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Given a map [ : Z — Z and an initial argument «, we can iterate the map to
get a finite forward orbit modulo a prime p. In particular, for a quadratic map
f(2) =z?+c, where ¢ is constant, work by Pollard suggests that the forward orbit
should have length on the order of ,/p. We give a heuristic argument that suggests
that the statistical properties of this orbit might be very similar to the birthday
problem random variable X, for an n = p day year, and offer considerable
experimental evidence that the limiting distribution of the orbit lengths, divided
by /P, for p < x as x — 0o, converges to the limiting distribution of X,/ Jn,
as n — oo.

1. Introduction
Let f € Z|z] be a polynomial and let « € Z. We define the orbit of & under f to be
Op(a) ={f"(@):n=0,1,2,3,...},
and for each prime p we define the orbit modulo p of « under f to be
@?(a) ={fM@)mod p:n=0,1,2,3,...},
where f” is the n-th iterate of f:

fr=fofoof,
| —

and f%(a) = «. For a fixed f and « and a given prime p, let m p be the size
of @? ().

If f is a random map, i.e., a map chosen from the uniformly distributed set
consisting of all maps from [, into F, (see [Harris 1960]), then the values of ()
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are uniformly distributed for all 7, and all «, and so the probability that /°(a),
Y e@), f2(@),..., f*(«) are all different is
p—1 p=2 —p—k_ (-1
p P P Pp—k-Dr
since, once « is fixed, there are p — 1 choices for f'(a), p — 2 choices for f2(c),
and so on. Therefore, in this case the probability that (at least) two of f°(x), f1(a),

f2(a), ..., k() are equal is

4P =1 (p—D!
k P(p—k—1)
(»)

By an analogous argument, ¢, is also the probability that, among k people, two

people have the same birthday, where p is the number of days in a year. Framing
this a little differently, we let the random variable X, be the number of times that
we must sample (uniformly, with replacement) from the set {1,2,3,...,n} to get a
repetition. Since it is known that the expected value of this variable is on the order
of 4/n, we look instead at the variable X}, /\/n.

In light of the above heuristic, we might expect that, for a fixed polynomial f
and initial value o, m,/,/p will, on average, “behave” similarly to X,//n. In
particular, we might guess that the limiting distribution of m,/./p, for p < x,
X — 00, will be similar to the limiting distribution of X},/+/n, as n — 0o. We note
that the above heuristic is not new; similar arguments have been given by Pollard
[1975], Bach [1991], and Brent [1980] to name a few, leading to conjectures that

mp is on average approximately equal to /(1r/2) p.
We also consider a related question. For a fixed f € Z[z], « € Z, let

9 ralx)= {pfx:f”(oz)z() (mod p) forsomen:O,1,2,...}.

That is, 2 f,4(x) is the set of primes p less than or equal to x such that 0 appears
in the orbit modulo p of « under f. In particular, we are interested in the size
of 9 £4(x). Since, for a given prime p, the proportion of elements mod p in the
orbit of o under f is m,/p, we hypothesize that |2 s, (x)| will grow at a rate
proportional to m,/p. Therefore, if we are correct that m, will grow at a rate
proportional to ,/p, we might expect that

m
20X =) 71’ ~c

pP=Xx

VX

log x

for some constant ¢ € R. The approximation above is discussed further in Section 3,
where we derive the appropriate constant c.

In the following we take an experimental approach to studying properties of
the set m,/,/p. For selected maps f and initial values z, we compute the orbits
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modulo p for all p <223, In particular, given these orbits we can find the moments
of mp/./p, and the length of 2 £, (x). As we will demonstrate in the sections to
follow, our results give strong support to the above heuristic, and lead us to make
the following conjectures:

Conjecture 1. Let f(z) = z% + ¢ and a € Z be such that
(1) c € Z\{0,-2},
) a#EI(1£V1-4c), a#Ei(1£V=3—-4c), a#0,£1 whenc=-1,

and let the orbit length my be as defined above. Then, as x — oo, the distribu-
tion of mp/ ﬁ converges, independent of [ and o, to a continuous distribution
F(ty=1—¢"! 22 ,t = 0. In particular, the r-th moments of my/ ./p are given by

wr=r(r—=2)r—4)---2forr even,and i, =r(r—2)(r —4)---1 -\/;forr odd.

The motivation for the result conjectured above is elaborated upon in Section 2,
and the need to include conditions (1) and (2) for both conjectures is explained in
Section 4.

Conjecture 2. Let f(z) = z> + ¢ and a € Z be such that conditions (1) and (2) of
Conjecture 1 hold, and a® # —c. Define

9 ra(x)={p <x: f"(a) =0 (mod p) for some n > 0}.

