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Two vertices u and v in a nontrivial connected graph G are twins if u and v
have the same neighbors in V (G)− {u, v}. If u and v are adjacent, they are
referred to as true twins, while if u and v are nonadjacent, they are false twins.
For a positive integer k, let c : V (G)→ Zk be a vertex coloring where adjacent
vertices may be assigned the same color. The coloring c induces another vertex
coloring c′ : V (G)→ Zk defined by c′(v) =

∑
u∈N [v] c(u) for each v ∈ V (G),

where N [v] is the closed neighborhood of v. Then c is called a closed modular
k-coloring if c′(u) 6= c′(v) in Zk for all pairs u, v of adjacent vertices that are
not true twins. The minimum k for which G has a closed modular k-coloring is
the closed modular chromatic number mc(G) of G. A rooted tree T of order at
least 3 is even if every vertex of T has an even number of children, while T is odd
if every vertex of T has an odd number of children. It is shown that mc(T )= 2
for each even rooted tree and mc(T ) ≤ 3 if T is an odd rooted tree having no
vertex with exactly one child. Exact values mc(T ) are determined for several
classes of odd rooted trees T .

1. Introduction

A weighting (or edge labeling with positive integers) of a connected graph G was
introduced in [Chartrand et al. 1988] for the purpose of producing a weighted graph
whose degrees (obtained by adding the weights of the incident edges of each vertex)
were distinct. Such a weighted graph was called irregular. This concept could be
looked at in another manner, however. In particular, let N denote the set of positive
integers and let Ev denote the set of edges of G incident with a vertex v. An edge
coloring c : E(G)→N, where adjacent edges may be colored the same, is said to
be vertex-distinguishing if the coloring c′ : V (G)→ N induced by c and defined
by c′(v) =

∑
e∈Ev c(e) has the property that c′(x) 6= c′(y) for every two distinct

vertices x and y of G. The main emphasis of this research dealt with minimizing
the largest color assigned to the edges of the graph to produce an irregular graph.
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Vertex-distinguishing colorings have received increased attention during the past
25 years (see [Escuadro et al. 2007]).

Rosa [1967] introduced a vertex labeling that induces an edge-distinguishing
labeling defined by subtracting labels. In particular, for a graph G of size m, a
vertex labeling (an injective function) f : V (G) → {0, 1, . . . ,m} was called a
β-valuation if the induced edge labeling f ′ : E(G)→ {1, 2, . . . ,m} defined by
f ′(uv) = | f (u) − f (v)| was bijective. Golomb [1972] called a β-valuation a
graceful labeling and a graph possessing a graceful labeling a graceful graph. It is
this terminology that became standard. Much research has been done on graceful
graphs. A popular conjecture in graph theory, due to Anton Kotzig and Gerhard
Ringel, is the following.

The Graceful Tree Conjecture. Every nontrivial tree is graceful.

Jothi [1991] introduced a concept that, in a certain sense, reverses the roles of
vertices and edges in graceful labelings (see also [Gallian 1998]). For a connected
graph G of order n ≥ 3, let f : E(G)→ Zn be an edge labeling of G that induces a
bijective function f ′ : V (G)→ Zn defined by f ′(v)=

∑
e∈Ev f (e) for each vertex

v of G. Such a labeling f is called a modular edge-graceful labeling, while a
graph possessing such a labeling is called modular edge-graceful (see [Jones et al.
2013]). Verifying a conjecture by Gnana Jothi on trees, Jones et al. [2012] showed
not only that every tree of order n ≥ 3 is modular edge-graceful if and only if
n 6≡ 2 (mod 4) but a connected graph of order n ≥ 3 is modular edge-graceful if
and only if n 6≡ 2 (mod 4).

Many of these weighting or labeling concepts were later interpreted as color-
ing concepts with the resulting vertex-distinguishing labeling becoming a vertex-
distinguishing coloring. A neighbor-distinguishing coloring is a coloring in which
every pair of adjacent vertices are colored differently. Such a coloring is more
commonly called a proper coloring. The minimum number of colors in a proper
vertex coloring of a graph G is its chromatic number χ(G).

In 2004 a neighbor-distinguishing edge coloring c : E(G)→ {1, 2, . . . , k} of a
graph G was introduced (see [Chartrand and Zhang 2009, p. 385]) in which an
induced vertex coloring s : V (G)→ N is defined by s(v) =

∑
e∈Ev c(e) for each

vertex v of G. The minimum k for which such a neighbor-distinguishing coloring
exists is called the sum distinguishing index, denoted by sd(G) of G. This is
therefore the proper coloring analogue of the irregular weighting mentioned earlier.
Karoński et al. [2004] showed that, if χ(G) ≤ 3, then sd(G) ≤ 3. Addario-Berry
et al. [2005] showed that, for every connected graph G of order at least 3, sd(G)≤ 4.
In fact, Karoński et al. [2004] made the following conjecture, which has acquired a
name used by many.

