

Refined inertias of tree sign patterns of orders 2 and 3

D. D. Olesky, Michael F. Rempel and P. van den Driessche

Refined inertias of tree sign patterns of orders 2 and 3

D. D. Olesky, Michael F. Rempel and P. van den Driessche

(Communicated by Charles R. Johnson)

Sign patterns are matrices with only the sign of each entry specified. The refined inertia of a matrix categorizes the eigenvalues as positive, negative, zero or nonzero imaginary, and the refined inertia of a sign pattern is the set of all refined inertias allowed by real matrices with that sign pattern. The complete sets of allowed refined inertias for all tree sign patterns of orders 2 and 3 (up to equivalence and negation) are determined.

1. Introduction

The *inertia* of an $n \times n$ real matrix A, denoted by i(A), is the triple (n_+, n_-, n_0) , where n_+ , n_- and n_0 are the numbers of eigenvalues with positive, negative and zero real part, respectively. Note that $n_++n_-+n_0=n$. The *refined inertia* of A, ri(A), is the 4-tuple $(n_+, n_-, n_z, 2n_p)$ with n_+ and n_- as above, n_z the number of zero eigenvalues and n_p the number of nonzero imaginary complex conjugate pairs of eigenvalues; see [Kim et al. 2009]. The refined inertia of A distinguishes between zero and nonzero imaginary eigenvalues, which is important for linear dynamical systems.

A sign pattern $\mathcal{A} = [\alpha_{ij}]$ of order *n* is an $n \times n$ matrix with entries in $\{+, -, 0\}$. A real matrix *A* is a *realization* of \mathcal{A} if the signs of the entries in *A* correspond to the entries in \mathcal{A} . The sign pattern class of \mathcal{A} is $Q(\mathcal{A}) = \{A \mid A \text{ is a realization of } \mathcal{A}\}$. A sign pattern $\mathcal{B} = [\beta_{ij}]$ is a superpattern of \mathcal{A} if $\beta_{ij} = \alpha_{ij}$ for all $\alpha_{ij} \in \{+, -\}$. The inertia of a sign pattern \mathcal{A} is $i(\mathcal{A}) = \{i(A) \mid A \in Q(\mathcal{A})\}$ and the refined inertia of \mathcal{A} is $ri(\mathcal{A}) = \{ri(A) \mid A \in Q(\mathcal{A})\}$. A sign pattern \mathcal{A} allows a refined inertia $(n_+, n_-, n_z, 2n_p)$ if there exists some $A \in Q(\mathcal{A})$ having this refined inertia. See, for example, [Catral et al. 2009; Johnson and Summers 1989] for related allow problems on sign patterns.

Sign patterns have applications in areas where dynamical systems arise (see, for example, [Logofet 1993]), but characterizing sign patterns that have a particular

MSC2010: 15A18, 15B35.

Keywords: sign pattern, inertia, refined inertia, allow problems, characteristic equation, eigenvalues. This research was supported in part by NSERC Discovery grants.

property can be challenging since each nonzero entry is free to take on any value in one half of the real line. Section 2 introduces more definitions and concepts required for our analysis of sign patterns. Sections 3 and 4 identify the refined inertias allowed by all tree sign patterns of orders 2 and 3, respectively, and these are listed in Appendices A and B.

2. Fundamentals

Given an $n \times n$ sign pattern $\mathcal{A} = [\alpha_{ij}]$, the *transpose* of \mathcal{A} is $\mathcal{A}^T = [\alpha_{ji}]$. A *permutation similarity transformation* is $\mathcal{A} \mapsto P\mathcal{A}P^T$ where P is an $n \times n$ permutation matrix. A *signature similarity transformation* is $\mathcal{A} \mapsto D\mathcal{A}D^{-1}$ where $D = D^{-1}$ is an $n \times n$ diagonal matrix with each diagonal entry equal to ± 1 . The refined inertia of a sign pattern \mathcal{A} is preserved by each of these three transformations, which define equivalence classes of sign patterns. Two sign patterns \mathcal{A} and \mathcal{B} are *equivalent*, and therefore in the same equivalence class, if \mathcal{B} can be derived from \mathcal{A} by some sequence of the three transformations. One other important transformation is *negation*. Since $ri(-\mathcal{A}) = \{(n_-, n_+, n_z, 2n_p) \mid (n_+, n_-, n_z, 2n_p) \in ri(\mathcal{A})\}$, the refined inertia (and inertia) of $-\mathcal{A}$ is easily obtained from that of \mathcal{A} .

