i, j) can be moved to
the path (i, i+1, j) by an ambient isotopy, since if the edge (i+1, j) is one sheet
level above or one below the edge (i, j) then the path (i, i+1, j) crosses the same
edges as the edge (i, j) and in the same manner. In other words, no edge can pass
through the triangle formed by the cycle (i, i+1, j). Note that the top and bottom
sheets can also be considered consecutive, since an edge on the bottom sheet can
be deformed by ambient isotopy to be on top of all the sheets, and vice versa.

We will verify that edges (i, j) and (i+1, j) are at most one sheet apart when
i < j . The proof for when i > j is similar, and is left to the reader. There are six
cases to check.

Case 1: i ≥ m+1 and there are an even number of vertices. Refer to Lemma 2.
The edge (i, j) is in Si−m . The edge (i+1, j) is in Si+1−m . Therefore, the edges
are in consecutive sheets.

Case 2: i ≥ m+2 and there are an odd number of vertices. Refer to Lemma 3.
The edge (i, j) is in Si−m−1. The edge (i+1, j) is in Si+1−m−1 which equals Si−m .
Therefore, the edges are in consecutive sheets.

Case 3: i ≤ m, j− i ≤ m and there are an even number of vertices. Refer to
Lemma 2. The edge (i, j) is in Si . There are two possibilities for the sheet level of
the edge (i+1, j). First, if i < m, then i+1≤ m, and

j−(i+1)= j−i−1≤ m−1≤ m.

Therefore, edge (i+1, j) is in Si+1. Second, if i = m, then i+1≥ m+1 so edge
(i+1, j) is in Si+1−m = Sm+1−m = S1. This would not change the knot type because
the edge (i, j) was in the very last sheet and this edge is in the very first sheet. In
both cases, the edges are in consecutive sheets.

Case 4: i ≤ m+1, j−i ≤ m+1 and there are an odd number of vertices. Refer
to Lemma 3. The edge (i, j) is in Si . Again, there are two possibilities for the
sheet level of edge (i +1, j). First, if i < m+1, then i +1 ≤ m+1, and so
j−(i+1)= j−i−1≤ m ≤ m+1 meaning this edge is found in Si+1. This is one
sheet level below the original edge. Second, if i = m+1, then i+1≥ m+2. The
edge (i+1, j) is therefore in Si+1−m−1 = Sm+1+1−m−1 = S1, the very first sheet.
As in case 3, this means that the knot type remains unchanged.

Case 5: i ≤ m, j−i ≥ m+1 and there are an even number of vertices. Refer to
Lemma 2. The edge (i, j) is in S j−m . Note that, if i = m, then j ≥ 2m+1, which
is impossible, since there are only 2m vertices. That leaves two possibilities for the
sheet level of edge (i+1, j). First, if i < m and j > i+m+1, then i+1≤ m and
j−(i+1)≥m+1. This forces the edge to be in S j−m , and so both edges are in the
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same sheet. Second, if i < m and j = i+m+1, then i+1≤ m and j−(i+1)= m.
This means the edge is in Si+1, which is equivalent to S j−m because j = i+m+1.
Again, both edges are in the same sheet.

Case 6: i ≤ m+1, j−i ≥ m+2 and there are an odd number of vertices. Refer to
Lemma 3. The edge (i, j) is in S j−m−1. Note that, if i = m+1, then j ≥ 2m+3,
which is impossible, so we can assume i <m+1. There are two possibilities for the
sheet level of edge (i+1, j). First, if i <m+1 and j > i+m+2, then i+1≤m+1
and j−(i+1) ≥ m+2. This means the edge is in S j−m−1. Second, if i < m+1
and j = i+m+2, then i+1≤ m+1 and j−(i+1)= m+1. Again, the edge is in
Si+1 = S j−m−1. Both edges are in the same sheet. �

Corollary 6. Suppose α is a Hamiltonian cycle in K̃n with the property that no
edge of α joins consecutively labeled vertices. Let N = n+k for k ≥ 0. Then K̃N

contains at least 2k
(N

k

)
Hamiltonian cycles that are ambient isotopic to α.

Proof. The subgraph induced by any n vertices of K̃N is ambient isotopic to K̃n , so
there are at least

(N
n

)
n-cycles in K̃N that are ambient isotopic to α. These cycles

share the property that no edge joins consecutive vertices. Let (α1, α2, . . . , αn)

be such an n-cycle. Choose the smallest integer j such that j = αi for some
1 ≤ i ≤ n but j+1 6= αl for any 1 ≤ l ≤ n. (Note: if j = N , we interpret j+1
as 1.) By the proof of Theorem 5, the cycles (α1, . . . , αi−1, j+1, αi , . . . , αn)

and (α1, . . . , αi , j+1, αi+1, . . . , αn) are both ambient isotopic to α. Repeat this
step until all vertices in K̃N are used. This gives 2k ways to extend each n-cycle,
which produces 2k

(N
k

)
distinct Hamiltonian cycles that are ambient isotopic to α,

as claimed. �

This immediately implies that there are at least 2N−7
(N

7

)
Hamiltonian cycles that

are trefoil knots in K̃N when N ≥ 7. This bound is not sharp, however, as shown in
the table in Section 5.

3. Torus knots in the canonical book embedding

Recall that a torus link is a knot or link that can be embedded on the standard
(unknotted) torus in R3. A (p, q) torus link can be deformed so that it crosses every
meridian (a closed curve that bounds a topological disk that is “inside” the torus)
of the torus p times and every longitude (a closed curve that bounds a topological
disk that is “outside” the torus) of the torus q times. When p and q are relatively
prime, the link is a knot. See [Adams 1994, Section 5.1] for a general description
of (p, q) torus knots and links.

A (p, q) torus knot can also be described as the closure of a braid on p strands,
with braid word (σ1σ2 · · · σp−1)

q . Recall that σi denotes that the i-th strand of the
braid crosses over the (i+1)-st strand of the braid, and equivalent braid words can
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Figure 3. The cycle (1, 3, 5, 7, 9, 2, 4, 6, 8) in K̃9 is the knot 51.
It can be described by the braid word σ 4

1 σ
−1
1 σ 3

1 σ
−1
1 = σ

5
1 .

be obtained using the braid relations σiσi+1σi = σi+1σiσi+1 and σiσ j = σ jσi when
|i− j | ≥ 2. See [Adams 1994, Section 5.4] or [Birman 1975] for references on
braids.

Consider the Hamiltonian cycle (1, 3, 5, . . . , 2m+1, 2, 4, . . . , 2m) in K̃2m+1.
This cycle forms the closure of a 2-strand braid with 2m+1 crossings. See Figure 3.
For each i ≤ 2m−2, we know from Lemma 3 that the edge (i, i+2) crosses over
the edge (i+1, i+3) except when i = m+1. Edge (2m−1, 2m+1) crosses over
edge (2m, 1), edge (2m, 1) crosses over edge (2m+1, 2), and edge (2m+1, 2)
crosses under edge (1, 3). The resulting braid word is

σmσ−1σ (2m−2)−(m+1)σσσ−1
= σ 2m−3.

Therefore, we see that K̃2m+1 contains a (2, 2m−3) torus knot. When q is odd, K̃n

contains a (2, q) torus knot as one of its Hamiltonian cycles for all n ≥ q+4. (Note:
when q is even, the same argument shows that K̃n contains a (2, q) torus link.)

Suppose n > 6 is not a multiple of 3, and consider the Hamiltonian cycle
(1, 4, 7, . . . ) in K̃n . This cycle forms the closure of a 3-strand braid with word∏n

i=1(σ
δ1(i)
1 σ

δ2(i)
2 ) where δ1(i)= 1 if the edge (i, i+3) is over the edge (i+1, i+4)

and −1 otherwise, and δ2(i)= 1 if the edge (i, i+3) is over the edge (i+2, i+5)
and −1 otherwise. (The vertex labels are to be taken modulo n.)

Suppose n = 2m is even. (The case for when n is odd is similar, and omit-
ted.) Then Lemma 2 implies that δ1(i) = −1 if and only if i is m or n, and
δ2(i) = −1 if and only if i is one of m−1,m, n−1 or n. The braid word be-
comes

(σ1σ2)
m−2σ1σ

−1
2 σ−1

1 σ−1
2 (σ1σ2)

m−2σ1σ
−1
2 σ−1

1 σ−1
2 .
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Since the braid relations imply that

σ−1
2 σ−1

1 σ−1
2 = σ

−1
1 σ−1

2 σ−1
1 ,

we see that σ1σ
−1
2 σ−1

1 σ−1
2 σ1σ2 is the identity. Therefore the braid word can be

reduced to (σ1σ2)
n−6. This shows that K̃n contains a (3, n−6) torus knot. For any

n ≥ q+6, the spatial representation K̃n contains a (3, q) torus knot (or link, if q
is a multiple of 3).

An extension of this argument leads to the following theorem:

Theorem 7. Let p, q, and n be positive integers such that p ≤ q and n ≥ q+2p.
Then the canonical book representation of Kn contains a (p, q) torus knot (or link).

Proof. By Theorem 5, it suffices to prove this theorem when n = 2p+q . Consider
the knot or link in K̃2p+q consisting of all edges of the form (i, i+ p) for 1≤ i ≤ n,
where the vertex labels are taken modulo n. This knot or link can be described as a
braid on p strands with braid word

w =

n∏
i=1

[
σ
δ1(i)
1 σ

δ2(i)
2 · · · σ

δp−1(i)
p−1

]
,

where

δ j (i)=
{

1 if edge (i, i+ p) is over edge (i+ j, i+ j+ p),
−1 otherwise.

We will use Lemma 2 to prove the case when n is even. The case for n odd is
left to the reader.

Suppose n = 2m. By Lemma 2,

δ j (i)=


1 if 1≤ i ≤ m− j,
−1 if m− j+1≤ i ≤ m,

1 if m+1≤ i ≤ n− j,
−1 if n− j+1≤ i ≤ n,

and this allows us to express w as

w =
[
(σ1σ2 · · · σp−1)

m−p+1(σ1σ2 · · · σp−2)σ
−1
p−1

· (σ1σ2 · · · σp−3)σ
−1
p−2σ

−1
p−1 · · · σ

−1
1 σ−1

2 · · · σ
−1
p−1

]2
.

Next, observe that

(σ1σ2 · · · σp−1)(σ1σ2 · · · σp−2)σ
−1
p−1(σ1σ2 · · · σp−3)σ

−1
p−2σ

−1
p−1 · · · σ

−1
1 σ−1

2 · · · σ
−1
p−1

is equivalent to the identity. For example, when p= 4, we can use the braid relations
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Figure 4. The braid word (σ1σ2σ3)(σ1σ2σ
−1
3 )(σ1σ

−1
2 σ−1

3 ) ·

(σ−1
1 σ−1

2 σ−1
3 ) is equivalent to the identity.

to obtain

(σ1σ2σ3)(σ1σ2σ
−1
3 )(σ1σ

−1
2 σ−1

3 )(σ−1
1 σ−1

2 σ−1
3 )

= (σ1σ2σ1)(σ3σ2σ
−1
3 )(σ1σ

−1
2 σ−1

1 )(σ−1
3 σ−1

2 σ−1
3 )

= (σ2σ1σ2)(σ
−1
2 σ3σ2)(σ

−1
2 σ−1

1 σ2)(σ
−1
2 σ−1

3 σ−1
2 )

= σ2σ1σ3σ
−1
1 σ−1

3 σ−1
2

= σ2σ3σ1σ
−1
1 σ−1

3 σ−1
2

= 1.

(See Figure 4.) This implies that the braid word simplifies to

w = (σ1σ2 · · · σp−1)
2m−2p

= (σ1σ2 · · · σp−1)
q ,

so we obtain a (p, q) torus link as claimed. �

4. Composite knots in the canonical book embedding

In this section we prove that the canonical book embedding of Kn contains a
composite knot for all n ≥ 12. We also show that, if we choose any two knotted
Hamiltonian cycles contained in K̃ p and K̃q , respectively, their composite will be a
Hamiltonian cycle in K̃ p+q+1.

Theorem 8. Let n ≥ 14. Then the cycle

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 14, 15, 16, . . . , n, 2, 4, 6)

in the canonical book representation of Kn is the composite of two trefoils.

Proof. We can find a composite knot in K̃14 by first finding trefoils in two disjoint
subgraphs. The first subgraph is induced by vertices 1 through 7. The second
subgraph is induced by vertices 8 through 14.
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Figure 5. Cycle (1, 3, 5, 7, 14, 2, 4, 6) is ambient isotopic to cycle
(1, 3, 5, 7, 2, 4, 6) since the edge (2, 7), shown as a dashed line,
can be replaced by the path (2, 14, 7).

Any set of seven vertices of K̃14 induces a graph that is ambient isotopic to
the canonical book representation of K7. In K̃7 there is exactly one trefoil knot.
Therefore, there is exactly one trefoil in each subgraph of K̃14 induced by seven
vertices. The first subgraph has a trefoil in the cycle (1, 3, 5, 7, 2, 4, 6). Notice
that this cycle is ambient isotopic to the cycle (1, 3, 5, 7, 14, 2, 4, 6) in K̃14. See
Figure 5.

These cycles are ambient isotopic because the only edges of the cycles which
intersect the path (2, 14, 7) and the edge (2, 7) are edges (1, 3) and (1, 6). Both of
these edges lie in S1 meaning that any path or edge that crosses those two edges
will fall in a lower sheet. This means that the edge (2, 7) can be replaced with the
path (2, 14, 7) without changing the knot type.

The second subgraph (induced by vertices 8 through 14) has a trefoil in the cycle

(8, 10, 12, 14, 9, 11, 13).

Notice that this cycle is ambient isotopic to the cycle

(8, 10, 12, 14, 7, 9, 11, 13).

See Figure 6.
These cycles are ambient isotopic because both the path (9, 7, 14) and the edge

(9, 14) cross edges (8, 10) and (8, 13), which are both in S1. Therefore, any edge
or path that crosses these two edges will still remain under them, meaning that the
path (9, 7, 14) can be replaced with the edge (9, 14) without affecting the knot type.

Place the two cycles on K̃14. When these two cycles are layered they share
the edge (7, 14). Removing edge (7, 14) (which is the shared edge that has no
crossings), will create the composite of the two trefoils. See Figure 7. The cycle
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Figure 6. Cycle (8, 10, 12, 14, 7, 9, 11, 13) is ambient isotopic to
cycle (8, 10, 12, 14, 9, 11, 13) since the edge (9, 14), shown as a
dashed line, can be replaced by the path (9, 7, 14).
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Figure 7. Composite knot in K14. The dashed line is the edge
removed from both factor knots to form the composite.

with the composite knot in K̃14 is

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 14, 2, 4, 6).

For n > 14, the fact that the cycle

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 14, 15, 16, . . . , n, 2, 4, 6)

in the canonical book representation of Kn is the composite of two trefoils follows
immediately from Theorem 5. �

We can improve this result by finding a composite knot in K̃13. Consider two
subgraphs of K̃13. Let the first subgraph of K̃13 be induced by vertices 1 through 7,
and let the second subgraph be induced by vertices 7 through 13. Refer to Figure 8.
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Figure 8. Composite knot in K13. On the left, the two cycles are
layered with the dashed lines representing the edges to be removed.
On the right is the composite formed by adding the bold edge
(2, 7).

Since each subgraph is ambient isotopic to K̃7, each subgraph contains exactly
one trefoil knot. The first subgraph has a trefoil knot in the cycle

(1, 3, 5, 7, 2, 4, 6).

The second subgraph has a trefoil in the cycle

(7, 9, 11, 13, 8, 10, 12).

Place these two cycles together in K̃13. Notice that 4 edges meet at vertex 7.
Connect the knots by joining edges (5, 7) and (7, 9) and replacing the path (2, 7, 12)
with the edge (2, 12). This results in the cycle

(1, 3, 5, 7, 9, 11, 13, 8, 10, 12, 2, 4, 6).

Note that edge (2, 12) crosses edges (1, 3), (1, 6), (8, 13) and (11, 13). Edge (2, 12)
is in sheet five, edges (1, 3), (1, 6), and (8, 13) are in sheet one, and lastly, edge
(11, 13) is in sheet four. This means that edge (2, 12) crosses completely under
all edges. Since edges (2, 7) and (7, 12) also cross under all the edges that edge
(2, 12) crosses, replacing the path (2, 7, 12) by the edge (2, 12) forms a composite
of the two trefoil knots in K̃13.

The smallest K̃n that a composite knot can be found in is K̃12; refer to Figure 9.
To find this composite, once again we consider two subgraphs of K̃12 where the
first subgraph is induced by the first 7 vertices and the second subgraph is induced
by the last 7 vertices in the embedding of K12.
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Figure 9. Composite knot in K12. On the left, two knotted trefoils
are shown. The dashed edges are the ones that will be replaced.
On the right is a cycle which is the composite of the two trefoils.

Each subgraph contains exactly one Hamiltonian cycle that is a trefoil knot. The
first subgraph has a trefoil in the cycle

(1, 3, 5, 7, 2, 4, 6).

The second subgraph has a trefoil in the cycle

(6, 8, 10, 12, 7, 9, 11).

Place these two cycles with the trefoil knots on K12. Notice that there are 4 edges
that meet at vertex 6 and vertex 7. Removing the paths (8, 6, 11) and (2, 7, 5) and
adding edges (2, 11) and (5, 8) forms a composite knot. This cycle is

(1, 3, 5, 8, 10, 12, 7, 9, 11, 2, 4, 6).

Up to now we have shown how to find composites of trefoil knots. A similar
method can be used to find other composite knots.

Theorem 9. Let α be a Hamiltonian cycle in the canonical book representation
of K p and let β be a Hamiltonian cycle in the canonical book representation of Kq .
Then α #β is a Hamiltonian cycle in the canonical book representation of K p+q+1.

Proof. Without loss of generality, we assume that p ≤ q. Consider the subgraph
of K̃ p+q+1 induced by vertices 1 through p, and let α = (α1, α2, . . . , αp). Because
we are dealing with a book representation, we know that there exists some edge
(αi , αi+1) that is in a lower sheet than all other edges in the cycle. Change the
orientation of the cycle if necessary so that αi < αi+1. Edges (αi , p+q+1) and
(αi+1, p+q) are also in lower sheets than any of the edges of α, so the cycle
α̃ = (α1, . . . , αi , p+q+1, p+q, αi+1, αi+2, . . . , αp) is ambient isotopic to α.
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n knotted Hamiltonian cycles out of

7 1 31 knot 1

8 21 31 knots 29

9 342 31 knots 9 41 knots 1 51 knot 577

10 5090 31 knots 245 41 knots 50 51 knots 9991
20 52 knots 1 819 knot

11 74855 31 knots 5335 41 knots 1375 51 knots 165102
836 52 knots 11 61 knots 11 62 knots

1 71 knot 56 819 knot 1 10124 knot

Table 1. Knotted Hamiltonian cycles and total number of knotted
cycles (rightmost column) in the canonical book embedding of Kn ,
for n ≤ 11.

Similarly, we can find a cycle (β1, β2, . . . , βq) that is ambient isotopic to β using
vertices p+1 through p+q. We know such a cycle exists, because the subgraph
induced by any q vertices is ambient isotopic to the canonical book representation
of Kq . Suppose that β j = p+q , and that the cycle is oriented so that β j−1 < β j+1.
Using the same argument used in the proof of Theorem 5, we can extend β to an
ambient isotopic cycle β̃ = (β1, β2, . . . , β j−1, p+q+1, p+q, β j+1, . . . , βq) that
contains the edge (p+q, p+q+1).

The cycles α̃ and β̃ meet along the edge (p+q, p+q+1). The only crossing
between disjoint edges in the two cycles is a single crossing between the edges
(αi+1, p+q) and (β j−1, p+q+1). Since this crossing can be eliminated by flipping
one of the components α̃ or β̃, the cycle

(α1, . . . , αi , p+q+1, β j−1, β j−2, . . . , β1, βq , βq−1, . . . , β j+1, p+q, αi+1, . . . , αp)

is ambient isotopic to the composite knot α #β. �

5. Conclusion

In Table 1, we have identified the knotted Hamiltonian cycles and the total number
of knotted cycles in the canonical book embedding of Kn for 7 ≤ n ≤ 11. These
values were obtained using a computer program that identifies knots from their
Dowker–Thistlethwaite code [Toth and Walton 2010].

The values in column 3 of Table 1 are a consequence of the following:

Proposition 10. Let f (n) be the number of knotted Hamiltonian cycles in the
canonical book representation of Kn . Then the total number of knotted cycles in K̃n
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is
n∑

j=7

(
n
j

)
f ( j).

Proof. The proof follows immediately from Otsuki’s result that any subset of vertices
induces a subgraph that is ambient isotopic to the canonical book representation. �

Hirano [2010] proved that all spatial embeddings of K8 must have at least 3
knotted Hamiltonian cycles; however, no known example achieves that bound.
Abrams and Mellor [2010, Proposition 28] proved that the minimum number of
knotted cycles in K8 must be between 15 and 29. We conjecture the following:

Conjecture 11. The canonical book representation of Kn contains the fewest total
number of knotted cycles possible in any embedding of Kn .

Conjecture 12. The canonical book representation of Kn contains the fewest num-
ber of knotted Hamiltonian cycles possible in any embedding of Kn .

Note that Conjecture 12 implies Conjecture 11. Both conjectures are true for
n ≤ 7.
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On closed modular colorings of rooted trees
Bryan Phinezy and Ping Zhang

(Communicated by Ann Trenk)

Two vertices u and v in a nontrivial connected graph G are twins if u and v
have the same neighbors in V (G)− {u, v}. If u and v are adjacent, they are
referred to as true twins, while if u and v are nonadjacent, they are false twins.
For a positive integer k, let c : V (G)→ Zk be a vertex coloring where adjacent
vertices may be assigned the same color. The coloring c induces another vertex
coloring c′ : V (G)→ Zk defined by c′(v) =

∑
u∈N [v] c(u) for each v ∈ V (G),

where N [v] is the closed neighborhood of v. Then c is called a closed modular
k-coloring if c′(u) 6= c′(v) in Zk for all pairs u, v of adjacent vertices that are
not true twins. The minimum k for which G has a closed modular k-coloring is
the closed modular chromatic number mc(G) of G. A rooted tree T of order at
least 3 is even if every vertex of T has an even number of children, while T is odd
if every vertex of T has an odd number of children. It is shown that mc(T )= 2
for each even rooted tree and mc(T ) ≤ 3 if T is an odd rooted tree having no
vertex with exactly one child. Exact values mc(T ) are determined for several
classes of odd rooted trees T .

1. Introduction

A weighting (or edge labeling with positive integers) of a connected graph G was
introduced in [Chartrand et al. 1988] for the purpose of producing a weighted graph
whose degrees (obtained by adding the weights of the incident edges of each vertex)
were distinct. Such a weighted graph was called irregular. This concept could be
looked at in another manner, however. In particular, let N denote the set of positive
integers and let Ev denote the set of edges of G incident with a vertex v. An edge
coloring c : E(G)→N, where adjacent edges may be colored the same, is said to
be vertex-distinguishing if the coloring c′ : V (G)→ N induced by c and defined
by c′(v) =

∑
e∈Ev c(e) has the property that c′(x) 6= c′(y) for every two distinct

vertices x and y of G. The main emphasis of this research dealt with minimizing
the largest color assigned to the edges of the graph to produce an irregular graph.

MSC2010: primary 05C15; secondary 05C05.
Keywords: rooted trees, closed modular colorings, closed modular k-coloring, closed modular

chromatic number.

83

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2013.6-1
http://dx.doi.org/10.2140/involve.2013.6.83


84 BRYAN PHINEZY AND PING ZHANG

Vertex-distinguishing colorings have received increased attention during the past
25 years (see [Escuadro et al. 2007]).

Rosa [1967] introduced a vertex labeling that induces an edge-distinguishing
labeling defined by subtracting labels. In particular, for a graph G of size m, a
vertex labeling (an injective function) f : V (G) → {0, 1, . . . ,m} was called a
β-valuation if the induced edge labeling f ′ : E(G)→ {1, 2, . . . ,m} defined by
f ′(uv) = | f (u) − f (v)| was bijective. Golomb [1972] called a β-valuation a
graceful labeling and a graph possessing a graceful labeling a graceful graph. It is
this terminology that became standard. Much research has been done on graceful
graphs. A popular conjecture in graph theory, due to Anton Kotzig and Gerhard
Ringel, is the following.

The Graceful Tree Conjecture. Every nontrivial tree is graceful.

Jothi [1991] introduced a concept that, in a certain sense, reverses the roles of
vertices and edges in graceful labelings (see also [Gallian 1998]). For a connected
graph G of order n ≥ 3, let f : E(G)→ Zn be an edge labeling of G that induces a
bijective function f ′ : V (G)→ Zn defined by f ′(v)=

∑
e∈Ev f (e) for each vertex

v of G. Such a labeling f is called a modular edge-graceful labeling, while a
graph possessing such a labeling is called modular edge-graceful (see [Jones et al.
2013]). Verifying a conjecture by Gnana Jothi on trees, Jones et al. [2012] showed
not only that every tree of order n ≥ 3 is modular edge-graceful if and only if
n 6≡ 2 (mod 4) but a connected graph of order n ≥ 3 is modular edge-graceful if
and only if n 6≡ 2 (mod 4).

Many of these weighting or labeling concepts were later interpreted as color-
ing concepts with the resulting vertex-distinguishing labeling becoming a vertex-
distinguishing coloring. A neighbor-distinguishing coloring is a coloring in which
every pair of adjacent vertices are colored differently. Such a coloring is more
commonly called a proper coloring. The minimum number of colors in a proper
vertex coloring of a graph G is its chromatic number χ(G).

