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The influence of education
in reducing the HIV epidemic

Renee Margevicius and Hem Raj Joshi

(Communicated by Suzanne Lenhart)

We use an SIRE (susceptible, infected, removed, and education) model to study
and evaluate the effectiveness of Uganda’s education campaigns from the last
25 years in reducing the prevalence of AIDS and HIV infection. We divide
the susceptible class into four subgroups with different infection rates due to
their differing beliefs on sexual conduct. We use data from Uganda about the
epidemic and educational influences to help estimate the infection rates, and then
we simulate the model and compare our results to real data from 1996–2007.

1. Introduction

HIV is a slow working virus that often causes AIDS, in which the immune system
begins to fail. The disease is transmitted by mother to child at birth, or by sharing
needles, or through unsafe sex. At the time of this writing, an estimated 34 million
people were living with HIV throughout the world [WHO 2010], about two-thirds
of them in sub-Saharan Africa.

Uganda, a country located in that region, has had a major influence in HIV
prevention. In 1987, the Ugandan government created a campaign called ABC,
standing for abstinence, being faithful, and use of condoms, to promote ways
of preventing the spread of the virus through safer sexual behavior [Green et al.
2002; 2006]. The first part of the campaign, abstinence, promotes no sex until
marriage. The being faithful portion supports those couples that only practice sex
with one partner. Lastly, the use of condoms promotes safe sex for those with
multiple partners. This three-pronged approach mirrors the recommendations of
international organizations created throughout the world to help educate people on
HIV/AIDS and slow its spread. But Uganda has been more successful than most
countries; throughout the nineties, the prevalence of HIV in Uganda fell, and many
observers credit this to the ABC prevention campaign. Over the last ten years the
incidence of HIV/AIDS in Uganda has largely stabilized [Uganda 2010], even as the

MSC2010: 34K60, 35K55.
Keywords: SIRE model, ABC strategy, mathematical model.

127

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2013.6-2
http://dx.doi.org/10.2140/involve.2013.6.127


128 RENEE MARGEVICIUS AND HEM RAJ JOSHI

country shifted its prevention policy away from ABC and towards abstinence-only
programs, which many experts believe may lead to a rise in risky behavior.

Our goal in this paper is to model the effects of education on the dynamics of the
HIV epidemic. In [Joshi et al. 2008], we modified the basic susceptible, infected,
and removed (SIR) model to include an education class (we call the new model
an SIRE model). The education class represents the proportion of organizations
that are involved in spreading the ABC campaign. We split the susceptible class
into three subclasses: the general susceptibles S who do not change their behavior
due to the campaign, a class SAB of susceptibles who have been influenced by the
abstinence and being faithful portions, and a class SC of susceptibles who begin to
use condoms due to the campaign. Here we extend that work by further dividing
SAB into two subclasses SA and SB , consisting of those susceptibles who have
chosen to practice abstinence and those who have chosen to be faithful to one
partner as a result of the campaign.

We collected information such as the history of the HIV epidemic, government
statistics, and behavioral records. We used this information in our SIRE model,
a system of ordinary differential equations, in order to explain the effects of the
ABC campaign. After estimating the parameters using collected data, we simulated
the model using MATLAB. The educational influences should cause infection and
HIV-related death rates to slow down.

The outline of this paper is as follows. Section 2 will provide an overview of
the standard SIR model, as well as the modified SIRE model with the educational
influences. Section 3 discusses parameter estimates. In Section 4, we simulate the
SIRE model and compare the results to collected data. In Section 5, we present
future directions and conclusions.

2. Modified SIRE model

A basic SIR model [Edelstein-Keshet 1988], with susceptible, infected, and removed
classes, takes the form

S′ =−βSI + b(S+ I )− d S, I ′ = βSI − γ I, R′ = γ I, (1)

where d is the natural death rate, b is the birth rate, γ is the death rate due to
infection, and β is the infection rate.

We will augment the basic SIR model (1) by introducing educational influence.
We will take into account changes in behavior of some susceptibles in the adult
population only (ages 15–49), since the promotional campaigns are designed to
influence adult behavior. As a result of educational influence, our susceptible class
will exhibit different behaviors. Figure 1 is schematic diagram of our model and it
shows the connectivity of the different classes.
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Figure 1. Schematics of the our SIRE model.