An $n \times n$ sign pattern \mathcal{A} is a *spectrally arbitrary* pattern (SAP) if, given any set of n complex numbers closed under complex conjugation, there exists a realization $A \in Q(\mathcal{A})$ having these n numbers as its eigenvalues [Drew et al. 2000], and \mathcal{A} is a *refined inertially arbitrary* pattern (rIAP) if, given any 4-tuple $(n_+, n_-, n_z, 2n_p)$ with $n_+ + n_- + n_z + 2n_p = n$, there exists a realization of \mathcal{A} having this 4-tuple as its refined inertia [Kim et al. 2009]. An inertially arbitrary pattern (IAP) is defined similarly [Drew et al. 2000]. The properties of being an IAP, rIAP and SAP are invariant with respect to equivalence and negation. Any SAP is obviously an rIAP, and any rIAP is also an IAP. Conversely, for n = 2 and 3, \mathcal{A} is a SAP if it is an rIAP [Kim et al. 2009], but it is not known if this holds for larger n.

A tree sign pattern $\mathcal{A} = [\alpha_{ij}]$ is a sign pattern that is combinatorially symmetric (i.e., $\alpha_{ij} \neq 0$ whenever $\alpha_{ji} \neq 0$) and has $\alpha_{i_1i_2}\alpha_{i_2i_3}\cdots\alpha_{i_ki_1} = 0$ for all $k \ge 3$. As in [Johnson and Summers 1989], associated with an $n \times n$ tree sign pattern \mathcal{A} is a signed tree graph with *n* vertices labeled 1, 2, ..., *n* and an edge between vertices *i* and $j \neq i$ if and only if α_{ij} is not 0; the sign on the edge is the sign of the product $\alpha_{ij}\alpha_{ji}$. In addition, if $\alpha_{ii} \neq 0$ the graph has a loop at vertex *i*, signed as the sign of α_{ii} . The negation of the sign pattern changes the signs of the loops of the graph, but not the signs of its edges. Every graph in the appendices uniquely represents those sign patterns that are the same up to equivalence, with one such sign pattern shown for each class. For n = 2 every irreducible sign pattern is a tree sign pattern. For n = 3, a tree sign pattern is equivalent to an irreducible tridiagonal sign pattern. We consider only irreducible sign patterns because the refined inertia of a reducible sign pattern is the sumset of the refined inertias of its irreducible components.

3. Sign patterns of order 2

For completeness, the refined inertias and graphs of all irreducible sign patterns of order 2 up to equivalence and negation are given in Appendix A. These can be determined simply by considering the trace and determinant of a real matrix with each sign pattern. The trace of a matrix is equal to the sum of its eigenvalues, and its determinant is equal to the product of its eigenvalues. For the 2×2 case the possible signs of the trace and determinant provide complete information on the refined inertia. For example, for an order 2 sign pattern, if the trace must be positive and the determinant must be negative, the only allowed refined inertia is (1, 1, 0, 0), with the positive eigenvalue larger in magnitude than the negative one. Note that only one sign pattern of order 2 is an rIAP.

4. Tree sign patterns of order 3

Since there are a total of 3^9 sign patterns of order 3, a computer program was written to identify the set of all irreducible order 3 sign patterns up to equivalence and negation. This set was determined by examining in turn every possible 3×3 irreducible sign pattern and checking for equivalence or negation with each sign pattern already in the set. The program identified 187 sign patterns, of which 34 were tree sign patterns. The equivalence classes corresponding to the 34 tree sign patterns are each represented by a graph in Appendix B, along with their refined inertias, a representative sign pattern and its associated characteristic equation, and references to techniques used for finding the refined inertias.