In 2004 a neighbor-distinguishing edge coloring c : E(G)→ {1, 2, . . . , k} of a
graph G was introduced (see [Chartrand and Zhang 2009, p. 385]) in which an
induced vertex coloring s : V (G)→ N is defined by s(v) =

∑
e∈Ev c(e) for each

vertex v of G. The minimum k for which such a neighbor-distinguishing coloring
exists is called the sum distinguishing index, denoted by sd(G) of G. This is
therefore the proper coloring analogue of the irregular weighting mentioned earlier.
Karoński et al. [2004] showed that, if χ(G) ≤ 3, then sd(G) ≤ 3. Addario-Berry
et al. [2005] showed that, for every connected graph G of order at least 3, sd(G)≤ 4.
In fact, Karoński et al. [2004] made the following conjecture, which has acquired a
name used by many.

The 1-2-3 Conjecture. If G is a connected graph of order 3 or more, then sd(G)≤3.
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A number of neighbor-distinguishing vertex colorings different from standard
proper colorings have been introduced in the literature (see [Chartrand and Zhang
2009, pp. 379–385], for example). Chartrand et al. [2010] introduced a neighbor-
distinguishing vertex coloring of a graph based on sums of colors. For a nontrivial
connected graph G, let c : V (G)→ N be a vertex coloring of G where adjacent
vertices may be colored the same. If k colors are used by c, then c is a k-coloring
of G. The color sum σ(v) of a vertex v is defined by σ(v) =

∑
u∈N (v) c(u)

where N (v) denotes the neighborhood of v (the set of vertices adjacent to v). If
σ(u) 6= σ(v) for every two adjacent vertices u and v of G, then c is neighbor-
distinguishing and is called a sigma coloring of G. The minimum number of colors
required in a sigma coloring of a graph G is called the sigma chromatic number
of G and is denoted by σ(G). Chartrand et al. [2010] showed that, for each pair a, b
of positive integers with a ≤ b, there is a connected graph G with σ(G)= a and
χ(G)= b.

Chartrand et al. [2012] introduced another neighbor-distinguishing vertex color-
ing that is closely related to colorings discussed above. For a nontrivial connected
graph G, let c : V (G)→ Zk (k ≥ 2) be a vertex coloring where adjacent vertices
may be assigned the same color. The coloring c induces another vertex coloring
c′ : V (G)→ Zk , where

c′(v)=
∑

u∈N [v]

c(u), (1)

where N [v] = N (v)∪ {v} is the closed neighborhood of v and the sum in (1) is
performed in Zk . A coloring c of G is called a closed modular k-coloring if for
every pair x , y of adjacent vertices in G either c′(x) 6= c′(y) or N [x] = N [y], in
the latter case of which we must have c′(x)= c′(y). Closed modular colorings of
graphs were introduced in [Chartrand et al. 2012] and inspired by a domination
problem. The minimum k for which G has a closed modular k-coloring is called
the closed modular chromatic number of G and is denoted by mc(G). Chartrand
et al. [2012] observed that the nontrivial complete graphs are the only nontrivial
connected graphs G for which mc(G) = 1. Two vertices u and v in a connected
graph G are twins if u and v have the same neighbors in V (G)−{u, v}. If u and v
are adjacent, they are referred to as true twins, while if u and v are nonadjacent, they
are false twins. If u and v are adjacent vertices of a graph G such that N [u] = N [v]
(that is, u and v are true twins), then c′(u)= c′(v) for every vertex coloring c of G.
The following result appeared in [Chartrand et al. 2012].

Proposition 1.1. If G is a nontrivial connected graph, then mc(G) exists. Further-
more, if G contains no true twins, then mc(G)≥ χ(G).

To illustrate these concepts, consider the bipartite graph G of Figure 1. Since
χ(G)= 2 and G has no true twins, it follows that mc(G)≥ 2 by Proposition 1.1.
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G :

1
1u 2u 3u

1v 2v

4u
1 1

0 0

11 1 1

0 0

1

Figure 1. A graph G with χ(G)= 2 and mc(G)= 3.

In fact mc(G)= 3. Figure 1 shows a closed modular 3-coloring of G (where the
color of a vertex is placed within the vertex) together with the color c′(v) for each
vertex v of G (where the color c′(v) of a vertex is placed next to the vertex).

For an edge uv of a graph G, the graph G/uv obtained from G by contracting
the edge uv has the vertex set V (G) in which u and v are identified. If we denote
the vertex u = v in G/uv by w, then V (G/uv) = (V (G)∪ {w})− {u, v} and the
edge set of G/uv is

E(G/uv)= {xy : xy ∈ E(G), x, y ∈ V (G)−{u, v}}

∪ {wx : ux ∈ E(G) or vx ∈ E(G), x ∈ V (G)−{u, v}}.

The graph G/uv is referred to as an elementary contraction of G. For a nontrivial
connected graph G, define the true twins closure TC(G) of G as the graph obtained
from G by a sequence of elementary contractions of pairs of true twins in G until no
such pair remains. In particular, if G contains no true twins, then TC(G)=G. Thus
TC(G) is a minor of G. Chartrand et al. [2012] showed that mc(G)=mc(TC(G))
for every nontrivial connected graph G. Therefore, it suffices to consider nontrivial
connected graphs containing no true twins.

Closed modular chromatic numbers were determined for several classes of regular
graphs in [Chartrand et al. 2012]. In particular, it was shown that, for each integer
k ≥ 2, if G is a regular complete k-partite graph such that each of its partite sets
has at least 2k+ 1 vertices, then mc(G)≤ 2χ(G)− 1 and this bound is sharp.

In [Phinezy and Zhang 2013], we investigated the closed modular chromatic
number for trees and determined it for several classes of trees. For each tree T in
these classes, either mc(T )= 2 or mc(T )= 3. Indeed, this is conjectured to be true
in great generality:

Conjecture 1.2 [Phinezy and Zhang 2013]. If T is a tree of order 3 or more, then
mc(T )≤ 3.

In the paper cited, we showed that Conjecture 1.2 is true if 3 is replaced by 4. In
this work, we investigate the closed modular chromatic numbers of rooted trees and
confirm Conjecture 1.2 for several classes of rooted trees, including well-studied
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complete r -ary trees. We refer to [Chartrand et al. 2011] for graph theory notation
and terminology not described in this paper. All trees under consideration in this
work are rooted trees of order at least 3.

2. Rooted trees

Let T be a rooted tree of order at least 3 having the root v. For each integer i with
0≤ i ≤ e(v), where e(v) is the distance between v and a vertex farthest from v, let

Vi = {x ∈ V (T ) : d(v, x)= i}.

If x ∈ Vi where 0 ≤ i ≤ e(v), then x is at level i . If x ∈ Vi (0 ≤ i ≤ e(v)− 1) is
adjacent to y ∈ Vi+1, then x is the parent of y and y is a child of x . A vertex z is
a descendant of x (and x is an ancestor of z) if the x − z path in T lies below x .
In this section, we show that, if T is a rooted tree of order at least 3 such that the
numbers of children of all vertices of T have the same parity and no vertex of T
has exactly one child, then either mc(T )= 2 or mc(T )= 3. In order to do this, we
first present a result on a special class of trees, which was established in [Phinezy
and Zhang 2013]. A caterpillar is a tree of order 3 or more, the removal of whose
end-vertices produces a path called the spine of the caterpillar. Thus every path and
star (of order at least 3) and every double star (a tree of diameter 3) is a caterpillar.

Theorem 2.1. If T is a caterpillar of order at least 3, then mc(T )≤ 3.

Theorem 2.2. Let T be a rooted tree of order at least 3.

(a) If each vertex of T has an even number of children, then mc(T )= 2.

(b) If each vertex of T has either no child or an odd number of children and no
vertex has exactly one child, then mc(T )≤ 3.

Proof. Suppose that v is the root of T . For each integer i with 0≤ i ≤ e(v), let

Vi = {x ∈ V (T ) : d(v, x)= i}.

To verify (a), define the coloring c : V (G)→ Z2 by

c(x)=
{

1 if x ∈ Vi where i ≡ 0, 1 (mod 4),
0 if x ∈ Vi where i ≡ 2, 3 (mod 4).

(2)

Then c′(x)= 1 if x ∈ Vi and i is even and c′(x)= 0 if x ∈ Vi and i is odd. Thus c
is a closed modular 2-coloring and so mc(T )= 2 if each vertex of T has an even
number of children.

To verify (b), we proceed by strong induction. If T is a star, then mc(T ) ≤ 3
by Theorem 2.1. Assume for an integer n ≥ 4 that, if each vertex of a tree of
order at most n has either no child or an odd number of children and no vertex
has exactly one child, then the closed modular chromatic number of the tree is
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at most 3. Let T be a tree of order n + 1 such that each vertex of T has either
no child or an odd number of children and no vertex has exactly one child. We
may assume that T is not a star. Let x be a peripheral vertex of T ; then x is
an end-vertex of T . Suppose that x is a child of the vertex y in T . Since each
vertex of T has either no child or an odd number of children and no vertex of T
has exactly one child, it follows that y has an odd number r ≥ 3 of children; say
x = x1, x2, . . . , xr are children of y. Then each child of y is an end-vertex of T . Let
X = {x = x1, x2, . . . , xr }. Consider T ∗ = T − X which is a tree of order less than
n+ 1 such that each vertex of T ∗ has either no child or an odd number of children
and no vertex of T ∗ has exactly one child. By the induction hypothesis, T ∗ has a
closed modular 3-coloring c : V (T ∗)→ Z3. Next, we show that T has a closed
modular 3-coloring cT : V (T )→ Z3 such that cT (u)= c(u) and c′T (u)= c′(u) for
each u ∈ V (T ∗). Since r is odd, r ≡ 1, 3, 5 (mod 6). We consider these three cases.

Case 1: r ≡ 1 (mod 6). In this case, r ≥ 7. We define cT on X such that
c′T (y)= c′(y). If c(y) 6= c′(y), then cT assigns the color 0 to xi for 1≤ i ≤ r . Hence
c′T (xi ) = c(y) 6= c′(y) for 1 ≤ i ≤ r . If c(y) = c′(y), then cT assigns the color 2
to x1 and x2 and the color 1 to xi for 3≤ i ≤ r . Hence c′T (xi )= c′(y)+ 2 6= c′(y)
for i = 1, 2 and c′T (xi )= c′(y)+ 1 6= c′(y) for 3≤ i ≤ r .

Case 2: r ≡ 3 (mod 6). We define cT on X such that c′T (y)= c′(y). If c(y) 6= c′(y),
then cT assigns the color 0 to xi for 1 ≤ i ≤ r . Hence c′T (xi ) = c(y) 6= c′(y) for
1 ≤ i ≤ r . If c(y) = c′(y), then cT assigns the color 1 to xi for 1 ≤ i ≤ r . Hence
c′T (xi )= c′(y)+ 1 6= c′(y) for 1≤ i ≤ r .

Case 3: r ≡ 5 (mod 6). We define cT on X such that c′T (y)= c′(y). If c(y) 6= c′(y),
then cT assigns the color 0 to xi for 1 ≤ i ≤ r . Hence c′T (xi ) = c(y) 6= c′(y) for
1≤ i ≤ r . If c(y)= c′(y), then cT assigns the color 2 to x1 and assigns the color 1
to xi for 2≤ i ≤ r . Hence c′T (x1)= c′(y)+ 2 and c′T (xi )= c′(y)+ 1 for 2≤ i ≤ r .

In each case, cT is a closed modular 3-coloring of T and so mc(T )≤ 3. �

Theorem 2.2 provides the closed modular chromatic numbers for a well-known
class of rooted trees. A rooted tree T is a complete r-ary tree for some integer
r ≥ 2 if every vertex of T has either r children or no child. The following is a
consequence of Theorem 2.2.

Corollary 2.3. For an integer r ≥ 2, let T be a complete r-ary tree.

(a) If r is even, then mc(T )= 2.

(b) If r is odd, then mc(T )≤ 3.

In the view of Theorem 2.2, it would be useful to introduce an additional ter-
minology. A rooted tree T of order at least 3 is even if every vertex of T has an
even number of children, while T is odd if every vertex of T has an odd number of
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children. It then follows by Theorem 2.2 that mc(T )= 2 if T is an even rooted tree
and mc(T )≤ 3 if T is an odd rooted tree and no vertex of T has exactly one child.

3. Odd rooted trees

In this section we investigate the closed modular colorings of odd rooted trees of
order at least 3. We will see that, if the locations of leaves of an odd rooted tree T
are given, then in some cases it is possible to determine the exact value of mc(T ).
For each integer p ∈ {0, 1, 2, 3, 4, 5}, an odd rooted tree T of order at least 3 having
root v is said to be of type p if d(v, u)≡ p (mod 6) for every leaf u in T . We now
determine all odd rooted trees of type p were 0≤ p ≤ 5 that have closed modular
chromatic number 2.

Theorem 3.1. For each integer p ∈ {0, 1, 2, 3, 4, 5}, let T be an odd rooted tree of
order at least 3 that is of type p. Then mc(T )= 2 if and only if p 6= 1.

Proof. Suppose that v is the root of T . For each integer i with 0 ≤ i ≤ e(v), let
Vi = {x ∈ V (T ) : d(v, x)= i}. First, suppose that 0≤ p ≤ 5 and p 6= 1. We show
mc(T )= 2. Since χ(T )= 2 for every nontrivial tree T , it suffices to construct a
closed modular 2-coloring c : V (T )→ Z2 of T . We consider three cases, according
to the values of p.

Case 1: p = 0. In this case, a coloring c : V (T )→ Z2 is defined by

c(x)=
{

0 if x ∈ Vi and i ≡ 0, 1, 5 (mod 6),
1 if x ∈ Vi and i ≡ 2, 3, 4 (mod 6).

Then the induced coloring c′ : V (T )→ Z2 is defined as

c′(x)=
{

0 if x ∈ Vi and i is even,
1 if x ∈ Vi and i is odd.

(3)

Case 2: p ≡ 2, 3, 4 (mod 6). In this case, a coloring c : V (T )→ Z2 is defined by

c(x)=
{

1 if x ∈ Vi and i ≡ 0, 1, 2 (mod 6),
0 if x ∈ Vi and i ≡ 3, 4, 5 (mod 6).

Then the induced coloring c′ : V (T )→ Z2 is defined as in (3).

Case 3: p ≡ 5 (mod 6). In this case, a coloring c : V (T )→ Z2 is defined by

c(x)=
{

0 if x ∈ Vi and i ≡ 0, 4, 5 (mod 6),
1 if x ∈ Vi and i ≡ 1, 2, 3 (mod 6).

Then the induced coloring c′ : V (T )→ Z2 is defined as

c′(x)=
{

1 if x ∈ Vi and i is even,
0 if x ∈ Vi and i is odd.
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Thus c is a closed modular 2-coloring of T and so mc(T )= 2.
For the converse, suppose that T is an odd rooted tree of order at least 3 that

is of type 1. Thus, if u is a leaf of T , then u ∈ Vk for some integer k, where then
1≤ k ≤ e(v) and k ≡ 1 (mod 6). We show that mc(T ) 6= 2. Assume, to the contrary,
that there is a closed modular 2-coloring c : V (T )→ Z2 of T . Then c′(v)= 0 or
c′(v)= 1. We consider these two cases.

Case 1: c′(v) = 0. Thus c′(x) = 0 if x ∈ Vi and i is even and c′(x) = 1 if x ∈ Vi

and i is odd. Since c(v) ∈ {0, 1}, there are two subcases.

Subcase 1.1: c(v) = 0. Since c′(v) = 0 and c(v) = 0, there is v1 ∈ V1 such that
c(v1)= 0. Since c′(v1)= 1 and c(v)= c(v1)= 0, there is v2 ∈V2 such that c(v2)= 1.
Since c′(v2) = 0, c(v1) = 0 and c(v2) = 1, there is v3 ∈ V3 such that c(v3) = 1.
Observe for each i ≥ 3 that c(vi ) is uniquely determined by c′(vi−1), c(vi−2) and
c(vi−1). Repeating this procedure, we obtain a path Pk = (v1, v2, . . . , vk) in T such
that (1) vk is a leaf of T , d(v, vi )= i for 1≤ i ≤ k and k ≡ 1 (mod 6) and (2) the
color sequence sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, . . . , 1, 1, 1, 0, 0, 0).

Hence (c(vk−2), c(vk−1), c(vk))= (0, 0, 0). However, then c′(vk−1)= c′(vk)= 0,
which is a contradiction.

Subcase 1.2: c(v) = 1. By the same argument as in Subcase 1.1, we conclude
that there must be a path Pk = (v1, v2, . . . , vk) in T such that (1) vk is a leaf
of T , d(v, vi ) = i for 1 ≤ i ≤ k and k ≡ 1 (mod 6) and (2) the color sequence
sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, . . . , 1, 0, 0, 0, 1, 1).

Hence (c(vk−2), c(vk−1), c(vk))= (0, 1, 1). However, then c′(vk−1)= c′(vk)= 0,
which is a contradiction.

Case 2: c′(v) = 1. Thus c′(x) = 1 if x ∈ Vi and i is even and c′(x) = 0 if x ∈ Vi

and i is odd. Since c(v) ∈ {0, 1}, there are two subcases.

Subcase 2.1: c(v) = 0. Since c′(v) = 1 and c(v) = 0, there is v1 ∈ V1 such that
c(v1) = 1. Since c′(v1) = 0, c(v) = 0 and c(v1) = 1, there is v2 ∈ V2 such that
c(v2)= 1. Since c′(v2)= 1, c(v1)= c(v2)= 1, there is v3 ∈ V3 such that c(v3)= 1.
Observe for each i ≥ 3 that c(vi ) is uniquely determined by c′(vi−1), c(vi−2) and
c(vi−1). Repeating this procedure, we obtain a path Pk = (v1, v2, . . . , vk) in T such
that (1) vk is a leaf of T , d(v, vi )= i for 1≤ i ≤ k and k ≡ 1 (mod 6) and (2) the
color sequence sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, . . . , 1, 1, 0, 0, 0, 1).
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Hence (c(vk−2), c(vk−1), c(vk))= (0, 0, 1). However, then c′(vk−1)= c′(vk)= 1,
which is a contradiction.

Subcase 2.2: c(v) = 1. By the same argument as in Subcase 2.1, we conclude
that there must be a path Pk = (v1, v2, . . . , vk) in T such that (1) vk is a leaf
of T , d(v, vi ) = i for 1 ≤ i ≤ k and k ≡ 1 (mod 6) and (2) the color sequence
sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1, 0, 1, 0).

Hence (c(vk−2), c(vk−1), c(vk))= (0, 1, 0). However, then c′(vk−1)= c′(vk)= 1,
which is a contradiction. �

By Theorem 3.1, if T is an odd rooted tree of order at least 3 that is of type 1,
then mc(T )≥ 3. On the other hand, every odd rooted tree of order at least 3 we have
encountered that is of type 1 has closed modular chromatic number 3. Furthermore,
the following is a consequence of Theorems 2.2 and 3.1.

Corollary 3.2. If T is an odd rooted tree of order at least 3 that is of type 1 such
that no vertex has exactly one child, then mc(T )= 3.

By Theorem 3.1, if p is an integer with 0 ≤ p ≤ 5 and p 6= 1, then every
odd rooted tree of order at least 3 that is of type p has closed modular chromatic
number 2. This gives rise to the question:

If S ⊆ {0, 1, 2, 3, 4, 5} where |S| ≥ 2 and 1 /∈ S and T is an odd rooted
tree of order at least 3 having root v such that, for every leaf u in T ,
d(v, u)≡ p (mod 6) for some p ∈ S, then is it necessary that mc(T )= 2?

The answer to this question is no, as we show next. First, it will be convenient
to introduce an additional definition. For a nonempty subset S ⊆ {0, 2, 3, 4, 5},
an odd rooted tree T having root v is said to be of type S if, for every leaf u
in T , d(v, u) ≡ p (mod 6) for some p ∈ S and, for each p ∈ S, there is at least
one leaf u in T such that d(v, u) ≡ p (mod 6). In particular, if S = {p} where
p ∈ {0, 2, 3, 4, 5}, then T is of type p. We first consider odd rooted trees of type S,
where S= {2, 5} or S= {0, 3}. In the next two results, we show that if S = {2, 5} or
S = {0, 3}, then it is possible for an odd rooted tree T of type S to have mc(T )= 3.

Theorem 3.3. For S = {2, 5}, there are odd rooted trees of type S such that
mc(T )= 3.

Proof. Consider the tree T in Figure 2, each of whose leaves are at level 2 or at
level 5. We show mc(T )= 3. For each integer i with 0≤ i ≤ 5, let Vi = {x ∈ V (T ) :
d(v, x) = i}. Thus, if x is a leaf of T , then x ∈ V2 or x ∈ V5. By Corollary 2.3,
mc(T )≤ 3. It remains to show that mc(T ) 6= 2. Assume, to the contrary, that there
is a closed modular 2-coloring c : V (T )→ Z2 of T . Thus c(v) = 0 or c(v) = 1.
We consider these two cases.
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1u 2uu

y x z

v

Figure 2. A tree T with mc(T )= 3.

Case 1: c(v)= 0. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 1.1: c′(v) = 0. Thus c′(w) = 0 if w ∈ Vi and i is even and c′(w) = 1
if w ∈ Vi and i is odd. Furthermore, c(u1) = 0 or c(u1) = 1. First, assume that
c(u1)= 0. Since c′(u1)= 1 and c(v)= 0, there is a child w of u1 such that c(w)= 1.
However, then c′(w) = c′(u1) = 1, a contradiction. Next, assume that c(u1) = 1.
Since c′(u1)= 1 and c(v)= 0, there is a child w of u1 such that c(w)= 0. However,
then c′(w)= c′(u1)= 1, a contradiction.

Subcase 1.2: c′(v) = 1. Thus c′(w) = 0 if w ∈ Vi and i is odd and c′(w) = 1 if
w ∈ Vi and i is even. Furthermore, c(u1) = 1 or c(u1) = 0. First, assume that
c(u1)= 1. Since c′(u1)= 0 and c(v)= 0, there is a child w of u1 such that c(w)= 1.
However, then c′(w) = c′(u1) = 0, a contradiction. Next, assume that c(u1) = 0.
Since c′(u1)= 0 and c(v)= c(u1)= 0, there is a child w of u1 such that c(w)= 0.
However, then c′(w)= c′(u1)= 0, a contradiction.

Case 2: c(v)= 1. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 2.1: c′(v) = 0. Then c(u) = 1 or c(u) = 0. First, assume that c(u) = 1.
Since c′(u)= 1 and c(v)= 1, there is a child w of u such that c(w)= 1. We claim
that c(y) 6= 0 and c(z) 6= 0, for otherwise, say c(y) = 0. Then c′(u) = c′(y) = 1,
a contradiction. Thus c(y) = c(z) = 1, as claimed, which implies that c(x) = 1.
Since c′(x)= 0, there is a child w of x such that c(w)= 0. Since c′(w)= 1, there
is a child w1 of w such that c(w1)= 0. Since c′(w1)= 0, there is a child w2 of w1

such that c(w2) = 0. However, then c′(w1) = c′(w2) = 0, a contradiction. Next,
assume that c(u)= 0. We saw that c(y) 6= 1 and c(z) 6= 1 and so c(y)= c(z)= 0.
Since c′(u)= 1, it follows that c(x)= 0. Since c′(x)= 1, there is a child w of x
such that c(w)= 0. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 1.
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1u
y x

u

z

2u

v

T T

Figure 3. A tree T ∗ of type S = {2, 5} with mc(T ∗)= 2.

Since c′(w1) = 0, there is a child w2 of w1 such that c(w2) = 1. However, then
c′(w1)= c′(w2)= 0, a contradiction.

Subcase 2.2: c′(v) = 1. Then c(u) = 1 or c(u) = 0. We consider these two
possibilities.

Subcase 2.2.1: c(u) = 1. Now either c(x) = 0 or c(x) = 1. First assume that
c(x)= 0. Since c′(x)= 1 and c(u)= 1, there is a child w of x such that c(w)= 0.
Since c′(w)= 0 and c(x)= 0, there is a child w1 of w such that c(w1)= 0. Since
c′(w1)= 1 and c(w1)= 0, there is a child w2 of w1 such that c(w2)= 1. However,
then c′(w1) = c′(w2) = 1, a contradiction. Next, assume that c(x) = 1. Since
c(u)= 1 and c′(u)= 0, one of y and z must be colored 1, say c(y)= 1. However,
then c′(y)= c′(u)= 0, a contradiction.

Subcase 2.2.2: c(u) = 0. Now either c(x) = 0 or c(x) = 1. First assume that
c(x) = 0. Since c′(u) = 0, exactly one of y and z is colored 1, say c(y) = 1 and
c(z) = 0. However, then c′(z) = c′(u) = 0, a contradiction. Next, assume that
c(x)= 1. Since c′(x)= c(x)= 1, there is a child w of x such that c(w)= 0. Since
c′(w) = 0, c(x) = 1 and c(w) = 0, there is a child w1 of w such that c(w1) = 1.
Since c′(w1) = 1, there is a child w2 of w1 such that c(w2) = 0. However, then
c′(w1)= c′(w2)= 1, a contradiction. �

By Theorem 3.3, despite the fact that every odd rooted tree of type 2 or type 5 has
closed modular chromatic number 2, there are odd rooted trees T of type S = {2, 5}
for which mc(T )=3. On the other hand, there are odd rooted trees of type S={2, 5}
having closed modular chromatic number 2. For example, we start with the tree T
in Figure 2. Let T ′ be the subtree of T whose vertex set consists of x and all
descendants of x . Then the tree T ∗ is constructed from T of Figure 2 by replacing y
with a copy of T ′ (see Figure 3). The coloring c : V (T )→ Z2 defined by assigning
the color 0 to each vertex in {u, u1, u2, x, y} and assigning the color 1 to the
remaining vertices of T ∗ is a closed modular 2-coloring. Therefore, mc(T ∗)= 2.

Theorem 3.4. For S = {0, 3}, there are odd trees T of type S such that mc(T )= 3.

Proof. Consider the tree T of Figure 4, each of whose leaves are at level 3 or
at level 6. We show that mc(T ) = 3. For each integer i with 0 ≤ i ≤ 6, let
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Figure 4. A tree T with mc(T )= 3.

