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We derive a formal relationship between the coefficients of a function expanded
in either the Legendre basis or Haar wavelet basis, before and after a polynomial
deformation of the function’s domain. We compute the relationship of coefficients
explicitly in three cases: linear deformation with Haar basis, linear deformation
with Legendre basis, and polynomial deformation with Legendre basis.

1. Introduction

This paper explores the relationship between Schauder coefficients of a function
before and after the domain of that function has been deformed in some reasonably
well-behaved manner. As an analogy, one may think of a function as a melody
recorded on an LP, and its domain as the position in the groove on the LP. The
groove will become deformed if the LP is left in the sun, but the melody played on
the LP after deformation will be related to the original melody. We are interested in
understanding that relationship. Our results are a preliminary step toward addressing
the inverse question of how to recover information about the undeformed function
given the deformed function and an unknown deformation.

More formally, let W = {w : D → D | w is a diffeomorphism} be a class of
diffeomorphisms defined on a closed subinterval D ⊂ R. Then each w ∈ W

defines a function Fw on L2
[D], where Fw( f ) = f ◦ w. Below, we provide

necessary background information to pose our question in terms of coefficients
of elements in L2

[D]. In Section 2, we derive a general relationship between the
coefficients of f , w, and g= Fw( f ). In Section 3, we compute precise relationships
between coefficients of f and g in the Legendre and Haar wavelet bases for linear
deformations, and in Section 4, in the Legendre basis for polynomial deformations.
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1.1. Background. For the Hilbert space L2
[D] = { f : D → R |

∫
D f 2 < ∞},

recall that the inner product is given by 〈 f, g〉 =
∫

D f g. Therefore, given an or-
thonormal basis {φi (x)}∞i=0 for L2

[D], the Schauder coefficients {ai } corresponding
to a function expanded in that basis, f (x) =

∑
∞

i=0 aiφi (x), can be computed by
ai =

∫
D f (x)φi (x) dx [Kreyszig 1989].

We will be exploring two orthonormal bases in our work: the Legendre basis,
which is a basis of polynomials, and the Haar wavelet basis, a basis that localizes
in scale and location. As noted above, domain deformation corresponds to com-
position of functions. The Legendre basis has the advantage that computations
involving composition with polynomial deformations are straightforward. On the
other hand, because the support of each basis function is the entire domain D,
localized deformations will produce changes in every Legendre coefficient. The
Haar wavelet basis has the opposite problem: local deformations will change only
the subset of coefficients corresponding to that locale, but composing basis functions
with polynomial deformations is computationally intimidating. Examined together,
however, these two bases provide a wide view of possible behaviors. We now define
each basis formally.

1.1.1. Legendre basis for L2
[−1, 1]. The Legendre basis arises by applying the

Gram–Schmidt orthonormalization process to the simplest basis for L2
[−1, 1],

the monomials {x i
}
∞

i=0. For D = [−1, 1], the resulting basis is as below (though
choosing a different D will produce a different normalizing constant K ):

ψi (x)=


√

2i + 1
2

N∑
n=0

(−1)n
(2i − 2n)!

2i n!(i − n)!(i − 2n)!
x i−2n for −1≤ x ≤ 1,

0 otherwise,

where N = i/2 when i is even, and N = (i − 1)/2 when i is odd [Jackson 2004].
Rewriting the normalizing constant

Kin =

√
2i + 1

2
(−1)n

(2i − 2n)!
2i n!(i − n)!(i − 2n)!

