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Let ζ(s) be the Riemann zeta function and z0∈C\R a zero of ζ(s). We investigate
the graphs of the implicit functions z : [0, 1)→ C, with z(0)= z0 given by

ζ(z(c))− c = 0.

We give zero-free regions for ζ(s)− c where c ∈ [0, 1).

1. Introduction

For σ =<(s) > 1, the Riemann zeta function can be written as

ζ(s)=
∞∑

n=1

1
ns . (1)

By analytic continuation, ζ(s) may be extended to the whole complex plane, with
the exception of the simple pole s = 1. This analytic continuation is characterized
by the functional equation

ζ(1− s)= 20(s)ζ(s)(2π)−s cos
sπ
2
. (2)

The existence of a class of zeros of the form −2n, n ∈ N, follows directly from the
functional equation. These zeros are called trivial. The Riemann hypothesis states
that all nontrivial zeros of ζ(s) are located on the critical line σ = 1

2 .
In order to understand the Riemann zeta function better, various mathematicians

have investigated the behavior of its derivatives. Speiser [1935] showed that the
Riemann hypothesis is equivalent to ζ ′(s) having no zeros for 0< <(s) < 1

2 .
Spira [1965] computed zeros of the first and second derivative of ζ(s) and noticed

that they occur in pairs. Skorokhodov [2003] went further in his computation and
noticed that the zeros of derivatives seem to form chains; that is, for each zero sk of
ζ (k)(s) there is a corresponding zero sk+1 of ζ (k+1)(s). For sufficiently large k, the
existence of these chains is a direct consequence of the following theorem.
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Theorem 1 [Binder, Pauli and Saidak 2013]. Let u ∈ R>0 be a solution of

1− 1
eu−1

−
1
eu

(
1+ 1

u

)
≥ 0.

Let M ∈ N, M ≥ 2, and j ∈ Z. Let

qM := log
log M

log(M + 1)

/
log

M
M + 1

.

If there is k ∈ N with

qM+1k+ (M + 2)u ≤ qM k− (M + 1)u,

then each rectangle R j ⊂ Sk
M , consisting of all s = σ + i t with

qM k− (M + 1)u < σ < qM k+ (M + 1)u

and 2π j
log(M + 1)− log M

< t <
2π( j + 1)

log(M + 1)− log M
,

contains exactly one zero of ζ (k)(s). This zero is simple.

The existence of the chains of zeros of derivatives can be seen as follows. For a
given M ∈N, M ≥ 2 there is K ∈N such that qM+1k+(M+2)u≤ qM k−(M+1)u
for all k ≥ K . By Theorem 1, for each k ≥ K and each j ∈ Z there is exactly
one zero in a rectangular region given by M , k, and j . Again by Theorem 1 there
exists a unique corresponding zero of ζ (k+1)(s) in the rectangular region given by
M , k + 1, and j , which can be obtained by shifting the first region to the right
(and stretching it horizontally). This shows the existence of a chain of zeros of
ζ (K )(s), ζ (K+1)(s), ζ (K+2)(s), . . . .

Skorokhodov also noticed that the zeros of ζ(s)− 1 can be regarded as the first
points in these chains, and that there are curves from some zeros of ζ(s) to these
points given by the zeros of ζ(s)− c for c ∈ [0, 1) (see Figure 1).

The curves of zeros s(c) of ζ(s)−c for c ∈ [0, 1) either end at a zero of ζ(s)−1
or go off to the left approaching their asymptote

t =<(s)=
(2m+ 1)π

log 2
,

for some m ∈ Z as σ = <(s) approaches infinity. If each zero of ζ(s)− 1 indeed
corresponded to a zero of ζ ′(s), ζ ′′(s), ζ ′′′(s), . . . , then some zeros of ζ(s) would
not correspond to zeros with derivatives, namely those from which the paths of
zeros of ζ(s)− c for c ∈ [0, 1) go off to the right.

This agrees with the formulas for the number of nontrivial zeros of ζ(s) and
ζ (k)(s). Namely, let N (T ) and Nk(T ) denote the number of such zeros ρ with
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Figure 1. Zeros of derivatives of ζ (k)(s) (denoted by • (k)) and the
paths from zeros of ζ(s) (denoted by •) to the zeros of ζ(s)− 1
(denoted by ×).