Vi = {x ∈ V (T ) : d(v, x) = i}. If x is a leaf of T , then x ∈ V3 or x ∈ V6. By
Corollary 2.3, mc(T ) ≤ 3. Thus it remains to show that mc(T ) 6= 2. Assume, to
the contrary, that there is a closed modular 2-coloring c : V (T )→ Z2 of T . Thus
c(v)= 0 or c(v)= 1. We consider these two cases.

Case 1: c(v)= 0. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 1.1: c′(v) = 0. In this case, there is a child of v that is colored 0. First,
assume that c(u1)= 0. Since c′(u1)= 1, there is a child w of u1 such that c(w)= 1.
Since c′(w)=0 and c(w)=1, there is a childw1 ofw such that c(w1)=1. However,
then c′(w1)= c′(w)= 0, a contradiction. Thus c(u1)= 1 and, similarly, c(u2)= 1.
This implies that c(u) must be 0. Note that c(x1) = 1 or c(x1) = 0. If c(x1) = 1,
then there is a child w of x1 such that c(w)= 1. However, then c′(x1)= c′(w)= 0,
a contradiction. If c(x1) = 0, then there is a child w of x1 such that c(w) = 0.
However, then c′(x1)= c′(w)= 0, a contradiction.

Subcase 1.2: c′(v)= 1. Since c(v)= 0, either exactly one or exactly three children
of v must be colored 1. First, suppose that c(u1)= 0. Then there is a child w of u1

such that c(w)= 0. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 1.
However, then c′(w1)= c′(w)= 1, a contradiction. Thus c(u1)= 1 and, similarly,
c(u2)= 1. This implies that c(u) must be 1. Note that c(x)= 1 or c(x)= 0. We
consider these two subcases.

Subcase 1.2.1: c(x)=1. In this case, either exactly one or exactly three children of x
must be colored 1. Since c′(x)= 1, it follows c(y1)= 1 (for otherwise, c′(y1)= 1).
Similarly c(y2)= 1. Thus c(y) must be 1. Since c′(y)= 0, there is a child w of y
such that c(w)= 0. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 0.
This in turn implies that there is a child w2 of w1 such that c(w2)= 0. However,
then c′(w1)= c′(w2)= 0, a contradiction.
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Subcase 1.2.2: c(x)= 0. Since c′(x)= 1, it follows that c(y1)= c(y2)= 0, which
implies that c(y) = 0. Since c′(y) = c(y) = 0, there is a child w of y such that
c(w) = 0. Since c′(w) = 1, there is a child w1 of w such that c(w1) = 1. This
in turn implies that there is a child w2 of w1 such that c(w2)= 1. However, then
c′(w1)= c′(w2)= 0, a contradiction.

Case 2: c(v)= 1. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 2.1: c′(v)=0. Note that c(u1)=0 or c(u1)=1. First, assume that c(u1)=0.
Since c′(u1) = 1, there is a child w of u1 such that c(w) = 0. Since c′(w) = 0,
there is a child w1 of w such that c(w1) = 0. However, then c′(w1) = c′(w) = 0,
a contradiction. Thus c(u1)= 1 and, similarly, c(u2)= 1. This implies that c(u)
must be 1. Note that c(x)= 0 or c(x)= 1. There are two subcases.

Subcase 2.1.1: c(x) = 0. If c(y1) = 0, then c′(y) = c′(x) = 0, a contradiction.
Thus c(y1)= 1 and, similarly, c(y2)= 1. This implies that c(y) must be 1. Since
c′(y)= 1, there is a child w of y such that c(w)= 0. Since c′(w)= 0 and c(y)= 1,
there is a child w1 of w such that c(w1)= 1. This in turn implies that there is a child
w2 of w1 such that c(w2)= 0. However, then c′(w1)= c′(w2)= 1, a contradiction.

Subcase 2.1.2: c(x) = 1. If c(y1) = 1, then c′(y) = c′(x) = 0, a contradiction.
Thus c(y1)= 0 and, similarly, c(y2)= 0. This implies that c(y) must be 0. Since
c′(y)= 1 and c(x)= 1, there is a child w of y such that c(w)= 0. Since c′(w)= 0,
there is a child w1 of w such that c(w1)= 0. This in turn implies that there is a child
w2 of w1 such that c(w2)= 0. However, then c′(w1)= c′(w2)= 1, a contradiction.

Subcase 2.2: c′(v) = 1. Note that c(u1) = 0 or c(u1) = 1. First, assume that
c(u1)= 0. Since c′(u1)= c(u1)= 0 and c(v)= 1, there is a child w of u1 such that
c(w)= 1. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 0. However,
then c′(w1)= c′(w)= 1, a contradiction. Thus c(u1)= 1 and, similarly, c(u2)= 1.
This implies that c(u) must be 0. Note that c(x1)= 0 or c(x1)= 1. Furthermore,
c′(x1)= 1. If c(x1)= 0, then there is a child w of x1 such that c(w)= 1. However,
then c′(x1)= c′(w)= 1, a contradiction. If c(x1)= 1, then there is a child w of x1

such that c(w)= 0. However, then c′(x1)= c′(w)= 1, a contradiction. �

As with the case when S = {2, 5}, there are odd rooted trees of type S = {0, 3}
having closed modular chromatic number 2. For example, we start with the tree T
in Figure 4. Let T ′ be the subtree of T whose vertex set consists of y and all
descendants of y. Then the tree T ∗ is constructed from T of Figure 4 by replacing y1

with a copy of T ′ as we did in the case when S= {2, 5} (see Figure 3). The coloring
c : V (T )→Z2 defined by assigning the color 0 to each vertex in {v, y, y1}∪V5 and
assigning the color 1 to the remaining vertices of T ∗ is a closed modular 2-coloring.
Therefore, mc(T ∗)= 2.
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Next, we show that, if S is a nonempty subset of {0, 2, 3, 4, 5} such that S
contains at most one of 2 and 5 and at most one of 0 and 3, then every odd rooted
tree of type S has closed modular chromatic number 2.

Theorem 3.5. Let S be a nonempty subset of {0, 2, 3, 4, 5} such that S contains at
most one of 2 and 5 and at most one of 0 and 3. If T is an odd rooted tree of order
at least 3 that is of type S, then mc(T )= 2.

Proof. By Theorem 3.1, we may assume that |S| ≥ 2. Since |S ∩ {2, 5}| ≤ 1 and
|S ∩ {0, 3}| ≤ 1, it follows that |S| ≤ 3. Thus we consider two cases, according to
whether |S| = 3 or |S| = 2.

Case 1: |S| = 3. Then S is one of the sets {0, 2, 4}, {0, 4, 5}, {2, 3, 4}, {3, 4, 5}.
Since χ(T )= 2 for every nontrivial tree T , it suffices to show that there is a closed
modular 2-coloring by Proposition 1.1. For each integer i with 0≤ i ≤ e(v), let

Vi = {x ∈ V (T ) : d(v, x)= i}.

First, suppose that S = {0, 2, 4}. Define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi and i is odd,
1 if x ∈ Vi and i is even.

Then c′(x)= c(x) for each x ∈ V (T ). Next, suppose that S is one of {0, 4, 5} and
{2, 3, 4}. If S = {0, 4, 5}, then define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi where i ≡ 0, 1, 5 (mod 6),
1 if x ∈ Vi where i ≡ 2, 3, 4 (mod 6).

If S = {2, 3, 4}, then define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi where i ≡ 3, 4, 5 (mod 6),
1 if x ∈ Vi where i ≡ 0, 1, 2 (mod 6).

In either case, c′(x)= 0 if x ∈ Vi and i is even and c′(x)= 1 if x ∈ Vi and i is odd.
Finally, suppose that S = {3, 4, 5}. Define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi where i ≡ 0, 4, 5 (mod 6),
1 if x ∈ Vi where i ≡ 1, 2, 3 (mod 6).

Then c′(x)= 0 if x ∈ Vi and i is odd and c′(x)= 1 if x ∈ Vi and i is even. In each
case, c is a closed modular 2-coloring of T and so mc(T )= 2.

Case 2: |S| = 2. Then S is a 2-element subset of one of the sets {0, 2, 4}, {0, 4, 5},
{2, 3, 4}, {3, 4, 5} in Case 1. Observe that the closed modular 2-colorings described
in Case 1 will provide closed modular 2-colorings for this case. For example, if S
is a 2-element subset of S′ = {0, 2, 4}, then a closed modular 2-coloring of a tree of
type S′ described in Case 1 provides a closed modular 2-coloring of T . Therefore,
mc(T )= 2 in this case as well. �
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Iterations of quadratic polynomials over finite fields
William Worden

(Communicated by Michael Zieve)

Given a map f W Z! Z and an initial argument ˛, we can iterate the map to
get a finite forward orbit modulo a prime p. In particular, for a quadratic map
f .z/D z2Cc, where c is constant, work by Pollard suggests that the forward orbit
should have length on the order of

p
p. We give a heuristic argument that suggests

that the statistical properties of this orbit might be very similar to the birthday
problem random variable Xn, for an n D p day year, and offer considerable
experimental evidence that the limiting distribution of the orbit lengths, divided
by
p

p, for p � x as x!1, converges to the limiting distribution of Xn=
p

n,
as n!1.

1. Introduction

Let f 2 ZŒz� be a polynomial and let ˛ 2 Z. We define the orbit of ˛ under f to be

Of .˛/D ff
n.˛/ W nD 0; 1; 2; 3; : : : g;

and for each prime p we define the orbit modulo p of ˛ under f to be

O
p

f
.˛/D ff n.˛/ mod p W nD 0; 1; 2; 3; : : : g;

where f n is the n-th iterate of f :

f n
D f ıf ı � � � ıf„ ƒ‚ …

n

;

and f 0.˛/ D ˛. For a fixed f and ˛ and a given prime p, let mp be the size
of O

p

f
.˛/.

If f is a random map, i.e., a map chosen from the uniformly distributed set
consisting of all maps from Fp into Fp (see [Harris 1960]), then the values of f n.˛/

MSC2010: primary 37P05; secondary 11B37.
Keywords: arithmetic dynamics, birthday problem, forward orbit modulo p, random maps.
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are uniformly distributed for all n, and all ˛, and so the probability that f 0.˛/,
f 1.˛/, f 2.˛/; : : : , f k.˛/ are all different is

1 �
p� 1

p
�
p� 2

p
� � � � �

p� k

p
D

.p� 1/!

pk.p� k � 1/!
;

since, once ˛ is fixed, there are p� 1 choices for f 1.˛/, p� 2 choices for f 2.˛/,
and so on. Therefore, in this case the probability that (at least) two of f 0.˛/, f 1.˛/,
f 2.˛/; : : : , f k.˛/ are equal is

q
.p/

k
D 1�

.p� 1/!

pk.p� k � 1/!
:

By an analogous argument, q
.p/

k
is also the probability that, among k people, two

people have the same birthday, where p is the number of days in a year. Framing
this a little differently, we let the random variable Xn be the number of times that
we must sample (uniformly, with replacement) from the set f1; 2; 3; : : : ; ng to get a
repetition. Since it is known that the expected value of this variable is on the order
of
p

n, we look instead at the variable Xn=
p

n.
In light of the above heuristic, we might expect that, for a fixed polynomial f

and initial value ˛, mp=
p

p will, on average, “behave” similarly to Xn=
p

n. In
particular, we might guess that the limiting distribution of mp=

p
p, for p � x,

x!1, will be similar to the limiting distribution of Xn=
p

n, as n!1. We note
that the above heuristic is not new; similar arguments have been given by Pollard
[1975], Bach [1991], and Brent [1980] to name a few, leading to conjectures that
mp is on average approximately equal to

p
.�=2/p.

We also consider a related question. For a fixed f 2 ZŒz�, ˛ 2 Z, let

Qf;˛.x/D
˚
p � x W f n.˛/� 0 .mod p/ for some nD 0; 1; 2; : : :

	
:

That is, Qf;˛.x/ is the set of primes p less than or equal to x such that 0 appears
in the orbit modulo p of ˛ under f . In particular, we are interested in the size
of Qf;˛.x/. Since, for a given prime p, the proportion of elements mod p in the
orbit of ˛ under f is mp=p, we hypothesize that jQf;˛.x/j will grow at a rate
proportional to mp=p. Therefore, if we are correct that mp will grow at a rate
proportional to

p
p, we might expect that

jQf;˛.x/j D
X
p�x

mp

p
� c �

p
x

log x

for some constant c 2R. The approximation above is discussed further in Section 3,
where we derive the appropriate constant c.

In the following we take an experimental approach to studying properties of
the set mp=

p
p. For selected maps f and initial values ˛, we compute the orbits
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modulo p for all p � 225. In particular, given these orbits we can find the moments
of mp=

p
p, and the length of Qf;˛.x/. As we will demonstrate in the sections to

follow, our results give strong support to the above heuristic, and lead us to make
the following conjectures:

Conjecture 1. Let f .z/D z2C c and ˛ 2 Z be such that

(1) c 2 Z n f0;�2g,

(2) ˛¤˙1
2
.1˙
p

1� 4c/; ˛¤˙1
2
.1˙
p
�3� 4c/; ˛¤0;˙1 when cD�1,

and let the orbit length mp be as defined above. Then, as x !1, the distribu-
tion of mp=

p
p converges, independent of f and ˛, to a continuous distribution

F.t/D 1� e�t2=2, t � 0. In particular, the r -th moments of mp=
p

p are given by

�r D r.r �2/.r �4/ � � � 2 for r even, and �r D r.r �2/.r �4/ � � � 1 �
q
�
2

for r odd.

The motivation for the result conjectured above is elaborated upon in Section 2,
and the need to include conditions (1) and (2) for both conjectures is explained in
Section 4.

Conjecture 2. Let f .z/D z2C c and ˛ 2 Z be such that conditions .1/ and .2/ of
Conjecture 1 hold, and ˛2 ¤�c. Define

Qf;˛.x/D fp � x W f n.˛/� 0 .mod p/ for some n� 0g:

Then

lim
x!1

jQf;˛.x/j
log x
p

x
D
p

2�:

2. Length of the orbit modulo p and the birthday problem

Let Ek be the k-th number drawn uniformly from the set f1; 2; 3; : : : ; ng, with
replacement, and let Xn be as defined in Section 1. Then for k � n we have

P .Xn > k/D P .E1; : : : ;Ek all take different values/

D

kQ
jD2

�
1�P .Ej DEi for some i < j /

�
D

kQ
jD2

�
1�

j � 1

n

�
D exp

k�1P
jD1

log .1� j=n/:

So as n!1, we have the following for 0� t �
p

n:

lim
n!1

P .Xn=
p

n>t/D lim
n!1

P .Xn>t
p

n/D lim
n!1

exp
bt
p

ncP
jD1

log .1�j=n/

D lim
n!1

exp
�
�

bt
p

ncP
jD1

1P
kD1

.j=n/k

k

�
;
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where we have used the power series representation for log .1� j=n/ in the third
line. Switching the order of summation, and pulling the first term of the sum over k

out of the exponential, we have

lim
n!1

P .Xn=
p

n> t/

D lim
n!1

exp
�
�

bt
p

ncP
jD1

j=n

�
� lim
n!1

exp
�
�

1P
kD2

bt
p

ncP
jD1

.j=n/k

k

�

� lim
n!1

exp
�
�

t
p

n.t
p

nC 1/

2n

�
� lim
n!1

exp
�
�

1P
kD1

O

�
tkC2

knk=2

��

� e�t2=2
� exp

1P
kD1

lim
n!1

O

�
tkC2

knk=2

�
D e�t2=2;

where the second line follows because, in general,
Pm

jD1 j k is a polynomial in m

of degree kC 1, and the third line, where we have brought the limit inside the sum,
follows from the monotone convergence theorem. Therefore

lim
n!1

P .Xn=
p

n� t/D 1� e�t2=2;

so we see that the distribution of Xn=
p

n converges to a distribution function
F.t/D1�e�t2=2, which has an associated density function f .t/DF 0.t/D te�t2=2.
To support our conjecture in Section 1 — that F.t/ is the limiting distribution of
mp=
p

p, as x!1— we compare the moments of mp=
p

p, which we compute
in Section 5 for large x, to the limiting moments of Xn=

p
n, as n!1. With the

limiting density function f .t/ of Xn=
p

n in hand we can derive a general expression
for the r -th moment:

�r D

Z 1
0

trf .t/ dt D

Z 1
0

trC1e�t2=2 dt

D�tr e�t2=2
ˇ̌1
0
C r

Z 1
0

tr�1e�t2=2 dt D r

Z 1
0

tr�1e�t2=2 dt;

where r applications of l’Hôpital’s rule give us 0 for the �tr e�t2=2 term. We
continue applying integration by parts as above until we get

�r D r.r � 2/.r � 4/ � � � 2 �

Z 1
0

te�t2=2 dt if r is even,

�r D r.r � 2/.r � 4/ � � � 1 �

Z 1
0

e�t2=2 dt if r is odd.

The first integral above evaluates to �e�t2=2
ˇ̌1
0
D 1, and the second integral we

evaluate as follows:
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I D

Z 1
0

e�t2=2 dt

D) .2I/2 D

�Z 1
�1

e�t2=2 dt

�2

D

Z 1
�1

e�x2=2 dx �

Z 1
�1

e�y2=2 dy

D

Z 1
�1

Z 1
�1

e�.x
2Cy2/=2 dx dy

D

Z 1
rD0

Z 2�

�D0

re�r2=2 dr d� D 2�

D) I D

r
�

2
:

Therefore the r -th moments of the limiting distribution of Xn=
p

n, as n!1, are
given by

�r D r.r � 2/.r � 4/ � � � 2 if r is even,

�r D r.r � 2/.r � 4/ � � � 1 �
p
�=2 if r is odd.

For the first four moments this gives us �1D
p
�=2, �2D 2, �3D 3

p
�=2, �4D 8.

Therefore, to support our claim in Conjecture 1 we must provide evidence that the
moments of mp=

p
p are converging, as x!1, to the moments �r above. In our

computations we use the following expression for the r -th moments of mp=
p

p:

Mr D
1

jfp � xgj

X
p�x

�
mp
p

p

�r

:

3. Iterates of f congruent to zero modulo p

In this section we consider the quantity jQf;˛.x/j.log x/=
p

x, as defined in Section 1.
Assuming that the probability that 0 2 O

p

f
.˛/ is mp=p, and that M1 will converge

to
p
�=2, we define

G.x/D
log x
p

x

X
p�x

p
�=2
p

p
;

and make a guess that

lim
x!1

jQf;˛.x/j
log x
p

x
D lim

x!1
G.x/: (1)

If we let �.x/D
P

k�x a.k/, where a.k/D 1 if k is prime and 0 otherwise, and
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define f .x/D 1=
p

x, then Stieltjes integration by parts givesX
p�x

1
p

p
D
�.x/
p

x
�

1
p

2
C

1

2

Z x

2

�.t/

t3=2
dt;

which implies

lim
x!1

log x
p

x

X
p�x

1
p

p
D 1C lim

x!1

log x

2
p

x

Z x

2

�.t/

t3=2
dt: (2)

Now, for x � 55, we can bound �.x/ by the inequalities
x

log xC 2
< �.x/ <

x

log x� 4
I

see [Rosser 1941]. Hence, if we shift the lower limit of integration in (2) to 55,
changing the value of the integral only by an additive constant which will vanish in
the limit, we can write

lim
x!1

log x

2
p

x

Z x

55

1
p

t.log t C 2/
dt � lim

x!1

log x

2
p

x

Z x

55

�.t/

t3=2
dt

� lim
x!1

log x

2
p

x

Z x

55

1
p

t.log t � 4/
dt: (3)

Consider the limit on the left. The integral diverges, since the integrand exceeds
1=t everywhere — indeed,

p
t.log t C 2/ < t for t � 55. Hence the limit has the

form1=1, where the denominator comes from expressing the quotient before the
integral as the inverse of 2

p
x= log x. It follows that the limit on the left equals

lim
x!1

1
p

x.log xC 2/
�

p
x log2 x

log x� 2
D lim

x!1

log2 x

log2 x� 4
D 1:

An analogous reasoning shows that the rightmost limit in (3) is equal to

lim
x!1

1
p

x.log x� 4/
�

p
x log2 x

log x� 2
D lim

x!1

log2 x

log2 x� 6 log xC 8
D 1:

Therefore so is the limit in the middle. In other words, lim
x!1

G.x/D2
p
�=2D

p
2� ,

and our guess (1) becomes

lim
x!1

jQf;˛.x/j
log x
p

x
D
p

2�:

As we test our hypothesis, it should be kept in mind that limx!1G.x/ converges
very slowly. Since the values of x for which jQf;˛.x/j.log x/=

p
x can actually be

computed (in a reasonable amount of time) are relatively small, the largest being
227, we compare our computations to G.x/, rather than the limit

p
2� .
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4. Some special cases

In this paper we consider polynomials of the form f .z/D z2C c, with z, c 2 Z,
and initial argument values ˛ 2 Z. But for certain f , ˛ pairs we find that we end
up with a finite (over Z) orbit, a condition which is clearly incompatible with our
hypotheses outlined in Sections 2 and 3, since mp will have a fixed bound for all
primes p. In this section we classify these exceptional pairs f , ˛.

Proposition 1. Let Of .˛/D ff
n.˛/ W nD 0; 1; 2; 3; : : : g be the orbit of ˛ under f ,

where f .z/D z2C c, c 2 Z, and ˛ 2 Z. Then Of .˛/ is finite if and only if one of
the following hold:

.i/ ˛ D˙1
2
.1˙
p

1� 4c/;

.ii/ ˛ D˙1
2
.1˙
p
�3� 4c/;

.iii/ ˛ 2 f0; 1;�1g and c 2 f0;�1;�2g:

Proof. First we prove the converse, which is easier. Assumption (i) gives us the
solutions to ˛2˙˛CcD0, and this equation implies that ˛2CcD˙˛, which implies
that the orbit is finite. Assumption (ii) gives the solutions to ˛2˙˛C cC 1D 0,
and this equation implies that ˛2C c D˙˛� 1. With one more iteration we get

.˛2
C c/2C c D .˙˛� 1/2C c D ˛2

� 2˛C 1�˛2
˙˛� 1D�2˛˙˛ D˙˛;

which again implies that the orbit is finite. As for (iii), testing all possible ˛, c

combinations will quickly convince the reader that the orbits are finite in all cases.
Now suppose that Of .˛/ is finite. First we make some simplifications. Since the

orbits of ˛ and�˛ will be identical except for the sign of the first element f 0D˛, we
may consider only nonnegative values of ˛. Also, since it is obvious that c 2 f0;�1g

will have infinite orbit for ˛ � 2, and that c � 1 will have infinite orbit for all ˛, we
consider only c ��2. We claim that Of .˛/ finite implies

p
�c�1<˛ <

p
�cC1.

If this were not true, then we would have either ˛Dd
p
�c eCb or ˛Db

p
�cc�b

for some b 2 N, giving us

˛ D d
p
�ceCb D) ˛2

Cc D .d
p
�ce/2C2bd

p
�ceCb2

Cc > d
p
�ceCb;

˛ D b
p
�cc�b D) ˛2

Cc D .b
p
�cc/2�2bb

p
�ccCb2

Cc < �2bb
p
�ccCc:

The first of these immediately implies that the iterates of f are unbounded since
they are strictly increasing. In the second case iterating once more gives us

.˛2
C c/2C c > 4b2

b
p
�cc2� 4bcb

p
�ccC c2 > b

p
�ccC b;

where the inequality reverses since ˛2C c < �2bb
p
�ccC c < 0, and the second

inequality follows since c � �2. Again we can conclude that the iterates of f are
unbounded, and so we have shown that Of .˛/ finite implies

p
�c�1<˛<

p
�cC1.
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For any c, there are at most two integers that satisfy the preceding inequality,
b
p
�cc and d

p
�ce, so any member of Of .˛/ must be one of ˙b

p
�cc, ˙d

p
�ce,

since otherwise the iterates of f will be unbounded. Since we know ˛ 2 Of .˛/,
the condition above implies that Of .˛/ � f˛;�˛; ˛ � 1;�˛ � 1g or Of .˛/ �

f˛;�˛; ˛C 1;�˛C 1g. However, we can rule out the latter case since

˛2
C c D˙˛C 1

D) .˛2
C c/2C c D˙3˛C 2

D) ..˛2
C c/2C c/2C c D 7˛2

˙ 13˛C 5> 2˛C 5>˙˛C 1>˙˛;

where the first inequality follows since in this case c � �2D) ˛ � 2. Therefore
the iterates are unbounded in this case, and we are left with the following:

˛2
C c D˙˛ or ˛2

C c D˙˛� 1

D) ˛2
˙˛C c D 0 or ˛2

˙˛C cC 1D 0

D) ˛ D˙1
2
.1˙
p

1� 4c/ or ˛ D˙1
2
.1˙
p
�3� 4c/: �

This proposition is the basis for the second condition necessary for Conjectures 1
and 2; we now turn to the first condition, that c … f0;�2g. These two cases behave
strikingly differently from the others studied, because they come from homomor-
phisms of the multiplicative group. The map z2�2 is a Chebyshev polynomial, and
so is connected to z2 via a homomorphism from C� to C�=fz � z�1g [Silverman
2007, pp. 29–30]. On a finite field Fp, this means that the behavior of z2� 2 will
be very similar to that of z2. For c D 0 it is clear that jQf;˛.x/j will not grow as
expected, since we’ll have p 2 Qf;˛.x/ if and only if p divides ˛. On the other
hand, the length mp of the orbit modulo p will grow much faster than we expect.
Vasiga and Shallit [2004] studied these two cases in some depth, showing that, for
a given prime p, if .p� 1/=2 is prime and 2 is a primitive root modulo .p� 1/=2,
then

P
0�˛<p mp is at least on the order of p2. Heuristics by Hardy and Littlewood

[1923], along with Artin’s conjecture, suggest that the number of primes less than x

that satisfy this property is on the order of x=.log x/2, and thus the density of
these primes is on the order of 1= log x. If we sum p2, for p � x, and multiply
by 1= log x, we get something on the order of x3=.log x/2, and dividing this by
the sum

P
p�x

P
0�˛<p 1 � x2= log x gives us an average orbit length on the

order of x= log x. Note that this estimate only takes into account primes with the
aforementioned property, and assumes that all other primes have orbit length 0, so
we should expect this to be a low estimate. Indeed, the limited experimentation we
did on this question suggests that the average orbit length is closer to x=.log x/3=4.