The 1-2-3 Conjecture. If G is a connected graph of order 3 or more, then sd(G)≤3.
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A number of neighbor-distinguishing vertex colorings different from standard
proper colorings have been introduced in the literature (see [Chartrand and Zhang
2009, pp. 379–385], for example). Chartrand et al. [2010] introduced a neighbor-
distinguishing vertex coloring of a graph based on sums of colors. For a nontrivial
connected graph G, let c : V (G)→ N be a vertex coloring of G where adjacent
vertices may be colored the same. If k colors are used by c, then c is a k-coloring
of G. The color sum σ(v) of a vertex v is defined by σ(v) =

∑
u∈N (v) c(u)

where N (v) denotes the neighborhood of v (the set of vertices adjacent to v). If
σ(u) 6= σ(v) for every two adjacent vertices u and v of G, then c is neighbor-
distinguishing and is called a sigma coloring of G. The minimum number of colors
required in a sigma coloring of a graph G is called the sigma chromatic number
of G and is denoted by σ(G). Chartrand et al. [2010] showed that, for each pair a, b
of positive integers with a ≤ b, there is a connected graph G with σ(G)= a and
χ(G)= b.

Chartrand et al. [2012] introduced another neighbor-distinguishing vertex color-
ing that is closely related to colorings discussed above. For a nontrivial connected
graph G, let c : V (G)→ Zk (k ≥ 2) be a vertex coloring where adjacent vertices
may be assigned the same color. The coloring c induces another vertex coloring
c′ : V (G)→ Zk , where

c′(v)=
∑

u∈N [v]

c(u), (1)

where N [v] = N (v)∪ {v} is the closed neighborhood of v and the sum in (1) is
performed in Zk . A coloring c of G is called a closed modular k-coloring if for
every pair x , y of adjacent vertices in G either c′(x) 6= c′(y) or N [x] = N [y], in
the latter case of which we must have c′(x)= c′(y). Closed modular colorings of
graphs were introduced in [Chartrand et al. 2012] and inspired by a domination
problem. The minimum k for which G has a closed modular k-coloring is called
the closed modular chromatic number of G and is denoted by mc(G). Chartrand
et al. [2012] observed that the nontrivial complete graphs are the only nontrivial
connected graphs G for which mc(G) = 1. Two vertices u and v in a connected
graph G are twins if u and v have the same neighbors in V (G)−{u, v}. If u and v
are adjacent, they are referred to as true twins, while if u and v are nonadjacent, they
are false twins. If u and v are adjacent vertices of a graph G such that N [u] = N [v]
(that is, u and v are true twins), then c′(u)= c′(v) for every vertex coloring c of G.
The following result appeared in [Chartrand et al. 2012].

Proposition 1.1. If G is a nontrivial connected graph, then mc(G) exists. Further-
more, if G contains no true twins, then mc(G)≥ χ(G).

To illustrate these concepts, consider the bipartite graph G of Figure 1. Since
χ(G)= 2 and G has no true twins, it follows that mc(G)≥ 2 by Proposition 1.1.
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Figure 1. A graph G with χ(G)= 2 and mc(G)= 3.

In fact mc(G)= 3. Figure 1 shows a closed modular 3-coloring of G (where the
color of a vertex is placed within the vertex) together with the color c′(v) for each
vertex v of G (where the color c′(v) of a vertex is placed next to the vertex).

For an edge uv of a graph G, the graph G/uv obtained from G by contracting
the edge uv has the vertex set V (G) in which u and v are identified. If we denote
the vertex u = v in G/uv by w, then V (G/uv) = (V (G)∪ {w})− {u, v} and the
edge set of G/uv is

E(G/uv)= {xy : xy ∈ E(G), x, y ∈ V (G)−{u, v}}

∪ {wx : ux ∈ E(G) or vx ∈ E(G), x ∈ V (G)−{u, v}}.

The graph G/uv is referred to as an elementary contraction of G. For a nontrivial
connected graph G, define the true twins closure TC(G) of G as the graph obtained
from G by a sequence of elementary contractions of pairs of true twins in G until no
such pair remains. In particular, if G contains no true twins, then TC(G)=G. Thus
TC(G) is a minor of G. Chartrand et al. [2012] showed that mc(G)=mc(TC(G))
for every nontrivial connected graph G. Therefore, it suffices to consider nontrivial
connected graphs containing no true twins.

Closed modular chromatic numbers were determined for several classes of regular
graphs in [Chartrand et al. 2012]. In particular, it was shown that, for each integer
k ≥ 2, if G is a regular complete k-partite graph such that each of its partite sets
has at least 2k+ 1 vertices, then mc(G)≤ 2χ(G)− 1 and this bound is sharp.

In [Phinezy and Zhang 2013], we investigated the closed modular chromatic
number for trees and determined it for several classes of trees. For each tree T in
these classes, either mc(T )= 2 or mc(T )= 3. Indeed, this is conjectured to be true
in great generality:

Conjecture 1.2 [Phinezy and Zhang 2013]. If T is a tree of order 3 or more, then
mc(T )≤ 3.