Then .
ogx
hm 12 f0(X)|—= NG = /2m7.
2. Length of the orbit modulo p and the birthday problem
Let Ej; be the k-th number drawn uniformly from the set {1,2,3,...,n}, with

replacement, and let X}, be as defined in Section 1. Then for k < n we have

P(X, >k)= P(E,,..., Ej all take different values)

k
= [1(1—P(Ej = E; for some i < j))

j=2
k j—1 k—1 )
= [1 (1——) =exp ) log(1—j/n).
j=2 n j=1

So as n — 0o, we have the following for 0 < ¢ < /n:

lz/n]
nli)n;oP(X,,/\/Z>t)=nli)n;oP(Xn>l\/ﬁ)= lim_exp Z log (1—j/n)

lzv/n] oo k
e (8 (//n))

j=1 k=1
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where we have used the power series representation for log (1 — j/n) in the third
line. Switching the order of summation, and pulling the first term of the sum over k
out of the exponential, we have

lim P(X,//n>1)
n—>o0

Lt/n] oo LEm) (i 7k
= lim exp (— > j/n)- lim exp (—Z > (/m) )

n—00 k=2 j=1 k

00 k
~ lim exp (—M) lim exp (— > O(kt——:z))
n n

n—o00 2n —00 k=1

k+2

—t2/2 = ! )_ —12/2

~ e -ex lim O =e ,
P ;1 (kl’lk/2

n—>oo
k_

where the second line follows because, in general, Z;-';l jk is a polynomial in m
of degree k + 1, and the third line, where we have brought the limit inside the sum,
follows from the monotone convergence theorem. Therefore

lim P(X,/vn<t)=1-—e"/2,
n—>o00

so we see that the distribution of X,/\/n converges to a distribution function
F(t) = 1—e™"*/2, which has an associated density function f(t)= F'(t)=te*"/2.
To support our conjecture in Section 1 — that F(¢) is the limiting distribution of
mp/ /P, as X — 0o — we compare the moments of m,/./p, which we compute
in Section 5 for large x, to the limiting moments of X},/+/n, as n — oo. With the
limiting density function f'(z) of X} /+/n in hand we can derive a general expression
for the r-th moment:

o0 o0 5
r :/ t’f(z)dt:/ (e 2 4
0 0

o0
= —l’e_tz/z}go+r/

1 42 ®© L _2
T le ’/zdt:r/ et /2 gy,
0 0

where r applications of 1’Hopital’s rule give us 0 for the —¢” e~1/2 term. We

continue applying integration by parts as above until we get
o 2
wr =r—=2)(r —4)---2-/ te™"/2dr if r is even,
0
oo 2
wr=r(r—=2)r—4)---1 / e /24 if ris odd.
0

. 2 .
The first integral above evaluates to —e ™’ /2 |g° =1, and the second integral we
evaluate as follows:
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_ N
=73

Therefore the r-th moments of the limiting distribution of X}, /+/n, as n — oo, are
given by
wr=r(r—-2)r—4)---2 if r is even,

wr=r(r=2)(r—4)---1-y/m/2 ifris odd.

For the first four moments this gives us (1 = /7/2, iy =2, 3 =3+/7/2, g = 8.
Therefore, to support our claim in Conjecture 1 we must provide evidence that the

moments of m,/,/p are converging, as x — oo, to the moments 1, above. In our
computations we use the following expression for the r-th moments of m,/,/p:

= Z(mp)

p=x

3. Iterates of f congruent to zero modulo p

In this section we consider the quantity |2 7,4 (x)|(log x)/ /X, as defined in Section 1.
Assuming that the probability that 0 € @? () is mp/ p, and that M; will converge
to /7/2, we define

logx Z \/JT/
p<x VP

and make a guess that

Jim 19 a5 = lim G M)

If we let w(x) =) ;< a(k), where a(k) = 1 if k is prime and 0 otherwise, and
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define f(x) = 1/./x, then Stieltjes integration by parts gives

1 JT(X) 1 X ()
2.7 N/ NN S

p=x

which implies

2

Now, for x > 55, we can bound 7 (x) by the inequalities
o T(x) < ———;
logx +2 logx —4

see [Rosser 1941]. Hence, if we shift the lower limit of integration in (2) to 55,
changing the value of the integral only by an additive constant which will vanish in
the limit, we can write

log x 1 . logx n(t)
lim t < lim
x—00 2./x [s5 f(log[+2) x—00 2./x Js5 [3/2
log x 1
< lim 3)

T x—>002./x Jss f(logt—4)