The influences of the educational information will break the susceptible popula-
tion into four different types of behavior. The first will be the initial population in
which there is no change in behavior due to education, denoted by S, the general
susceptible population. The next part of the population counts those who have been
influenced to choose abstinence, which will be denoted by SA. Another type of
change in behavior for the susceptible class will be choosing to be faithful, which
will be indicated by SB . The last type of behavior change is use of condoms, and
those susceptibles will be denoted by SC . In addition, an E class is needed to
show the influence of the educational information given about the A, B, and C
type behaviors. This E class causes some members of the susceptible class, S,
to move into the A, B, and C categories. The size of the E class depends on the
fraction of organizations providing the information on HIV. The proportions of
the organizations providing the education on each of the three types of behaviors
causes the split among the A, B, and C categories. Due to influence of E , people
from class S will move into the SA, SB , and SC classes at given rates. In addition,
the entry rate for people into the general susceptible class, and death rates where
people leave, must be taken into consideration.

The infection rate β for each class will vary due to the influence of education
and change in behavior. Thus we will have four different infection rates for the four
different susceptible classes. The infected class I will move to the removed class
R at the rate γ , where the removed class is the number of people who have died
from HIV/AIDS.

For the education class, E , we use a logistic model with a growth rate which
will increase as the number of infective increase. We multiply the growth rate, r ,
by the ratio of the populations of the infected to the living.

The following model is an extension of the one in [Joshi et al. 2008]. The main
modification is the use of two separate equations for those with changed behavior
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due to abstinence and being faithful. Having two separate susceptible equations for
these changes in behavior will result in two different infection rates. These infection
rates will be cause members of the respective susceptible subclasses to be added to
the infected class and will change the education class. With these parameters and
alterations included, our new SIRE model is

S′ =−α1 E S−α2 E S−α3 E S−β1SI + b(S+ SA+ SB + SC + I )− d S,

S′A = α1 E S−β2SA I − d SA (α1 = 0.02),

S′B = α2 E S−β3SB I − d SB (α2 = 0.08),

S′C = α3 E S−β4SC I − d SC (α3 = 0.8),

I ′ = β1SI +β2SA I +β3SB I +β4SC I − γ I,

R′ = γ I,

E ′ =
I

I + S+ SA+ SB + SC
r E(1− E), (2)

where α1, α2 and α3 are the transfer rates from S to SA, SB , and SC , respectively.
The initial conditions for this system are S(0), SA(0), SB(0), SC(0), I (0), R(0),
and E(0). The entering adult rate is b and the general death rate is d. For this
case, new adults will enter the general susceptible class S only. Thus, there are
four different susceptible classes for which four infection rates are needed: β1, β2,
β3, β4, for S, SA, SB , SC , respectively, as they relate to the infected class I . A
proportion of the susceptibles leave the general susceptible class S into SA, SB , or
SC when the individuals in class S and the educational campaign class E interact.
In addition, when the infected class interacts with the susceptible class, individuals
leave according to their rates into the infected class. As a result of HIV, individuals
from the infected class leave and are moved into the removed class R with death
rate γ .

3. Parameter estimations

The data needed for this model contained information about population, death rates,
percentage of adults ages 15–64, the growth of the adult class, adult prevalence
rates, and the percent of adult population infected [UNICEF 2010]. In order
to determine the organizational estimates for the educational influence rates, we
consulted literature, essays, subject matter experts, and surveys. These types of
data will influence the relationship between the E and S classes, in addition to the
split amongst the A, B, and C behavior types.

The initial conditions for the set of differential equations depend on the data
provided. Since the first educational data collected occurred in 1996, we will begin
with that year for the model and use the data to determine the initial conditions
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for S(0) and I (0). Thus we assume that, prior to 1996, no one followed the A, B,
and C type behaviors. In addition, the removed class, R, accumulates the deaths
from HIV only. In 1996, the entire population (July 1996 est.) of Uganda was
20,158,176 with adult population comprising 48% [CIA 1997]. Therefore the initial
susceptible and infected classes (S(0)+ I (0)) will have a total of 9,675,924 people
for that year. The HIV prevalence rate for adults was estimated to be 12.1%; thus
1,161,110 people are in the infected (I (0)) class. As a result, there will be 8,365,991
people in the susceptible (S(0)) class. Note that, for E(0), there was an initial
estimate of 30% of organizations involved in the ABC campaign. This estimate
is an approximation, so the numerical runs will vary. Thus, these are the initial
conditions:

S(0)= 9.67, SA(0)= 0, SB(0)= 0, SC(0)= 0,

I (0)= 1.16, R(0)= 0.11, E(0)= 0.30. (3)

4. SIRE model simulation

The time span for this model is 12 years (1996–2007). All rates, b, d , r , β1, β2, β3,
β4, γ , were assumed to be constant for all our model simulations. Using data from
this time period, we were able to calculate the number of new adults as a percentage
of all adults. The entering adult rates for the 12 years were averaged to obtain
an entry rate for the susceptible class. The natural death rate was also averaged
from UN data, over each five year period. The adults for the general susceptible
population had an entering rate b = 0.055 and death rate d = 0.0176. For γ , we
took an average of the death rates due to HIV for a few years and found γ = 0.14.

As for the parameters, we had to make many assumptions and estimations. For
the infection rate parameters, β1, β2, β3, and β4, we assumed that β2, β3, and β4

were proportional to β1, so we only needed to determine one infection parameter.
We predicted that β1 was larger than β2, expecting that the A behavior led to a lower
infection rate compared to the general susceptible class. For example, β2 = 0.01β1

(β2 � β1). As for the infection rate for the B behavior compared to the general
susceptible class, we took β3= 0.03β1 (β2<β3�β1). Lastly, we took the infection
rate for the C behavior as β4 = 0.4β1 (β2 < β3� β4 ≪ β1). We determined the
range of values for β1 that best fit observations, since this infection rate was the
hardest to estimate. In addition, we varied r in increments to determine which
value, together with β1, gave a model best fitted for the data.

For the determination of β1, we first fixed the bounds 0.0001≤ β1 ≤ 0.1, and let
it vary in increments of 0.001, giving 100 values for β1. Similarly the growth rate
r was assumed to lie in the range 0.2≤ r ≤ 2. We used increments for r of 0.01,
giving 180 values. For each pair (β1, r ) we ran the set of differential equations with
a MATLAB differential equation solver to give model estimates for the values for
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Year Susceptible Infected Removed Education

1997 9.99 1.046 0.1195 600/1,200
1998 10.42 1.021 0.1205
1999 10.72 0.975 0.121
2000 10.96 0.921 0.1215 700/1,200
2001 11.27 0.879 0.120 717/1,200
2002 11.61 0.824 0.118
2003 12.05 0.807 0.113
2004 12.47 0.773 0.104
2005 12.82 0.756 0.089 778/1,200
2006 13.25 0.755 0.084
2007 14.22 0.754 0.079

Table 1. Historical data table (population numbers in millions).

each class for each year. These model numbers were then compared to the found
data from 1997–2007 [UNAIDS 2009; WHO 2010; Joshi et al. 2008; AVERT 2010;
Uganda 2010; UNICEF 2010]. The data points used are shown in Table 1.

We next show our results after running the simulations against our data. Figure 2
represents the true total susceptible data versus the model prediction. The population
for this graph is given in millions. The model for the S class has data points close,
but a few data points are not as close as the others to the graph. For Figure 3, we
graphed the model output alongside the infected data. This model shows similarities

Figure 2. Susceptible population, in millions: model prediction
(solid line) and data (∗).
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Figure 3. Infected population, in millions: model prediction (solid
line) and data (∗).

Figure 4. Number of HIV related deaths, in millions: model pre-
diction (solid line) and data (∗).

with the graph. Figure 4 represents the data of deaths per year compared to the
model. This model shows a similar shape as the majority of the data points above
the model. Figure 5 shows the model for the education class, illustrating fairly close
data points to the equation.
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Figure 5. Education influence: model prediction (solid line) and
data (∗).

5. Conclusions and future research

This work illustrated altering the susceptible class based on behavior changes due
to education. We found that, for the most part, the model’s predictions were close
to the data. Finding more data and including other features to make this model
more realistic is important.

