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This paper presents a new way to construct confidence intervals for the unknown
parameter in a first-order autoregressive, or AR(1), time series. Typically, one
might construct such an interval by centering it around the ordinary least-squares
estimator, but this new method instead centers the interval around a linear com-
bination of a weighted least-squares estimator and the sample autocorrelation
function at lag one. When the sample size is small and the parameter has magni-
tude closer to zero than one, this new approach tends to result in a slightly thinner
interval with at least as much coverage.

1. Introduction

Consider the causal stationary AR(1) time series given by

X t = φX t−1+ εt , t = 0,±1,±2, . . . , (1-1)

where |φ| < 1, E(X t) = 0 and {εt }
iid
∼ N (0, σ 2). We seek a new way to construct

confidence intervals for the unknown parameter φ.
If X1, X2, . . . , Xn are sample observations from this process, then a point esti-

mate for φ is found by calculating

φ̃p =

∑n
t=2 St−1|X t−1|

p X t∑n
t=2 |X t−1|p+1 ,

where p ∈ {0, 1, 2, . . . } and St is the sign function, defined by

St =


1 if X t > 0,
0 if X t = 0,
−1 if X t < 0.

The estimator φ̃p can be thought of as a weighted least-squares estimator with form∑n
t=2 Wt−1 X t−1 X t∑n

t=2 Wt−1 X2
t−1
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and weight Wt = |X t |
p−1. Note that, when p= 1, we get the ordinary (unweighted)

least-squares estimator (OLSE), and when p= 0, we get what has come to be called
the Cauchy estimator:

φ̃1 =

∑n
t=2 X t−1 X t∑n

t=2 X2
t−1

(OLSE), φ̃0 =

∑n
t=2 St−1 X t∑n
t=2 |X t−1|

(Cauchy).

The OLSE has been studied since the time of Gauss and its optimal properties
for linear models are well known. The eponymously named Cauchy estimator dates
back to about the same time and is sometimes used as a surrogate for the OLSE.
Traditionally, confidence intervals for φ have been centered around the OLSE,
although So and Shin [1999] and Phillips, Park and Chang [Phillips et al. 2004]
showed that the Cauchy estimator has certain advantages over the OLSE when
dealing with a unit root autoregression. Gallagher and Tunno [2008] constructed a
confidence interval for φ centered around a linear combination of both estimators.

Another point estimate for φ comes from the sample autocorrelation function
of {X t } at lag one, given by

ρ̂(1)=
∑n

t=2 X t−1 X t∑n
t=1 X2

t
.

The autocovariance function of {X t } at lag h for an AR(1) series is given by γ (h)=
Cov(X t , X t+h) = φ

|h|σ 2/(1− φ2), which makes the true lag-one autocorrelation
function equal to

ρ(1)=
γ (1)
γ (0)

=
φσ 2/(1−φ2)

σ 2/(1−φ2)
= φ.

Observe that the structure of ρ̂(1) is similar to that of the OLSE. In fact, for an
AR(1) series, the Yule–Walker, maximum likelihood, and least-squares estimators
for φ are all approximately the same [Shumway and Stoffer 2006, Section 3.6].
Note also that, in general, if {X t } is not mean-zero, we would subtract X from each
observation when calculating things like ρ̂(h) and φ̃p.

To get a feel for how φ̃0, φ̃1 and ρ̂(1) behave relative to one another, Figure 1
shows their empirical bias and mean squared error (MSE) when φ ∈ (−1, 1) and
n = 50. The Cauchy estimator has the lowest absolute bias, and ρ̂(1) has the
smallest MSE for parameter values (roughly) between −0.5 and 0.5, while the
OLSE has the smallest MSE elsewhere. Other simulations not shown here reveal
that the MSE and absolute bias of φ̃p keep growing as p gets larger.