Consider the limit on the left. The integral diverges, since the integrand exceeds
1/t everywhere —indeed, +/t(logt + 2) < ¢ for t > 55. Hence the limit has the
form co/oco, where the denominator comes from expressing the quotient before the
integral as the inverse of 24/x/ log x. It follows that the limit on the left equals

) 1 Jxlog? x ) log? x
lim . = lim —— =
x>0 /x(logx +2) logx—2  x—>00]og? x —4

An analogous reasoning shows that the rightmost limit in (3) is equal to

1 Jxlog? x ) log? x
: im

lim = =
x—00 /x(logx —4) logx—2  x—>00]og? x —6logx + 8

Therefore so is the limit in the middle. In other words, hm G(x) 2m/2=A/2m,
and our guess (1) becomes

lo log x
i 125, (x)] == o = V2.

As we test our hypothesis, it should be kept in mind that limy s, G(x) converges
very slowly. Since the values of x for which |2 £, (x)|(log x)/+/X can actually be
computed (in a reasonable amount of time) are relatively small, the largest being
227 we compare our computations to G(x), rather than the limit V2.
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4. Some special cases

In this paper we consider polynomials of the form f(z) = z? + ¢, with z, ¢ € Z,
and initial argument values « € Z. But for certain f, o pairs we find that we end
up with a finite (over Z) orbit, a condition which is clearly incompatible with our
hypotheses outlined in Sections 2 and 3, since m, will have a fixed bound for all
primes p. In this section we classify these exceptional pairs [, .

Proposition 1. Let Op(a) ={ f"(a) :n=0,1,2,3,...} be the orbit of o under f,
where f(z) =z24c,c€Z,anda € Z. Then 0 r(a) is finite if and only if one of
the following hold:

(i) a==+3(1+£V1-4c),
(i) a==+1(1++v-3-4c),
(i) a€{0,1,—1} and c€{0,—1,-2}.

Proof. First we prove the converse, which is easier. Assumption (i) gives us the
solutions to a? +a +c =0, and this equation implies that «?4c = +a, which implies
that the orbit is finite. Assumption (ii) gives the solutions to a? =« 4+ ¢ + 1 =0,
and this equation implies that a? 4+ ¢ = o — 1. With one more iteration we get

@+ +e=(ra—1)’+c=a?F2o+1-0’+a—1=Fota = +a,

which again implies that the orbit is finite. As for (iii), testing all possible «, ¢
combinations will quickly convince the reader that the orbits are finite in all cases.

Now suppose that O () is finite. First we make some simplifications. Since the
orbits of o and —« will be identical except for the sign of the first element /° =a, we
may consider only nonnegative values of . Also, since it is obvious that ¢ € {0, —1}
will have infinite orbit for o > 2, and that ¢ > 1 will have infinite orbit for all «, we
consider only ¢ < —2. We claim that O s («) finite implies /—c —1 <a < /—c+1.
If this were not true, then we would have either @ = [/—c]+b ora = [/—c|—b
for some b € N, giving us

a=[v=cl4+b= a*+c=([vV/=c])?+2b[/=c]+b>+c > [/=c]+b,
a=|v=c|-b=a?+c=(v/=c])>=2b| /=] +b*+c < —2b| /=] +c.

The first of these immediately implies that the iterates of f are unbounded since
they are strictly increasing. In the second case iterating once more gives us

(@®+¢)? +c>4ab?|V=c|*> —4bc| V=] +c* > | /=] + b,

where the inequality reverses since a? 4+ ¢ < —2b|/—c| 4+ ¢ < 0, and the second
inequality follows since ¢ < —2. Again we can conclude that the iterates of f are
unbounded, and so we have shown that O ¢ (e) finite implies /—c¢—1<a < /—c+1.
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For any c, there are at most two integers that satisfy the preceding inequality,
Lv/—¢] and [/—cT, so any member of O s («) must be one of & | /—c], £[/—c],
since otherwise the iterates of f* will be unbounded. Since we know o € 0 r(a),
the condition above implies that O r(a) C {o, —a,00 — 1,—a — 1} or O¢(a) C
{a, —a, ¢ + 1, —a + 1}. However, we can rule out the latter case since

ol +e=da+1
= (@®>+c)?+c=+30+2
= (@®+c)+)’+c=T®+ 130 +5>20+5> +a+1> +a,

where the first inequality follows since in this case ¢ < —2 = « > 2. Therefore
the iterates are unbounded in this case, and we are left with the following:

a’+c=+ta or a’4+c=4a—1
= 012:|:Ot+C=0 or oz2:|:oz+c+1=0
= a=21(1xVI-4¢) or a=£I(1£V-3-4c). O