Finally, Conjecture 2 requires an additional condition, that ˛2 ¤ �c. If we
disregard this condition we will have cases where 0 2 Qf;˛.x/ for all p, which
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clearly conflicts with our claim. To see that the f 0 D ˛ is the only iterate whose
square can be equal to �c, suppose that the contrary is true, i.e., that we have
.f l/2 D�c for some l 2 Z; then, letting f k D f l�1, we have�

.f k/2C c
�2
C c D 0;

.f k/4C 2c.f k/2C c2
C c D 0;

c2
C .2.f k/2C 1/cC .f k/4 D 0:

Therefore the quadratic formula gives us

c D
�2.f k/2� 1˙

p
.2f k/2C 1

2
;

which is not an integer unless f k D 0, in which case .f l/2D c2D�c D) c D�1.
It is easy to see that this implies ˛ 2 f0; 1g, and this case has already been excluded
by Proposition 1(iii).

5. Results

First we consider the first four moments of mp=
p

p, as discussed in Section 2, for
f .z/D z2C c, where c D˙1;C2;˙3, and initial arguments ˛ D 1; 2; : : : ; 9. Of
these we can exclude ˛D 1; 2 when f .z/D z2�3, and ˛D 1 when f .z/D z2�1,
because these .f; ˛/ combinations have finite orbits, as discussed above. For the
other 42 combinations, we find that our experimental results support our hypotheses
very well. For the first moment we expected the limit to be

p
�=2D1:25331413 : : : ,

and for all .f; ˛/ tested, M1 was between 1:25138 and 1:25351 for x D 225, with
an average value of 1:25279. Table 1 gives these figures along with the standard

mean stand dev min max

M1 1.252795789 0.000518158 1.251387582 1.253505370
j
p
�=2�M1j 0.000544827 0.000490241 0.000000052 0.001926555

M2 1.998325027 0.001690776 1.993860194 2.000539507
j2�M2j 0.001810403 0.001544894 0.000034079 0.006139806

M3 3.755044605 0.004998323 3.742341997 3.762285912
j3
p
�=2�M3j 0.005419269 0.004427558 0.000121838 0.017600415

M4 7.985456401 0.014915109 7.948531018 8.008817811
j8�M4j 0.016278430 0.012999594 0.000149649 0.051468982

Table 1. Moments of mp=
p

p for x D 225 and distance from
predicted limit. For comparison,

p
�=2� 1:25331413731550.
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x, n bsum
2^2 1.609375
2^3 1.50084051
2^4 1.42606456
2^5 1.37427007
2^6 1.33822266
2^7 1.31303548
2^8 1.29538162
2^9 1.28297837
2^10 1.27424857
2^11 1.26809621 min max st dev mean
2^12 1.26375619 2^25 1.2513875818 1.2535053696 0.0005181578 1.2527957886
2^13 1.26069254 difference 0.0000000516 0.0019265555 0.000490241 0.0005448272
2^14 1.25852883
2^15 1.25700017
2^16 1.2559199
2^17 1.25515636
2^18 1.25461662
2^19 1.25423505
2^20 1.25396528
2^21 1.25377454
2^22 1.25363968
2^23 1.25354433
2^24 1.2534769
2^25 1.25342923

0.0001150921

f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.21957879 0.93090366 0.64222853 1.21957879 0.93090366 0.64222853 1.21957879
2^3 1.21136067 0.9552197 0.8455067 0.92788731 0.86072858 0.7337033 0.81608391
2^4 1.09297763 0.92624386 0.89932687 0.95424728 0.81299789 0.77856625 0.78323477
2^5 0.93871094 0.89540203 0.85457831 0.90285167 0.74499017 0.84388128 0.896139
2^6 1.01265306 0.93312537 0.95408573 0.95679407 0.84513849 0.89151422 0.81893649
2^7 1.0542034 0.92631254 0.98661434 0.90757345 0.92370119 0.9050946 0.82263459
2^8 1.12983069 1.08058379 1.17093291 1.01515706 1.03851649 1.03909829 0.98352393
2^9 1.36061642 1.30886063 1.28942763 1.36218822 1.29400814 1.30826766 1.1615585
2^10 1.58192097 1.61530182 1.60780256 1.67080924 1.53346335 1.63676855 1.44610441
2^11 1.99769713 1.91362109 1.95231795 2.11272781 1.96331887 1.9903636 1.92487705
2^12 2.50711024 2.56575742 2.36363349 2.66446842 2.48263475 2.45937768 2.43961372
2^13 3.17156028 3.40346359 3.04066021 3.47239717 3.15422048 3.13181276 3.06458654
2^14 4.1609469 4.40699272 4.2337756 4.67794536 4.14874519 4.22622622 4.30680191
2^15 5.62639683 5.94308109 5.7945608 6.25358623 5.61780137 5.72713484 5.81946049
2^16 7.64112404 8.02273026 7.64049701 8.31885994 7.63510655 7.56721457 7.61246628
2^17 10.1114807 10.7094371 10.0432583 11.1231258 10.1072556 10.1307911 10.1704029
2^18 13.5872702 14.3333281 13.5149738 14.9483239 13.5843051 13.6060629 13.6285195
2^19 18.3001274 19.4258332 18.3591252 20.1262873 18.2980492 18.359267 18.4057231
2^20 24.8192327 26.3345204 24.8593896 27.2360528 24.8177738 24.7655276 24.8528881
2^21 33.797398 35.8997979 33.7699588 36.979491 33.7963733 33.7275071
2^22 46.2040506
2^23
2^24
2^25

lenvk= 5.58640344570928e6lenvk= 5.25497705665484e6lenvk= 5.75441556688569e6lenvk= 5.25908745262106e6lenvk= 5.24837110246442e6lenvk= 5.24837110246442e6lenvk= 5.24837110246442e6

f=z^2f=z^2f=z^2f=z^2f=z^2f=z^2f=z^2
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 0.64222853 0.64222853 0.93090366 0.64222853 0.64222853 0.93090366 0.64222853
2^3 0.93999781 0.7337033 0.86072858 0.6218999 0.75101558 0.89535314 0.7337033
2^4 0.92012281 0.82881814 0.91350167 0.85075945 0.93683657 0.9868366 0.78259313
2^5 1.11372477 0.96575971 1.04234846 1.00549733 0.9874268 1.02831376 0.96259476
2^6 1.27261039 1.14934391 1.26358107 1.16032128 1.17791743 1.19929704 1.13922713
2^7 1.38370669 1.23765085 1.36318117 1.28138933 1.33043911 1.25912914 1.27593259
2^8 1.6637984 1.44327935 1.44556505 1.45960566 1.57861348 1.36844846 1.5825286
2^9 1.91427313 1.77727048 1.76812163 1.80843359 1.82236125 1.67356002 1.8544341
2^10 2.38019629 2.31167878 2.3088633 2.36141339 2.34556688 2.18125133 2.33539206
2^11 2.67778369 2.61419305 2.61827935 2.65789867 2.63290209 2.44241033 2.64536854
2^12 3.38884766 3.35692522 3.40095093 3.36563834 3.35803167 3.13246734 3.36543252
2^13 4.48641412 4.49750394 4.52581364 4.48274232 4.53042797 4.2470606 4.46967187
2^14 5.89021316 5.92131746 5.91076161 5.95581972 5.9252178 5.5968044 5.87833054
2^15 7.96605676 7.97368983 7.97393337 8.00169461 7.96023392 7.56914618 7.95764196
2^16 10.3532341 10.3429209 10.3717016 10.4103318 10.3780424 9.85819318 10.3473221
2^17 14.0974193 14.0598064 14.0489949 14.1054951 14.0654327 13.4206666 14.0932504
2^18 18.8715992 18.817966 18.7973672 18.8547845 18.8739393 17.9456393 18.868663
2^19 25.2332021 25.168147 25.1064531 25.1495316 25.1807256 24.0663942 25.2311384
2^20 33.9559986 33.943405 33.9383345 33.9083696 33.9553982 32.4381621 33.9545474
2^21 46.231504 46.1684036 46.2117553 46.1863024 46.2325607 44.2059761 46.2304839
2^22
2^23
2^24
2^25

lenvk= 7.19413056122482e6lenvk= 7.18431145081682e6lenvk= 7.19105745336320e6lenvk= 7.18709670314831e6lenvk= 7.19429500804943e6lenvk= 6.87893614127914e6lenvk= 7.19397183383053e6lenvk= 7.19397183383053e6lenvk= 7.19397183383053e6

f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 0.99578192 0.99578192 1.28445705 0.99578192 0.99578192 1.28445705 0.99578192
2^3 1.09946223 1.21126563 1.27842436 1.00497111 1.30575675 1.05481756 1.11677451
2^4 1.07265743 1.23964306 1.33064057 0.91318645 1.11773708 1.13131748 1.0761452
2^5 1.056634 1.1369826 1.10801578 0.91231752 1.20910531 1.03492398 0.87663663
2^6 1.13405076 1.12940937 1.14474569 0.99712613 1.06719978 0.98291394 0.98615967
2^7 1.15055907 1.19365138 1.15395134 1.02715132 1.07338116 1.09152372 1.06998223
2^8 1.1339892 1.16503638 1.10915774 1.03311334 1.09308062 1.13133189 1.11183717
2^9 1.17639995 1.18148877 1.14971731 1.09882599 1.13516444 1.15043334 1.14213308
2^10 1.20905581 1.20294595 1.19797541 1.15096838 1.16182182 1.17553986 1.15398494
2^11 1.21085969 1.24393182 1.1870179 1.16719883 1.20753813 1.17998911 1.18487143
2^12 1.20153607 1.23548588 1.16964048 1.16955708 1.22553332 1.21934568 1.21745815
2^13 1.23237362 1.24374507 1.18339533 1.20900159 1.22909179 1.21348152 1.23000653
2^14 1.22833032 1.23482986 1.20489645 1.21151554 1.23150174 1.21377633 1.22492242
2^15 1.23437882 1.23590111 1.23276713 1.22232382 1.23961466 1.21737222 1.23333411
2^16 1.24760267 1.24097098 1.24253549 1.23902074 1.24130956 1.22218227 1.23992917
2^17 1.24031879 1.24142895 1.24226041 1.23423288 1.23561445 1.23126466 1.24013297
2^18 1.24376178 1.24549876 1.2461963 1.23945152 1.24737924 1.24216164 1.24299679
2^19 1.24930108 1.25056745 1.24786322 1.24625616 1.24998387 1.2461885 1.24835894
2^20 1.24893895 1.25119781 1.24748463 1.24678949 1.24906003 1.24667805 1.24636729
2^21 1.24932202 1.25212026 1.24952237 1.24780635 1.25210391 1.25003064 1.24823381
2^22 1.25117421 1.2527364 1.25090035 1.25010585 1.25286339 1.25113524 1.25077391
2^23 1.25150429 1.25190664 1.24997951 1.25075139 1.25182689 1.25104225 1.2504467
2^24 1.25165023 1.25169143 1.25054715 1.25111973 1.25162962 1.251067 1.25067963
2^25 1.25200741 1.25214186 1.25138758 1.25163363 1.25227626 1.25230084 1.25186024

0.0013067245 0.0011722798 0.0019265555 0.0016805111 0.0010378756 0.0010132944 0.0014538937
lenvk= 2.58375392569387e6lenvk= 2.58403137787948e6lenvk= 2.58247478737810e6lenvk= 2.58298254641868e6lenvk= 2.58430874620474e6lenvk= 2.58435947419056e6lenvk= 2.58345021420342e6lenvk= 2.58345021420342e6lenvk= 2.58345021420342e6

f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1
x, n w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.28445705 1.28445705 1.57313218 1.28445705 1.28445705 1.57313218 1.28445705 1.28445705
2^3 1.33829091 1.1319964 1.38813736 1.33829091 1.16662096 1.19915513 1.03750528 1.33829091
2^4 1.22784968 0.9938431 1.20680188 1.27810157 1.25610497 1.17729063 0.88059713 1.2740747
2^5 1.25928443 1.0365748 1.20465648 1.03579849 1.09714943 1.22002569 0.8797346 1.18241218
2^6 1.17424864 0.99700271 1.2539823 1.12383964 1.06529529 1.12658213 0.87781992 1.23753616
2^7 1.21108866 1.06738704 1.1635072 1.16614167 1.11422 1.11170619 0.95739951 1.08348508
2^8 1.14942071 1.03855682 1.10588768 1.10377254 1.21768499 1.12684058 0.95110754 1.16533985
2^9 1.16485667 1.08238207 1.08383677 1.13220825 1.22580095 1.15041188 1.01455518 1.19491658
2^10 1.20240947 1.14059502 1.15031099 1.14726109 1.22929991 1.18835016 1.08740799 1.22845974
2^11 1.23460969 1.18892902 1.2199245 1.22363465 1.26469643 1.2267318 1.14848194 1.22849711
2^12 1.21127957 1.17821816 1.21640991 1.21468908 1.23710908 1.22687819 1.14809391 1.21630257
2^13 1.24683239 1.22292604 1.24534793 1.22987211 1.25433721 1.23371835 1.20065536 1.21532172
2^14 1.24011431 1.2230223 1.23502215 1.21904376 1.25180861 1.21771922 1.20684417 1.22054177
2^15 1.24757072 1.23536649 1.24396177 1.23435011 1.25159428 1.23805009 1.22367613 1.23133065
2^16 1.25512899 1.24646288 1.24143129 1.24016242 1.24441805 1.24117593 1.2380805 1.24156019
2^17 1.2644156 1.25828248 1.25478466 1.2490725 1.25166158 1.25045571 1.25230521 1.2546667
2^18 1.25550712 1.25117244 1.25187817 1.24782601 1.25186646 1.25070957 1.24692357 1.25042618
2^19 1.25425249 1.25119514 1.25292961 1.24793518 1.25007963 1.25228802 1.24818453 1.25196447
2^20 1.25253601 1.25037964 1.24921605 1.24959376 1.25197114 1.25297469 1.24824868 1.25092327
2^21 1.25157346 1.25005411 1.2488395 1.24923376 1.25034259 1.25089232 1.24854853 1.25147404
2^22 1.25263116 1.25156087 1.25073358 1.25146338 1.25086152 1.25298032 1.25049803 1.25310076
2^23 1.25359191 1.25283799 1.25206277 1.25223902 1.25169206 1.2534324 1.25208808 1.25282508
2^24 1.25342205 1.25289101 1.25218303 1.25267454 1.25222155 1.25292113 1.25236211 1.25251734
2^25 1.25306657 1.25269251 1.25241938 1.25263009 1.25215227 1.25252561 1.25231959 1.252833

0.0002475648 0.0006216285 0.0008947577 0.0006840492 0.001161872 0.0007885301 0.0009945493 0.0004814254
lenvk= 2.58593970194095e6lenvk= 2.58516775072771e6lenvk= 2.58460409719689e6lenvk= 2.58503893383401e6lenvk= 2.58405285624627e6lenvk= 2.58482331787842e6lenvk= 2.58439815824285e6lenvk= 2.58439815824285e6lenvk= 2.58439815824285e6

f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.28445705 0.99578192 1.57313218 1.28445705 0.99578192 1.57313218 1.28445705 0.99578192 1.57313218
2^3 1.26111208 1.02228339 1.32827081 1.27842436 0.92779227 1.40544964 1.35560319 1.22857791 1.42276192
2^4 1.2769009 1.06742989 1.27947525 0.9990117 0.95418392 1.31482031 1.33184123 1.35168837 1.24196555
2^5 1.32192809 1.1126015 1.2620607 1.25983753 0.97780999 1.17837687 1.16797611 1.12584397 1.22720278
2^6 1.31185806 1.1362502 1.21811195 1.27621765 1.00619156 1.21193235 1.21786169 1.19271548 1.20226974
2^7 1.27414233 1.12827336 1.26006713 1.13078375 1.01530624 1.23693268 1.17959016 1.22102841 1.21818271
2^8 1.26927796 1.15849072 1.24040214 1.23521288 1.06659158 1.26662133 1.18239069 1.15595114 1.211995
2^9 1.28360301 1.20050058 1.27971375 1.23472238 1.12897525 1.26120379 1.17612318 1.15771298 1.2556367
2^10 1.3253381 1.26399435 1.29444051 1.22063216 1.20936258 1.29118021 1.18645162 1.22245615 1.25946472
2^11 1.29066014 1.24535112 1.30296992 1.23720491 1.20421448 1.32804104 1.21707049 1.23903544 1.25572056
2^12 1.23484304 1.20186016 1.27786827 1.25078009 1.17130787 1.29408944 1.21228387 1.22995932 1.22959984
2^13 1.23898828 1.21518572 1.25997081 1.23947616 1.1928455 1.27018736 1.2102863 1.23640315 1.23153127
2^14 1.23726959 1.2202017 1.26329154 1.24309997 1.2039851 1.27948019 1.21131681 1.23920308 1.23897899
2^15 1.25962156 1.24744085 1.26693882 1.25703041 1.2357519 1.25325365 1.23202622 1.25060694 1.25029803
2^16 1.25922092 1.25057588 1.25953493 1.25626966 1.2422102 1.24943281 1.23845992 1.24870077 1.24011776
2^17 1.25073084 1.2446098 1.25376424 1.24454393 1.23864357 1.24464788 1.24003047 1.24672495 1.24351644
2^18 1.24832766 1.24399827 1.25293957 1.24702213 1.23975396 1.24327811 1.24266537 1.25094529 1.24602136
2^19 1.24665176 1.24359728 1.24552969 1.24345226 1.24058943 1.24349852 1.24016019 1.24367499 1.24221984
2^20 1.25008197 1.24792726 1.25054437 1.24503717 1.245798 1.24982384 1.24657823 1.24984243 1.24828827
2^21 1.25148413 1.24996564 1.25100311 1.24860548 1.24846104 1.25166687 1.24991541 1.25146922 1.25138733
2^22 1.25326097 1.25219107 1.25204674 1.2507813 1.25112865 1.252843 1.25167976 1.2534316 1.25242215
2^23 1.25324236 1.25248866 1.25342626 1.25266622 1.25173897 1.25382657 1.25299869 1.25392778 1.2536332
2^24 1.25285229 1.25232135 1.25332344 1.25277846 1.25179257 1.25346123 1.25303399 1.25342428 1.25353765
2^25 1.25292103 1.25254703 1.2527328 1.25282972 1.25217417 1.25331409 1.25316332 1.25322384 1.25340737

0.0003931028 0.0007671109 0.0005813352 0.00048442 0.0011399722 0.0000000516 0.0001508214 0.000090294 0.0000932308
lenvk= 2.58563935681432e6lenvk= 2.58486752038364e6lenvk= 2.58525090369849e6lenvk= 2.58545090651158e6lenvk= 2.58409805063159e6lenvk= 2.58645049233216e6lenvk= 2.58613935025785e6lenvk= 2.58626426002092e6lenvk= 2.58664299807739e6lenvk= 2.58664299807739e6lenvk= 2.58664299807739e6

f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.21957879 0.93090366 0.93090366 1.21957879 0.93090366 0.93090366 1.21957879 0.93090366 0.93090366
2^3 1.11686955 1.1788265 0.87804086 1.03969071 1.2906299 0.97253198 1.41765519 0.97253198 1.1788265
2^4 1.27721613 1.16776509 1.0215201 1.11720604 1.18802192 0.9337585 1.22648043 1.17696421 1.26021512
2^5 1.21705917 1.17802204 1.00456762 1.10954346 1.31951101 0.97616839 1.14088374 1.1303564 1.12184097
2^6 1.1878403 1.12198438 1.01786843 1.02875291 1.26008391 0.95941546 1.11481794 1.07241616 1.0634513
2^7 1.14862953 1.14970463 1.00945241 1.01362447 1.2779256 1.01452516 1.20332918 1.09196419 1.13025125
2^8 1.24673284 1.17534993 1.1411846 1.1082994 1.2673513 1.06996715 1.24271888 1.15112996 1.15051022
2^9 1.25477487 1.22877609 1.17464587 1.09744592 1.22499654 1.1486492 1.24390793 1.21318919 1.18132565
2^10 1.27935304 1.26737985 1.21931418 1.20973669 1.31722678 1.20647762 1.28111563 1.30384868 1.2691635
2^11 1.30564 1.30350396 1.26088097 1.24006852 1.28240211 1.2582606 1.29890242 1.32219831 1.25273747
2^12 1.26827409 1.25456586 1.23566387 1.22448047 1.23419812 1.22168493 1.26473361 1.25461373 1.21765433
2^13 1.25703893 1.25861178 1.23334642 1.21133347 1.24635836 1.23479718 1.26115132 1.23022427 1.22554595
2^14 1.26234483 1.24915936 1.24536006 1.22328826 1.23069741 1.23210862 1.24367207 1.25168318 1.23511828
2^15 1.24798922 1.25828657 1.23585786 1.24296459 1.23250208 1.24611901 1.24196457 1.25303141 1.24681471
2^16 1.2479101 1.25831564 1.23928561 1.24805499 1.24013327 1.24967134 1.25016302 1.25124323 1.2481627
2^17 1.25286922 1.24866159 1.24675977 1.24710868 1.2405511 1.24254141 1.24895442 1.25926612 1.25636538
2^18 1.25140668 1.25099518 1.24708487 1.24657574 1.24695898 1.24666706 1.25269828 1.25593393 1.25121568
2^19 1.25268835 1.2500287 1.24963723 1.24551934 1.24838056 1.24697441 1.25124226 1.25407431 1.25145275
2^20 1.25238718 1.25325143 1.25023423 1.24990942 1.25069074 1.25109675 1.25191413 1.25024049 1.25103784
2^21 1.2531904 1.25248625 1.2516729 1.24959071 1.25282817 1.25096783 1.2513437 1.25095512 1.25174819
2^22 1.25297044 1.25143048 1.25190108 1.25090057 1.25248718 1.25036069 1.25155994 1.25162935 1.25112301
2^23 1.25346466 1.25301986 1.25271125 1.25282858 1.25330217 1.2522662 1.25262897 1.25228285 1.25246885
2^24 1.25319044 1.2533974 1.25265966 1.25331544 1.25319335 1.25286649 1.25235908 1.25225463 1.25288374
2^25 1.25314274 1.25343431 1.25276881 1.25333759 1.253235 1.25306031 1.25301142 1.25343619 1.25314255

0.0001713976 0.0001201701 0.0005453293 0.0000234536 0.0000791402 0.0002538259 0.0003027176 0.0001220561 0.0001715829
lenvk= 2.58609688746494e6lenvk= 2.58669859238777e6lenvk= 2.58532520859061e6lenvk= 2.58649899970983e6lenvk= 2.58628727788313e6lenvk= 2.58592678098392e6lenvk= 2.58582588382226e6lenvk= 2.58670248455292e6lenvk= 2.58609650488078e6lenvk= 2.58609650488078e6lenvk= 2.58609650488078e6

f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 0.99578192 1.28445705 0.99578192 0.99578192 1.28445705 0.99578192 0.99578192 1.28445705 0.99578192
2^3 1.19395335 1.1319964 1.00497111 0.98765883 1.26111208 1.19395335 0.89316771 1.33829091 0.98765883
2^4 1.22407467 1.32949883 1.10211339 1.04031997 1.3110453 1.07734587 1.0738028 1.41274975 1.18704877
2^5 1.24978865 1.18093462 1.18282016 1.07653784 1.07883633 1.09951565 0.96844307 1.28982688 1.14066443
2^6 1.18913192 1.08642941 1.26541127 1.0353662 1.18107951 1.07936289 0.91645753 1.13339512 1.09234132
2^7 1.2347369 1.23086291 1.26661959 1.10155045 1.26071375 1.22594487 1.09154174 1.30835862 1.16880901
2^8 1.2985393 1.30977826 1.2725675 1.19466257 1.30937743 1.23929181 1.20115726 1.30461724 1.25556242
2^9 1.31818759 1.25801144 1.28406135 1.23836081 1.33240782 1.24244328 1.17566154 1.27415279 1.28685366
2^10 1.26709343 1.17771922 1.28968838 1.20636045 1.29996339 1.24773169 1.11599054 1.250533 1.28043282
2^11 1.20742635 1.18793884 1.22923322 1.16237232 1.28100521 1.22574415 1.14257718 1.2403544 1.27008099
2^12 1.22303159 1.25628033 1.23908063 1.19016162 1.29487122 1.25067642 1.22322755 1.24633045 1.27338408
2^13 1.22097857 1.24380915 1.23767251 1.19713015 1.27420998 1.24022288 1.2198838 1.23622279 1.25939387
2^14 1.22664541 1.24074323 1.24635606 1.20960946 1.24944694 1.25596476 1.22361967 1.23023245 1.24784509
2^15 1.23650731 1.23388113 1.24784254 1.2243415 1.25235462 1.25135507 1.22165043 1.24235169 1.24903237
2^16 1.23754143 1.24998872 1.25507336 1.22889781 1.24724262 1.24820989 1.2413148 1.24241746 1.24488661
2^17 1.24975497 1.25591858 1.25329685 1.24363242 1.2548986 1.24739571 1.24978171 1.2470695 1.25175961
2^18 1.25244442 1.25476612 1.25589011 1.24811665 1.2541105 1.24854983 1.25042818 1.24541576 1.25225363
2^19 1.25370827 1.25359849 1.25531162 1.25065452 1.25214699 1.25331935 1.25053883 1.24947642 1.25770294
2^20 1.25217307 1.25348608 1.25296495 1.25001867 1.25178672 1.25284632 1.25132884 1.25202284 1.2551032
2^21 1.25254475 1.25278585 1.251301 1.25102636 1.2504756 1.2512807 1.25126599 1.252056 1.25436973
2^22 1.25230636 1.25286119 1.25215934 1.25123659 1.25296033 1.25198296 1.25179064 1.25229767 1.25331296
2^23 1.25309878 1.25250293 1.25227274 1.25234513 1.2530592 1.25243805 1.25174889 1.25302886 1.25301258
2^24 1.25276879 1.25319712 1.25265699 1.25223789 1.25251582 1.25276299 1.25266601 1.25269622 1.25356809
2^25 1.25350537 1.25327561 1.25296734 1.25313138 1.25309626 1.25287053 1.25290151 1.25322625 1.25332004