,

our basis becomes

ψi (x)=
N∑

n=0

Kinx i−2n. (1)

A function f (x) ∈ L2
[−1, 1] can therefore be written as

f (x)=
∞∑

i=0

ai

N∑
n=0

Kinx i−2n
=

∑
i

∑
n

ai Kinx i−2n.
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1.1.2. Haar basis for L2
[0, 1]. The Haar wavelet basis is generated by shifting and

scaling the simplest mother wavelet,

ψ(x)=


1 for 0≤ x < 1

2 ,
−1 for 1

2 ≤ x < 1,
0 otherwise,

which can be thought of as a coarse piecewise constant approximation to a sine
curve. After scaling and shifting, the resulting orthonormal basis is given by

ψi j (x)=


2i/2 for j

2i ≤ x < j+1/2
2i ,

−2i/2 for j+1/2
2i ≤ x < j+1

2i ,
0 otherwise,

where i ∈ N and 0≤ j ≤ 2i
− 1 [Radunović 2009].

2. General relationships of coefficients

Our first result presents a general relationship between Schauder coefficients of f
and those of g.

Theorem 1. Consider f (x) ∈ L2
[D], where D ⊂ R is a a closed interval, and let

w(x) = h−1(x) : D → D be a diffeomorphism. Set g(x) = f ◦w(x). Then for
f (x)=

∑
i aiψi (x), where {ψi } is an orthonormal basis for L2

[D],

g(x)=
∑

i

ciψi (x)=
∑

i

∑
j

αi j a jψi (x),

where αi j = 〈ψ j ◦w(x), ψi (x)〉L2 .

Proof. We claim that g ∈ L2(D). Because w is a diffeomorphism, w′ is continuous
and nonvanishing on D. Therefore, 1/w′ is also continuous on D and thus bounded
above by some M<∞. We then have

∫
D g2
=
∫

D( f ◦w)2=
∫

f 2/w′≤M‖ f ‖22<∞,
and so g ∈ L2

[D].
Thus, we can write g(x) as the convergent series

∑
i ciψi (x), where ci = 〈g, ψi 〉.

Remembering that g = f ◦w =
∑

j a j (ψ j ◦w), we have

ci = 〈g, ψi 〉 = 〈 f ◦w,ψi 〉

=

〈∑
j

a j (ψ j ◦w),ψi

〉
=

∑
j

a j 〈ψ j ◦w,ψi 〉 =
∑

j

a jαi j . �

Note that the coefficients {αi j } can be computed independently of f . Given a
deformation w, these may be computed and reused for multiple choices of f . Alas,
such a clean theorem requires dues to be paid elsewhere. We will see below the
challenges of computing the {αi j } coefficients in specific cases.
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3. Explicit relationships: linear deformations

3.1. Linear deformations and the Legendre basis for L2[−1, 1]. We first exam-
ine deformations of the form w(x)= βx , with 0< β < 1, for D = [−1, 1]. We are
cheating slightly here, as h = w−1 maps D to a larger interval D ⊂ h(D), and so
the setting of this first example does not match with Theorem 1. Nonetheless, the
results for linear w will be helpful in understanding the results for polynomial w in
Section 4, and so we persevere. We start with a simple fact from calculus:

Fact. For A = [−a, a] and t odd,
∫

A x t dx = 0. �

Theorem 2. Following Theorem 1, we take D = [−1, 1], {ψi (x)} as the Legendre
basis, and w(x)= βx , β > 0. Then

αi j =

2
N ,M∑

n,m=0

Kin K jmβ
i−2n

(i − 2n)+ ( j − 2m)+ 1
if i + j is even

0 otherwise.

Proof. Expanding a function f in the Legendre basis, we can write f (x) as∑
i ai

∑N
n=0 Kinx i−2n , where N = i/2 when i is even and N = (i −1)/2 when i is

odd. We are concerned with g(x)= f (w(x))=
∑

i aiψi (w(x)), where

ψi (w(x))= ψi (βx)=
N∑

n=0

Kin(βx)i−2n
=

N∑
n=0

Kinx i−2nβ i−2n.

Therefore,

g(x)=
∑

i

ai

N∑
n=0

Kinx i−2nβ i−2n.