This proposition is the basis for the second condition necessary for Conjectures 1
and 2; we now turn to the first condition, that ¢ ¢ {0, —2}. These two cases behave
strikingly differently from the others studied, because they come from homomor-
phisms of the multiplicative group. The map z2 — 2 is a Chebyshev polynomial, and
so is connected to z2 via a homomorphism from C* to C*/{z ~ z~1} [Silverman
2007, pp. 29-30]. On a finite field [, this means that the behavior of z2 =2 will
be very similar to that of z2. For ¢ = 0 it is clear that |9 f.a(x)| will not grow as
expected, since we’ll have p € 9 4 (x) if and only if p divides a. On the other
hand, the length m, of the orbit modulo p will grow much faster than we expect.
Vasiga and Shallit [2004] studied these two cases in some depth, showing that, for
a given prime p, if (p —1)/2 is prime and 2 is a primitive root modulo (p —1)/2,
then ) oo p Mp 1s at least on the order of p?. Heuristics by Hardy and Littlewood
[1923], along with Artin’s conjecture, suggest that the number of primes less than x
that satisfy this property is on the order of x/(log x)?, and thus the density of
these primes is on the order of 1/log x. If we sum p?, for p < x, and multiply
by 1/log x, we get something on the order of x3/(log x)2, and dividing this by
the sum » - D o<q<pl ~ x2/logx gives us an average orbit length on the
order of x/log x. Note that this estimate only takes into account primes with the
aforementioned property, and assumes that all other primes have orbit length 0, so
we should expect this to be a low estimate. Indeed, the limited experimentation we
did on this question suggests that the average orbit length is closer to x /(log x)3/4.

Finally, Conjecture 2 requires an additional condition, that «? # —c. If we
disregard this condition we will have cases where 0 € 2 ¢, (x) for all p, which
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clearly conflicts with our claim. To see that the /© = « is the only iterate whose
square can be equal to —c, suppose that the contrary is true, i.e., that we have
(f1)? = —¢ for some [ € Z; then, letting /¥ = f/~!, we have

(S +c) +c=0.
(O +2e(/F) + 2 +e =0,
2+ QU+ De+ (5 =0.
Therefore the quadratic formula gives us

L 2UHP -1 Ve 4
- s ,

which is not an integer unless fk =0, in which case (fl)2 =c’=—-c=c=-1

It is easy to see that this implies « € {0, 1}, and this case has already been excluded
by Proposition 1(iii).

5. Results

First we consider the first four moments of 7,/ ,/p, as discussed in Section 2, for
f(z) = z% + ¢, where ¢ = £1, +2, 43, and initial arguments & = 1,2,...,9. Of
these we can exclude & = 1,2 when f(z) =z?—3,and @ = 1 when f(z) =z2—1,
because these ( f, @) combinations have finite orbits, as discussed above. For the
other 42 combinations, we find that our experimental results support our hypotheses
very well. For the first moment we expected the limit to be \/71_/2 =1.25331413...,
and for all ( f,«) tested, M was between 1.25138 and 1.25351 for x = 223, with
an average value of 1.25279. Table 1 gives these figures along with the standard

mean stand dev min max

M, 1.252795789 0.000518158 1.251387582 1.253505370
|v/7/2—M;| 0.000544827 0.000490241 0.000000052 0.001926555
M, 1.998325027 0.001690776 1.993860194 2.000539507

|2 — M| 0.001810403 0.001544894 0.000034079 0.006139806
M3 3.755044605 0.004998323 3.742341997 3.762285912

|3/ /2 — M3| 0.005419269 0.004427558 0.000121838 0.017600415
My 7.985456401 0.014915109 7.948531018 8.008817811

|8 — My| 0.016278430 0.012999594 0.000149649 0.051468982

Table 1. Moments of m,/,/p for x = 225 and distance from
predicted limit. For comparison, /7/2 ~ 1.25331413731550.
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2 3 ] 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25
log, x

Figure 1. The first and second moments, M and M,, of X//n

(thicker red lines) and m/,/p (thin lines) for all ( f, ) tested.

deviation of the set of results for each moment. It also shows the mean, standard
deviation, minimum, and maximum of the set

{72 — M| :x =2% for (f,«) tested},

and similarly for the second, third and fourth moments. Our complete results are
depicted graphically in Figures 1 and 2, for the first, second, third, and fourth
moments. In each of these graphs the heavier red curve is the respective moment of
X,/ /0, for n = x. Notice that the y-axes of these graphs are not scaled equally
with respect to each other (they are stretched by a factor of two for each subsequent
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45

42

21 22 23 24 25

2 3\ 4 5 6 ‘ 7 8 ’ 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25
log, x

Figure 2. The third and fourth moments, M3 and My, of X//n

(thicker red lines) and m/,/p (thin lines) for all ( f, ) tested.

moment graph), so if we’re interested in comparing how quickly two of the moments
converge, Table 1 will be more helpful.