0.0001912322 0.0000385261 0.0003467991 0.0001827574 0.0002178822 0.0004436024 0.0004126272 0.0000878857 0.0000059053
lenvk= 2.58684524258764e6lenvk= 2.58637109277738e6lenvk= 2.58573491325975e6lenvk= 2.58607344418377e6lenvk= 2.58600095752949e6lenvk= 2.58553514128165e6lenvk= 2.58559906454522e6lenvk= 2.58626922998935e6lenvk= 2.58646278534965e6lenvk= 2.58646278534965e6lenvk= 2.58646278534965e6

0.85

0.925

1

1.075

1.15

1.225

1.3

1.375

1.45

1.525

1.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Untitled 1 Untitled 2 Untitled 3 Untitled 4
Untitled 5 Untitled 6 Untitled 7 Untitled 8
Untitled 9 Untitled 10 Untitled 11 Untitled 12
Untitled 13 Untitled 14 Untitled 15 Untitled 16
Untitled 17 Untitled 18 Untitled 19 Untitled 20
Untitled 21 Untitled 22 Untitled 23 Untitled 24
Untitled 25 Untitled 26 Untitled 27 Untitled 28
Untitled 29 Untitled 30 Untitled 31 Untitled 32
Untitled 33 Untitled 34 Untitled 35 Untitled 36
Untitled 37 Untitled 38 Untitled 39 Untitled 40
Untitled 41 Untitled 42 Untitled 43

log2 x

M
1

x, n bsum
2^2 2.8046875
2^3 2.53062725
2^4 2.35651614
2^5 2.24293892
2^6 2.16727783
2^7 2.11605704
2^8 2.08096135
2^9 2.05670017 min max st dev mean
2^10 2.03982027 2^25 1.9938601938 2.0005395072 0.0016907755 1.9983250267
2^11 2.02802123 difference 0.0000340794 0.0061398062 0.0015448942 0.0018104031
2^12 2.01974619
2^13 2.01392882
2^14 2.00983226
2^15 2.00694401
2^16 2.00490594
2^17 2.00346691
2^18 2.00245042
2^19 2.00173218
2^20 2.00122458
2^21 2.00086577
2^22 2.00061213
2^23 2.00043281
2^24 2.00030602
2^25 2.00021638

0.0002163839

f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2f=z^2 - 2
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.75E+00
2^3 1.64642857
2^4 1.36335331
2^5 1.01064605
2^6 1.19445363
2^7 1.3327543
2^8 1.71993417
2^9 2.99880491
2^10 4.64806723
2^11 8.47353621
2^12 14.8362717
2^13 27.5077693
2^14 49.2015278
2^15 97.6458424
2^16 192.02893
2^17 348.439203
2^18 662.184633
2^19 1245.83093
2^20 2386.79996
2^21 4591.85452
2^22 8898.68701
2^23
2^24
2^25

f=z^2f=z^2f=z^2f=z^2f=z^2f=z^2f=z^2
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 0.41666667 0.41666667 0.91666667 0.41666667 0.41666667 0.91666667 0.41666667
2^3 0.9797619 0.55119048 0.8297619 0.40119048 0.69404762 0.94404762 0.55119048
2^4 0.9468809 0.72526918 0.91098346 0.8513764 1.0466145 1.12353757 0.66116661
2^5 1.4315607 1.10831299 1.34298653 1.24213239 1.27710409 1.26201002 1.110781112
2^6 2.1428791 1.87755248 2.16555999 1.98902185 2.00372161 2.03787039 1.86454804
2^7 2.79016504 2.47593275 2.77971721 2.62876062 2.74593313 2.61911725 2.56635096
2^8 4.45483248 3.44945384 3.25169238 3.81678707 4.27080075 3.14958577 4.25963892
2^9 7.21666995 6.68615916 6.17457617 6.99856021 6.64296536 6.02025019 7.06246038
2^10 13.4647321 13.1741126 12.8659119 13.51387 13.2114537 12.5778551 13.3338682
2^11 17.4725666 16.7455059 16.6942304 17.3721067 16.7498796 15.7529354 17.3664923
2^12 32.560685 32.2435887 32.6701614 32.3227139 31.9973495 30.5321897 32.4725615
2^13 67.5862069 67.3827215 68.1251643 67.2055106 68.0641453 65.1161356 67.511414
2^14 121.17168 122.009777 121.562088 122.355496 121.267535 117.557359 121.103483
2^15 238.20088 238.023993 237.704677 238.405412 237.425024 230.475128 238.138818
2^16 430.257095 428.224404 430.082708 431.206472 430.369295 416.053276 430.202711
2^17 825.21844 822.856811 819.643753 825.013904 822.080518 799.256244 825.167475
2^18 1557.69982 1552.59538 1551.50786 1555.80302 1559.4852 1505.22312 1557.65204
2^19 2890.43265 2880.32819 2876.63971 2879.92664 2882.69885 2799.45747 2890.38782
2^20 5463.54525 5463.75633 5463.33039 5458.07123 5463.24951 5302.25585 5463.50289
2^21
2^22
2^23
2^24
2^25

lenvk= 4.48147299344953e8lenvk= 4.48164613289768e8lenvk= 4.48129675203603e8lenvk= 4.47698292661104e8lenvk= 4.48123040669475e8lenvk= 4.48123040669475e8lenvk= 4.48143824627731e8lenvk= 4.48143824627731e8lenvk= 4.48143824627731e8

f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.16666667 1.16666667 1.66666667 1.16666667 1.16666667 1.66666667 1.16666667
2^3 1.3547619 1.6047619 1.77619048 1.1047619 1.92619048 1.17619048 1.3547619
2^4 1.26098346 1.63277833 1.88808969 0.92415362 1.53937174 1.38202908 1.28429348
2^5 1.20992078 1.39597137 1.45532228 0.90029071 1.71633426 1.18722811 0.92605282
2^6 1.39549473 1.39865523 1.55075403 1.0862925 1.39964254 1.10952174 1.10583847
2^7 1.4351047 1.60112337 1.53202059 1.15856704 1.42418138 1.37600883 1.33742825
2^8 1.41715481 1.54193985 1.46483949 1.19476064 1.47299214 1.51531509 1.43877435
2^9 1.59387506 1.64906912 1.58143401 1.41888942 1.56498183 1.54637098 1.51236074
2^10 1.71659402 1.77431746 1.72471744 1.58130072 1.67941109 1.64303094 1.56803577
2^11 1.7732869 1.91265207 1.71352352 1.67069907 1.80761491 1.72559303 1.73207438
2^12 1.78701438 1.90537919 1.69821316 1.71166135 1.87970182 1.86168064 1.86979662
2^13 1.91800584 1.95477619 1.76882319 1.86191362 1.9149797 1.86906152 1.91259801
2^14 1.90650434 1.93734551 1.82716376 1.86592391 1.92000502 1.86513587 1.91021166
2^15 1.92503447 1.93809985 1.919774 1.89574914 1.9495883 1.8811026 1.94102706
2^16 1.96297588 1.95206674 1.95342431 1.94192094 1.95191295 1.89952503 1.95879703
2^17 1.94796507 1.95903326 1.95587953 1.93301581 1.94054011 1.9337488 1.95651402
2^18 1.96530577 1.97345888 1.97086244 1.95467673 1.97483152 1.96605386 1.96730838
2^19 1.98568032 1.99160237 1.97867976 1.97813759 1.988254 1.98180533 1.98434719
2^20 1.98512364 1.9934084 1.98014397 1.97978804 1.98560551 1.98042285 1.97833189
2^21 1.98720439 1.99615202 1.98889876 1.98343532 1.99630513 1.990115 1.98410468
2^22 1.99140839 1.99703555 1.99165404 1.98874629 1.99812858 1.99221624 1.9923798
2^23 1.99302289 1.99483784 1.98938072 1.99114447 1.99524847 1.99172793 1.99094961
2^24 1.99384608 1.99501917 1.99160831 1.99252133 1.9949725 1.99269795 1.99195659
2^25 1.99563344 1.99640025 1.99386019 1.99469929 1.99674264 1.99684475 1.99535406

0.0043665621 0.0035997468 0.0061398062 0.0053007141 0.0032573646 0.0031552457 0.0046459418
lenvk= 4.11836677385351e6lenvk= 4.11994924217699e6lenvk= 4.11470734957455e6lenvk= 4.11643897471826e6lenvk= 4.12065581258688e6lenvk= 4.12086655419810e6lenvk= 4.11779022111289e6lenvk= 4.11779022111289e6lenvk= 4.11779022111289e6

f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1
x, n w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.66666667 1.66666667 2.5E+00 1.66666667 1.66666667 2.5E+00 1.66666667 1.66666667
2^3 1.92619048 1.4547619 2.02142857 1.92619048 1.42619048 1.59285714 1.2047619 1.92619048
2^4 1.62561883 1.14583195 1.68328338 1.73167943 1.65475635 1.58404928 0.93371073 1.74100344
2^5 1.70293163 1.21167906 1.67435476 1.26437909 1.36432864 1.69534106 0.90673034 1.54899423
2^6 1.50491433 1.12363632 1.77002172 1.46389805 1.29395276 1.48727267 0.897199 1.69823228
2^7 1.63342711 1.31538709 1.59912514 1.55533718 1.42130546 1.42222658 1.0959299 1.41442293
2^8 1.53763155 1.29413509 1.46867947 1.4209264 1.72547263 1.48193832 1.11593627 1.64343517
2^9 1.65038119 1.46487125 1.43861995 1.55506706 1.78315714 1.56574687 1.32009902 1.70264899
2^10 1.75320904 1.61090738 1.66559253 1.61670793 1.81795425 1.69398639 1.4934187 1.85985608
2^11 1.90673034 1.79901021 1.87292737 1.8670068 1.98545101 1.8961302 1.70661483 1.91505903
2^12 1.83354014 1.75539563 1.86601713 1.85700436 1.90891773 1.89232434 1.68608609 1.86273855
2^13 1.9465697 1.88888653 1.95926413 1.92008351 1.97103664 1.92606898 1.83626133 1.87283255
2^14 1.93612584 1.89465551 1.93782 1.88576889 1.95764915 1.88885807 1.85603629 1.89355857
2^15 1.96387283 1.93399866 1.96330691 1.93001001 1.97395188 1.93545723 1.90572969 1.92134885
2^16 1.98997304 1.9685822 1.96115432 1.95288272 1.96396951 1.94958421 1.94808801 1.9561116
2^17 2.02004583 2.00479256 1.99448352 1.9833811 1.98280555 1.98065101 1.99003482 2.00035617
2^18 1.9982629 1.98748039 1.99290573 1.98151204 1.98934646 1.98755952 1.97697187 1.98886082
2^19 1.9970413 1.98942111 1.99615261 1.98134515 1.98688166 1.99224973 1.98195058 1.991917
2^20 1.99400962 1.98863042 1.9856097 1.98644853 1.99267004 1.99456984 1.98333269 1.99030775
2^21 1.9898672 1.98607479 1.98451074 1.98698033 1.98716904 1.99068289 1.98232652 1.99212698
2^22 1.99424102 1.99156621 1.99184001 1.99415481 1.99073048 1.99883908 1.98891526 1.99827173
2^23 1.99739672 1.99551053 1.99550839 1.99615494 1.99309927 2.00039566 1.99363717 1.99731164
2^24 1.9985486 1.99721939 1.99569035 1.99685205 1.99576409 1.99858841 1.99589706 1.99639306
2^25 1.99838299 1.99744647 1.99680942 1.99739661 1.9958238 1.99736036 1.9965136 1.99784518

0.0016170073 0.0025535341 0.0031905821 0.0026033919 0.0041761965 0.0026396383 0.0034863971 0.0021548204
lenvk= 4.12404099986311e6lenvk= 4.12210829966859e6lenvk= 4.12079363087247e6lenvk= 4.12200540872121e6lenvk= 4.11875962927224e6lenvk= 4.12193060744715e6lenvk= 4.12018316061636e6lenvk= 4.12293112077138e6lenvk= 4.12293112077138e6lenvk= 4.12293112077138e6

f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.66666667 1.16666667 2.5E+00 1.66666667 1.16666667 2.5E+00 1.66666667 1.16666667 2.5E+00
2^3 1.6047619 1.17619048 2.08571429 1.77619048 1.06904762 2.02142857 1.8547619 1.7047619 2.19285714
2^4 1.65375735 1.23167943 1.98721279 1.25755356 1.05419025 1.86976357 1.83441003 2.0024753 1.75561106
2^5 1.83777511 1.36349748 1.89542551 1.97287725 1.12175983 1.65069623 1.54216166 1.55597465 1.72761172
2^6 1.82984337 1.42194263 1.78362928 1.9447605 1.16990186 1.80542119 1.78757992 1.80623921 1.63484344
2^7 1.79802529 1.45773528 1.86744777 1.53495617 1.22900734 1.90812536 1.6473961 1.84926446 1.80399107
2^8 1.85934535 1.59931443 1.85158601 1.78656417 1.40731326 1.91472995 1.692678 1.66945789 1.75365885
2^9 1.90313143 1.70249633 1.96758179 1.82680993 1.54535042 1.90602762 1.69432225 1.70292061 1.87493586
2^10 2.07370782 1.91940136 2.0241497 1.81815851 1.79125099 1.97628125 1.78610278 1.83921788 1.92124891
2^11 2.03549492 1.92170689 2.09264801 1.89110482 1.82396624 2.11193854 1.90564752 1.92125562 1.93757756
2^12 1.91966128 1.83828537 2.05129824 1.93263725 1.76617641 2.04809298 1.8759551 1.91733323 1.91034118
2^13 1.91553993 1.85667383 1.98508189 1.90997102 1.80328495 1.98775643 1.86233266 1.94591305 1.89772647
2^14 1.92652719 1.88435795 1.99994438 1.93487374 1.84532378 2.03647087 1.87002387 1.96016425 1.93685111
2^15 2.00186999 1.9714835 2.02493471 1.99185534 1.94287735 1.97273247 1.93151882 1.99254321 1.99002019
2^16 2.0079233 1.98629569 2.01173222 1.98883741 1.96566707 1.97157023 1.9554763 1.98502074 1.96664538
2^17 1.98626243 1.97098555 1.99729645 1.95993289 1.95626052 1.96647261 1.9566152 1.9772209 1.97114306
2^18 1.98115124 1.97034989 1.99206431 1.97214286 1.95985135 1.96943863 1.96515569 1.98854037 1.97858304
2^19 1.97440236 1.96678447 1.96996324 1.96374069 1.95933209 1.96920672 1.95911674 1.9676713 1.96664375
2^20 1.98625245 1.98087035 1.99001001 1.97248531 1.97557868 1.99086322 1.97938086 1.98667202 1.98381494
2^21 1.99213702 1.98834114 1.99152253 1.98430654 1.98459433 1.9962167 1.98940196 1.99256671 1.99152178
2^22 1.99786839 1.99519099 1.99407687 1.99097251 1.99253998 1.99892227 1.99491931 1.99819571 1.99501879
2^23 1.9992674 1.99738054 1.99937999 1.99810673 1.99550783 2.00231847 1.99923652 2.00080853 2.0005091
2^24 1.99887106 1.99754173 1.99937983 1.99850823 1.99621994 2.00049694 1.99958515 1.99969078 2.00065862
2^25 1.99901736 1.9980807 1.99822545 1.99897042 1.99714808 2.00010012 1.99996592 1.99897615 2.00035285

0.0009826442 0.0019192965 0.001774554 0.0010295762 0.00285192 0.0001001188 0.0000340794 0.0010238487 0.0003528488
lenvk= 4.12535012800792e6lenvk= 4.12341716899243e6lenvk= 4.12371587233452e6lenvk= 4.12525327495130e6lenvk= 4.12149252415404e6lenvk= 4.12758461409558e6lenvk= 4.12730767069816e6lenvk= 4.12526509460367e6lenvk= 4.12810617009289e6lenvk= 4.12810617009289e6lenvk= 4.12810617009289e6

f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.75E+00 0.91666667 0.91666667 1.75E+00 0.91666667 0.91666667 1.75E+00 0.91666667 0.91666667
2^3 1.39642857 1.4797619 0.80119048 1.36071429 1.8297619 0.9797619 2.21785714 0.9797619 1.4797619
2^4 1.79691975 1.44338439 1.11804307 1.59595405 1.69653125 0.91890887 1.81423576 1.49350094 1.7510767
2^5 1.67736431 1.46246867 1.14141407 1.60608965 2.04465095 0.9952138 1.60054043 1.49352166 1.49532402
2^6 1.70228808 1.35837901 1.27629208 1.31974018 1.97495554 0.98976621 1.58028853 1.40587889 1.35800747
2^7 1.63699858 1.53768959 1.3011303 1.29416469 2.04203305 1.22447639 1.77983635 1.52539647 1.53945056
2^8 1.94260848 1.6290954 1.67839996 1.55822672 1.99413381 1.38503374 1.94641945 1.68739248 1.59830585
2^9 1.94012007 1.76623827 1.73982901 1.54152636 1.85354308 1.57563222 1.94210808 1.81537297 1.66945373
2^10 2.00353439 1.94315204 1.85103653 1.838765 2.13780145 1.79450964 2.05896122 2.13029008 1.956105
2^11 2.1078585 2.08985936 1.99273295 1.92193339 2.04864602 1.97666914 2.13038468 2.19135469 1.93594533
2^12 1.99896501 1.94359642 1.91610166 1.8629625 1.90983545 1.86218447 2.02226971 1.97697098 1.85263281
2^13 1.98691177 1.98871235 1.92703045 1.87598208 1.95739084 1.92949203 2.01491369 1.92089493 1.89662602
2^14 2.00906957 1.96926716 1.96609978 1.92442081 1.91870905 1.92698028 1.95844564 1.9767762 1.9199473
2^15 1.98374922 2.00909143 1.95326066 1.98040047 1.93619145 1.9787542 1.96456689 1.99058115 1.94921506
2^16 1.98353442 2.0056262 1.96190123 1.99348309 1.95879989 1.9840239 1.98996725 1.98640779 1.95973497
2^17 1.9971052 1.98299887 1.9817624 1.98415126 1.96139146 1.96773521 1.98488564 2.00947027 1.98982086
2^18 1.99038468 1.99206692 1.97954373 1.98201375 1.97948202 1.98125875 1.99752009 2.00512976 1.98547739
2^19 1.9952696 1.98769454 1.98761544 1.97903558 1.98519681 1.98006602 1.9959086 2.00109174 1.99027728
2^20 1.995222 1.99592186 1.98982303 1.9907274 1.99080212 1.99053164 1.99645762 1.99179748 1.99066255
2^21 1.99994117 1.99615627 1.99613544 1.9915333 1.99719704 1.99235697 1.9947342 1.99400412 1.99405972
2^22 1.99893849 1.99425499 1.99625742 1.99444125 1.99804412 1.99157879 1.99423672 1.99565168 1.99320569
2^23 2.0010128 1.99913588 1.99912361 2.0000492 2.00053081 1.9972489 1.9979124 1.99727649 1.99667105
2^24 1.9993687 1.99976437 1.99803799 2.00085853 2.00025785 1.99843462 1.99673042 1.99672096 1.99780142
2^25 2.00017292 2.00050001 1.99923551 2.00053951 2.00040408 1.99956304 1.99861339 2.00029864 1.99909762

0.0001729205 0.0005000064 0.0007644867 0.0005395072 0.0004040837 0.0004369586 0.0013866137 0.000298643 0.0009023753
lenvk= 4.12773485416506e6lenvk= 4.12840985778094e6lenvk= 4.12580033725094e6lenvk= 4.12849137501210e6lenvk= 4.12821190308876e6lenvk= 4.12647625343419e6lenvk= 4.12451646056536e6lenvk= 4.12799430633906e6lenvk= 4.12551577792241e6lenvk= 4.12551577792241e6lenvk= 4.12551577792241e6

f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.16666667 1.66666667 1.16666667 1.16666667 1.66666667 1.16666667 1.16666667 1.66666667 1.16666667
2^3 1.67619048 1.4547619 1.1047619 1.2047619 1.6047619 1.67619048 0.9547619 1.92619048 1.2047619
2^4 1.71536242 1.97683428 1.299445 1.26005106 1.95096015 1.45312465 1.34047064 2.24100344 1.64350094
2^5 1.78866863 1.55909814 1.49350365 1.35406931 1.46689737 1.55344548 1.07668052 1.91962527 1.53997182
2^6 1.5894225 1.3791817 1.78492816 1.21974508 1.66057437 1.48915513 1.00782864 1.58404453 1.45483815
2^7 1.77116278 1.81964217 1.89994774 1.44736416 1.84765704 1.83117518 1.48635468 2.08555597 1.66844345
2^8 1.97431271 2.03464628 1.91835168 1.71069976 2.0178793 1.95410951 1.75888214 2.07096364 1.87354209
2^9 2.07695006 1.88156513 1.97439378 1.87061172 2.07813696 1.93672411 1.67509326 2.00783859 1.96569071
2^10 1.94502218 1.72707733 1.99435307 1.79150994 2.03336052 1.96127459 1.57729986 1.94438545 1.97915179
2^11 1.83543187 1.75115879 1.86582476 1.72464568 2.00875562 1.89787156 1.64158329 1.91204021 1.95890096
2^12 1.92575054 1.96013907 1.90830265 1.84469722 2.06616996 1.98999459 1.87831234 1.94715422 2.0124756
2^13 1.90905107 1.95718804 1.91990197 1.85049434 2.00736023 1.95875047 1.89801831 1.9371768 1.98568978
2^14 1.93256875 1.96231127 1.96588355 1.89067998 1.95492118 1.99926889 1.92001362 1.93210942 1.96266501
2^15 1.95938595 1.94242013 1.97581481 1.92936874 1.98139575 1.98650287 1.91229093 1.97311396 1.97403324
2^16 1.95495966 1.98270712 1.99315293 1.93361005 1.97676404 1.98435166 1.96117862 1.96943689 1.95902382
2^17 1.99101226 2.00420128 1.99553454 1.97580636 2.00261931 1.98779764 1.9889093 1.97655442 1.98947527
2^18 1.99732853 1.99948895 2.00553242 1.98654524 2.00168791 1.9856504 1.98866252 1.9706766 1.99554048
2^19 2.00004085 1.99729283 2.00318705 1.99241772 1.99623126 1.99745767 1.98965065 1.98420402 2.01037915
2^20 1.99635307 1.99773687 1.99618845 1.99097298 1.99520604 1.99790986 1.99234328 1.99342708 2.00312284
2^21 1.99606026 1.99646088 1.99161792 1.99226524 1.99155258 1.99367097 1.99265903 1.99518981 2.0012782
2^22 1.99745736 1.99736376 1.99618896 1.99478219 1.99863839 1.99617662 1.99468465 1.99693503 1.99818177
2^23 1.99953862 1.99714267 1.99623628 1.99765259 1.99929803 1.99741455 1.9952553 1.99889404 1.99790245
2^24 1.99913635 1.99939847 1.99796176 1.99780739 1.99731396 1.99854592 1.99806841 1.99783661 1.99996779
2^25 2.0004759 1.99940517 1.99886168 1.99953918 1.9990918 1.99854873 1.99846807 1.99918752 1.99969824

0.0004758966 0.000594827 0.0011383167 0.0004608178 0.0009082035 0.0014512652 0.0015319295 0.0008124819 0.0003017603
lenvk= 4.12836010249879e6lenvk= 4.12615046204553e6lenvk= 4.12502886829784e6lenvk= 4.12642701540591e6lenvk= 4.12550375038945e6lenvk= 4.12438303989306e6lenvk= 4.12421657401787e6lenvk= 4.12570128999296e6lenvk= 4.12675526053900e6lenvk= 4.12675526053900e6lenvk= 4.12675526053900e6
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Untitled 1 Untitled 2 Untitled 3 Untitled 4
Untitled 5 Untitled 6 Untitled 7 Untitled 8
Untitled 9 Untitled 10 Untitled 11 Untitled 12
Untitled 13 Untitled 14 Untitled 15 Untitled 16
Untitled 17 Untitled 18 Untitled 19 Untitled 20
Untitled 21 Untitled 22 Untitled 23 Untitled 24
Untitled 25 Untitled 26 Untitled 27 Untitled 28
Untitled 29 Untitled 30 Untitled 31 Untitled 32
Untitled 33 Untitled 34 Untitled 35 Untitled 36
Untitled 37 Untitled 38 Untitled 39 Untitled 40
Untitled 41 Untitled 42 Untitled 43

log2 x

M
2

Figure 1. The first and second moments, M1 and M2, of X=
p

n

(thicker red lines) and mp=
p

p (thin lines) for all .f; ˛/ tested.

deviation of the set of results for each moment. It also shows the mean, standard
deviation, minimum, and maximum of the set

fj
p
�=2�M1j W x D 225; for .f; ˛/ testedg;

and similarly for the second, third and fourth moments. Our complete results are
depicted graphically in Figures 1 and 2, for the first, second, third, and fourth
moments. In each of these graphs the heavier red curve is the respective moment of
Xn=
p

n, for nD x. Notice that the y-axes of these graphs are not scaled equally
with respect to each other (they are stretched by a factor of two for each subsequent
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x, n bsum
2^2 5.23046875
2^3 4.69012659
2^4 4.36732272
2^5 4.16575614
2^6 4.0355777
2^7 3.94936453
2^8 3.89120494
2^9 3.85144093
2^10 3.82399008 min max st dev mean
2^11 3.80490781 2^25 3.7423419965 3.7622859125 0.0049983229 3.755044605
2^12 3.7915771 difference 0.0001218376 0.0176004154 0.004427558 0.0054192688
2^13 3.78223152
2^14 3.77566331
2^15 3.77103886
2^16 3.76777885
2^17 3.76547865
2^18 3.76385464
2^19 3.76270754
2^20 3.76189703
2^21 3.76132423
2^22 3.76091935
2^23 3.76063313
2^24 3.76043079
2^25 3.76028773