We now present our techniques and methods for finding the exact set of refined inertias allowed by each sign pattern. For every sign pattern, each refined inertia was either proved to not be allowed or shown to be allowed either by a proof or a numerical realization, respectively.

A tree sign pattern can be represented by a tridiagonal matrix with (real) variables for each nonzero entry. The generic 3×3 tridiagonal matrix is

$$\begin{bmatrix} \pm e & \pm a & 0 \\ \pm b & \pm f & \pm c \\ 0 & \pm d & \pm g \end{bmatrix}.$$
 (4-1)

Here a, b, c, d > 0 for an irreducible tree sign pattern and e, f, $g \ge 0$. For the moment we let $a' = \pm a$, and similarly for the other variables, but when working with specific sign patterns, we always use strictly positive variables.

We can normalize the matrix in (4-1) to reduce the number of unknowns by up to three, setting them to ± 1 . If $e \neq 0$ we set e = 1 by multiplying the matrix by 1/e, and if e = 0 and $f \neq 0$ we multiply by 1/f to set f = 1. By Lemma 2.3 in [Britz et al. 2004] we can also set a = c = 1, and since each 3×3 tree sign pattern

has a', c' > 0 up to equivalence, a' = c' = 1. Thus the characteristic polynomial can be simplified to

$$x^{3} - (e' + f' + g')x^{2} + (e'f' + e'g' + f'g' - b' - d')x + e'd' + b'g' - e'f'g',$$
(4-2)

with one of e', f' equal to 1 or -1, or e' = f' = g' = 0.

In terms of the characteristic polynomial, the trace is the negative of the coefficient of x^2 and the determinant is the negative of the constant term. Each refined inertia corresponds to a unique product of three linear factors, i.e., to a unique factorization of a monic cubic polynomial. The 13 possible refined inertias for 3×3 matrices are listed in Table 1 with their factorizations. After expanding each factorization, the coefficients of the resulting polynomial can be compared directly to the coefficients of the characteristic polynomial in (4-2). If there is no solution to the resulting set of equations, then the corresponding refined inertia is not allowed by the sign pattern with the given characteristic polynomial.

The real parts of α , β are positive and $\gamma > 0$. Note that for refined inertias (a)–(d), (g) and (i) in Table 1, the unknowns α and β may be complex conjugate pairs. However, since $\alpha\beta$ and $\alpha + \beta$ are always real and positive, when used in these combinations the fact that α and β are possibly complex can be ignored.

The following list summarizes the techniques that we used to determine the refined inertias. Each sign pattern in Appendix B references the techniques used for that sign pattern.

T1. The rIAPs (equivalently SAPs for n = 3) were found by determining which of the 34 tree sign patterns are equivalent to one of the two 3×3 SAPs that are

	refined inertia	factorization	characteristic polynomial
(a)	(3,0,0,0)	$(x-\alpha)(x-\beta)(x-\gamma)$	$x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + (\alpha + \beta)\gamma)x - \alpha\beta\gamma$
(b)	(2,1,0,0)	$(x-\alpha)(x-\beta)(x+\gamma)$	$x^{3} - (\alpha + \beta - \gamma)x^{2} + (\alpha\beta - (\alpha + \beta)\gamma)x + \alpha\beta\gamma$
(c)	(1,2,0,0)	$(x+\alpha)(x+\beta)(x-\gamma)$	$x^{3} + (\alpha + \beta - \gamma)x^{2} + (\alpha\beta - (\alpha + \beta)\gamma)x - \alpha\beta\gamma$
(d)	(0,3,0,0)	$(x+\alpha)(x+\beta)(x+\gamma)$	$x^{3} + (\alpha + \beta + \gamma)x^{2} + (\alpha\beta + (\alpha + \beta)\gamma)x + \alpha\beta\gamma$
(e)	(1,0,0,2)	$(x-\alpha)(x^2+\beta)$	$x^3 - \alpha x^2 + \beta x - \alpha \beta$
(f)	(0,1,0,2)	$(x+\alpha)(x^2+\beta)$	$x^3 + \alpha x^2 + \beta x + \alpha \beta$
(g)	(2,0,1,0)	$x(x-\alpha)(x-\beta)$	$x^3 - (\alpha + \beta)x^2 + \alpha\beta x$
(h)	(1,1,1,0)	$x(x+\alpha)(x-\beta)$	$x^3 + (\alpha - \beta)x^2 - \alpha\beta x$
(i)	(0,2,1,0)	$x(x+\alpha)(x+\beta)$	$x^3 + (\alpha + \beta)x^2 + \alpha\beta x$
(j)	(0,0,1,2)	$x(x^2+\alpha)$	$x^3 + \alpha x$
(k)	(1,0,2,0)	$x^2(x-\alpha)$	$x^3 - \alpha x^2$
(1)	(0,1,2,0)	$x^2(x+\alpha)$	$x^3 + \alpha x^2$
(m)	(0,0,3,0)	<i>x</i> ³	x ³