In the paper cited, we showed that Conjecture 1.2 is true if 3 is replaced by 4. In
this work, we investigate the closed modular chromatic numbers of rooted trees and
confirm Conjecture 1.2 for several classes of rooted trees, including well-studied
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complete r -ary trees. We refer to [Chartrand et al. 2011] for graph theory notation
and terminology not described in this paper. All trees under consideration in this
work are rooted trees of order at least 3.

2. Rooted trees

Let T be a rooted tree of order at least 3 having the root v. For each integer i with
0≤ i ≤ e(v), where e(v) is the distance between v and a vertex farthest from v, let

Vi = {x ∈ V (T ) : d(v, x)= i}.

If x ∈ Vi where 0 ≤ i ≤ e(v), then x is at level i . If x ∈ Vi (0 ≤ i ≤ e(v)− 1) is
adjacent to y ∈ Vi+1, then x is the parent of y and y is a child of x . A vertex z is
a descendant of x (and x is an ancestor of z) if the x − z path in T lies below x .
In this section, we show that, if T is a rooted tree of order at least 3 such that the
numbers of children of all vertices of T have the same parity and no vertex of T
has exactly one child, then either mc(T )= 2 or mc(T )= 3. In order to do this, we
first present a result on a special class of trees, which was established in [Phinezy
and Zhang 2013]. A caterpillar is a tree of order 3 or more, the removal of whose
end-vertices produces a path called the spine of the caterpillar. Thus every path and
star (of order at least 3) and every double star (a tree of diameter 3) is a caterpillar.

Theorem 2.1. If T is a caterpillar of order at least 3, then mc(T )≤ 3.

Theorem 2.2. Let T be a rooted tree of order at least 3.

(a) If each vertex of T has an even number of children, then mc(T )= 2.

(b) If each vertex of T has either no child or an odd number of children and no
vertex has exactly one child, then mc(T )≤ 3.

Proof. Suppose that v is the root of T . For each integer i with 0≤ i ≤ e(v), let

Vi = {x ∈ V (T ) : d(v, x)= i}.

To verify (a), define the coloring c : V (G)→ Z2 by

c(x)=
{

1 if x ∈ Vi where i ≡ 0, 1 (mod 4),
0 if x ∈ Vi where i ≡ 2, 3 (mod 4).

(2)

Then c′(x)= 1 if x ∈ Vi and i is even and c′(x)= 0 if x ∈ Vi and i is odd. Thus c
is a closed modular 2-coloring and so mc(T )= 2 if each vertex of T has an even
number of children.

To verify (b), we proceed by strong induction. If T is a star, then mc(T ) ≤ 3
by Theorem 2.1. Assume for an integer n ≥ 4 that, if each vertex of a tree of
order at most n has either no child or an odd number of children and no vertex
has exactly one child, then the closed modular chromatic number of the tree is
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at most 3. Let T be a tree of order n + 1 such that each vertex of T has either
no child or an odd number of children and no vertex has exactly one child. We
may assume that T is not a star. Let x be a peripheral vertex of T ; then x is
an end-vertex of T . Suppose that x is a child of the vertex y in T . Since each
vertex of T has either no child or an odd number of children and no vertex of T
has exactly one child, it follows that y has an odd number r ≥ 3 of children; say
x = x1, x2, . . . , xr are children of y. Then each child of y is an end-vertex of T . Let
X = {x = x1, x2, . . . , xr }. Consider T ∗ = T − X which is a tree of order less than
n+ 1 such that each vertex of T ∗ has either no child or an odd number of children
and no vertex of T ∗ has exactly one child. By the induction hypothesis, T ∗ has a
closed modular 3-coloring c : V (T ∗)→ Z3. Next, we show that T has a closed
modular 3-coloring cT : V (T )→ Z3 such that cT (u)= c(u) and c′T (u)= c′(u) for
each u ∈ V (T ∗). Since r is odd, r ≡ 1, 3, 5 (mod 6). We consider these three cases.

Case 1: r ≡ 1 (mod 6). In this case, r ≥ 7. We define cT on X such that
c′T (y)= c′(y). If c(y) 6= c′(y), then cT assigns the color 0 to xi for 1≤ i ≤ r . Hence
c′T (xi ) = c(y) 6= c′(y) for 1 ≤ i ≤ r . If c(y) = c′(y), then cT assigns the color 2
to x1 and x2 and the color 1 to xi for 3≤ i ≤ r . Hence c′T (xi )= c′(y)+ 2 6= c′(y)
for i = 1, 2 and c′T (xi )= c′(y)+ 1 6= c′(y) for 3≤ i ≤ r .

Case 2: r ≡ 3 (mod 6). We define cT on X such that c′T (y)= c′(y). If c(y) 6= c′(y),
then cT assigns the color 0 to xi for 1 ≤ i ≤ r . Hence c′T (xi ) = c(y) 6= c′(y) for
1 ≤ i ≤ r . If c(y) = c′(y), then cT assigns the color 1 to xi for 1 ≤ i ≤ r . Hence
c′T (xi )= c′(y)+ 1 6= c′(y) for 1≤ i ≤ r .