Future research includes refining the S and I classes based on age, gender,
and stages of the disease. Past research has shown that females have been more
responsive to these educational campaigns than males. Therefore, gender differenti-
ation would be interesting to consider for future modeling efforts. In addition, the
involvement of different types of organizations could be studied in variants of the
model.
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On the zeros of ζ(s)− c
Adam Boseman and Sebastian Pauli

(Communicated by Filip Saidak)

Let ζ(s) be the Riemann zeta function and z0∈C\R a zero of ζ(s). We investigate
the graphs of the implicit functions z : [0, 1)→ C, with z(0)= z0 given by

ζ(z(c))− c = 0.

We give zero-free regions for ζ(s)− c where c ∈ [0, 1).

1. Introduction

For σ =<(s) > 1, the Riemann zeta function can be written as

ζ(s)=
∞∑

n=1

1
ns . (1)

By analytic continuation, ζ(s) may be extended to the whole complex plane, with
the exception of the simple pole s = 1. This analytic continuation is characterized
by the functional equation

ζ(1− s)= 20(s)ζ(s)(2π)−s cos
sπ
2
. (2)

The existence of a class of zeros of the form −2n, n ∈ N, follows directly from the
functional equation. These zeros are called trivial. The Riemann hypothesis states
that all nontrivial zeros of ζ(s) are located on the critical line σ = 1

2 .
In order to understand the Riemann zeta function better, various mathematicians

have investigated the behavior of its derivatives. Speiser [1935] showed that the
Riemann hypothesis is equivalent to ζ ′(s) having no zeros for 0< <(s) < 1

2 .
Spira [1965] computed zeros of the first and second derivative of ζ(s) and noticed

that they occur in pairs. Skorokhodov [2003] went further in his computation and
noticed that the zeros of derivatives seem to form chains; that is, for each zero sk of
ζ (k)(s) there is a corresponding zero sk+1 of ζ (k+1)(s). For sufficiently large k, the
existence of these chains is a direct consequence of the following theorem.
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Keywords: Riemann zeta function.
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Theorem 1 [Binder, Pauli and Saidak 2013]. Let u ∈ R>0 be a solution of

1− 1
eu−1

−
1
eu

(
1+ 1

u

)
≥ 0.

Let M ∈ N, M ≥ 2, and j ∈ Z. Let

qM := log
log M

log(M + 1)

/
log

M
M + 1

.

If there is k ∈ N with

qM+1k+ (M + 2)u ≤ qM k− (M + 1)u,

then each rectangle R j ⊂ Sk
M , consisting of all s = σ + i t with

qM k− (M + 1)u < σ < qM k+ (M + 1)u

and 2π j
log(M + 1)− log M

< t <
2π( j + 1)

log(M + 1)− log M
,

contains exactly one zero of ζ (k)(s). This zero is simple.

The existence of the chains of zeros of derivatives can be seen as follows. For a
given M ∈N, M ≥ 2 there is K ∈N such that qM+1k+(M+2)u≤ qM k−(M+1)u
for all k ≥ K . By Theorem 1, for each k ≥ K and each j ∈ Z there is exactly
one zero in a rectangular region given by M , k, and j . Again by Theorem 1 there
exists a unique corresponding zero of ζ (k+1)(s) in the rectangular region given by
M , k + 1, and j , which can be obtained by shifting the first region to the right
(and stretching it horizontally). This shows the existence of a chain of zeros of
ζ (K )(s), ζ (K+1)(s), ζ (K+2)(s), . . . .

Skorokhodov also noticed that the zeros of ζ(s)− 1 can be regarded as the first
points in these chains, and that there are curves from some zeros of ζ(s) to these
points given by the zeros of ζ(s)− c for c ∈ [0, 1) (see Figure 1).

The curves of zeros s(c) of ζ(s)−c for c ∈ [0, 1) either end at a zero of ζ(s)−1
or go off to the left approaching their asymptote

t =<(s)=
(2m+ 1)π

log 2
,

for some m ∈ Z as σ = <(s) approaches infinity. If each zero of ζ(s)− 1 indeed
corresponded to a zero of ζ ′(s), ζ ′′(s), ζ ′′′(s), . . . , then some zeros of ζ(s) would
not correspond to zeros with derivatives, namely those from which the paths of
zeros of ζ(s)− c for c ∈ [0, 1) go off to the right.