The apparent common limit of the moments of m1,/./p and X/ /n suggests that
the limiting distributions of m,/./p, as x — oo, and the random variable X, //n,
as n — oo, are the same. For the variable X/ ,/n we showed in Section 2 that, as
n — oo, the distribution P(X}/+/n <t) converges to the function F(z) =1—e™! ?/2,
As the histogram in Figure 3 shows, the density function f(¢) = F’(¢) approximates
quite well the distribution of m,/./p for x = 108, f(z) =z? 41, @ = 3. These
results give considerable support to our first conjecture, stated in Section 1.
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H(t); f(@)

1 2 3 4 5
t

Figure 3. Histogram, H(t), of the distribution of m,/,/p (blue)

for x = 108, f(z) = z2 + 1, @ = 3, superimposed on the graph of

£(t) = te™"?/? (red). Here

l{p <10%:wk <mp/ /P <w(k+1)}
w-[{p <108}

for k € N. Each bar of the histogram has width w ~ 5.6/800.

H(t:wk <t <w(k+1)) =

’

To test the hypothesis discussed in Section 3, we compute |2 7o (x)|(log x)/ /X
for (f, ) as described above and x € {2, 22 ..., 227}. Table 2 shows that, although
our results are still fairly widely dispersed at x = 227, the average of the results
for this x value is very close to G(x), and the standard deviation is decreasing in
general as x increases, as is the error of the mean from G(x). As we mentioned
earlier, limy_, oo G(x) converges very slowly, and, as the table shows, even for x
as large as 227 we still have |G(x) — /27| ~ 0.36, so we are not too surprised to
see such a wide range in our results for this x value. That is, intuitively, it seems
we should not expect our results to be very tightly grouped until we are close to
the limiting value, ~/27. Figure 4 gives a graphical representation of all ( f, )
tested, for x from 4 to 227. On this graph the red and blue lines are G(x) and the
mean from Table 2, respectively. From this data, it seems reasonable to suppose
that |2 7.4 (x)|(log x)/+/x will eventually converge to V27, independent of f, «,
and so we make our second conjecture as stated in Section 1.

Joseph Silverman [2008] carried out computations that lead to a conjecture (in
a more general setting) that under certain restrictions the set {p : m), < pl/ -y
will have density 0 for € > 0. This conjecture agrees with our own results, and in
fact, if Conjecture 1 were proven, a less general version of Silverman’s conjecture
would readily follow. Computations of a similar nature to ours were also carried
out in [Benedetto et al. 2013], with results that are compatible with our own.



ITERATIONS OF QUADRATIC POLYNOMIALS OVER FINITE FIELDS 111

45

12 .0 (x)|(log x)/ /%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
log, x

Figure 4. Graphs of 9 74 (x)(log x)/+/x for all 42 (f, «) combi-
nations tested (thinner lines), the mean of these graphs (thick blue
line), and our guess G(x) (thick red line).
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12 .o (x)](log x)/ /X for all (f,a) tested

X G(x)* mean stand dev  min max |G (x)—mean|

210 346925 3.00157 0.51687 1.73287 4.11556 0.46767
211345003 2.87221 0.46933 2.02178  3.70660 0.57781
212342304 2.79734 034646 2.07944  3.37909 0.62570
213337313 2.83502 0.37519 1.79203 3.68363 0.53811
214 332854 2.87187 0.30915 1.89532 3.56321 0.45667
215 327415 293202 035071 2.01030 3.44622 0.34213
216 322425 297785 0.33397 2.20941 3.63902 0.24640
217 3.17737  3.03080 0.28861 2.44107 3.48260 0.14657
218 313140 3.04548 0.18849 2.55869 3.38722 0.08593
219 3.09045 3.01797 0.21004 2.54637 3.32847 0.07248
220 305137 293775 0.17602 2.63992 3.27620 0.11362
221 301654 292737 0.15786 2.65359 3.28683 0.08917
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223 295589 291037 0.09402 2.72467 3.11548 0.04552
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225 290646 2.88289 0.05445 2.77612 3.02741 0.02357
226 288509 2.87751 0.05869 2.71911 3.01390 0.00759
227 286578 2.86821 0.05418 2.74621 3.00790 0.00243

Table 2. A comparison of our experimental results to our

guess, G(x) = 198X ¥~ ¥/7/2
NPV
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