Case 3: r ≡ 5 (mod 6). We define cT on X such that c′T (y)= c′(y). If c(y) 6= c′(y),
then cT assigns the color 0 to xi for 1 ≤ i ≤ r . Hence c′T (xi ) = c(y) 6= c′(y) for
1≤ i ≤ r . If c(y)= c′(y), then cT assigns the color 2 to x1 and assigns the color 1
to xi for 2≤ i ≤ r . Hence c′T (x1)= c′(y)+ 2 and c′T (xi )= c′(y)+ 1 for 2≤ i ≤ r .

In each case, cT is a closed modular 3-coloring of T and so mc(T )≤ 3. �

Theorem 2.2 provides the closed modular chromatic numbers for a well-known
class of rooted trees. A rooted tree T is a complete r-ary tree for some integer
r ≥ 2 if every vertex of T has either r children or no child. The following is a
consequence of Theorem 2.2.

Corollary 2.3. For an integer r ≥ 2, let T be a complete r-ary tree.

(a) If r is even, then mc(T )= 2.

(b) If r is odd, then mc(T )≤ 3.

In the view of Theorem 2.2, it would be useful to introduce an additional ter-
minology. A rooted tree T of order at least 3 is even if every vertex of T has an
even number of children, while T is odd if every vertex of T has an odd number of
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children. It then follows by Theorem 2.2 that mc(T )= 2 if T is an even rooted tree
and mc(T )≤ 3 if T is an odd rooted tree and no vertex of T has exactly one child.

3. Odd rooted trees

In this section we investigate the closed modular colorings of odd rooted trees of
order at least 3. We will see that, if the locations of leaves of an odd rooted tree T
are given, then in some cases it is possible to determine the exact value of mc(T ).
For each integer p ∈ {0, 1, 2, 3, 4, 5}, an odd rooted tree T of order at least 3 having
root v is said to be of type p if d(v, u)≡ p (mod 6) for every leaf u in T . We now
determine all odd rooted trees of type p were 0≤ p ≤ 5 that have closed modular
chromatic number 2.

Theorem 3.1. For each integer p ∈ {0, 1, 2, 3, 4, 5}, let T be an odd rooted tree of
order at least 3 that is of type p. Then mc(T )= 2 if and only if p 6= 1.

Proof. Suppose that v is the root of T . For each integer i with 0 ≤ i ≤ e(v), let
Vi = {x ∈ V (T ) : d(v, x)= i}. First, suppose that 0≤ p ≤ 5 and p 6= 1. We show
mc(T )= 2. Since χ(T )= 2 for every nontrivial tree T , it suffices to construct a
closed modular 2-coloring c : V (T )→ Z2 of T . We consider three cases, according
to the values of p.

Case 1: p = 0. In this case, a coloring c : V (T )→ Z2 is defined by

c(x)=
{

0 if x ∈ Vi and i ≡ 0, 1, 5 (mod 6),
1 if x ∈ Vi and i ≡ 2, 3, 4 (mod 6).

Then the induced coloring c′ : V (T )→ Z2 is defined as

c′(x)=
{

0 if x ∈ Vi and i is even,
1 if x ∈ Vi and i is odd.

(3)

Case 2: p ≡ 2, 3, 4 (mod 6). In this case, a coloring c : V (T )→ Z2 is defined by

c(x)=
{

1 if x ∈ Vi and i ≡ 0, 1, 2 (mod 6),
0 if x ∈ Vi and i ≡ 3, 4, 5 (mod 6).

Then the induced coloring c′ : V (T )→ Z2 is defined as in (3).

Case 3: p ≡ 5 (mod 6). In this case, a coloring c : V (T )→ Z2 is defined by

c(x)=
{

0 if x ∈ Vi and i ≡ 0, 4, 5 (mod 6),
1 if x ∈ Vi and i ≡ 1, 2, 3 (mod 6).

Then the induced coloring c′ : V (T )→ Z2 is defined as

c′(x)=
{

1 if x ∈ Vi and i is even,
0 if x ∈ Vi and i is odd.
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Thus c is a closed modular 2-coloring of T and so mc(T )= 2.
For the converse, suppose that T is an odd rooted tree of order at least 3 that

is of type 1. Thus, if u is a leaf of T , then u ∈ Vk for some integer k, where then
1≤ k ≤ e(v) and k ≡ 1 (mod 6). We show that mc(T ) 6= 2. Assume, to the contrary,
that there is a closed modular 2-coloring c : V (T )→ Z2 of T . Then c′(v)= 0 or
c′(v)= 1. We consider these two cases.

Case 1: c′(v) = 0. Thus c′(x) = 0 if x ∈ Vi and i is even and c′(x) = 1 if x ∈ Vi

and i is odd. Since c(v) ∈ {0, 1}, there are two subcases.