 Table 1. All refined inertias for matrices of order 3.

trees, namely \mathcal{T}_3 and \mathcal{U}_3 in [Britz et al. 2004] (see also [Cavers and Vander Meulen 2005]), or are equivalent to a superpattern of one of them.

T2. If e = g = 0, then the determinant must be zero and the trace is ± 1 or 0. The characteristic polynomial factors into a zero root and a quadratic, and the possible refined inertias are easily determined.

T3. In order to find a realization of a given sign pattern that has a refined inertia with $n_z = n_p = 0$, a random matrix with that sign pattern was generated in MATLAB, and its eigenvalues were computed. This ad hoc technique was used for many sign patterns to find an example of refined inertias (a)–(d) in Table 1 that each allows, although it does not show the nonexistence of those that are not allowed.

T4. If a tridiagonal sign pattern \mathcal{A} is symmetric, then any $A \in Q(\mathcal{A})$ is diagonally similar to a symmetric matrix, so its eigenvalues are real. Thus the refined inertias (e)–(f) and (j) in Table 1 are not allowed for such sign patterns.

T5. If the determinant must be positive or must be negative, then the sign pattern does not allow (g)–(m) in Table 1, as well as either (b), (d), (f) if positive, or (a), (c), (e) if negative.

T6. If the trace must be positive, then the sign pattern does not allow (d), (f), (i), (j), (l) and (m) in Table 1, and if negative it does not allow (a), (e), (g), (j), (k) and (m).

T7. If the sign pattern is such that the coefficient of the x term in (4-2) is negative, then only refined inertias (b), (c) and (h) in Table 1 can be allowed.

Note. The next four techniques are algebraic, involving the characteristic polynomial (4-2) and equations in Table 1. There are many possible ways of proceeding; however, we found the following techniques to be the most straightforward.

T8. To show that one of (e) or (f) in Table 1 is not allowed, equate the coefficients of the characteristic polynomial (4-2) to the coefficients of the polynomial corresponding to the refined inertia being considered. If this leads to a contradiction, then that refined inertia is not allowed.

For example, consider sign pattern (4e) in Appendix B. Equating its characteristic polynomial to the polynomial associated with (0, 1, 0, 2) ((f) in Table 1) gives

$$1 - f = \alpha \implies \alpha < 1, \quad d - f - b = \beta \Leftrightarrow d = \beta + b + f, \quad d = \alpha \beta$$

A contradiction is immediate since $0 < \alpha < 1$ implies $d < \beta$ from the last equation, but the second equation implies $d > \beta$. Therefore this sign pattern does not allow refined inertia (0, 1, 0, 2).

A more complicated argument shows that sign pattern (5d) in Appendix B does not allow refined inertia (1, 0, 0, 2). In this case

$$1 + f + g = \alpha \implies \alpha > g \text{ and } \alpha > 1,$$

while

$$f + g + fg + b + d = \beta \implies \beta > fg + d + b$$

and $d+bg+fg = \alpha\beta$. From the inequality for β it follows that $\alpha\beta > \alpha(fg+d+b) = \alpha(fg+d) + \alpha b$ and from the inequalities for α it follows that $\alpha(fg+d) + \alpha b > fg + d + gb = \alpha\beta$, which is a contradiction. This method can also be used to show that (a) or (d) in Table 1 are not allowed, but it is easier to invoke continuity when appropriate (see T12).