0.00034531

f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.51043861 1.51043861 2.18401392 1.51043861 1.51043861 2.18401392 1.51043861
2^3 1.79802354 2.22287645 2.63108032 1.29857048 3.04629905 1.37888225 1.7234234
2^4 1.5870628 2.21876358 2.81447461 1.01750537 2.32679644 1.81064681 1.62996707
2^5 1.47872265 1.78926445 2.09804766 0.95214097 2.64538532 1.47377143 1.08152152
2^6 1.83545076 1.8412919 2.33086157 1.27547921 2.05927858 1.35540083 1.33105853
2^7 1.91614296 2.33297413 2.23454035 1.41522269 2.16341941 1.91649132 1.83520426
2^8 1.91490485 2.22016642 2.21619143 1.51139126 2.26345671 2.24870948 2.06382079
2^9 2.40178069 2.5944219 2.46438386 2.06756554 2.42321563 2.30612414 2.22394752
2^10 2.72728488 3.01661157 2.80116001 2.45608983 2.82774766 2.56915866 2.38925758
2^11 2.94627992 3.373418 2.81479998 2.73343787 3.10654588 2.88705879 2.91948953
2^12 3.05395573 3.40672946 2.84464697 2.89387228 3.34419195 3.27811195 3.35233609
2^13 3.48944323 3.57940851 3.07579024 3.36553311 3.49977308 3.37703585 3.4789932
2^14 3.45997942 3.55394856 3.22868786 3.3691662 3.52223025 3.3569839 3.49544523
2^15 3.52209312 3.55770079 3.50051699 3.45577098 3.61259152 3.4184865 3.6061165
2^16 3.61642842 3.58995819 3.5925869 3.56811743 3.60640088 3.47441638 3.64918186
2^17 3.59234282 3.6299533 3.60735298 3.55783293 3.58972651 3.57922779 3.63907439
2^18 3.65672451 3.68105294 3.65818663 3.63198148 3.68414588 3.66587511 3.67259919
2^19 3.71603361 3.7362978 3.68552545 3.69833982 3.72889337 3.7183736 3.71702172
2^20 3.71690201 3.74394316 3.69792973 3.70433386 3.72221126 3.70893792 3.69979953
2^21 3.72399075 3.74930249 3.72822217 3.71508124 3.75299415 3.73455346 3.71522588
2^22 3.73212281 3.74763904 3.73254449 3.72581298 3.7550718 3.73541749 3.7383375
2^23 3.73855557 3.74337599 3.72875966 3.73409353 3.74634072 3.73434057 3.73519265
2^24 3.7412175 3.7460055 3.73619815 3.73806563 3.74642807 3.7385031 3.73821692
2^25 3.74722104 3.74957036 3.742342 3.74499526 3.75073876 3.75098081 3.74680158

0.01272137 0.01037206 0.01760042 0.01494715 0.00920365 0.0089616 0.01314083
lenvk= 7.73309884190627e6lenvk= 7.73794709656257e6lenvk= 7.72303001248398e6lenvk= 7.72850553113309e6lenvk= 7.74035832583677e6lenvk= 7.74085783518541e6lenvk= 7.73223321115956e6lenvk= 7.73223321115956e6lenvk= 7.73223321115956e6

f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1
x, n w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.18401392 2.18401392 4.01228977 2.18401392 2.18401392 4.01228977 2.18401392 2.18401392
2^3 2.9582338 1.97828644 3.04894912 2.9582338 1.80373516 2.29302017 1.47883338 2.9582338
2^4 2.32307073 1.45141026 2.48167241 2.49209981 2.26291117 2.33327337 1.08646308 2.53997273
2^5 2.47183838 1.54911982 2.48268294 1.69371884 1.7952331 2.61400241 1.03737608 2.19380434
2^6 2.07764615 1.39308295 2.66655433 2.08986126 1.67954916 2.17080065 1.02856657 2.5307672
2^7 2.39082816 1.7924158 2.44372011 2.29201292 1.96611631 2.02240533 1.40881422 2.04878103
2^8 2.28608014 1.82070374 2.17765696 2.03979533 2.727443 2.19793559 1.4955103 2.62743363
2^9 2.67808046 2.30688023 2.16675856 2.47282701 2.97230764 2.42550334 2.02500398 2.73383627
2^10 2.92156325 2.62815876 2.81737219 2.64121718 3.0740565 2.74703048 2.39056373 3.25695254
2^11 3.47084099 3.23765271 3.36486924 3.36045613 3.65696186 3.44356604 3.03942308 3.51250999
2^12 3.2640375 3.09397622 3.35830823 3.35680323 3.43619957 3.42747979 2.94433993 3.34556788
2^13 3.59082132 3.46185125 3.62073182 3.54798371 3.60930503 3.53480219 3.34481307 3.39816664
2^14 3.56322556 3.46940759 3.5900236 3.4350801 3.56172921 3.46548209 3.38237565 3.47410147
2^15 3.63249182 3.5639814 3.6286295 3.55563507 3.64680023 3.56018411 3.49933058 3.52070005
2^16 3.70787123 3.65823725 3.65836392 3.6219043 3.64645336 3.59923529 3.61077461 3.61879063
2^17 3.78932412 3.75357949 3.72796413 3.70559019 3.68788973 3.68410698 3.71904569 3.7507125
2^18 3.73814237 3.71279086 3.73759011 3.70525164 3.72185882 3.71888192 3.68811426 3.72300559
2^19 3.7388769 3.72088674 3.74600371 3.70569555 3.72229962 3.73171229 3.70326735 3.72884205
2^20 3.73717469 3.72443871 3.71896947 3.71947791 3.73622737 3.73988612 3.71190559 3.73039863
2^21 3.72217 3.71317825 3.71464298 3.72363006 3.71879029 3.73380449 3.70429663 3.73346114
2^22 3.73629092 3.7299349 3.73667137 3.74308524 3.73139608 3.75907174 3.72363862 3.75302261
2^23 3.74474768 3.74025791 3.74617519 3.74807408 3.73677845 3.76176161 3.73580035 3.75018026
2^24 3.75170082 3.74853236 3.74751113 3.74907654 3.74657167 3.75632689 3.74538121 3.74810096
2^25 3.75377206 3.75153743 3.75084315 3.75126624 3.746802 3.75226166 3.74931206 3.75289183

0.00617035 0.00840498 0.00909926 0.00867617 0.01314041 0.00768075 0.01063036 0.00705058
lenvk= 7.74661810394922e6lenvk= 7.74200652524927e6lenvk= 7.74057375211229e6lenvk= 7.74144687213379e6lenvk= 7.73223407422986e6lenvk= 7.74350112180554e6lenvk= 7.73741404579899e6lenvk= 7.74480158850709e6lenvk= 7.74480158850709e6lenvk= 7.74480158850709e6

f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.18401392 1.51043861 4.01228977 2.18401392 1.51043861 4.01228977 2.18401392 1.51043861 4.01228977
2^3 2.06021106 1.46694751 3.45072712 2.63108032 1.37245639 2.97434898 2.55966411 2.55076855 3.54521824
2^4 2.17208756 1.49790895 3.31569531 1.79415614 1.26588579 2.78749258 2.59783472 3.13174808 2.68429963
2^5 2.66536567 1.78404554 3.08207338 3.55704052 1.4055472 2.51213369 2.16709176 2.36214704 2.61761117
2^6 2.69493961 1.91407151 2.85990277 3.36373773 1.48767728 3.02531624 2.85719596 3.07494648 2.38934852
2^7 2.73480634 2.06473716 3.02537292 2.42013625 1.65404514 3.38669385 2.51164303 3.12641114 3.03383791
2^8 3.04683252 2.51401844 3.09213203 2.89005431 2.14399307 3.26751469 2.77331042 2.72937557 2.84143467
2^9 3.13053835 2.70806889 3.3891645 3.06520484 2.39288583 3.24034061 2.78422619 2.87001579 3.11925914
2^10 3.66921725 3.32701684 3.56182538 3.08709089 3.05115776 3.36932531 3.13929807 3.16603425 3.32261635
2^11 3.70673633 3.45004913 3.85669539 3.32725824 3.23432266 3.80221861 3.54615334 3.44658077 3.4280127
2^12 3.48961803 3.30548458 3.82837552 3.41852509 3.14513104 3.72546086 3.4133531 3.49923 3.45038707
2^13 3.43876928 3.30493032 3.6191808 3.39847127 3.18517292 3.58043597 3.36121151 3.59841847 3.38806354
2^14 3.50707002 3.41036329 3.69770524 3.49422 3.3217367 3.75882355 3.39425878 3.65785145 3.5286753
2^15 3.72644087 3.65566588 3.81181694 3.69351725 3.58947987 3.63055652 3.57138289 3.75007394 3.72996559
2^16 3.76178636 3.71102679 3.79287815 3.68670171 3.66285491 3.6403426 3.63900538 3.71813455 3.6781583
2^17 3.71495461 3.67901927 3.75175995 3.62805487 3.64451833 3.65517985 3.64061386 3.69314716 3.67737614
2^18 3.70170569 3.6762261 3.7340355 3.66619296 3.6515359 3.6807855 3.66091276 3.72146091 3.69863175
2^19 3.67995449 3.66196124 3.67327241 3.65037666 3.64440032 3.67680749 3.64873097 3.66816324 3.66915456
2^20 3.71301923 3.70026471 3.73290274 3.68064508 3.68774767 3.73882181 3.70288528 3.71697555 3.71213882
2^21 3.73397845 3.72496176 3.73588917 3.71528648 3.71607401 3.7510293 3.73074885 3.73464325 3.73155977
2^22 3.74830711 3.74193378 3.74110127 3.73339896 3.73563001 3.75716595 3.74395903 3.74996271 3.74069242
2^23 3.75653091 3.75203259 3.75694528 3.75472914 3.74757165 3.76810043 3.75700178 3.75935704 3.76059132
2^24 3.75728094 3.75410866 3.75736426 3.75574947 3.75095637 3.76124371 3.75914649 3.75739097 3.76192922
2^25 3.75765828 3.75542139 3.75528388 3.758201111 3.75319518 3.76044565 3.76006425 3.75558897 3.76093101

0.00228413 0.00452102 0.00465853 0.0017413 0.00674723 0.00050324 0.00012184 0.00435344 0.00098859
lenvk= 7.75463805821004e6lenvk= 7.75002182232025e6lenvk= 7.74973803069231e6lenvk= 7.75575829276465e6lenvk= 7.74542760932293e6lenvk= 7.76039032205305e6lenvk= 7.75960323116926e6lenvk= 7.75036764401777e6lenvk= 7.76139194580931e6lenvk= 7.76139194580931e6lenvk= 7.76139194580931e6

f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.77485291 0.94657705 0.94657705 2.77485291 0.94657705 0.94657705 2.77485291 0.94657705 0.94657705
2^3 1.93077763 1.94094568 0.76016381 2.00466354 2.76829083 1.01663971 3.6785062 1.01663971 1.94094568
2^4 2.7184208 1.86178065 1.3053894 2.59261847 2.618142 0.94187595 2.90137713 2.01685044 2.63693861
2^5 2.57548719 1.88364732 1.46127426 2.75246172 3.43654612 1.04803652 2.50707586 2.12496365 2.20386606
2^6 2.87995316 1.74115631 1.96592169 2.02416828 3.52917385 1.08283645 2.5616159 2.03085712 1.91113054
2^7 2.73684595 2.34166624 2.02094926 1.98205213 3.70746495 1.73121171 3.02747489 2.50882756 2.43614932
2^8 3.55930053 2.56071498 2.96841191 2.6561345 3.56491363 2.08087988 3.51743343 2.87666585 2.57465438
2^9 3.48759948 2.85887039 3.03985931 2.62893216 3.22931516 2.4699268 3.49668747 3.12381933 2.70010842
2^10 3.62408818 3.44343657 3.2762064 3.32967736 3.9622574 3.12337292 3.83879632 4.09671361 3.4572829
2^11 3.92915838 3.91924901 3.66024294 3.55416139 3.78997077 3.66435082 4.08515234 4.26211019 3.48104369
2^12 3.67209314 3.51730023 3.4793696 3.33929393 3.44111682 3.33467671 3.79161584 3.67603747 3.27963501
2^13 3.69230933 3.69613673 3.55223424 3.50348651 3.61204754 3.5605787 3.78369599 3.53335326 3.4470979
2^14 3.76117947 3.65109314 3.65994958 3.61764926 3.51543693 3.55369022 3.6238551 3.66120128 3.48127864
2^15 3.72899278 3.79970296 3.65702696 3.74475961 3.59312778 3.72889518 3.66793632 3.72241233 3.55928862
2^16 3.71940322 3.76790036 3.66823136 3.76524677 3.65198663 3.71721459 3.73901929 3.71434738 3.59765699
2^17 3.75277112 3.71384746 3.71635137 3.72154209 3.65407698 3.67792748 3.71956981 3.77657601 3.6885714
2^18 3.72566657 3.7391182 3.69991946 3.71271219 3.70269484 3.71357145 3.7490252 3.76736919 3.70190011
2^19 3.7416578 3.72074349 3.72344506 3.70881707 3.72287536 3.70267869 3.75072495 3.7592359 3.72350403
2^20 3.74391129 3.74006232 3.73104986 3.73607687 3.73424647 3.72726468 3.7497178 3.73978803 3.72915912
2^21 3.7607483 3.74564113 3.75166697 3.74197684 3.75023632 3.73660276 3.74743605 3.74472714 3.74106555
2^22 3.75636332 3.74305995 3.74996184 3.74751393 3.75568936 3.73668607 3.74218922 3.74794976 3.73951319
2^23 3.76340303 3.75696463 3.75888818 3.7618103 3.76249936 3.75246327 3.75471876 3.75256251 3.74882223
2^24 3.75725398 3.75801746 3.75407324 3.7628409 3.76165192 3.75484283 3.75077136 3.75077608 3.75138588
2^25 3.76168298 3.76161358 3.75944107 3.76196382 3.76228591 3.75937487 3.75562641 3.7606989 3.75653351

0.00174056 0.00167117 0.00050134 0.00202141 0.0023435 0.00056754 0.00431601 0.00075649 0.0034089
lenvk= 7.76294377933303e6lenvk= 7.76280056495655e6lenvk= 7.75831718183240e6lenvk= 7.76352335841493e6lenvk= 7.76418805241358e6lenvk= 7.75818056954376e6lenvk= 7.75044490013630e6lenvk= 7.76091294825152e6lenvk= 7.75231688793917e6lenvk= 7.75231688793917e6lenvk= 7.75231688793917e6

f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 1.51043861 2.18401392 1.51043861 1.51043861 2.18401392 1.51043861 1.51043861 2.18401392 1.51043861
2^3 2.62144614 1.97828644 1.29857048 1.64149878 2.06021106 2.62144614 1.14204573 2.9582338 1.64149878
2^4 2.63902274 3.10953111 1.6025596 1.66214938 3.23057536 2.19667042 1.82178488 3.9160559 2.43342316
2^5 2.82363981 2.22840716 1.98008526 1.87167451 2.30165599 2.57698352 1.32315616 3.17593578 2.24370442
2^6 2.33437025 1.95598684 2.71153786 1.57288791 2.60709235 2.42604441 1.25862949 2.50406495 2.14933172
2^7 2.85015014 3.03352689 3.25466312 2.15881013 2.99789543 3.11555928 2.32839315 3.7120953 2.67225917
2^8 3.34329451 3.53104862 3.29017965 2.75536487 3.45300573 3.69260322 2.91630873 3.69320508 3.12073124
2^9 3.71516377 3.16914356 3.47979286 3.24142783 3.65985202 3.55519479 2.71366574 3.61305558 3.38046292
2^10 3.41274278 2.9344384 3.50126997 3.06468819 3.61683041 3.58055959 2.60621178 3.46372619 3.5178908
2^11 3.2367601 3.01027521 3.27911906 2.98584138 3.62015473 3.43972801 2.76926492 3.40288244 3.50558121
2^12 3.57210236 3.56815808 3.41003848 3.3844673 3.81490609 3.71384618 3.38232594 3.5401314 3.6811266
2^13 3.51447873 3.61123527 3.47534853 3.37905308 3.65413441 3.645824 3.47524181 3.55754683 3.65800128
2^14 3.60414829 3.66394602 3.63661152 3.50658852 3.57242694 3.74785997 3.56589642 3.58404529 3.6400202
2^15 3.66480283 3.6094594 3.68428936 3.59447414 3.67212879 3.70853259 3.53945953 3.69694175 3.67123966
2^16 3.63941656 3.70493465 3.71799953 3.58930287 3.68362283 3.71746884 3.65451434 3.68065284 3.62157337
2^17 3.74279747 3.76889576 3.74176543 3.70686381 3.75873548 3.74012211 3.73283347 3.68971045 3.72037007
2^18 3.75671359 3.75337452 3.76810999 3.73113472 3.76335026 3.72187239 3.72776622 3.67183402 3.74291364
2^19 3.75627403 3.74857424 3.7643041 3.7381501 3.74296295 3.74733171 3.73045432 3.70702801 3.78358612
2^20 3.75003046 3.74831318 3.7460286 3.73722411 3.74463307 3.75270717 3.73549635 3.73489165 3.76584003
2^21 3.74725221 3.74824972 3.73541962 3.73821024 3.73694218 3.74372815 3.73920105 3.74414515 3.76217119
2^22 3.75519123 3.75206464 3.75031776 3.74880908 3.7570777 3.75067911 3.74568018 3.75241862 3.75188653
2^23 3.75988824 3.75214934 3.7485878 3.7553843 3.75866244 3.75290875 3.74764719 3.75705674 3.75135249
2^24 3.75949205 3.75792278 3.7541058 3.7563164 3.7518845 3.75649784 3.75474691 3.75312635 3.7575959
2^25 3.76074632 3.75746451 3.75651936 3.75850685 3.75619323 3.75601652 3.7552257 3.75593565 3.75791828

0.0008039 0.0024779 0.00342305 0.00143556 0.00374918 0.00392589 0.00471671 0.00400676 0.00202414
lenvk= 7.76101080245018e6lenvk= 7.75423817734048e6lenvk= 7.75228767986925e6lenvk= 7.75638924354303e6lenvk= 7.75161464532901e6lenvk= 7.75124997028512e6lenvk= 7.74961797215657e6lenvk= 7.75108309189180e6lenvk= 7.75517460714132e6lenvk= 7.75517460714132e6lenvk= 7.75517460714132e6

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Untitled 1 Untitled 2 Untitled 3 Untitled 4
Untitled 5 Untitled 6 Untitled 7 Untitled 8
Untitled 9 Untitled 10 Untitled 11 Untitled 12
Untitled 13 Untitled 14 Untitled 15 Untitled 16
Untitled 17 Untitled 18 Untitled 19 Untitled 20
Untitled 21 Untitled 22 Untitled 23 Untitled 24
Untitled 25 Untitled 26 Untitled 27 Untitled 28
Untitled 29 Untitled 30 Untitled 31 Untitled 32
Untitled 33 Untitled 34 Untitled 35 Untitled 36
Untitled 37 Untitled 38 Untitled 39 Untitled 40
Untitled 41 Untitled 42 Untitled 43

log2 x

M
3

x, n bsum
2^2 10.3105469
2^3 9.37758291
2^4 8.86031454
2^5 8.55596968
2^6 8.36841938
2^7 8.24864577
2^8 8.17005146
2^9 8.11741733
2^10 8.08163255 min max average st dev
2^11 8.05703271 x=2^25 7.9485310184 8.0088178111 7.9854564013 0.0149151085
2^12 8.03998548 difference 0.0001496487 0.0514689816 0.0162784299 0.0129995941
2^13 8.02810347
2^14 8.01978718
2^15 8.01394927
2^16 8.00984247
2^17 8.00694911
2^18 8.00490848
2^19 8.00346819
2^20 8.00245106
2^21 8.0017325
2^22 8.00122473
2^23 8.00086585
2^24 8.00061217
2^25 8.00043283

0.0004328273

f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3f=z^2 - 3
x, n w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.05555556 2.05555556 2.88888889 2.05555556 2.05555556 2.88888889 2.05555556
2^3 2.49390023 3.14390023 4.0860771 1.60104308 5.02655329 1.6860771 2.25104308
2^4 2.09509889 3.06492137 4.35477499 1.1947114 3.7046388 2.51372816 2.13910477
2^5 1.89907993 2.35160918 3.20099068 1.06708326 4.28022566 1.94507885 1.33789887
2^6 2.54203266 2.52810879 3.74225738 1.59058449 3.23912497 1.75340745 1.67790593
2^7 2.70133309 3.61466478 3.47451149 1.84280902 3.59205311 2.89805373 2.67414666
2^8 2.76067735 3.40070427 3.72671987 2.06002638 3.79682797 3.58799048 3.20388651
2^9 3.93474606 4.47440171 4.22309253 3.31130563 4.04318875 3.71570972 3.54290079
2^10 4.71136076 5.70239101 4.971471 4.17415013 5.3621238 4.35745911 3.96360648
2^11 5.35169775 6.5556371 5.07873096 4.9093577 5.90476324 5.29195683 5.46879749
2^12 5.77260953 6.77392271 5.28817222 5.42830168 6.63834532 6.37519234 6.73126186
2^13 7.14041617 7.2933596 5.95971083 6.8586958 7.20608658 6.85690159 7.10237025
2^14 7.06004264 7.29665564 6.38270171 6.85023583 7.30227308 6.78651537 7.21440308
2^15 7.28253937 7.33634199 7.18156589 7.12685856 7.58426089 7.0155174 7.6138466
2^16 7.50392246 7.41104591 7.42464196 7.38892121 7.52010162 7.17539332 7.70991618
2^17 7.48029606 7.58138544 7.48547925 7.39744927 7.5161862 7.4867633 7.6814625
2^18 7.70486322 7.77023796 7.66209304 7.64480897 7.79437486 7.72719412 7.78292237
2^19 7.86664502 7.93306793 7.74862743 7.82332262 7.92546754 7.90104652 7.88410834
2^20 7.87649533 7.96535984 7.80852796 7.84556546 7.90970104 7.86349252 7.83382911
2^21 7.8996991 7.96935117 7.9063777 7.87767951 7.99476803 7.93348605 7.87463576
2^22 7.91385993 7.95087361 7.91002227 7.89822104 7.98979319 7.92128283 7.93845993
2^23 7.93694083 7.94601543 7.9063851 7.92585254 7.96065347 7.92069525 7.93375911
2^24 7.94427515 7.96001669 7.93054517 7.93642831 7.96312838 7.93514888 7.94182932
2^25 7.96298061 7.96915137 7.94853102 7.95743014 7.97370624 7.97315926 7.96299167

0.0370193864 0.0308486262 0.0514689816 0.0425698648 0.0262937596 0.0268407427 0.037008332
lenvk= 1.64331154994027e7lenvk= 1.64458500294247e7lenvk= 1.64032960289040e7lenvk= 1.64216610383292e7lenvk= 1.64552498575727e7lenvk= 1.64541210544982e7lenvk= 1.64331383122985e7lenvk= 1.64331383122985e7lenvk= 1.64331383122985e7

f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1f=z^2 - 1
x, n w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.88888889 2.88888889 6.5E+00 2.88888889 2.88888889 6.5E+00 2.88888889 2.88888889
2^3 4.79321995 2.76056689 4.71612245 4.79321995 2.3360771 3.49163265 1.86770975 4.79321995
2^4 3.5595157 1.94229815 3.76182985 3.80056253 3.18810832 3.62790018 1.3263989 3.92342103
2^5 3.82429362 2.11120317 3.80979746 2.43821156 2.45019647 4.3442458 1.27000352 3.2966502
2^6 3.06528178 1.85759913 4.19882294 3.18782736 2.27790739 3.4111572 1.28388186 4.01403132
2^7 3.7233838 2.61336467 4.01799605 3.65683233 2.87382977 3.13513131 1.94847791 3.16886338
2^8 3.65438011 2.76915731 3.47962432 3.17184477 4.70129578 3.5844434 2.17654294 4.59235013
2^9 4.78820587 4.03506752 3.55203719 4.41063602 5.53750497 4.14847773 3.47359363 4.79566268
2^10 5.36785568 4.75173553 5.35130207 4.83348276 5.74957521 4.89044567 4.25827014 6.37497484
2^11 7.15491002 6.62911064 6.79001791 6.86649782 7.61029048 7.04886962 6.18175177 7.27579372
2^12 6.55918789 6.17399484 6.81253046 6.90376084 6.93009472 7.01341821 5.83516805 6.78401015
2^13 7.53943977 7.23758537 7.53724155 7.47062777 7.39502937 7.30871481 6.96338577 6.96796313
2^14 7.44810801 7.22592915 7.54168504 7.08071687 7.24256729 7.21491185 7.01965475 7.25338259
2^15 7.59595543 7.43166679 7.53323126 7.43178136 7.59287111 7.40978305 7.27652764 7.29105338
2^16 7.82236863 7.70192434 7.76115283 7.61150848 7.6622019 7.50232803 7.58666973 7.55530614
2^17 8.02965775 7.94209818 7.88878607 7.82573462 7.75035935 7.72803701 7.85745968 7.95110697
2^18 7.90142617 7.83911262 7.94320136 7.83603493 7.89378096 7.87090824 7.77844207 7.88594454
2^19 7.91493381 7.87052894 7.96140239 7.84618259 7.90901117 7.91077714 7.82703292 7.89609037
2^20 7.92874754 7.89720091 7.88730512 7.88215533 7.93686557 7.93868183 7.86615435 7.91713202
2^21 7.87484252 7.85254448 7.87012761 7.89900189 7.87838229 7.93390822 7.83051891 7.91761535
2^22 7.91732673 7.90152839 7.93231094 7.94867207 7.91478709 8.00698381 7.88587836 7.97675599
2^23 7.93830405 7.92712597 7.95806809 7.9626824 7.92549537 8.00732346 7.9160282 7.96752342
2^24 7.96738693 7.95948483 7.96666777 7.96581462 7.95949931 7.99189071 7.95162607 7.96362847
2^25 7.97894814 7.9733678 7.97491336 7.97147851 7.95932012 7.97708914 7.96781072 7.97826212