0≤=(ρ)≤T of ζ(s) and ζ (k)(s), respectively. The classical Riemann–von Mangoldt
formula [Landau 1974] states that

N (T )=
T

2π
log

T
2π
−

T
2π
+ O(log T ), (3)

and according to Berndt [1970], we have

Nk(T )= N (T )−
T log 2

2π
+ O(log T ). (4)

So there are about (T log 2)/2π fewer zeros of ζ (k)(s) with imaginary part less
than T than there are of ζ(s), which is also about the number of paths of zeros of
ζ(s)− c with imaginary part less than T that go off to the right.

The aim of this paper is to describe better the behavior of paths of zeros of
ζ(s) − c = 0 for c ∈ [0, 1) by finding new zero-free regions for the functions
ζ(s)− c. Our results are summarized in Figure 2. Clearly, the zeros of ζ(s)− c lie
on the real lines of ζ(s), that is, the lines on which =(ζ(s))= 0. A review of some
results about these lines in Section 2 is followed by the derivation of the zero-free
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Figure 2. The paths from zeros of ζ(s) (denoted by •) to the zeros
of ζ(s)− 1 (denoted by ×), the barrier on the left (denoted by ↑),
the zeros of =

(
ζ
(
−

1
2 + i t

))
with 0≤ t < 13.7 (denoted by •), the

borders of zero-free regions of ζ(s)− c for c ∈ [0, 1) (denoted by
blue lines), and the zero-free region of ζ(s)−1 on the right in gray.

regions for ζ(s)− c on the right half-plane (Section 3) and the vertical boundary
for the zeros of ζ(s)− 1 for <(s)= 1

2 (Section 4).

2. Real lines

Obviously the solutions of the equations ζ(s)− c = 0 where c ∈ [0, 1) are on the
level lines with =(ζ(s))= 0, called real lines. Most of the results described here
go back to the work of Speiser and his student Utzinger [Speiser 1935]. Plots of
the behavior of the real (and imaginary) lines and some further discussion can be
found in [Arias-de-Reyna 2005].

Because the term 1+ 2−s dominates the infinite series ζ(s)=
∑
∞

i=0(1/ns) for
σ =<(s) > 3, the real lines have asymptotes t = jπ/log 2 for j ∈ Z. On the real
lines with asymptote t = 2mπ/log 2 (m ∈ Z) the function ζ(s) approaches 1 from
above, while on the real lines with asymptote t = (2m + 1)π/log 2 (m ∈ Z) the
function ζ(s) approaches 1 from below. The zero-free regions for ζ(s)− c = 0
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where c ∈ [0, 1) narrow around these asymptotes as σ increases — see Lemma 4
and Lemma 3.

As ζ(s) is a meromorphic function, no two of these real lines can cross where
ζ ′(s) 6= 0. Zero-free regions for ζ ′(s) have been found on the left of the critical
line for =(s) 6= 0 and <(s) < 0 [Levinson and Montgomery 1974, Theorem 9]
(<(s) < 1

2 under the Riemann hypothesis [Speiser 1935]) and on the right of the
critical line for σ > 2.94 [Skorokhodov 2003, Theorem 2]. Indeed, the only point
where two real lines coming from the right cross is the first real zero of ζ ′(s) at
s ≈−2.7172628292 [Speiser 1935]. Here the lines with asymptotes t = 2π/log 2
and t =−2π/log 2 intersect the real axis.

The lines coming from the right continue to the left at least until σ = 1.95
(compare Lemma 5). If one of the lines coming from the right did not cross the
strip −1≤ σ ≤ 2, it would have go up towards infinity. Because no two real lines
coming from the right intersect, all following lines would have to do the same. This
would contradict the estimate

=

(∫
−1+T i

2+T i

ζ ′(s)
ζ(s)

ds
)
= O(log T )

used in the proof of the Riemann–von Mangoldt formula (3). Thus all real lines
coming from the right cross the strip −1≤ σ ≤ 2 [Speiser 1935].

Hence the zeros of ζ(s)− c = 0, where c ∈ [0, 1), are either on the real lines
described above or on real lines that enter the critical strip from the left half-plane
and then curve back to the left half-plane. The lines coming from the left half-plane
are the lines on which ζ(s)− 1 is 0. By Proposition 7, we have

∣∣ζ (− 1
2 + i t

)∣∣> 1
for t ≥ 13.7. Furthermore, for 0 < t < 13.7, there are only two points where
<
(
ζ
(
−

1
2 + i t

))
= 0, that is, where the real lines with asymptote t = 2π/log 2 and

t = 3π/log 2 cross the line σ =−1
2 (see Remark 8). It follows that each of these

lines coming from the left contains a zero of ζ(s) and a zero of ζ(s)− 1 on the left
of σ = − 1

2 . It is well-known that the real part of the zeros of ζ(s) is between 0
and 1, and equals 1

2 if one assumes the Riemann hypothesis. An upper bound for
the real part zeros of ζ(s)− 1 was given by Skorokhodov [2003]; see Lemma 2
below.