Substituting in βx , we obtain the following formula for {αi j }:

αi j = 〈ψi (βx), ψ j (x)〉

=

∫ 1

−1

( N∑
n=0

Kinx i−2nβ i−2n
)( M∑

m=0

K jm x j−2m
)

dx

=

∫ 1

−1

N ,M∑
n,m=0

(Kinx i−2nβ i−2n)(K jm x j−2m) dx

=

N ,M∑
n,m=0

∫ 1

−1
(Kinx i−2nβ i−2n)(K jm x j−2m) dx .

=

N ,M∑
n,m=0

∫ 1

−1
Kin K jm x i−2n+ j−2mβ i−2n dx
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In view of the Fact quoted above, if i + j is odd, the integral is zero. Otherwise,

αi j =

N ,M∑
n,m=0

∫ 1

−1
Kin K jm x i−2n+ j−2mβ i−2n dx= 2

N ,M∑
n,m=0

Kin K jmβ
i−2n

(i−2n)+( j−2m)+1
. �

3.2. Linear deformations and the Haar basis for L2[0, 1]. We again examine
linear deformations of the form w(x)= βx , now with β > 0 and D = [0, 1]. Note
that for the Haar wavelet basis, each basis element has two indices: one for scale
and one for location. Hence, the {αi j } coefficients defined in Theorem 1 become
{αi jkl} = 〈ψi j ◦w,ψkl〉.

As before, we must compute

ψi j (w(x))= ψi j (βx)=


2i/2 for j

2i ≤ βx < j+1/2
2i

−2i/2 for j+1/2
2i ≤ βx < j+1

2i

0 otherwise.

=


2i/2 for j

β2i ≤ x < j+1/2
β2i

−2i/2 for j+1/2
β2i ≤ x < j+1

β2i

0 otherwise.

Let

I+i j =

[ j
β2i ,

j + 1/2
β2i

)
and I−i j =

[ j + 1/2
β2i ,

j + 1
β2i

)
,

the regions where ψi j (w(x)) > 0 and ψi j (w(x)) < 0, respectively. Similarly, let

I+kl =

[ l
2k ,

l + 1/2
2k

)
and I−kl =

[ l + 1/2
2k ,

l + 1
2k

)
.

Note that a particular αi jkl will be nonzero only if (a) (I+i j ∪ I−i j ) ∩ I+kl 6= ∅ and
(I+i j ∪ I−i j )∩ I−kl 6=∅ and (vice versa) (b) (I+kl ∪ I−kl )∩ I+i j 6=∅ and (I+kl ∪ I−kl )∩ I−i j 6=∅.
Otherwise, αi jkl will vanish; either the supports will be disjoint, or the support of one
will be contained entirely in the positive or negative domain of the other. Analyzing
the possibilities for nonzero values of αi jkl produces the following theorem.

Theorem 3. Following Theorem 1, we take D=[0, 1], {ψi j (x)} as the Haar wavelet
basis, and w(x)= βx , β > 0. Then nonzero values for αi jkl are of the form

αi jkl =

3∑
m=1

ξm2m−k−2
+ ξ̃m2m−i−2,

where ξ1= 1±β, ξ2 ∈ {−β,±lβ, (1+l)β,±(3l+1)β}, ξ3 ∈ {±lβ, (1+l)β}, ξ̃1= 0,
ξ̃2 ∈ {±1,± j,±(1+ j), 3 j,−(3 j + 1)}, and ξ̃3 ∈ {1,± j, (1+ j)}.
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Proof. Expanding some f in the Haar basis, we can write f (x)=
∞∑

i=0

2i
−1∑

j=0
ai jψi j (x).

Therefore,

g(x)= f (w(x))=
∞∑

i=0

2i
−1∑

j=0

ai jψi j (w(x))=
∞∑

i=0

2i
−1∑

j=0

ai jψi j (βx).