T9. This technique is for eliminating or identifying allowed refined inertias with at least one eigenvalue equal to zero (refined inertias (g)–(m) in Table 1) when the determinant is not necessarily zero (hence differing from T2). The objective is to determine inequalities between unknowns in the characteristic equation that require the coefficient of x to have a certain sign.

If the coefficient of x must be positive, only (g), (i) and/or (j) in Table 1 can be allowed, while if it must be negative, only (h) is allowed. This argument can also be viewed in terms of the discriminant of the quadratic that arises after factoring out the zero root from the characteristic polynomial.

As a simple example, consider sign pattern (10a) in Appendix B with the coefficient of x equal to f + g + fg - b - d. Here we are interested in the case d + bg - fg = 0 (i.e., at least one zero eigenvalue). This equation gives

$$fg = d + bg \implies fg > d \text{ and } f > b.$$

These imply that f - b + fg - d + g > 0. Since the trace 1 + f + g must be positive, (2, 0, 1, 0) is the only refined inertia with a zero eigenvalue that sign pattern (10a) allows, eliminating (h)–(m) in Table 1.

A more complex use of this technique is needed for sign pattern (11d) in Appendix B, with the coefficient of x equal to g - f - fg + b + d. Again we set the determinant to zero: fg - d - bg = 0. Considering the case with trace not positive $(f \ge 1 + g)$ gives f > 1, f > g, so:

• If $g \leq 1$, then

$$fg = bg + d \implies fg \ge bg + dg \implies f \ge b + d$$

and fg > g. Therefore the coefficient of x is negative.

• If g > 1, then

$$fg = bg + d \implies fg > b + d$$

and f > g. Therefore the coefficient of x is negative.

Thus, when the trace is negative or zero and the determinant is zero, only (1, 1, 1, 0) is allowed, eliminating (i)–(j) and (l)–(m) in Table 1.

For certain sign patterns, this technique can also be used to show that when the determinant and trace are taken to be negative, then the coefficient of x is also negative, and therefore (d) and (f) in Table 1 are not allowed. For sign pattern (11d) the argument follows as in the above example, except that the equality fg = bg + d is replaced by the inequality fg > bg + d.

Note. The next two techniques are for finding realizations with certain refined inertias when continuity cannot be obviously invoked. This could be done simply by trial and error, but it is easier to do some algebra first.

T10. The first technique is for finding realizations with a zero eigenvalue. First fix the trace to be either positive or negative, and then find inequalities that ensure that the coefficient of x is positive, negative and/or zero.

As an example, consider sign pattern (11c) in Appendix B with the coefficient of x equal to f - g - fg - b + d. For this sign pattern fg - d - bg = 0 ensures a zero eigenvalue while 1 + f > g implies a positive trace.

To find a realization with refined inertia (k) in Table 1, set

$$f + d = g + b + fg = g + b + d + bg \implies f - g = b(g + 1)$$

This reduces the number of unknowns by one, and further note that a solution to the last equation ensures that the trace is positive; therefore that condition can be ignored. Also, a solution implies f > b, and since d = g(f - b), d is positive for all solutions. An obvious solution is then b = 1, g = 1, f = 3.

Similarly, to show that (g) in Table 1 is allowed, a realization is required with positive trace, positive coefficient of x and zero determinant, which imply that f - g > b(g + 1). Thus, in the above solution, increase the value of f. Similarly, to show that (h) in Table 1 is allowed, increase b so that f - g < b(g + 1) while maintaining b < f.

T11. In order to determine a realization with refined inertia (e) or (f) in Table 1, begin as in T8, but now instead of trying to reach a contradiction, the goal is to find a reduced set of expressions that will ensure that all unknowns are positive, and therefore show that the refined inertia exists.