0.0210518646 0.0266321955 0.0250866428 0.0285214855 0.0406798813 0.0229108611 0.0321892843 0.021737882
lenvk= 1.64660674985700e7lenvk= 1.64545514311800e7lenvk= 1.64577409711995e7lenvk= 1.64506525241775e7lenvk= 1.64255613763702e7lenvk= 1.64622311080566e7lenvk= 1.64430833281296e7lenvk= 1.64646517720144e7lenvk= 1.64646517720144e7lenvk= 1.64646517720144e7

f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1f=z^2 + 1
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.88888889 2.05555556 6.5E+00 2.88888889 2.05555556 6.5E+00 2.88888889 2.05555556 6.5E+00
2^3 2.66770975 1.91941043 5.81510204 4.0860771 1.84287982 4.47326531 3.56056689 4.00104308 5.89163265
2^4 2.89182019 1.88468952 5.67763775 2.74707616 1.59262228 4.28232195 3.76338802 5.06885683 4.29615127
2^5 4.00781178 2.439757 5.19483629 7.03700107 1.8484596 4.02239471 3.15910305 3.75948874 4.12675846
2^6 4.15853986 2.71976635 4.79242891 6.37743065 1.99984383 5.48759678 4.82353221 5.57799654 3.6470129
2^7 4.3940399 3.11023634 5.1482597 4.28887577 2.36998437 6.61858787 4.05579022 5.64729928 5.67106327
2^8 5.46023964 4.3621539 5.55071996 5.07717785 3.61828087 6.09360885 5.09302621 4.79880999 5.035194
2^9 5.56771268 4.68005241 6.30375 5.64259498 4.03237175 5.9972466 5.05759294 5.26460172 5.62031855
2^10 7.17735139 6.4119174 6.77767355 5.74375701 5.79975391 6.23292494 6.20512343 6.01593601 6.29520079
2^11 7.56129826 6.97015272 7.85803469 6.48327909 6.47477932 7.55652652 7.54933042 6.89722207 6.69688559
2^12 7.11404181 6.68527946 7.9701228 6.65430343 6.31270317 7.54833276 7.01021555 7.16108082 6.91364832
2^13 6.8880953 6.57530525 7.34840824 6.74511947 6.29603682 7.16480618 6.83618541 7.51424915 6.72382447
2^14 7.16872386 6.93955908 7.68334799 7.04263191 6.72979569 7.75070473 6.94986956 7.74977445 7.19202476
2^15 7.80909968 7.63822117 8.14293186 7.71069324 7.47843427 7.50776877 7.48719011 8.02290557 7.90697353
2^16 7.96510747 7.8412609 8.12852446 7.7021808 7.72373443 7.55742923 7.66616241 7.88387703 7.77799575
2^17 7.87038828 7.78228391 7.98833698 7.59932099 7.69770165 7.68419201 7.68767555 7.81035857 7.75429653
2^18 7.82475157 7.7620461 7.93837285 7.70293575 7.70128864 7.796419 7.72685624 7.88061048 7.81678789
2^19 7.75843416 7.71406947 7.76616461 7.6776523 7.67077637 7.77436576 7.69899374 7.74509897 7.7480075
2^20 7.84627492 7.81470906 7.93224295 7.77060203 7.78373668 7.94833427 7.83626109 7.86189076 7.85659704
2^21 7.91883809 7.89645146 7.93593164 7.87237906 7.87438788 7.9711078 7.91633249 7.91668042 7.9098465
2^22 7.95182885 7.93596996 7.94402276 7.92134029 7.92028622 7.9899376 7.94517065 7.9591841 7.9320595
2^23 7.98657598 7.97535889 7.98963285 7.9836006 7.96423619 8.02728137 7.98524125 7.98988118 8.00063795
2^24 7.99296248 7.98504119 7.99223841 7.9867329 7.97717056 8.00418242 7.99599082 7.98829977 8.00623945
2^25 7.99500086 7.98940976 7.98832444 7.99755132 7.98384577 8.00177529 7.99890333 7.98425541 8.00217047

0.0049991444 0.0105902394 0.0116755636 0.0024486766 0.0161542269 0.0017752901 0.0010966674 0.0157445866 0.0021704677
lenvk= 1.64991953205981e7lenvk= 1.64876570394559e7lenvk= 1.64854172677949e7lenvk= 1.65044586930055e7lenvk= 1.64761746996079e7lenvk= 1.65131756466379e7lenvk= 1.65072488196218e7lenvk= 1.64770200698996e7lenvk= 1.65139911703643e7lenvk= 1.65139911703643e7lenvk= 1.65139911703643e7

f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2f=z^2 + 2
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 4.625E+00 1.01388889 1.01388889 4.625E+00 1.01388889 1.01388889 4.625E+00 1.01388889 1.01388889
2^3 2.88576531 2.62306689 0.7485771 3.12760204 4.37306689 1.08020975 6.31127551 1.08020975 2.62306689
2^4 4.32533831 2.47665232 1.61239842 4.47495669 4.19486185 0.99464388 4.82526523 2.85912789 4.22813161
2^5 4.2912168 2.48836354 2.0708257 5.19269317 6.06725493 1.12963292 4.1826568 3.16058569 3.45971216
2^6 5.54759232 2.3281103 3.5838857 3.5315841 6.80132215 1.24545183 4.47488878 3.09285913 2.86310883
2^7 5.11458532 3.9663891 3.57967864 3.4363902 7.2471928 2.79405607 5.67155692 4.64215129 4.39034862
2^8 7.28584829 4.43824547 5.940345 5.22408201 6.89142055 3.50925487 6.96086926 5.44253371 4.68139465
2^9 6.96136959 5.08660332 5.94430051 5.15425739 6.20531507 4.29983784 6.89324732 5.93898436 4.87752456
2^10 7.24956849 6.88604993 6.44202792 6.90906526 8.03157225 6.18551895 7.92728362 8.95005749 6.77486308
2^11 8.1203363 8.36751288 7.47902167 7.5935934 7.81581336 7.77490041 8.79276823 9.39645909 7.05895009
2^12 7.58900406 7.21485324 7.12863441 6.84260397 6.92803328 6.79217634 7.99457771 7.77317414 6.50253403
2^13 7.79721241 7.79882318 7.45816014 7.65110141 7.55013142 7.47634559 8.0218523 7.35808674 7.0642244
2^14 7.98172221 7.6495869 7.73426325 7.81260202 7.27442792 7.41594032 7.57639545 7.63860881 7.06830687
2^15 7.97746434 8.20066357 7.80037202 8.0690593 7.57208326 8.02754726 7.76222176 7.87892123 7.31285809
2^16 7.90737625 8.0345849 7.7810818 8.06471776 7.73946511 7.91016615 7.97950487 7.86496953 7.43153024
2^17 7.99418893 7.88373816 7.90391403 7.89471748 7.71109519 7.79524264 7.9083949 8.04724685 7.7020917
2^18 7.88884502 7.94448657 7.82499545 7.86001708 7.84657427 7.88126502 7.96279659 8.00436203 7.79384731
2^19 7.94327834 7.87501614 7.8980019 7.8678888 7.91336014 7.83025297 7.97758447 7.98550789 7.87269105
2^20 7.95400588 7.92355619 7.92197468 7.93360596 7.93344216 7.8917702 7.96903641 7.94649415 7.90288409
2^21 8.00634141 7.94721571 7.98367312 7.95824877 7.9692306 7.9247151 7.97143119 7.95364068 7.94032267
2^22 7.98937248 7.94599447 7.9733817 7.96756754 7.98943282 7.93010496 7.94455396 7.96050519 7.93670091
2^23 8.01201927 7.98784451 8.00072778 8.00477982 8.0087483 7.97660413 7.98881658 7.97671975 7.96409425
2^24 7.98972875 7.99014469 7.98177207 8.00620783 8.00593663 7.98221084 7.97515976 7.97390625 7.96988799
2^25 8.00782207 8.00519951 8.0022091 8.00608535 8.00881781 7.99959913 7.98831096 8.00235185 7.98894856

0.0078220719 0.0051995125 0.0022091027 0.0060853523 0.0088178111 0.0004008708 0.0116890429 0.0023518466 0.0110514419
lenvk= 1.65256543237715e7lenvk= 1.65202421766642e7lenvk= 1.65140709009248e7lenvk= 1.65220702746560e7lenvk= 1.65220702746560e7lenvk= 1.65086847273778e7lenvk= 1.64853894507693e7lenvk= 1.65143654800274e7lenvk= 1.64867052609798e7lenvk= 1.64867052609798e7lenvk= 1.64867052609798e7

f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3
x, n w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
2^2 2.05555556 2.88888889 2.05555556 2.05555556 2.88888889 2.05555556 2.05555556 2.88888889 2.05555556
2^3 4.37655329 2.76056689 1.60104308 2.34390023 2.66770975 4.37655329 1.45104308 4.79321995 2.34390023
2^4 4.30737895 5.06910957 2.03634994 2.29054121 5.83995947 3.53545041 2.59808564 7.34649795 3.7015882
2^5 4.76605024 3.38016745 2.72341893 2.74628149 3.98854253 4.73760671 1.74419983 5.66638029 3.38057424
2^6 3.68670795 2.99682388 4.34698883 2.16530033 4.42375061 4.38025834 1.71407138 4.30356898 3.37037615
2^7 4.98444132 5.47013501 6.18792937 3.52536492 5.23249706 5.75700184 3.98588442 7.08074938 4.60225499
2^8 6.09984443 6.61785606 6.2332232 4.80768519 6.36460436 8.02509192 5.25974588 7.08936897 5.60837766
2^9 7.31536601 5.81872353 6.80264609 6.22721286 7.13667653 7.38422614 4.81924554 7.0812769 6.32483212
2^10 6.61927776 5.55084361 6.76173941 5.82484684 7.08721496 7.26907986 4.82345107 6.74633771 7.01457267
2^11 6.32816226 5.82199165 6.42514874 5.74981627 7.24202158 6.99313649 5.28084845 6.67641241 7.06085953
2^12 7.44450534 7.30349819 6.80321747 6.99659294 7.86527837 7.77446259 6.86980832 7.15236055 7.5086116
2^13 7.27414979 7.48659722 7.06169886 6.95021729 7.41906438 7.63292426 7.16369325 7.30344541 7.63758423
2^14 7.60398283 7.72914138 7.58570789 7.36766605 7.34604613 7.92011569 7.49279922 7.51365232 7.69547199
2^15 7.74360947 7.59172509 7.78866581 7.57198953 7.65563692 7.8195554 7.42227808 7.81961125 7.73260762
2^16 7.65739271 7.85077978 7.8406695 7.53478311 7.75491972 7.88552163 7.7276405 7.77137846 7.57697974
2^17 7.97860525 8.0262133 7.94828798 7.88990415 7.96825994 7.97885887 7.93739835 7.79022309 7.86893466
2^18 8.0081251 7.98227676 8.00123841 7.94469288 8.00452971 7.89510599 7.91897911 7.7413995 7.93929959
2^19 7.9793752 7.96788938 8.00695961 7.93434014 7.92362067 7.94858468 7.92297439 7.83101387 8.05871384
2^20 7.97218885 7.96237336 7.95633285 7.94030555 7.95033311 7.97128842 7.93052958 7.91399733 8.01515649
2^21 7.96392834 7.97078464 7.93433581 7.94138956 7.93612869 7.95811534 7.94825398 7.95089416 8.0094671
2^22 7.9949053 7.98256424 7.97668845 7.97896772 7.99744691 7.97706601 7.96664215 7.98438908 7.97359525
2^23 8.0047554 7.98122139 7.96583608 7.9934955 7.99820299 7.9796275 7.96998042 7.99458792 7.96913421
2^24 8.0032345 7.99362409 7.98253635 7.99528903 7.97536403 7.99156934 7.98568617 7.97893748 7.98693634
2^25 7.99985035 7.99144293 7.98934706 7.99424502 7.98474699 7.9897537 7.98584375 7.98405858 7.99015928

0.0001496487 0.0085570736 0.0106529379 0.0057549825 0.015253011 0.0102463015 0.0141562535 0.0159414235 0.0098407165
lenvk= 1.65092031716789e7lenvk= 1.64918528613019e7lenvk= 1.64875276491803e7lenvk= 1.64976355060151e7lenvk= 1.64780345290672e7lenvk= 1.64883668202400e7lenvk= 1.64802978953892e7lenvk= 1.64766138596790e7lenvk= 1.64892038215174e7lenvk= 1.64892038215174e7lenvk= 1.64892038215174e7
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Chart 2

Untitled 43 Untitled 1 Untitled 2 Untitled 3
Untitled 4 Untitled 5 Untitled 6 Untitled 7
Untitled 8 Untitled 9 Untitled 10 Untitled 11
Untitled 12 Untitled 13 Untitled 14 Untitled 15
Untitled 16 Untitled 17 Untitled 18 Untitled 19
Untitled 20 Untitled 21 Untitled 22 Untitled 23
Untitled 24 Untitled 25 Untitled 26 Untitled 27
Untitled 28 Untitled 29 Untitled 30 Untitled 31
Untitled 32 Untitled 33 Untitled 34 Untitled 35
Untitled 36 Untitled 37 Untitled 38 Untitled 39
Untitled 40 Untitled 41 Untitled 42

log2 x

M
4

Figure 2. The third and fourth moments, M3 and M4, of X=
p

n

(thicker red lines) and mp=
p

p (thin lines) for all .f; ˛/ tested.

moment graph), so if we’re interested in comparing how quickly two of the moments
converge, Table 1 will be more helpful.

The apparent common limit of the moments of mp=
p

p and X=
p

n suggests that
the limiting distributions of mp=

p
p, as x!1, and the random variable Xn=

p
n,

as n!1, are the same. For the variable X=
p

n we showed in Section 2 that, as
n!1, the distribution P .Xn=

p
n< t/ converges to the function F.t/D1�e�t2=2.

As the histogram in Figure 3 shows, the density function f .t/DF 0.t/ approximates
quite well the distribution of mp=

p
p for x D 108, f .z/D z2C 1, ˛ D 3. These

results give considerable support to our first conjecture, stated in Section 1.
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Figure 3. Histogram, H.t/, of the distribution of mp=
p

p (blue)
for x D 108, f .z/ D z2C 1, ˛ D 3, superimposed on the graph of
f .t/D te�t2=2 (red). Here

H.t Wwk � t <w.kC1//D
jfp� 108 Wwk �mp=

p
p<w.kC1/gj

w �jfp� 108gj
;

for k 2 N. Each bar of the histogram has width w � 5:6=800.

To test the hypothesis discussed in Section 3, we compute jQf;˛.x/j.log x/=
p

x

for .f; ˛/ as described above and x 2 f2; 22; : : : ; 227g. Table 2 shows that, although
our results are still fairly widely dispersed at x D 227, the average of the results
for this x value is very close to G.x/, and the standard deviation is decreasing in
general as x increases, as is the error of the mean from G.x/. As we mentioned
earlier, limx!1G.x/ converges very slowly, and, as the table shows, even for x

as large as 227 we still have jG.x/�
p

2�j � 0:36, so we are not too surprised to
see such a wide range in our results for this x value. That is, intuitively, it seems
we should not expect our results to be very tightly grouped until we are close to
the limiting value,

p
2� . Figure 4 gives a graphical representation of all .f; ˛/

tested, for x from 4 to 227. On this graph the red and blue lines are G.x/ and the
mean from Table 2, respectively. From this data, it seems reasonable to suppose
that jQf;˛.x/j.log x/=

p
x will eventually converge to

p
2� , independent of f , ˛,

and so we make our second conjecture as stated in Section 1.
Joseph Silverman [2008] carried out computations that lead to a conjecture (in

a more general setting) that under certain restrictions the set fp W mp � p1=2��g

will have density 0 for � > 0. This conjecture agrees with our own results, and in
fact, if Conjecture 1 were proven, a less general version of Silverman’s conjecture
would readily follow. Computations of a similar nature to ours were also carried
out in [Benedetto et al. 2013], with results that are compatible with our own.
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[1,0,-2][1,0,-2][1,0,-2][1,0,-2][1,0,-2][1,0,-2][1,0,-2][1,0,-2] [1,0,0][1,0,0][1,0,0][1,0,0][1,0,0][1,0,0][1,0,0][1,0,0] [1,0,-3][1,0,-3][1,0,-3][1,0,-3][1,0,-3][1,0,-3][1,0,-3] [1,0,-1][1,0,-1][1,0,-1][1,0,-1][1,0,-1][1,0,-1][1,0,-1] [1,0,1][1,0,1][1,0,1][1,0,1][1,0,1][1,0,1][1,0,1] [1,0,2][1,0,2][1,0,2][1,0,2][1,0,2][1,0,2][1,0,2] f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3f=z^2 + 3
w=3 w=4 w=5 w=6 w=7 w=9 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
0E+00 0.49012907 0E+00 0.49012907 0E+00 0E+00 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0E+00 0.49012907 0E+00 0.49012907 0E+00 0.49012907 0E+00 0.49012907 0E+00 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 0.49012907 2 0.43436558 0.4317803727 0.1587256218 0.0025852076
0.69314718 0.69314718 0E+00 1.38629436 0E+00 0.69314718 0.69314718 2^2 1.38629436 0.69314718 0.69314718 1.38629436 0.69314718 0.69314718 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 0.69314718 0.69314718 1.38629436 0.69314718 0.69314718 1.38629436 0.69314718 0.69314718 1.38629436 0.69314718 1.38629436 0.69314718 1.38629436 0.69314718 1.38629436 0.69314718 1.38629436 0.69314718 0.69314718 0.69314718 1.38629436 0.69314718 0.69314718 1.38629436 0.69314718 0.69314718 1.38629436 2^2 1.11584786 1.0397207708 0.3465735903 0.07612709
1.47038722 1.47038722 0.73519361 1.47038722 0.73519361 0.73519361 0.73519361 2^3 1.47038722 0.73519361 1.47038722 1.47038722 1.47038722 0.73519361 1.47038722 2.20558082 2.20558082 2.94077443 2.94077443 2.94077443 2.20558082 2.20558082 2.94077443 1.47038722 1.47038722 2.20558082 1.47038722 1.47038722 2.20558082 2.20558082 1.47038722 2.20558082 0.73519361 1.47038722 0.73519361 1.47038722 1.47038722 1.47038722 1.47038722 1.47038722 0.73519361 1.47038722 1.47038722 2.20558082 1.47038722 2.20558082 2.20558082 1.47038722 1.47038722 2.20558082 2^3 1.94387801 1.7329563608 0.5964424449 0.21092165
1.38629436 1.38629436 0.69314718 0.36067376 1.38629436 0.69314718 0.69314718 0.69314718 2^4 2.07944154 1.38629436 2.77258872 2.07944154 1.38629436 2.07944154 2.07944154 2.07944154 2.07944154 2.77258872 2.77258872 2.77258872 2.07944154 2.07944154 2.77258872 2.07944154 2.07944154 2.07944154 1.38629436 2.07944154 2.77258872 2.77258872 2.07944154 2.07944154 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 1.38629436 2.07944154 0.69314718 2.07944154 2.07944154 2.77258872 2.07944154 2.77258872 2.77258872 2.07944154 2.07944154 2.77258872 2^4 2.33558074 2.0629380374 0.5345199446 0.2726427
1.22532268 1.83798402 2.45064536 1.15415603 1.83798402 0.61266134 0.61266134 0.61266134 2^5 1.83798402 1.22532268 2.45064536 1.83798402 1.83798402 1.83798402 1.83798402 3.0633067 3.0633067 3.0633067 3.0633067 3.67596804 2.45064536 3.0633067 3.0633067 1.83798402 1.83798402 1.83798402 2.45064536 1.83798402 2.45064536 2.45064536 1.83798402 1.83798402 1.83798402 1.83798402 1.83798402 1.83798402 2.45064536 1.83798402 2.45064536 2.45064536 1.22532268 2.45064536 1.83798402 2.45064536 2.45064536 2.45064536 3.0633067 1.83798402 1.83798402 2.45064536 2^5 2.86738041 2.2464249121 0.5458021017 0.62095549
1.55958116 1.55958116 2.07944154 0.96179669 1.55958116 1.03972077 0.51986039 0.51986039 2^6 2.59930193 2.07944154 3.11916231 2.59930193 2.07944154 2.07944154 2.59930193 2.59930193 2.59930193 2.59930193 3.11916231 3.11916231 2.59930193 2.59930193 3.11916231 2.07944154 2.07944154 2.07944154 3.11916231 2.07944154 3.11916231 3.6390227 2.07944154 2.07944154 3.11916231 2.59930193 3.11916231 2.07944154 3.6390227 2.59930193 3.11916231 3.11916231 2.07944154 2.07944154 1.55958116 2.07944154 2.07944154 2.59930193 2.59930193 1.55958116 1.55958116 2.07944154 2^6 3.09406355 2.5126585295 0.5310853582 0.58140502
1.71545175 2.14431469 1.71545175 0.82439717 1.28658881 1.28658881 0.42886294 0.42886294 2^7 3.4309035 2.57317763 4.28862938 3.4309035 2.57317763 3.00204056 3.4309035 2.57317763 2.57317763 2.57317763 3.00204056 3.00204056 3.00204056 2.57317763 3.4309035 1.71545175 1.71545175 2.14431469 2.57317763 1.71545175 3.00204056 3.4309035 1.71545175 3.00204056 2.57317763 2.57317763 2.57317763 1.71545175 3.4309035 2.57317763 2.57317763 3.00204056 2.14431469 1.71545175 2.14431469 2.57317763 1.71545175 3.00204056 3.4309035 2.14431469 2.57317763 2.14431469 2^7 3.284008 2.6446547829 0.605901794 0.63935321
1.38629436 1.73286795 1.73286795 0.9016844 1.03972077 1.03972077 0.34657359 0.34657359 2^8 3.81230949 2.42601513 4.15888308 3.81230949 3.4657359 3.11916231 4.50545667 2.42601513 2.42601513 2.42601513 2.42601513 2.77258872 2.42601513 2.42601513 3.11916231 2.42601513 2.42601513 2.77258872 2.42601513 2.42601513 3.4657359 3.11916231 2.07944154 3.4657359 2.77258872 3.11916231 2.77258872 2.07944154 3.11916231 3.11916231 3.11916231 3.11916231 2.07944154 2.42601513 3.4657359 2.77258872 2.42601513 3.4657359 3.81230949 3.4657359 3.11916231 3.11916231 2^8 3.3897005 2.9458755174 0.5772099154 0.44382498
1.10279041 1.37848801 1.65418562 0.9617967 1.10279041 0.82709281 0.2756976 0.2756976 2^9 3.58406884 3.03267363 3.85976644 3.58406884 3.58406884 3.03267363 4.41116165 2.48127843 2.48127843 2.75697603 2.20558082 2.75697603 2.20558082 2.48127843 3.03267363 2.75697603 2.75697603 2.75697603 2.48127843 2.75697603 4.41116165 2.75697603 2.20558082 3.85976644 3.30837123 3.30837123 3.30837123 2.20558082 2.75697603 3.30837123 2.75697603 3.30837123 2.48127843 1.92988322 3.30837123 2.48127843 1.92988322 3.58406884 3.30837123 3.30837123 3.03267363 3.03267363 2^9 3.46750437 2.9735955736 0.5880391215 0.49390879
0.86643398 1.29965096 1.29965096 0.86562644 1.08304247 0.64982548 0.21660849 0.21660849 2^10 3.03251891 3.24912741 3.24912741 3.03251891 3.03251891 2.59930193 3.6823444 3.03251891 3.03251891 2.81591042 2.59930193 2.81591042 2.38269343 3.03251891 3.24912741 3.6823444 3.6823444 2.59930193 3.03251891 3.6823444 4.11556138 3.24912741 2.81591042 4.11556138 3.4657359 2.81591042 3.4657359 2.59930193 2.38269343 2.81591042 2.81591042 3.4657359 2.81591042 1.73286795 2.81591042 2.16608494 1.73286795 3.4657359 3.24912741 2.81591042 2.81591042 2.81591042 2^10 3.46924936 3.0015748444 0.5168678799 0.46767452
0.84240934 1.01089121 1.17937308 0.91807866 1.01089121 0.67392747 0.16848187 0.16848187 2^11 3.03267363 3.03267363 2.86419176 3.03267363 2.86419176 2.52722803 3.36963737 2.86419176 2.86419176 2.19026429 2.35874616 2.52722803 2.02178242 2.86419176 2.69570989 3.53811924 3.53811924 2.35874616 2.86419176 3.53811924 3.7066011 2.69570989 2.52722803 3.7066011 3.53811924 2.52722803 3.53811924 2.86419176 2.69570989 2.52722803 2.86419176 3.36963737 2.69570989 2.02178242 2.69570989 2.35874616 2.02178242 3.7066011 3.03267363 2.69570989 3.2011555 2.69570989 2^11 3.45002662 2.8722147091 0.4693252043 0.57781191
0.77979058 0.77979058 1.03972077 0.96179669 0.77979058 0.64982548 0.1299651 0.1299651 2^12 2.72926702 2.72926702 2.59930193 2.72926702 2.72926702 2.20940664 2.98919722 2.98919722 2.98919722 2.20940664 2.85923212 2.85923212 2.07944154 2.98919722 2.85923212 3.24912741 3.24912741 2.07944154 2.72926702 3.24912741 3.11916231 2.59930193 2.85923212 3.37909251 3.24912741 2.72926702 3.24912741 2.59930193 2.59930193 2.72926702 2.59930193 3.37909251 2.46933683 2.20940664 2.72926702 2.72926702 2.20940664 3.24912741 2.98919722 2.72926702 2.98919722 2.98919722 2^12 3.42304423 2.7973439787 0.3464630581 0.62570025
0.69690227 0.69690227 0.79645974 0.88781233 0.69690227 0.59734481 0.09955747 0.09955747 2^13 2.7876091 2.28982176 2.48893669 2.7876091 2.38937922 1.79203442 2.68805163 2.7876091 2.7876091 2.48893669 2.88716656 3.0862815 2.38937922 2.7876091 3.0862815 3.6836263 3.6836263 2.48893669 2.98672403 3.6836263 3.28539643 2.68805163 2.98672403 3.3849539 2.88716656 2.68805163 2.88716656 2.48893669 2.48893669 2.68805163 2.7876091 2.98672403 2.58849416 2.58849416 2.7876091 2.98672403 2.58849416 3.0862815 3.28539643 2.7876091 3.0862815 2.98672403 2^13 3.37313225 2.8350174134 0.3751852469 0.53811483
0.53069081 0.60650378 0.60650378 0.82439716 0.68231676 0.45487784 0.07581297 0.07581297 2^14 2.80508 2.35020216 2.5018281 2.80508 2.65345405 1.89532432 2.57764108 3.10833189 3.10833189 2.65345405 2.80508 3.25995783 2.65345405 3.10833189 3.25995783 3.10833189 3.10833189 2.65345405 2.80508 3.10833189 3.10833189 2.42601513 2.80508 3.41158378 3.03251891 2.72926702 3.03251891 2.72926702 2.57764108 2.72926702 2.95670594 3.03251891 3.03251891 2.72926702 2.72926702 2.88089297 2.72926702 2.80508 3.41158378 2.72926702 3.10833189 3.56320973 2^14 3.32853583 2.8718676153 0.3091522971 0.45666822
0.459496 0.51693301 0.459496 0.76943735 0.51693301 0.402059 0.057437 0.057437 2^15 2.41235402 2.24004302 2.46979103 2.41235402 2.64210203 2.01029502 2.41235402 3.38878304 3.38878304 3.04416103 3.04416103 3.33134603 2.92928703 3.38878304 3.15903503 3.27390903 3.27390903 2.81441303 3.04416103 3.27390903 3.10159803 2.87185003 2.98672403 3.44622004 2.98672403 3.04416103 2.98672403 2.75697603 2.52722803 3.04416103 3.04416103 3.21647203 2.92928703 2.64210203 2.64210203 2.98672403 2.64210203 2.75697603 3.44622004 2.64210203 3.10159803 3.38878304 2^15 3.27415309 2.9320221256 0.3507113167 0.34213096
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Positive solutions to singular third-order boundary
value problems on purely discrete time scales

Courtney DeHoet, Curtis Kunkel and Ashley Martin

(Communicated by Johnny Henderson)

We study singular discrete third-order boundary value problems with mixed
boundary conditions of the form

−u111(ti−2)+ f
(
ti , u(ti ), u1(ti−1), u11(ti−2)

)
= 0,

u11(t0)= u1(tn+1)= u(tn+2)= 0,

over a finite discrete interval {t0, t1, . . . , tn, tn+1, tn+2}. We prove the existence
of a positive solution by means of the lower and upper solutions method and
the Brouwer fixed point theorem in conjunction with perturbation methods to
approximate regular problems.