The formula for αi jkl is then

αi jkl = 〈ψi j (βx), ψkl(x)〉

=

∫
(I+i j ∩I+kl )∪(I

−

i j ∩I−kl )

2i/22k/2 dx −
∫
(I+i j ∩I−kl )∪(I

−

i j ∩I+kl )

2i/22k/2 dx

= 2(i+k)/2
(∫

(I+i j ∩I+kl )∪(I
−

i j ∩I−kl )

dx −
∫
(I+i j ∩I−kl )∪(I

−

i j ∩I+kl )

dx
)

= 2(i+k)/2[µ((I+i j ∩ I+kl )∪ (I
−

i j ∩ I−kl )
)
−µ

(
(I+i j ∩ I−kl )∪ (I

−

i j ∩ I+kl )
)]
,

where µ is the standard Lebesgue measure. Hence, to compute αi jkl , we must
compute M = µ

(
(I+i j ∩ I+kl )∪ (I

−

i j ∩ I−kl )
)
−µ

(
(I+i j ∩ I−kl )∪ (I

−

i j ∩ I+kl )
)
. From the

14 possible arrangements of the values
{ l

2k ,
l+1/2

2k , l+1
2k ,

j
β2i ,

j+1/2
β2i ,

j+1
β2i

}
satisfying

(a) and (b) as in the discussion preceding Theorem 3, we find possible values for
M as follows. Given positive integers {i jkl} corresponding to αi jkl , the value of
β2i+k+2 M 6= 0 is one of

• (1+ j)2k+3
− lβ2i+3

−β2i+2

• (1+ j)2k+2
− lβ2i+2

• − j2k+3
+ lβ2i+3

+ (1+β2i+1
}

• −(3 j + 1)2k+2
+ (3l + 1)β2i+2

+ (1+β)2i+1

• − j2k+2
+ lβ2i+2

+ (1−β)2i+1

• ± j2k+2
∓ (1+ l)β2i+2

• −(1+ j)2k+2
+ (1+ l)β2i+2

• − j2k+3
− 2k+2

+ (1+ l)β2i+3

• j2k+3
+ 2k+2

− lβ2i+3

• 2k+3
+ 3 j2k+2

− (3l + 1)β2i+2

• j2k+2
− lβ2i+2

• −(1+ j)2k+2
+ lβ2i+2

• (1+ j)2k+2
− (1+ l)β2i+2.

Substituting these values for M into the formula for αi jkl gives the desired result. �
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4. Explicit relationships: polynomial deformations and the Legendre basis

Because the Legendre basis is a basis of polynomials, it is less challenging to com-
pute values for {αi j } when w is a polynomial than it would be for a nonpolynomial
basis such as the Haar basis. We now consider deformations w(x)=

∑v
s=0 βs x s ,

where the {βs} are chosen so that w(x) maps [−1, 1] onto itself diffeomorphically
and dw/dx > 0. This increase in complexity of the deformations requires careful
accounting, as we shall see below.

As before, we compute

ψi (w(x))= ψi

( v∑
s=0

βs x s
)
=

N∑
n=0

Kin

( v∑
s=0

βs x s
)i−2n

=

N∑
n=0

Kin

( ∑
p0+p1+···+pv=i−2n

( i − 2n
p0, p1, . . . , pv

)
(β0x0)p0(β1x1)p1 · · · (βvxv)pv

)

=

N∑
n=0

Kin

( ∑
p0+p1+···+pv=i−2n

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps

)

=

N∑
n=0

∑
P

Kin

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps

using the multinomial theorem, where P = p0+ p1+· · ·+ pv is the collective sum
of partitions of i − 2n. Therefore,

g(x)= f (w(x))=
∑

i

ai

N∑
n=0

∑
P

Kin

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps .

In order to apply the Fact to compute 〈ψ j (w(x)), ψi (x)〉, we must identify which
of the powers of x , given by

∑v
s=0 sps , are even and which are odd. Certainly,

when s is even, sps will be even. We rewrite

v∑
s=0

sps =

bv/2c∑
t=0

(
2tp2t + (2t + 1)p2t+1

)
=

bv/2c∑
t=0

2tp2t +

bv/2c∑
t=0

(2t + 1)p2t+1.