Subcase 1.1: c(v) = 0. Since c′(v) = 0 and c(v) = 0, there is v1 ∈ V1 such that
c(v1)= 0. Since c′(v1)= 1 and c(v)= c(v1)= 0, there is v2 ∈V2 such that c(v2)= 1.
Since c′(v2) = 0, c(v1) = 0 and c(v2) = 1, there is v3 ∈ V3 such that c(v3) = 1.
Observe for each i ≥ 3 that c(vi ) is uniquely determined by c′(vi−1), c(vi−2) and
c(vi−1). Repeating this procedure, we obtain a path Pk = (v1, v2, . . . , vk) in T such
that (1) vk is a leaf of T , d(v, vi )= i for 1≤ i ≤ k and k ≡ 1 (mod 6) and (2) the
color sequence sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, . . . , 1, 1, 1, 0, 0, 0).

Hence (c(vk−2), c(vk−1), c(vk))= (0, 0, 0). However, then c′(vk−1)= c′(vk)= 0,
which is a contradiction.

Subcase 1.2: c(v) = 1. By the same argument as in Subcase 1.1, we conclude
that there must be a path Pk = (v1, v2, . . . , vk) in T such that (1) vk is a leaf
of T , d(v, vi ) = i for 1 ≤ i ≤ k and k ≡ 1 (mod 6) and (2) the color sequence
sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, . . . , 1, 0, 0, 0, 1, 1).

Hence (c(vk−2), c(vk−1), c(vk))= (0, 1, 1). However, then c′(vk−1)= c′(vk)= 0,
which is a contradiction.

Case 2: c′(v) = 1. Thus c′(x) = 1 if x ∈ Vi and i is even and c′(x) = 0 if x ∈ Vi

and i is odd. Since c(v) ∈ {0, 1}, there are two subcases.

Subcase 2.1: c(v) = 0. Since c′(v) = 1 and c(v) = 0, there is v1 ∈ V1 such that
c(v1) = 1. Since c′(v1) = 0, c(v) = 0 and c(v1) = 1, there is v2 ∈ V2 such that
c(v2)= 1. Since c′(v2)= 1, c(v1)= c(v2)= 1, there is v3 ∈ V3 such that c(v3)= 1.
Observe for each i ≥ 3 that c(vi ) is uniquely determined by c′(vi−1), c(vi−2) and
c(vi−1). Repeating this procedure, we obtain a path Pk = (v1, v2, . . . , vk) in T such
that (1) vk is a leaf of T , d(v, vi )= i for 1≤ i ≤ k and k ≡ 1 (mod 6) and (2) the
color sequence sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, . . . , 1, 1, 0, 0, 0, 1).
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Hence (c(vk−2), c(vk−1), c(vk))= (0, 0, 1). However, then c′(vk−1)= c′(vk)= 1,
which is a contradiction.

Subcase 2.2: c(v) = 1. By the same argument as in Subcase 2.1, we conclude
that there must be a path Pk = (v1, v2, . . . , vk) in T such that (1) vk is a leaf
of T , d(v, vi ) = i for 1 ≤ i ≤ k and k ≡ 1 (mod 6) and (2) the color sequence
sc = (c(v1), c(v2), . . . , c(vk)) of the coloring c on the path Pk is

sc = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1, 0, 1, 0).

Hence (c(vk−2), c(vk−1), c(vk))= (0, 1, 0). However, then c′(vk−1)= c′(vk)= 1,
which is a contradiction. �

By Theorem 3.1, if T is an odd rooted tree of order at least 3 that is of type 1,
then mc(T )≥ 3. On the other hand, every odd rooted tree of order at least 3 we have
encountered that is of type 1 has closed modular chromatic number 3. Furthermore,
the following is a consequence of Theorems 2.2 and 3.1.

Corollary 3.2. If T is an odd rooted tree of order at least 3 that is of type 1 such
that no vertex has exactly one child, then mc(T )= 3.

By Theorem 3.1, if p is an integer with 0 ≤ p ≤ 5 and p 6= 1, then every
odd rooted tree of order at least 3 that is of type p has closed modular chromatic
number 2. This gives rise to the question:

If S ⊆ {0, 1, 2, 3, 4, 5} where |S| ≥ 2 and 1 /∈ S and T is an odd rooted
tree of order at least 3 having root v such that, for every leaf u in T ,
d(v, u)≡ p (mod 6) for some p ∈ S, then is it necessary that mc(T )= 2?

The answer to this question is no, as we show next. First, it will be convenient
to introduce an additional definition. For a nonempty subset S ⊆ {0, 2, 3, 4, 5},
an odd rooted tree T having root v is said to be of type S if, for every leaf u
in T , d(v, u) ≡ p (mod 6) for some p ∈ S and, for each p ∈ S, there is at least
one leaf u in T such that d(v, u) ≡ p (mod 6). In particular, if S = {p} where
p ∈ {0, 2, 3, 4, 5}, then T is of type p. We first consider odd rooted trees of type S,
where S = {2, 5} or S = {0, 3}. In the next two results, we show that if S= {2, 5} or
S = {0, 3}, then it is possible for an odd rooted tree T of type S to have mc(T )= 3.