The goal of this paper is to construct a confidence interval for φ centered around
a linear combination of an arbitrary weighted least-squares estimator and the sample
autocorrelation function at lag one. That is, the center will take the form

a1φ̃p + a2ρ̂(1), (1-2)
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Bias MSE

φ φ

Figure 1. Empirical bias (left) and mean squared error (right) of
φ̃0, φ̃1 and ρ̂(1) for φ ∈ (−1, 1); 10,000 simulations were run for
each parameter value, with distribution N (0, 1) and n = 50.

where a1+ a2 = 1 and p 6= 1. We first, however, need to take a brief look at how
intervals centered around a single estimator behave in order to find a proper target
for our new interval to outperform.

Theorem 2.1 from [Gallagher and Tunno 2008] states that for the AR(1) series
given in (1-1), we have

√
n(φ̃p −φ)

D
−→ N

(
0,

σ 2 E(X2p
t )

(E |X t |
p+1)2

)
(1-3)

for all p such that E(|X t |
r ) <∞, where r =max(2p, p+1). Since the error terms

in our series are normal, the X t ’s have finite moments of all orders. Thus, this
theorem can be used to create confidence intervals for φ centered at φ̃p for any
choice of p.

Specifically, if X1, X2, . . . , Xn are sample observations from (1-1), then an
approximate (1−α)× 100% confidence interval for φ has endpoints

φ̃p ± zα/2
√

V̂ar(φ̃p),

where

nV̂ar(φ̃p)=
σ 2n−1∑n

t=2 X2p
t−1(

n−1
∑n

t=2 |X t−1|p+1
)2

P
−→

σ 2 E(X2p
t−1)(

E |X t−1|p+1
)2

and zα/2 is the standard normal critical value with area α/2 to its right.
Similarly, we can create confidence intervals for φ centered at ρ̂(1). If we

think of ρ̂(1) as being nearly the equivalent of the OLSE, then an approximate
(1−α)× 100% confidence interval for φ has endpoints

ρ̂(1)± zα/2
√

V̂ar(ρ̂(1)),
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Coverage Length

φ φ

Figure 2. Empirical coverage capability (left) and length (right)
of 95% confidence intervals for φ centered at φ̃0, φ̃1 and ρ̂(1) for
φ ∈ (−1, 1); 10,000 simulations were run for each parameter value,
with distribution N (0, 1) and n = 50.

where

nV̂ar(ρ̂(1))=
nσ 2∑n
t=1 X2

t

P
−→

σ 2

E(X2
t )
.

Figure 2 shows the empirical coverage capability and length of 95% confidence
intervals for φ centered at φ̃0, φ̃1 and ρ̂(1) when φ ∈ (−1, 1) and n = 50. The
thinnest intervals occur when ρ̂(1) is used, although not by much. The OLSE also
has the best overall coverage, except (roughly) for |φ| ≤ 0.5, which is where ρ̂(1)
once again outperforms the OLSE. Other simulations not shown here reveal that the
length of intervals centered at φ̃p keeps growing as p gets larger, while coverage
capability starts to break down for |φ| near 1.

In this paper, we will aim to construct intervals with center (1-2) that outperform
those centered at the OLSE. The next section shows the details of this construction,
while Section 3 presents some simulations. Section 4 closes the paper with an
application and some remarks.

2. Interval construction

Suppose for the moment that we wish to construct a confidence interval for φ
centered at a linear combination of two weighted least-squares estimators. That is,
instead of (1-2), the center would take the form

a1φ̃p + a2φ̃q , (2-1)

where a1+a2= 1 and p 6= q . Minimizing the variance of this quantity is equivalent
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to minimizing the length of the corresponding interval and occurs when

a1 =
Var(φ̃q)−Cov(φ̃p, φ̃q)

Var(φ̃p − φ̃q)
. (2-2)

Theorem 2.1. Let a1 + a2 = 1. If a1 is given by (2-2), then Var(a1φ̃p + a2φ̃q) is
minimized and has upper bound Var(φ̃q).