For example consider sign pattern (11c) as in the previous example. Equating the coefficients of the characteristic polynomial with those of (e) in Table 1 gives

$$1 + f - g = \alpha \implies f - g = \alpha - 1,$$

$$f - g - fg - b + d = \beta, \quad d + bg - fg = \alpha\beta.$$

From the last equation, choosing f > b ensures d > 0. Combining all three equations to eliminate *d* and *f* gives

$$b(1+g) = \alpha\beta + \alpha - \beta - 1 = (\alpha - 1)(\beta + 1).$$

Therefore, by choosing $g > \beta$, necessarily $b < \alpha - 1 < \alpha - 1 + g = f$, which gives two simple expressions, namely $\alpha > 1$ and $g > \beta > 0$, that ensure all variables remain positive. A solution is, for example, $\alpha = 2$, $\beta = 1$, g = 3 giving f = 4, b = 0.5, d = 12.5.

T12. Since the eigenvalues are continuous functions of the matrix entries, continuity can require that a sign pattern allow or not allow a particular refined inertia. This can often be used after the set of possible refined inertias is narrowed down.

For an example of the first case, if a sign pattern has been shown to allow (3, 0, 0, 0) and (1, 2, 0, 0) and the determinant is nonzero, then the sign pattern must also allow (1, 0, 0, 2).

For an example of the second case, if a sign pattern allows (3, 0, 0, 0) but no others except possibly (2, 1, 0, 0), as in Appendix B(5), by continuity (2, 1, 0, 0) is also not possible since an eigenvalue would have to cross the imaginary axis, and therefore (2, 0, 1, 0) would also have to be allowed.

For each tree sign pattern of order 3 (up to equivalence and negation), the above techniques determine the set of all allowed refined inertias. Appendix B contains a list of sign patterns arranged according to these sets, and also includes the graph corresponding to each equivalence class. This list suggests some open questions. Given a list of refined inertias, what classes of sign patterns allow exactly these refined inertias, and which lists have at least one such sign pattern?

Appendix A. Refined inertias of all 2×2 irreducible sign patterns up to equivalence and negation

(1)	$ri(\mathcal{A}) = \{(0, 0, 0, 2)\}$		
	(1a)		
	$\begin{bmatrix} 0 \\ - \\ 0 \end{bmatrix} \bigcirc - \bigcirc$		
(2)	$ri(\mathcal{A}) = \{(1, 1, 0, 0)\}$		
	(2a)	(2b)	(2c)
	$\begin{bmatrix} 0 \\ + \\ + \\ 0 \end{bmatrix} \bigcirc \xrightarrow{+} \bigcirc$	$\begin{bmatrix} + & + \\ + & 0 \end{bmatrix} \oplus \underline{+} \bigcirc$	$\begin{bmatrix} + & + \\ + & - \end{bmatrix} \oplus \underline{+} \oplus$
(3)	$ri(\mathcal{A}) = \{(2, 0, 0, 0)\}$		
	(3a)	(3b)	
	$\begin{bmatrix} + & + \\ - & 0 \end{bmatrix} \oplus \overline{-} \bigcirc$	$\begin{bmatrix} + & + \\ - & + \end{bmatrix} \oplus \xrightarrow{-} \oplus$	
(4)	$ri(\mathcal{A}) = \{(2, 0, 0, 0), (1, 1)\}$	1, 0, 0), (1, 0, 1, 0)	
	(4a)		
	$\begin{bmatrix} + & + \\ + & + \end{bmatrix} \oplus \xrightarrow{+} \oplus$		

(5) rIAP (allows all 7 refined inertias)

Appendix B. Refined inertias of all 3×3 tree sign patterns up to equivalence and negation