Analyzing the sum over odd s= 2t+1, we see that if p2t+1 is even for a given t , the
product (2t + 1)p2t+1 will be even. In other words, the parity of the total exponent∑v

s=0 sps is determined entirely by the parity of the number of odd-indexed elements
of the partition that are themselves odd. More precisely, let NP be the number of
odd-valued elements in the set {p2t+1}. If NP is odd, then

∑bv/2c
t=0 (2t + 1)p2t+1

will sum an odd number of odd elements, and will therefore be odd. If NP is even,∑bv/2c
t=0 (2t + 1)p2t+1 will sum an even number of odd elements, and will therefore

be even. We have proved the following lemma.
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Lemma. Let P : p1+ · · ·+ pv = i − 2n be a particular choice of partition. Then
the value of

∑v
s=0 sps will be even if NP , the number of odd-indexed, odd-valued

elements of P , is even, or odd if NP is odd.

We now state the result for polynomial deformations.

Theorem 4. Following Theorem 1, we take D = [−1, 1], {ψi (x)} as the Legendre
basis, and w(x)=

∑v
s=0 βs x s to be monotone increasing on D. Then

αi j = 2
N ,M∑

n,m=0

∑
P,2| j+NP

( i − 2n
p0, p1, . . . , pv

) Kin K jm
(∏v

s=0 βs
ps
)

j − 2m+ 1+
∑v

s=0 sps
.

Proof. Calculating αi j , we find

αi j = 〈ψi (w(x)), ψ j (x)〉

=

∫ 1

−1

[ N∑
n=0

i−2n∑
P

Kin

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps

][ M∑
m=0

K jm x j−2m
]

dx

=

N ,M∑
n,m=0

i−2n∑
P

Kin K jm

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)∫ 1

−1
x j−2m+

∑v
s=0 sps dx .

Each integral term of the sum will vanish or not depending on the parity of
j − 2m +

∑v
s=0 sps . Because 2m is always even, we focus on the parity of

j +
∑v

s=0 sps . For each αi j , j is fixed along with its parity. From the discussion
leading up to Theorem 4, we know that NP determines the parity of

∑v
s=0 sps .

Putting this together, we see that the exponent j − 2m +
∑v

s=0 sps will be odd
(and so will have vanishing integral) when j + NP is odd. When j + NP is even,
however, the exponent will be even and the integral nonzero. �

5. Conclusion and future work

Based on the computational challenges apparent in the few simple examples given
in this paper, we believe there are very few cases where the coefficients {αi j } that
capture the relationship between the deformed and undeformed function can be
computed explicitly. Nonetheless, we would like to be able to say something in
other situations. Currently, we are exploring distributions of coefficients of periodic
functions after deformation by randomly generated b-splines with between 5 and
25 knots. We hope to make conjectures based on those empirical results about what
we can realistically say mathematically. Because of the highly structured nature of
periodic functions, we expect meaningful results. For example, since the oscillations
of a periodic function cannot change in number or amplitude after composition
with a deformation, there should be a formulation for a wavelet basis that relates
scale and location of periodic behavior with the local energy of a deformation.
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The motivation for this project comes from a similar problem in two dimensions
related to modeling textures in images [Liu et al. 2004a; 2004b; Park et al. 2009].
When a periodic texture such as a wallpaper pattern appears in an image, it is often
not periodic within the image. That is, geometric distortions arising from lighting,
occlusion, or projection of a three-dimensional object onto the two-dimensional
image plane, create a near-periodic texture in the image. To recognize the periodic
structures in these distorted textures requires solving this problem: given a deformed
near-periodic function, what is the underlying periodic function and the associated
deformation? This inverse problem is ill-posed, but our work gives insight into
a similar problem in one dimension. Future work will focus on examining that
inverse problem in the one-dimensional setting and deriving similar results to the
ones in this paper for functions on R2.
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