Proof. Let

f (a1)= Var
(
a1φ̃p + (1− a1)φ̃q

)
= a2

1 Var(φ̃p)+ (1− a1)
2 Var(φ̃q)+ 2a1(1− a1)Cov(φ̃p, φ̃q)

= a2
1 Var(φ̃p − φ̃q)+ 2a1

(
Cov(φ̃p, φ̃q)−Var(φ̃q)

)
+Var(φ̃q).

Then f ′(a1)= 2a1 Var(φ̃p − φ̃q)+ 2
(
Cov(φ̃p, φ̃q)−Var(φ̃q)

)
= 0

⇒ a1 =
Var(φ̃q)−Cov(φ̃p, φ̃q)

Var(φ̃p − φ̃q)
.

Since f ′′(a1)= 2 Var(φ̃p− φ̃q) > 0, then this critical value minimizes f . Note that
this means

a2 = 1− a1 =
Var(φ̃p)−Cov(φ̃p, φ̃q)

Var(φ̃p − φ̃q)
,

where the choices of p and q determine the ranges of a1 and a2. Specifically, we
have

Var(φ̃p) > Var(φ̃q) ⇐⇒ a1 < 0.5 and a2 > 0.5,

Var(φ̃q) > Var(φ̃p) ⇐⇒ a1 > 0.5 and a2 < 0.5,

Var(φ̃p)= Var(φ̃q) ⇐⇒ a1 = a2 = 0.5.

Finally, since the critical value found above minimizes f , we have f (a1)≤ f (0),
which is equivalent to saying

Var
(
a1φ̃p + (1− a1)φ̃q

)
≤ Var(φ̃q),

where the inequality is strict for a1 6= 0. �

We would like for the variance of a1φ̃p+ a2φ̃q to be less than or equal to that of
the OLSE. Setting q = 1 makes this happen since Theorem 2.1 tells us that

Var(a1φ̃p + a2φ̃1)≤ Var(φ̃1).

It turns out, however, that the window where these two variances are distinguishable
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may be brief since a1 goes to zero as the sample size increases. This in turn causes
a1φ̃p + a2φ̃1 to be asymptotically normal.

Theorem 2.2. Let a1+ a2 = 1. If a1 is given by (2-2) with q = 1, then

√
n
(
a1φ̃p + a2φ̃1−φ

) D
−→ N

(
0,

σ 2

E(X2
t )

)
.

Proof. First, we note that

n Cov(φ̃p, φ̃q)
P
−→

σ 2 E |X t |
p+q

E |X t |
p+1 E |X t |

q+1 .

Then

a1 =
Var(φ̃1)−Cov(φ̃p, φ̃1)

Var(φ̃p − φ̃1)

=
n Var(φ̃1)− n Cov(φ̃p, φ̃1)

n Var(φ̃p)+ n Var(φ̃1)− 2n Cov(φ̃p, φ̃1)

P
−→

σ 2

E |X t |
2 −

σ 2

E |X t |
2

σ 2 E |X t |
2p

(E |X t |
p+1)2

+
σ 2

E |X t |
2 −

2σ 2

E |X t |
2

=
0

σ 2 E |X t |
2p

(E |X t |
p+1)2

−
σ 2

E |X t |
2

=: R.

The denominator of R is strictly positive since

plim
n→∞

n Var(φ̃p) > plim
n→∞

n Var(φ̃1) for p 6= 1.

Thus, R = 0.
Since a1

P
−→ 0, we obtain a2

P
−→ 1. Hence, a1φ̃p + a2φ̃1 and φ̃1 have the same

asymptotic distribution. By (1-3), we have

√
n(φ̃1−φ)

D
−→ N

(
0,

σ 2

E(X2
t )

)
.