d

(1)
$$ri(\mathscr{A}) = \{(1, 1, 1, 0), (0, 0, 3, 0), (0, 0, 1, 2)\}$$

(1a) $\begin{bmatrix} 0 + 0 \\ + 0 + \\ 0 - 0 \end{bmatrix} \xrightarrow{x^3 - (b - d)x}$
Technique: T2
(2) $ri(\mathscr{A}) = \{(1, 1, 1, 0)\}$
(2a) $\begin{bmatrix} 0 + 0 \\ + 0 + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - (b + d)x}$
Technique: T2
(2b) $\begin{bmatrix} 0 + 0 \\ + + + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - x^2 - (b + d)x}$
Technique: T2
(3) $ri(\mathscr{A}) = \{(0, 0, 1, 2)\}$
(3a) $\begin{bmatrix} 0 + 0 \\ - 0 + \\ 0 - 0 \end{bmatrix} \xrightarrow{x^3 + (b + d)x}$
Technique: T2
(4) $ri(\mathscr{A}) = \{(2, 1, 0, 0)\}$
(4a) $\begin{bmatrix} + + 0 \\ - 0 + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - x^2 + (b - d)x + d}$
Techniques: T3, T5, T6
(4b) $\begin{bmatrix} + + 0 \\ + 0 + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - x^2 - (b + d)x + d}$
Techniques: T5, T7
(4c) $\begin{bmatrix} + + 0 \\ + + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - (1 + f)x^2 + (f - b - d)x + d}$
Techniques: T3, T5, T6
(4d) $\begin{bmatrix} + + 0 \\ - + + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - (1 + f)x^2 + (f + b - d)x + d}$
Techniques: T3, T5, T6
(4d) $\begin{bmatrix} - + 0 \\ - + + \\ 0 + 0 \end{bmatrix} \xrightarrow{x^3 - (1 - f)x^2 - (f + b - d)x + d}$
Techniques: T3, T5, T6
(4e) $\begin{bmatrix} - + 0 \\ + + + \\ 0 - 0 \end{bmatrix} \xrightarrow{x^3 + (1 - f)x^2 - (f + b - d)x + d}$
Techniques: T3, T5, T8, T12

$$(4f) \begin{bmatrix} + + 0 \\ + 0 + \\ 0 + + \end{bmatrix} \stackrel{\textcircled{(+)}}{\to} \stackrel{\textcircled{(+)}}{$$

(5)
$$\operatorname{ri}(\mathcal{A}) = \{(3, 0, 0, 0)\}$$

(5a)
$$\begin{pmatrix} + & + & 0 \\ - & 0 & + \\ 0 & - & 0 \end{pmatrix} \xrightarrow{(x^3 - x^2 + (b+d)x - d)} Techniques: T3, T5, T8, T12
(5b)
$$\begin{pmatrix} + & + & 0 \\ - & + & + \\ 0 & - & 0 \end{pmatrix} \xrightarrow{(x^3 - (1+f)x^2 + (f+b+d)x - d)} Techniques: T3, T5, T8, T12
(5c)
$$\begin{pmatrix} + & + & 0 \\ - & 0 & + \\ 0 & - & + \end{pmatrix} \xrightarrow{(x^3 - (1+g)x^2 + (g+b+d)x - d - bg)} Techniques: T3, T5, T8, T12
(5d)
$$\begin{pmatrix} + & + & 0 \\ - & + & + \\ 0 & - & + \end{pmatrix} \xrightarrow{(x^3 - (1+f+g)x^2 + (f+g+fg+b+d)x - d - bg - fg)} Techniques: T3, T5, T8, T12$$$$$$$$

(6)
$$\operatorname{ri}(\mathcal{A}) = \{(2, 0, 1, 0)\}$$

(6a)
$$\begin{bmatrix} 0 + 0 \\ - + + \\ 0 - 0 \end{bmatrix} \xrightarrow{\bigcirc} x^3 - x^2 + (b+d)x$$

Technique: T2

(7)
$$\operatorname{ri}(\mathcal{A}) = \{(1, 0, 2, 0), (1, 1, 1, 0), (2, 0, 1, 0)\}$$

$$\begin{array}{c} (7a) \begin{bmatrix} 0 + 0 \\ + + + \\ 0 - 0 \end{bmatrix} \stackrel{+}{\bigcirc} \stackrel{+}{\bigoplus} \stackrel{-}{\longrightarrow} \stackrel{-}{\bigcirc} (b - d)x \\ \text{Technique: T2} \\ (8) \quad \mathbf{r}(\mathcal{A}) = \{(3, 0, 0, 0), (1, 2, 0, 0), (1, 0, 0, 2)\} \\ \stackrel{-}{\bigcirc} \stackrel{+}{\longrightarrow} \stackrel{-}{\longrightarrow} \stackrel{-}{\bigoplus} \stackrel{-}{\longrightarrow} \stackrel$$