Theorem 3.3. For S = {2, 5}, there are odd rooted trees of type S such that
mc(T )= 3.

Proof. Consider the tree T in Figure 2, each of whose leaves are at level 2 or at
level 5. We show mc(T )= 3. For each integer i with 0≤ i ≤ 5, let Vi = {x ∈ V (T ) :
d(v, x) = i}. Thus, if x is a leaf of T , then x ∈ V2 or x ∈ V5. By Corollary 2.3,
mc(T )≤ 3. It remains to show that mc(T ) 6= 2. Assume, to the contrary, that there
is a closed modular 2-coloring c : V (T )→ Z2 of T . Thus c(v) = 0 or c(v) = 1.
We consider these two cases.
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1u 2uu

y x z

v

Figure 2. A tree T with mc(T )= 3.

Case 1: c(v)= 0. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 1.1: c′(v) = 0. Thus c′(w) = 0 if w ∈ Vi and i is even and c′(w) = 1
if w ∈ Vi and i is odd. Furthermore, c(u1) = 0 or c(u1) = 1. First, assume that
c(u1)= 0. Since c′(u1)= 1 and c(v)= 0, there is a child w of u1 such that c(w)= 1.
However, then c′(w) = c′(u1) = 1, a contradiction. Next, assume that c(u1) = 1.
Since c′(u1)= 1 and c(v)= 0, there is a child w of u1 such that c(w)= 0. However,
then c′(w)= c′(u1)= 1, a contradiction.

Subcase 1.2: c′(v) = 1. Thus c′(w) = 0 if w ∈ Vi and i is odd and c′(w) = 1 if
w ∈ Vi and i is even. Furthermore, c(u1) = 1 or c(u1) = 0. First, assume that
c(u1)= 1. Since c′(u1)= 0 and c(v)= 0, there is a child w of u1 such that c(w)= 1.
However, then c′(w) = c′(u1) = 0, a contradiction. Next, assume that c(u1) = 0.
Since c′(u1)= 0 and c(v)= c(u1)= 0, there is a child w of u1 such that c(w)= 0.
However, then c′(w)= c′(u1)= 0, a contradiction.

Case 2: c(v)= 1. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 2.1: c′(v) = 0. Then c(u) = 1 or c(u) = 0. First, assume that c(u) = 1.
Since c′(u)= 1 and c(v)= 1, there is a child w of u such that c(w)= 1. We claim
that c(y) 6= 0 and c(z) 6= 0, for otherwise, say c(y) = 0. Then c′(u) = c′(y) = 1,
a contradiction. Thus c(y) = c(z) = 1, as claimed, which implies that c(x) = 1.
Since c′(x)= 0, there is a child w of x such that c(w)= 0. Since c′(w)= 1, there
is a child w1 of w such that c(w1)= 0. Since c′(w1)= 0, there is a child w2 of w1

such that c(w2) = 0. However, then c′(w1) = c′(w2) = 0, a contradiction. Next,
assume that c(u)= 0. We saw that c(y) 6= 1 and c(z) 6= 1 and so c(y)= c(z)= 0.
Since c′(u)= 1, it follows that c(x)= 0. Since c′(x)= 1, there is a child w of x
such that c(w)= 0. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 1.
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Figure 3. A tree T ∗ of type S = {2, 5} with mc(T ∗)= 2.

Since c′(w1) = 0, there is a child w2 of w1 such that c(w2) = 1. However, then
c′(w1)= c′(w2)= 0, a contradiction.

Subcase 2.2: c′(v) = 1. Then c(u) = 1 or c(u) = 0. We consider these two
possibilities.

Subcase 2.2.1: c(u) = 1. Now either c(x) = 0 or c(x) = 1. First assume that
c(x)= 0. Since c′(x)= 1 and c(u)= 1, there is a child w of x such that c(w)= 0.
Since c′(w)= 0 and c(x)= 0, there is a child w1 of w such that c(w1)= 0. Since
c′(w1)= 1 and c(w1)= 0, there is a child w2 of w1 such that c(w2)= 1. However,
then c′(w1) = c′(w2) = 1, a contradiction. Next, assume that c(x) = 1. Since
c(u)= 1 and c′(u)= 0, one of y and z must be colored 1, say c(y)= 1. However,
then c′(y)= c′(u)= 0, a contradiction.