Thus,
√

n(a1φ̃p + a2φ̃1−φ)
D
−→ N

(
0,

σ 2

E(X2
t )

)
as well. �

If X1, X2, . . . , Xn are sample observations from (1-1), then an approximate
(1−α)× 100% confidence interval for φ centered at a1φ̃p + a2φ̃1 has endpoints

a1φ̃p + a2φ̃1± zα/2
√

V̂ar(a1φ̃p + a2φ̃1).
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Letting

σ̂ 2
i =

σ 2∑n
t=2 |X t−1|

2i(∑n
t=2 |X t−1|i+1

)2 , σ̂i j =
σ 2∑n

t=2 |X t−1|
i+ j∑n

t=2 |X t−1|i+1
∑n

t=2 |X t−1| j+1 ,

â1 =
σ̂ 2

1 − σ̂p1

σ̂ 2
p + σ̂

2
1 − 2σ̂p1

, â2 =
σ̂ 2

p − σ̂p1

σ̂ 2
p + σ̂

2
1 − 2σ̂p1

,

we then have

nV̂ar(a1φ̃p + a2φ̃1)= n
(
â2

1V̂ar(φ̃p)+ â2
2V̂ar(φ̃1)+ 2â2

1 â2
2Ĉov(φ̃p, φ̃1)

)
=

n(σ̂ 2
1 σ̂

2
p − σ̂

2
p1)

σ̂ 2
1 + σ̂

2
p − 2σ̂p1

P
−→

σ 2

E(X2
t )
.

However, observe that σ̂p1 = σ̂
2
1 which implies that V̂ar(a1φ̃p + a2φ̃1)= V̂ar(φ̃1).

Thus, our choice of asymptotic estimators when q = 1 has the unintended conse-
quence of causing our interval to be equivalent to that of the OLSE.

Herein lies the motive to go with center (1-2) in lieu of center (2-1). By replac-
ing φ̃1 with ρ̂(1), we avoid this asymptotic equivalence, while preserving some of
the desirable properties associated with (2-1). In the upcoming simulations, we
also replace σ̂ 2

1 = V̂ar(φ̃1) with

V̂ar(ρ̂(1))=
σ 2∑n

t=1 X2
t
,

but retain σ̂p1 = Ĉov(φ̃p, φ̃1).

3. Simulations

We now look at the length and coverage capability of 95% confidence intervals
for φ centered at the OLSE and a1φ̃p + a2ρ̂(1) for various p 6= 1. Each figure
reflects 10,000 simulation runs of n= 50 independent observations with distribution
N (0, 1).

In Figure 3, top, we see that the a1φ̃0 + a2ρ̂(1) interval has at least as much
coverage as the OLSE interval when (roughly) |φ| ≤ 0.5. The a1φ̃0 + a2ρ̂(1)
interval is also slightly shorter over this same region. In Figure 3, bottom, p has
increased to 2, but the coverage of the a1φ̃2+ a2ρ̂(1) interval has degenerated with
no meaningful difference in interval lengths.

In Figure 4, p has increased to 3 (top two graphs) and 4 (middle row of graphs).
The a1φ̃3+a2ρ̂(1) and a1φ̃4+a2ρ̂(1) intervals both return back to the performance
level of the a1φ̃0+a2ρ̂(1) interval, with (roughly) |φ| ≤ 0.5 again being the domain
of interest.
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Coverage Length

φ φ

Coverage Length

φ φ

Figure 3. Top row: Empirical coverage capability (left) and length
(right) of 95% confidence intervals for φ centered at the OLSE and
a1φ̃0+a2ρ̂(1) for φ ∈ (−1, 1). Bottom row: Same information, for
a1φ̃2+ a2ρ̂(1).

In Figure 4, bottom, we create intervals whose centers are simply unweighted
averages of the OLSE and the sample correlation coefficient. That is, the intervals’
endpoints take the form

0.5φ̃1+ 0.5ρ̂(1)± 1.96
√

V̂ar
(
0.5φ̃1+ 0.5ρ̂(1)

)
.

Using the fact that 2Ĉov(φ̃1, ρ̂(1))≈ V̂ar(φ̃1)+ V̂ar(ρ̂(1)), this is approximately

0.5φ̃1+ 0.5ρ̂(1)± 1.96
√

0.5
(
V̂ar(φ̃1)+ V̂ar(ρ̂(1))

)
.