(12) rIAP (allows all 13 refined inertias)

(12a)
$$\begin{bmatrix} - + & 0 \\ - & 0 & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12b) } \begin{bmatrix} - & + & 0 \\ - & + & + \\ 0 & + & - \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & + & + \\ 0 & + & - \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & + & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & - & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & - & 0 \\ - & - & + \\ 0 & - & + \end{bmatrix} \xrightarrow[\text{Technique: T1}]{ (12c) } \begin{bmatrix} - & - & 0 \\ - & - & + \\ 0 &$$

Acknowledgements

We thank Charles R. Johnson for his valuable comments.

References

- [Britz et al. 2004] T. Britz, J. J. McDonald, D. D. Olesky, and P. van den Driessche, "Minimal spectrally arbitrary sign patterns", *SIAM J. Matrix Anal. Appl.* **26**:1 (2004), 257–271. MR 2005h:15030 Zbl 1082.15016
- [Catral et al. 2009] M. Catral, D. D. Olesky, and P. van den Driessche, "Allow problems concerning spectral properties of sign pattern matrices: a survey", *Linear Algebra Appl.* **430**:11-12 (2009), 3080–3094. MR 2010i:15066 Zbl 1165.15009
- [Cavers and Vander Meulen 2005] M. S. Cavers and K. N. Vander Meulen, "Spectrally and inertially arbitrary sign patterns", *Linear Algebra Appl.* **394** (2005), 53–72. MR 2005f:15008 Zbl 1065.15009
- [Drew et al. 2000] J. H. Drew, C. R. Johnson, D. D. Olesky, and P. van den Driessche, "Spectrally arbitrary patterns", *Linear Algebra Appl.* **308**:1-3 (2000), 121–137. MR 2001c:15012 ZbI 0957.15012
- [Johnson and Summers 1989] C. R. Johnson and T. A. Summers, "The potentially stable tree sign patterns for dimensions less than five", *Linear Algebra Appl.* **126** (1989), 1–13. MR 91f:15043 Zbl 0723.05047
- [Kim et al. 2009] I.-J. Kim, D. D. Olesky, B. L. Shader, P. van den Driessche, H. van der Holst, and K. N. Vander Meulen, "Generating potentially nilpotent full sign patterns", *Electron. J. Linear Algebra* **18** (2009), 162–175. MR 2010f:15045 Zbl 1181.15039
- [Logofet 1993] D. Logofet, *Matrices and graphs: stability problems in mathematical ecology*, CRC Press, 1993.

Received: 2011-08-04	Revised: 2012-04-25 Accepted: 2012-06-16
dolesky@cs.uvic.ca	Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
rempelm@uvic.ca	Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
pvdd@math.uvic.ca	Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada www.math.uvic.ca/faculty/pvdd/

mathematical sciences publishers

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

	BOARD O	F EDITORS	
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K.B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US \$105/year for the electronic version, and \$145/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2013 Mathematical Sciences Publishers

2013 vol. 6 no. 1

Refined inertias of tree sign patterns of orders 2 and 3 D. D. OLESKY, MICHAEL F. REMPEL AND P. VAN DEN DRIESSCHE	1
The group of primitive almost pythagorean triples NIKOLAI A. KRYLOV AND LINDSAY M. KULZER	13
Properties of generalized derangement graphs HANNAH JACKSON, KATHRYN NYMAN AND LES REID	25
Rook polynomials in three and higher dimensions FERYAL ALAYONT AND NICHOLAS KRZYWONOS	35
New confidence intervals for the AR(1) parameter FEREBEE TUNNO AND ASHTON ERWIN	53
Knots in the canonical book representation of complete graphs DANA ROWLAND AND ANDREA POLITANO	65
On closed modular colorings of rooted trees BRYAN PHINEZY AND PING ZHANG	83
Iterations of quadratic polynomials over finite fields WILLIAM WORDEN	99
Positive solutions to singular third-order boundary value problems on purely discrete time scales COURTNEY DEHOET, CURTIS KUNKEL AND ASHLEY MARTIN	113