Subcase 2.2.2: c(u) = 0. Now either c(x) = 0 or c(x) = 1. First assume that
c(x) = 0. Since c′(u) = 0, exactly one of y and z is colored 1, say c(y) = 1 and
c(z) = 0. However, then c′(z) = c′(u) = 0, a contradiction. Next, assume that
c(x)= 1. Since c′(x)= c(x)= 1, there is a child w of x such that c(w)= 0. Since
c′(w) = 0, c(x) = 1 and c(w) = 0, there is a child w1 of w such that c(w1) = 1.
Since c′(w1) = 1, there is a child w2 of w1 such that c(w2) = 0. However, then
c′(w1)= c′(w2)= 1, a contradiction. �

By Theorem 3.3, despite the fact that every odd rooted tree of type 2 or type 5 has
closed modular chromatic number 2, there are odd rooted trees T of type S = {2, 5}
for which mc(T )=3. On the other hand, there are odd rooted trees of type S={2, 5}
having closed modular chromatic number 2. For example, we start with the tree T
in Figure 2. Let T ′ be the subtree of T whose vertex set consists of x and all
descendants of x . Then the tree T ∗ is constructed from T of Figure 2 by replacing y
with a copy of T ′ (see Figure 3). The coloring c : V (T )→ Z2 defined by assigning
the color 0 to each vertex in {u, u1, u2, x, y} and assigning the color 1 to the
remaining vertices of T ∗ is a closed modular 2-coloring. Therefore, mc(T ∗)= 2.

Theorem 3.4. For S = {0, 3}, there are odd trees T of type S such that mc(T )= 3.

Proof. Consider the tree T of Figure 4, each of whose leaves are at level 3 or
at level 6. We show that mc(T ) = 3. For each integer i with 0 ≤ i ≤ 6, let
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Figure 4. A tree T with mc(T )= 3.

Vi = {x ∈ V (T ) : d(v, x) = i}. If x is a leaf of T , then x ∈ V3 or x ∈ V6. By
Corollary 2.3, mc(T ) ≤ 3. Thus it remains to show that mc(T ) 6= 2. Assume, to
the contrary, that there is a closed modular 2-coloring c : V (T )→ Z2 of T . Thus
c(v)= 0 or c(v)= 1. We consider these two cases.

Case 1: c(v)= 0. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 1.1: c′(v) = 0. In this case, there is a child of v that is colored 0. First,
assume that c(u1)= 0. Since c′(u1)= 1, there is a child w of u1 such that c(w)= 1.
Since c′(w)=0 and c(w)=1, there is a childw1 ofw such that c(w1)=1. However,
then c′(w1)= c′(w)= 0, a contradiction. Thus c(u1)= 1 and, similarly, c(u2)= 1.
This implies that c(u) must be 0. Note that c(x1) = 1 or c(x1) = 0. If c(x1) = 1,
then there is a child w of x1 such that c(w)= 1. However, then c′(x1)= c′(w)= 0,
a contradiction. If c(x1) = 0, then there is a child w of x1 such that c(w) = 0.
However, then c′(x1)= c′(w)= 0, a contradiction.

Subcase 1.2: c′(v)= 1. Since c(v)= 0, either exactly one or exactly three children
of v must be colored 1. First, suppose that c(u1)= 0. Then there is a child w of u1

such that c(w)= 0. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 1.
However, then c′(w1)= c′(w)= 1, a contradiction. Thus c(u1)= 1 and, similarly,
c(u2)= 1. This implies that c(u) must be 1. Note that c(x)= 1 or c(x)= 0. We
consider these two subcases.

Subcase 1.2.1: c(x)=1. In this case, either exactly one or exactly three children of x
must be colored 1. Since c′(x)= 1, it follows c(y1)= 1 (for otherwise, c′(y1)= 1).
Similarly c(y2)= 1. Thus c(y) must be 1. Since c′(y)= 0, there is a child w of y
such that c(w)= 0. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 0.
This in turn implies that there is a child w2 of w1 such that c(w2)= 0. However,
then c′(w1)= c′(w2)= 0, a contradiction.
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Subcase 1.2.2: c(x)= 0. Since c′(x)= 1, it follows that c(y1)= c(y2)= 0, which
implies that c(y) = 0. Since c′(y) = c(y) = 0, there is a child w of y such that
c(w) = 0. Since c′(w) = 1, there is a child w1 of w such that c(w1) = 1. This
in turn implies that there is a child w2 of w1 such that c(w2)= 1. However, then
c′(w1)= c′(w2)= 0, a contradiction.

Case 2: c(v)= 1. Since either c′(v)= 0 or c′(v)= 1, there are two subcases.

Subcase 2.1: c′(v)=0. Note that c(u1)=0 or c(u1)=1. First, assume that c(u1)=0.
Since c′(u1) = 1, there is a child w of u1 such that c(w) = 0. Since c′(w) = 0,
there is a child w1 of w such that c(w1) = 0. However, then c′(w1) = c′(w) = 0,
a contradiction. Thus c(u1)= 1 and, similarly, c(u2)= 1. This implies that c(u)
must be 1. Note that c(x)= 0 or c(x)= 1. There are two subcases.

Subcase 2.1.1: c(x) = 0. If c(y1) = 0, then c′(y) = c′(x) = 0, a contradiction.
Thus c(y1)= 1 and, similarly, c(y2)= 1. This implies that c(y) must be 1. Since
c′(y)= 1, there is a child w of y such that c(w)= 0. Since c′(w)= 0 and c(y)= 1,
there is a child w1 of w such that c(w1)= 1. This in turn implies that there is a child
w2 of w1 such that c(w2)= 0. However, then c′(w1)= c′(w2)= 1, a contradiction.