There is no significant difference between the 0.5φ̃1+ 0.5ρ̂(1) and OLSE intervals.
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Coverage Length

φ φ

Coverage Length

φ φ

Figure 4. Top row: Empirical coverage capability (left) and length
(right) of 95% confidence intervals for φ centered at the OLSE
and a1φ̃3 + a2ρ̂(1) for φ ∈ (−1, 1). Middle row: Same, for
a1φ̃4+ a2ρ̂(1). Bottom row: Same, for 0.5φ̃1+ 0.5ρ̂(1).
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4. Closing remarks

The performance of the confidence interval centered at a1φ̃p + a2ρ̂(1) presented in
this paper is modest, but not unimportant. For parameter values (roughly) between
−0.5 and 0.5, its coverage tends to be at least as good as that of the OLSE interval
while having a slightly smaller margin of error. This interval also does not require
a large sample size, which can be good for certain practical purposes.

For example, consider the daily stock prices for Exxon Mobil Corporation during
the fall quarter of 2011 (i.e., September 23 to December 21). A reasonable model
for this time series is an ARIMA(1, 1, 0), where {X t } ∼ ARIMA(p, 1, q) implies
{X t − X t−1} ∼ ARMA(p, q). Thus, if X t stands for the price at time t and Yt =

X t−X t−1, it follows that {Yt }∼AR(1)with estimated model Yt =−0.0444Yt−1+εt .
Both the {X t } and {Yt } processes are shown in Figure 5.

Figure 5. The original (left) and differenced (right) stock prices
for Exxon Mobil (XOM) from 9/23/11 to 12/21/11. The sample
sizes are 63 and 62, respectively.

If we supplement this model with 95% confidence intervals for φ, we get the
following:

Center Interval Length

φ̃1 (−0.2089871, 0.1719117) 0.3808988
ρ̂(1) (−0.2076522, 0.1710108) 0.3786630

0.5φ̃1+ 0.5ρ̂(1) (−0.2083205, 0.1714621) 0.3797825
a1φ̃0+ a2ρ̂(1) (−0.2036185, 0.1749948) 0.3786133
a1φ̃2+ a2ρ̂(1) (−0.2127095, 0.1658015) 0.3785110
a1φ̃3+ a2ρ̂(1) (−0.2100079, 0.1686098) 0.3786177
a1φ̃4+ a2ρ̂(1) (−0.2092005, 0.1694378) 0.3786383
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All seven intervals contain the point estimate φ̂ = −0.0444, but the last four are
slightly thinner than the first three.

One extension of the research presented in this paper would be to create con-
fidence intervals centered around a linear combination of an arbitrary number of
weighted least-squares estimators. For example, it can be shown that the variance
of a1φ̃p + a2φ̃q + a3φ̃r is minimized when

a1 =
σ ∗qr (σ

2
r − σpr )+M(σ 2

r − σqr )

σ ∗prσ
∗
qr −M2 , a2 =

σ ∗pr (σ
2
r − σqr )+M(σ 2

r − σpr )

σ ∗prσ
∗
qr −M2 ,

and a3 = 1− a1− a2, where σ 2
i = Var(φ̃i ), σi j = Cov(φ̃i , φ̃ j ), σ ∗i j = Var(φ̃i − φ̃ j ),

and M = σpr + σqr − σpq − σ
2
r . However, once the number of estimators in the

center goes beyond two, the work required to construct and analyze the interval
may outweigh any benefits it would bestow.

Another (less tedious) extension would be to find a new sequence {a1,n} that
converges to zero while yielding a linear combination of estimators with smaller
MSE than the OLSE. This new combination would still have the same distributional
limit as the OLSE and could then serve as the center for another competitive interval
for φ. Specifically, if we simply set the standard error equal to the square root of the
asymptotic variance of the OLSE, the resulting interval should have length equal to
that of the OLSE, but with better coverage capability.
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