3. Zero-free regions for ζ(s)− c on the right

A right bound σ = 3 for the zeros of ζ(s)−1 can easily be obtained with the triangle
inequality and an estimate for ζ(σ )− 1/2σ − 1. Skorokhodov was able to get a
better bound by applying the triangle inequality to a real-valued function that only
considers terms of the zeta function with n odd.



142 ADAM BOSEMAN AND SEBASTIAN PAULI

Lemma 2 [Skorokhodov 2003]. The function ζ(s) is distinct from unity at
σ ∈ (σ0,∞), where

σ0 = 1.940101683745 . . .

is the zero of the function

f (σ )= 1+ 2−σ − (1− 2−σ )ζ(σ ), σ > 1.

For c ∈ [0, 1) we find zero-free regions of ζ(s)− c that depend on t . We obtain
them by considering the real and imaginary parts of ζ(s)− c separately.

Lemma 3. If c∈ [0, 1) and |sin(t log 2)| ≥ 2σ ζ(σ )−2σ−1, then ζ(σ+i t)−c 6= 0.

Proof. We consider the imaginary part of ζ(s)− c and obtain∣∣=(ζ(s)− c)
∣∣≥ ∣∣∣∣ 1

2σ
sin(t log 2)

∣∣∣∣− ∣∣∣∣ ∞∑
n=3

1
nσ

∣∣∣∣
=

∣∣∣∣ 1
2σ

sin(t log 2)
∣∣∣∣− ∣∣∣∣ζ(σ )− 1−

1
2σ

∣∣∣∣, (5)

which is greater than 0 when∣∣sin(t log 2)
∣∣≥ 2σ ζ(σ )− 2σ − 1. �

Lemma 4. If c ∈ [0, 1) and cos(t log 2)≥ 2σ ζ(σ )−2σ −1, then ζ(σ + i t)−c 6= 0.

Proof. For the real part of ζ(s)− c we obtain

<(ζ(s)− c)= 1− c+
1

2σ
cos(t log 2)+ · · ·

≥
1

2σ
cos(t log 2)−

(
ζ(σ )− 1−

1
2σ

)
assuming c = 1,

which is greater than 0 when

cos(t log 2)≥ 2σ ζ(σ )− 2σ − 1. �

These regions can be extended a bit if we restrict ourselves to certain values of t .

Lemma 5. If c ∈ [0, 1), m ∈ Z, and t is fixed at 2πm/log 2, then <(ζ(s)− c) 6= 0
for σ ≥ 1.95.

Proof. <(ζ(s)− c)= 1− c+ (1/2σ ) cos(t log 2)+ (1/3σ ) cos(t log 3)+ · · · When
t is fixed and t log 2= 2πm, we get

<(ζ(s)− c)≥ 1− c+
∞∑
ν=0

1
(2ν)σ

−

( ∞∑
n=2

1
nσ
−

∞∑
ν=0

1
(2ν)σ

)

= 2
∞∑
ν=1

( 1
2σ

)ν
− ζ(σ )=

2
1− 1/2σ

− ζ(σ ),
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which is greater than 1 for σ ≥ 1.95. �

4. Zero-free barrier for ζ(s)− c on the left

On the left, instead of finding a zero-free region, we find a horizontal line where
|ζ(s)|> 1. The line σ =−1

2 fulfills this condition with the exception of one point.
First we find a lower bound for the absolute value of ζ(s) where σ = 3

2 .

Lemma 6.
∣∣ζ ( 3

2 + i t
)∣∣> 0.46 for all t ∈ R.

Proof. To get a lower bound for |ζ(s)|, we use the Euler product. Let P be the set of
the first million prime numbers, and consider the expression

∏
p∈P |1− p−s

||ζ(s)|.
We have ∏

p∈P

|1− p−s
||ζ(s)| =

∣∣∣∣1+∑
p-n

p∈P

1
ns

∣∣∣∣ ≥ ∣∣∣∣1− ∣∣∣∣∑
p-n

p∈P

1
ns

∣∣∣∣∣∣∣∣
≥ 1−

∑
p-n

p∈P

1
nσ
= 2−

∏
p∈P

(1− p−σ )ζ(σ ).