Subcase 2.1.2: c(x) = 1. If c(y1) = 1, then c′(y) = c′(x) = 0, a contradiction.
Thus c(y1)= 0 and, similarly, c(y2)= 0. This implies that c(y) must be 0. Since
c′(y)= 1 and c(x)= 1, there is a child w of y such that c(w)= 0. Since c′(w)= 0,
there is a child w1 of w such that c(w1)= 0. This in turn implies that there is a child
w2 of w1 such that c(w2)= 0. However, then c′(w1)= c′(w2)= 1, a contradiction.

Subcase 2.2: c′(v) = 1. Note that c(u1) = 0 or c(u1) = 1. First, assume that
c(u1)= 0. Since c′(u1)= c(u1)= 0 and c(v)= 1, there is a child w of u1 such that
c(w)= 1. Since c′(w)= 1, there is a child w1 of w such that c(w1)= 0. However,
then c′(w1)= c′(w)= 1, a contradiction. Thus c(u1)= 1 and, similarly, c(u2)= 1.
This implies that c(u) must be 0. Note that c(x1)= 0 or c(x1)= 1. Furthermore,
c′(x1)= 1. If c(x1)= 0, then there is a child w of x1 such that c(w)= 1. However,
then c′(x1)= c′(w)= 1, a contradiction. If c(x1)= 1, then there is a child w of x1

such that c(w)= 0. However, then c′(x1)= c′(w)= 1, a contradiction. �

As with the case when S = {2, 5}, there are odd rooted trees of type S = {0, 3}
having closed modular chromatic number 2. For example, we start with the tree T
in Figure 4. Let T ′ be the subtree of T whose vertex set consists of y and all
descendants of y. Then the tree T ∗ is constructed from T of Figure 4 by replacing y1

with a copy of T ′ as we did in the case when S= {2, 5} (see Figure 3). The coloring
c : V (T )→Z2 defined by assigning the color 0 to each vertex in {v, y, y1}∪V5 and
assigning the color 1 to the remaining vertices of T ∗ is a closed modular 2-coloring.
Therefore, mc(T ∗)= 2.
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Next, we show that, if S is a nonempty subset of {0, 2, 3, 4, 5} such that S
contains at most one of 2 and 5 and at most one of 0 and 3, then every odd rooted
tree of type S has closed modular chromatic number 2.

Theorem 3.5. Let S be a nonempty subset of {0, 2, 3, 4, 5} such that S contains at
most one of 2 and 5 and at most one of 0 and 3. If T is an odd rooted tree of order
at least 3 that is of type S, then mc(T )= 2.

Proof. By Theorem 3.1, we may assume that |S| ≥ 2. Since |S ∩ {2, 5}| ≤ 1 and
|S ∩ {0, 3}| ≤ 1, it follows that |S| ≤ 3. Thus we consider two cases, according to
whether |S| = 3 or |S| = 2.

Case 1: |S| = 3. Then S is one of the sets {0, 2, 4}, {0, 4, 5}, {2, 3, 4}, {3, 4, 5}.
Since χ(T )= 2 for every nontrivial tree T , it suffices to show that there is a closed
modular 2-coloring by Proposition 1.1. For each integer i with 0≤ i ≤ e(v), let

Vi = {x ∈ V (T ) : d(v, x)= i}.

First, suppose that S = {0, 2, 4}. Define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi and i is odd,
1 if x ∈ Vi and i is even.

Then c′(x)= c(x) for each x ∈ V (T ). Next, suppose that S is one of {0, 4, 5} and
{2, 3, 4}. If S = {0, 4, 5}, then define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi where i ≡ 0, 1, 5 (mod 6),
1 if x ∈ Vi where i ≡ 2, 3, 4 (mod 6).

If S = {2, 3, 4}, then define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi where i ≡ 3, 4, 5 (mod 6),
1 if x ∈ Vi where i ≡ 0, 1, 2 (mod 6).

In either case, c′(x)= 0 if x ∈ Vi and i is even and c′(x)= 1 if x ∈ Vi and i is odd.
Finally, suppose that S = {3, 4, 5}. Define a coloring c : V (T )→ Z2 by

c(x)=
{

0 if x ∈ Vi where i ≡ 0, 4, 5 (mod 6),
1 if x ∈ Vi where i ≡ 1, 2, 3 (mod 6).

Then c′(x)= 0 if x ∈ Vi and i is odd and c′(x)= 1 if x ∈ Vi and i is even. In each
case, c is a closed modular 2-coloring of T and so mc(T )= 2.

Case 2: |S| = 2. Then S is a 2-element subset of one of the sets {0, 2, 4}, {0, 4, 5},
{2, 3, 4}, {3, 4, 5} in Case 1. Observe that the closed modular 2-colorings described
in Case 1 will provide closed modular 2-colorings for this case. For example, if S
is a 2-element subset of S′ = {0, 2, 4}, then a closed modular 2-coloring of a tree of
type S′ described in Case 1 provides a closed modular 2-coloring of T . Therefore,
mc(T )= 2 in this case as well. �
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