1. Preliminaries

This paper is something of an extension of [Rachůnková and Rachůnek 2006] and
[Kunkel 2006; 2008]. Rachůnková and Rachůnek studied a second-order singular
boundary value problem for the discrete p-Laplacian, φp(x)= |x |p−2x , p > 1. In
particular, they dealt with the discrete boundary value problem

1
(
φp(1u(t − 1))

)
+ f (t, u(t),1u(t − 1))= 0, t ∈ [1, T + 1],

1u(0)= u(T + 2)= 0,

in which f (t, x1, x2) was singular in x1. In [Kunkel 2006] this was extended to the
third-order case, but only for p = 2; that is, boundary value problem treated was

−111u(t − 2)+ f (t, u(t),1u(t − 1),11u(t − 2))= 0, t ∈ [2, T + 1],

11u(0)=1u(T + 2)= u(T + 3)= 0.

In [Kunkel 2008], by contrast, the extension was to a second-order singular discrete
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Keywords: singular discrete boundary value problem, mixed conditions, lower and upper solutions,

Brouwer fixed point theorem, approximate regular problems.
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boundary value problem with nonuniform step size:

u11(ti−1)+ f (ti , u(ti ), u1(ti−1))= 0, ti ∈ [2, T + 1],

u1(t0)= u(tn+1)= 0.

The analysis in the present paper relies heavily on a lower and upper solutions
method in conjunction with an application of the Brouwer fixed point theorem
[Zeidler 1986]. We consider only the singular third-order boundary value problem,
while letting our function range over a discrete interval with nonuniform step size.
We will provide definitions of appropriate lower and upper solutions. The lower
and upper solutions will be applied to nonsingular perturbations of our nonlinear
problem, ultimately giving rise to our boundary value problem by passing to the
limit.

Various forms of the lower and upper solutions method have been used extensively
in establishing solutions of boundary value problems for finite difference equations.
Examples include [Henderson and Kunkel 2006; Kunkel 2006; Rachůnková and
Rachůnek 2006]; we mention especially [Jiang et al. 2005], which deals with singular
discrete boundary value problems using the method. Other outstanding works
where lower and upper solution methods have been employed to obtain solutions
of boundary value problems for finite difference equations include [Agarwal et al.
1999; 2003; 2004; 2005; Agarwal and Wong 1997; Cabada 2011; Henderson and
Thompson 2002; Kelley and Peterson 2001; O’Regan and El-Gebeily 2008; Pao
1985; Peterson et al. 2004; Zhang et al. 2002].

Singular discrete boundary value problems also have received a good deal of
attention. As representative works, we suggest [Agarwal et al. 1999; 2005; 2008;
Agarwal and Wong 1997; Akın-Bohner et al. 2003; Atici et al. 2003; Jódar 1987;
Jódar et al. 1992; Naidu and Kailasa Rao 1982; Peterson et al. 2004; Rachůnková
and Rachůnek 2009; Yuan et al. 2008; Zheng et al. 2011; Zhang et al. 2002].

We now state the definitions that are used in the remainder of the paper.

Definition 1.1. For 0 ≤ i ≤ n + 2, let ti ∈ R, where t0 < t1 < · · · < tn+1 < tn+2.
Define the discrete intervals

T := [t0, tn+2] = {t0, t1, . . . , tn+1, tn+2},

T◦ := [t2, tn+1] = {t2, t3, . . . , tn, tn+1}.

Definition 1.2. For the function u : T→ R, define the delta derivative [Bohner and
Peterson 2001], u1, by

u1(ti ) :=
u(ti+1)− u(ti )

ti+1− ti
, ti ∈ T◦ ∪ {t0, tn+1}.

We make note that u11(ti )= (u1)1(ti ).
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Consider the third-order nonlinear discrete dynamic

u111(ti−2)+ f (ti , u(ti ), u1(ti−1), u11(ti−2))= 0, ti ∈ T◦, (1)

with mixed boundary conditions

u11(t0)= u1(tn+1)= u(tn+2)= 0. (2)

Our goal is to prove the existence of a positive solution of problem (1), (2).

Definition 1.3. By a solution of problem (1), (2), we mean a function u : T◦→ R

such that u satisfies the discrete dynamic (1) on T◦ and the boundary conditions (2).
If u(t) > 0 for t ∈ T◦, we say u is a positive solution of the problem (1), (2).

Definition 1.4. Let D⊆ R3. We say that f is continuous on T×D if f (ti , x, y, z)
is defined on ti ∈ T◦ and (x, y, z) ∈ D, and if f (ti , x, y, z) is continuous on D for
each ti ∈ T◦.

We make the following assumptions throughout:

(A) D= (0,∞)×R2.

(B) f is continuous on T◦×D.

(C) f (ti , x, y, z) has a singularity at x = 0; i.e., lim sup
x→0+

| f (ti , x, y, z)| = ∞ for

each ti ∈ T◦ and for some (y, z) ∈ R2.

2. Lower and upper solutions method for regular problems

Let us first consider the regular difference equation

u111(ti−2)+ h(ti , u(ti ), u1(ti−1), u11(ti−2))= 0, ti ∈ T◦, (3)

where h is continuous on T◦ ×R3, along with the boundary conditions (2). We
establish a lower and upper solutions method for the regular problem (3), (2).

Definition 2.1. We call α : T→ R a lower solution of (3), (2) if

α111(ti−2)+ h(ti , α(ti ), α1(ti−1), α
111(ti−2))≥ 0, ti ∈ T◦ (4)

and α satisfies boundary conditions

α11(t0)≤ 0,

α1(tn+1)≥ 0,

α(tn+2)≤ 0. (5)
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Definition 2.2. We call β : T→ R an upper solution of (3), (2) if

β111(ti−2)+ h(ti , β(ti ), β1(ti−1), β
11(ti−2))≤ 0, ti ∈ T◦ (6)

and β satisfies boundary conditions

β11(t0)≥ 0,

β1(tn+1)≤ 0,

β(tn+2)≥ 0. (7)

Theorem 2.1 (lower and upper solutions method). Let α and β be lower and upper
solutions of (3), (2), respectively, with α ≤ β on T◦. Let h(ti , x, y, z) be continuous
on T◦ × R3 and nonincreasing in its z variable. Then (3), (2) has a solution u
satisfying

α(t)≤ u(t)≤ β(t), t ∈ T.

Proof. We proceed through a sequence of steps involving modifications of the
function h.

Step 1. For ti ∈ T◦, (x, y, z) ∈ R3, define

h̃
(

ti , x, y,
y−z

ti−1−ti−2

)

=



h
(

ti , β(ti ), β1(ti−1),
β1(ti−1)−σ(ti−1, z)

ti−1−ti−2

)
+

β1(ti−1)−y
β1(ti−1)−y+1

, y<β1(ti−1),

h
(

ti , x, y,
y−σ(ti−2, z)

ti−1−ti−2

)
, β1(ti−1)≤y≤α1(ti−1),

h
(

ti , α(ti ), α1(ti−1),
α1(ti−1)−σ(ti−1, z)

ti−1−ti−2

)
+

y−α1(ti−1)

y−α1(ti−1)+1
, y>α1(ti−1),

where

σ(ti−2, z)=


α1(ti−2), z > α1(ti−2),

z, β1(ti−2)≤ z ≤ α1(ti−2),

β1(ti−2), z < β1(ti−2).

By its construction, h̃ is continuous on T◦×R3 and there exists M > 0 so that

|h̃(ti , x, y, z)| ≤ M, ti ∈ T◦, (x, y, z) ∈ R3.

We now study the auxiliary equation

u111(ti−2)+ h̃(ti , u(ti ), u1(ti−1), u11(ti−2))= 0, ti ∈ T◦, (8)

with boundary conditions (2). Our immediate goal is to prove the existence of a
solution of (8), (2).
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Step 2. The Brouwer fixed point theorem states that, for

K = {(x1), . . . , (xn) : ci ≤ xi ≤ di , i = 1, . . . , n},

if T : K → K is continuous, then T has a fixed point in K . To this end, define

E = {u : T→ R : u11(t0)= u1(tn+1)= u(tn+2)= 0}

and also define
‖u‖ =max{|u(ti )| : ti ∈ T}.

This makes E into a Banach space. We define an operator T : E→ E by

(Tu)(tm)=

−

n+1∑
k=m

(tk+1−tk)
n∑

j=k

(t j+1−t j )

j∑
i=1

(ti−ti−1)h̃
(
ti+1,u(ti+1),u1(ti ),u11(ti−1)

)
. (9)

T is a continuous operator.
From the bounds placed on h̃ in Step 1 and from (9), if r > (tn+1− t0)3 M , then

T(B(r))⊂ B(r), where B(r)= {u ∈ E : ‖u‖< r}. Therefore, by the Brouwer fixed
point theorem [Zeidler 1986], there exists u ∈ B(r) such that u = Tu.

Step 3. We now show that u is a fixed point of T if and only if u is a solution
of (8), (2).

First assume u = Tu. Then u ∈ E and thus satisfies (2).
Further,

u1(tm−2)

=
u(tm−1)−u(tm−2)

tm−1−tm−2

=−

n+1∑
k=m−1

(tk+1−tk)
n∑

j=k
(t j+1−t j )

j∑
i=1
(ti−ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−tm−1

+

n+1∑
k=m−2

(tk+1−tk)
n∑

j=k
(t j+1−t j )

i∑
i=1
(ti−ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1−tm−2

=

(tm−1−tm−2)
n∑

j=m−2
(t j+1−t j )

j∑
i=1
(ti−ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1−tm−2

=

n∑
j=m−2

(t j+1−t j )

j∑
i=1

(ti−ti−1)h̃
(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
.
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We also have

u11(tm−2)=
u1(tm−1)− u1(tm−2)

tm−1− tm−2

=

n∑
j=m−1

(t j+1− t j )
j∑

i=1
(ti − ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1− tm−2

−

n∑
j=m−2

(t j+1− t j )
j∑

i=1
(ti − ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1− tm−2

=−

(tm−1− tm−2)
m−2∑
i=1
(ti − ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1− tm−2

=−

m−2∑
i=1

(ti − ti−1)h̃
(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
and

u111(tm−2)=
u11(tm−1)− u11(tm−2)

tm−1− tm−2

=

−

m−1∑
i=1
(ti − ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1− tm−2

+

i−1∑
i=1
(ti − ti−1)h̃

(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
tm−1− tm−2

=
−(tm−1− tm−2)h̃

(
tm, u(tm), u1(tm−1), u11(tm−2)

)
tm−1− tm−2

=−h̃
(
tm, u(tm), u1(tm−1), u11(tm−2)

)
.

This implies that u111(tm−2)+h̃(tm, u(tm), u1(tm−1), u11(tm−2))=0 and, thus,
u(t) solves problem (8), (2).

On the other hand, let u(t) solve (8), (2).
Then, for i = 1, 2, . . . , n,

u11(ti )− u11(ti−1)= (ti − ti−1)u111(ti−1),

which means, for each i = 1, 2, . . . , n,

u11(ti )− u11(ti − 1)= (ti − ti−1)u111(ti−1)

=−(ti − ti−1)h̃
(
ti+1, u(ti+1), u1(ti ), u1(ti−1)

)
.
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By u11(t0)= 0 and summing the above equations from i = 1 to i = j , where
j = 1, 2, . . . , n, we have

u11(t j )=−

j∑
i=1

(ti − ti−1)h̃
(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
. (10)

Also, for j = 0, 1, . . . , n,

u1(t j+1)− u1(t j )= (t j+1− t j )u11(t j ).

Taking the sum of the above equations from j = k to j =n, where k=0, 1, . . . , n,
and by u1(tn+1)= 0 and (10), we have

u1(tk)=
n∑

j=k

(t j+1− t j )

j∑
i=1

(ti − ti−1)h̃
(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
. (11)

Similarly, for k = 0, 1, . . . , n+ 1,

u(tk+1)− u(tk)= (tk+1− tk)u1(tk).

Add the above equations from k = m to k = n+ 1, where m = 0, 1, . . . , n+ 2,
and by (11) and u(tn+2)= 0, we have

−

n+1∑
k=m

(tk+1− (tk)
n∑

j=k

(t j+1− t j )

j∑
i=1

(ti − ti−1)h̃
(
ti+1, u(ti+1), u1(ti ), u11(ti−1)

)
.

Thus, u = Tu and the claim holds.

Step 4. We now show that solutions u(t) of (8), (2) satisfy

α(t)≤ u(t)≤ β(t), t ∈ T.

Consider the case of obtaining u(t)≤ β(t). Let v1(t)= β1(t)− u1(t). For the
sake of establishing a contradiction, assume that

max{v1(t) : t ∈ T} := v1(l) > 0.

From the boundary conditions (2) and (7), we see that l ≡ li ∈ T◦. Thus,
v1(li+1)≤ v

1(li ) and v1(li−1)≤ v
1(li ). Therefore, v11(li )≤ 0 and v11(li−1)≥ 0.

This in turn implies that v111(li−1)≤ 0. Consequently,

u111(li−1)≥ β
111(li−1). (12)
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On the other hand, since h is nonincreasing in its fourth variable, we have from (3)
that

β111(li−1)− u111(li−1)

= h̃
(
li+1, u(li+1), u1(l), u11(li−1)

)
+β111(li−1)

= h(li+1, β(li+1), β
1(li ),

β1(li )− σ(li−1), u(li−1)

li − li−1
)+

v1(l)
v1(l)+ 1

+β111(li−1)

≥ h(li+1, β(li+1), β
1(l), β11(li−1))+

v1(l)
v1(l)+ 1

+β111(li−1)

≥−β111(li−1)+
v1(l)

v1(l)+ 1
+β111(li−1)

=
v1(l)

v1(l)+ 1
> 0.

Hence, u111(li−1) < β
111(li−1), but this contradicts (12). Therefore, v1(l)≤ 0.

This implies that u1(l)≥ β1(l), and hence

tn+2∑
l=t

(ti − ti−1)β
1(l)≤

tn+2∑
l=t

(ti − ti−1)u1(l).

This, in turn, yields

β(tn+2)−β(t)≤ u(tn+2)− u(t),

β(tn+2)−β(t)≤−u(t),

u(t)≤ β(t)−β(tn+2),

u(t)≤ β(t).

A similar argument shows that α(t)≤ u(t), t ∈ T.
Thus, the conclusion of the theorem holds and our proof is complete. �

3. Existence result

In this section, we make use of Theorem 2.1 to obtain positive solutions of the
singular problem (1), (2). In particular, in applying Theorem 2.1, we deal with a
sequence of regular perturbations of (1), (2). Ultimately, we obtain a desired solution
of (1), (2) by passing to the limit on a sequence of solutions for the perturbations.

Theorem 3.1. Assume conditions (A), (B), and (C) hold, along with the following:

(D) there exists c ∈ (0,∞) so that f (ti , c, 0, 0)≤ 0 for all t ∈ T◦;

(E) f (ti , x, y, z) is nonincreasing in its z variable for ti ∈ T◦ and x ∈ (0, c];

(F) lim
x→0+

f (ti , x, y, z)=∞ for ti ∈ T◦, y ∈
(
−

c
r ,

c
r

)
, where r is sufficiently large.
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Then (1), (2) has a solution u satisfying

0< u(t)≤ c, ti ∈ T◦.

Proof. Again, for the proof, we proceed through a sequence of steps.

Step 1. For l ∈ N, ti ∈ T◦, (x, y, z) ∈ R3, define

fl(ti , x, y, z)=
{

f (ti , |x |, y, z), |x | ≥ 1
l ,

f (ti , 1
l , y, z), |x |< 1

l .

Then fl is continuous on T◦×R3 and nonincreasing for ti ∈ T◦, x ∈ [−c, c].
Assumption (F) implies that there exists l0 such that, for all l ≥ l0,

fl(ti , c, 0, 0)= f (ti , c, 0, 0) > 0, ti ∈ T◦.

Consider, for each l ≥ l0,

u111(ti−2)+ fl(ti , u(ti ), u1(ti−1), u11(ti−2))= 0, ti ∈ T◦. (13)

Define α(t) = 0 and β(t) = c. Then α and β are lower and upper solutions for
(13), (2) and α(t)≤ β(t) on T◦. Thus, by Theorem 2.1, there exists ul a solution
of (13), (2) satisfying 0≤ ul(t)≤ c, ti ∈ T, l ≥ l0. Consequently,

|u1l (ti )| ≤
c

(ti − ti−1)
, ti ∈ T◦. (14)

Step 2. Let l ∈ N, l ≥ l0. Since ul(t) solves (13), we get, from work similar to that
exhibited in Theorem 2.1,

u1l (tm)=
n∑

j=1

(t j+1− t j )

j∑
i=1

(ti − ti−1) fl
(
ti , ul(ti ), u1l (ti−1), u11l (ti−2)

)
(15)

for tm ∈ T◦. By assumption (F), there exists ε1 ∈ (0, 1/l0) such that, if l ≥ 1/ε1,

fl(t2, x, y, z) >
c

t2− t1
, x ∈ (0, ε1], y ∈ (−c, c). (16)
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For the sake of establishing a contradiction, assume that ul(t1) < ε1 for l ≥ 1/ε1.
Then, by (15) and (16),

u1l (t1)=−
n∑

j=1

(t j+1− t j )

j∑
i=1

(ti − ti−1) fl
(
ti , uk(ti ), u1k (ti−1), u11l (ti−2)

)
≥ fl

(
ti , ul(ti ), u1l (ti−1), u11l (ti−2)

)
+

n∑
j=2

(t j+1− t j )

j∑
i=1

(ti − ti−1) fl
(
ti , ul(ti ), u1l (ti−1), u11l (ti−2)

)
≥ fl

(
ti , ul(ti ), u1l (ti−1), u11l (ti−2)

)
≥

c
t2− t1

=−
c
r
.

But this contradicts (14). Hence ul(t1)≥ ε1 for all l ≥ 1/ε1.
Define a2 =max{| fl(t2, x, y, z)| : x ∈ [ε1, c], y ∈ (−c, c)}. By assumption (F),

there exists ε2 ∈ (0, ε1] such that, if l ≥ 1/ε2 and ul < ε2, then

fl(t3, x, y, z) >
c

t3− t2
− T (a2), x ∈ (0, ε2], y ∈ (−c, c). (17)

For the sake of establishing a contradiction, assume that, for l ≥ 1/ε2, we have
ul(t2) < ε2. Then, by (15) and (17), we have

u1l (t2)=
n∑

j=1

(t j+1− t j )

j∑
i=1

(ti − ti−1) fl
(
ti , ul(ti ), u1l (ti−1), u11l (ti−2)

)
=

n∑
j=2

(t j+1− t j )

j∑
i=2

(ti − ti−1) fl
(
ti , ul(ti ), u1l (ti−1)u11l (ti−2)

)
+ T fl

(
t2, ul(t2), u1l (t1), u11l (t0)

)
=

n∑
j=3

(t j+1− t j )

j∑
i=2

(ti − ti−1) fl
(
ti , uk(ti ), u1l (ti−1), u11l (ti−2)

)
+ fl

(
t3, ul(t3), u1l (t2), u11l (t1)

)
+ T fl

(
t2, ul(t2), u1l (t1), u11l (t0)

)
≥

n∑
j=3

(t j+1− t j )

j∑
i=2

(ti − ti−1) fl
(
ti , uk(ti ), u1l (ti−1), u11l (ti−2)

)
+ fk

(
t2, uk(t2), u1k (t1)

)
fl
(
t3, ul(t3), u1l (t2), u11l (t1)

)
+ T a2

>

n∑
j=3

(t j+1− t j )

j∑
i=2

(ti − ti−1) fl
(
ti , uk(ti ), u1l (ti−1), u11l (ti−2)

)
+

c
t3− t2

>
c

t3− t2
.
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But this contradicts (14). Hence ul(t2)≥ ε2 for all l ≥ 1/ε2.
Continuing similarly for t = 3, 4, . . . , nT , we get 0< εT < · · ·< ε2 < ε1 such

that ul(ti )≥ εT for ti ∈ T .
For 2≤ i ≤ n− 1, set

mi =max
{
| fl(ti , x, y, z)| : x ∈ [εi , c], y ∈ (−c, c)

}
.

By assumption (F), there exists εn ∈ (0, εn−1] such that, if l ≥ 1/εn and ul(tn) < εn ,
then

fl(tn, x, y, z) >
c

tn − tn−1
−

n−1∑
i=2

mi . (18)

For the sake of establishing a contradiction, assume that, for l ≥ 1/εn , we have
ul(tn) < εn . Then, by (15) and (18), we have

u1l (tn)=
n+1∑

j=n+1

(t j+1− t j )

j∑
i=2

(ti − ti−1) fl
(
ti , u(ti ), u1(ti ), u11(ti−2)

)
= (tn+2− tn+1)

n+1∑
i=2

(ti − ti−1) fl
(
ti , u(ti ), u1(ti−1), u11(ti−2)

)
= (tn+2− tn+1)

n∑
i=2

(ti − ti−1) fl
(
ti , u(ti ), u1(ti−1), u11(ti−2)

)
+ fl

(
tn+1, u(tn+1), u1(tn), u11(tn−1)

)
>

n−1∑
i=2

(mi )+
c

tn − tn−1
−

n−1∑
i=2

(mi )

=
c

tn − tn−1
.

But this contradicts (14). Hence ul(tn)≥ εn for all l ≥ 1/εn . Therefore, by letting
ε = εn , we get

0< ε ≤ ul(ti )≤ c, t ∈ T◦, l ≥
1
ε
. (19)

Since ul(ti ) satisfies (19) and (2), we can choose a subsequence {ulk (t)} ⊂ {ul(ti )}
such that limk→∞ ulk (t)= u(ti ), t ∈ T◦, u(ti ) ∈ E , where E is as defined in Step 2
of Theorem 2.1. Moreover, (15) yields, for each sufficiently large k,

u1lk
(ti )=

n∑
j=ti+1

(t j+1− t j )

j∑
i=2

(ti − ti−1) f
(
ti , ulk (ti ), u1lk

(ti−1), u11lk
(ti−2)

)
,
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and so, letting l→∞ and from the continuity of f , we get

u1(ti )=
n∑

ti+1

(t j+1− t j )

j∑
i=2

(ti − ti−1) f
(
ti , u(ti ), u1(ti−1), u11(ti−2)

)
.

Consequently,

u11(ti−1)=

j∑
i=2

(ti − ti−1) f
(
ti , u(ti ), u1(ti−1), u11(ti−2)

)
.

Thus,
u111(ti−2)=− f

(
ti , u(ti ), u1(ti−1), u11(ti−2)

)
.

Therefore, u solves (1), and, by (19), our theorem holds. �
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