We also have from the triangle inequality that |1− p−s
| ≤ 1+ p−σ , and thus

|ζ(s)| ≥
2−

∏
p∈P(1− p−σ )ζ(σ )∏
p∈P(1+ p−σ )

≥ 0.46 for σ = 3
2 .

So we get |ζ(s)| ≥ δ > 0 for σ = 3
2 and δ = 0.46. �

Now we can use δ and the functional equation to obtain a barrier for the zeros of
ζ(s)− c on the left.

Proposition 7. |ζ(− 1
2 + i t)|> 1 for t ≥ 13.7.

Proof. By the functional equation,

ζ(1− s)= 21−sπ−s sin
(π

2
(1− s)

)
0(s)ζ(s)

= 21−sπ−s cos
sπ
2
0(s)ζ(s).

Taking the absolute value of both sides gives

|ζ(1− s)| = 21−σπ−σ
∣∣∣cos

sπ
2

∣∣∣|0(s)||ζ(s)|.
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But ∣∣∣cos
sπ
2

∣∣∣= 1
2

∣∣e−π(σ i−t)/2
+ eπ(t−σ i)/2∣∣

=
1
2

∣∣e−tπ/2(cos σ + i sin σ)+ etπ/2(cos σ − i sin σ)
∣∣

=
1
2

∣∣cos σ(etπ/2
+ e−tπ/2)+ i sin σ(e−tπ/2

− etπ/2)
∣∣

=
1
2

(
cos2 σ(eπ t

+ e−π t
+ 2)+ sin2 σ(eπ t

+ e−π t
− 2)

) 1
2

=
1
2

(
eπ t
+ e−π t

+ 2(cos2 σ − sin2 σ)
) 1

2 .

As 0(z+ 1)= z0(z) for z ∈ C and as

∣∣0( 1
2 + i t

)∣∣=√π sech(π t)=

√
2π

eπ t + e−π t

for t ∈ R, we get

∣∣0( 3
2 + i t

)∣∣= ∣∣( 1
2 + i t

)
0
(1

2 + i t
)∣∣=√1

4 + t2 ·
√
π ·

√
2

eπ t + e−π t .

For σ = 3
2 we obtain

∣∣ζ (− 1
2 + i t

)∣∣≥ 2−0.5π−1 1
√

2

(
1+

4 cos2
( 3

2

)
− 2

eπ t + e−π t

)
·

√
1
4 + t2 · δ,

where the right-hand side is obviously increasing in t . With δ > 0.46, this gives∣∣ζ ( 1
2 + i t

)∣∣> 1 for t ≥ 13.7 by Lemma 6. �

Remark 8. The zeros of =
(
ζ
(
−

1
2 + i t

))
with 0 ≤ t < 13.7 are t0 = 0, t1 ≈ 2.93,

and t2 ≈ 9.92, where

ζ
(
−

1
2 + i t0

)
≈−0.21, ζ

(
−

1
2 + i t1

)
≈ 0.35, ζ

(
−

1
2 + i t2

)
≈ 2.03.

So the only hole in the barrier is− 1
2+i t1. This is where the real line with asymptote

π/log 2 crosses the line σ =− 1
2 .

5. Outlook

In our work, we investigated the behavior of the graphs of the continuous functions
s : [0, 1)→ C defined by the equation ζ(s(c))− c = 0 and an initial point s(0)
(a zero of the zeta function). If s(1) exists, such a graph connects a zero of ζ(s) to
a zero of ζ(s)− 1. The latter zeros are the first points on the conjectured chains of
zeros of derivatives.
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A similar approach could also be used to investigate the conjectured chains of
zeros of the derivatives of ζ(s). For each zero s0 of

ζ(s)− 1=
∞∑

n=1

1
ns ,

one would consider the implicit function s : [0,∞)→ C given by

ζ (k)(s(k))= (−1)k
∞∑

n=1

logk n
ns(k) = 0,

with s(0) = s0. This function s(k) should yield the correspondence of zeros of
ζ (k)(s) and ζ (k+1)(s) for k ∈ Z, k ≥ 0 for two zeros which would be connected by
{s(x) | k ≤ x ≤ k+ 1}.

Together, the two implicit functions could give more detailed insight into the
distribution of the zeros of ζ(s) by relating it to the distribution of higher derivatives
(see Theorem 1). Furthermore it will be interesting to see how the conjectured
chains of zeros of the derivatives of ζ(s) fit in with the universality of ζ(s) found
by Voronin [1975].
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