This agrees with the formulas for the number of nontrivial zeros of ζ(s) and
ζ (k)(s). Namely, let N (T ) and Nk(T ) denote the number of such zeros ρ with
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Figure 1. Zeros of derivatives of ζ (k)(s) (denoted by • (k)) and the
paths from zeros of ζ(s) (denoted by •) to the zeros of ζ(s)− 1
(denoted by ×).

0≤=(ρ)≤T of ζ(s) and ζ (k)(s), respectively. The classical Riemann–von Mangoldt
formula [Landau 1974] states that

N (T )=
T

2π
log

T
2π
−

T
2π
+ O(log T ), (3)

and according to Berndt [1970], we have

Nk(T )= N (T )−
T log 2

2π
+ O(log T ). (4)

So there are about (T log 2)/2π fewer zeros of ζ (k)(s) with imaginary part less
than T than there are of ζ(s), which is also about the number of paths of zeros of
ζ(s)− c with imaginary part less than T that go off to the right.

The aim of this paper is to describe better the behavior of paths of zeros of
ζ(s) − c = 0 for c ∈ [0, 1) by finding new zero-free regions for the functions
ζ(s)− c. Our results are summarized in Figure 2. Clearly, the zeros of ζ(s)− c lie
on the real lines of ζ(s), that is, the lines on which =(ζ(s))= 0. A review of some
results about these lines in Section 2 is followed by the derivation of the zero-free
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Figure 2. The paths from zeros of ζ(s) (denoted by •) to the zeros
of ζ(s)− 1 (denoted by ×), the barrier on the left (denoted by ↑),
the zeros of =

(
ζ
(
−

1
2 + i t

))
with 0≤ t < 13.7 (denoted by •), the

borders of zero-free regions of ζ(s)− c for c ∈ [0, 1) (denoted by
blue lines), and the zero-free region of ζ(s)−1 on the right in gray.

regions for ζ(s)− c on the right half-plane (Section 3) and the vertical boundary
for the zeros of ζ(s)− 1 for <(s)= 1

2 (Section 4).

2. Real lines

Obviously the solutions of the equations ζ(s)− c = 0 where c ∈ [0, 1) are on the
level lines with =(ζ(s))= 0, called real lines. Most of the results described here
go back to the work of Speiser and his student Utzinger [Speiser 1935]. Plots of
the behavior of the real (and imaginary) lines and some further discussion can be
found in [Arias-de-Reyna 2005].

Because the term 1+ 2−s dominates the infinite series ζ(s)=
∑
∞

i=0(1/ns) for
σ =<(s) > 3, the real lines have asymptotes t = jπ/log 2 for j ∈ Z. On the real
lines with asymptote t = 2mπ/log 2 (m ∈ Z) the function ζ(s) approaches 1 from
above, while on the real lines with asymptote t = (2m + 1)π/log 2 (m ∈ Z) the
function ζ(s) approaches 1 from below. The zero-free regions for ζ(s)− c = 0
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where c ∈ [0, 1) narrow around these asymptotes as σ increases — see Lemma 4
and Lemma 3.

As ζ(s) is a meromorphic function, no two of these real lines can cross where
ζ ′(s) 6= 0. Zero-free regions for ζ ′(s) have been found on the left of the critical
line for =(s) 6= 0 and <(s) < 0 [Levinson and Montgomery 1974, Theorem 9]
(<(s) < 1

2 under the Riemann hypothesis [Speiser 1935]) and on the right of the
critical line for σ > 2.94 [Skorokhodov 2003, Theorem 2]. Indeed, the only point
where two real lines coming from the right cross is the first real zero of ζ ′(s) at
s ≈−2.7172628292 [Speiser 1935]. Here the lines with asymptotes t = 2π/log 2
and t =−2π/log 2 intersect the real axis.

The lines coming from the right continue to the left at least until σ = 1.95
(compare Lemma 5). If one of the lines coming from the right did not cross the
strip −1≤ σ ≤ 2, it would have go up towards infinity. Because no two real lines
coming from the right intersect, all following lines would have to do the same. This
would contradict the estimate

=

(∫
−1+T i

2+T i

ζ ′(s)
ζ(s)

ds
)
= O(log T )

used in the proof of the Riemann–von Mangoldt formula (3). Thus all real lines
coming from the right cross the strip −1≤ σ ≤ 2 [Speiser 1935].

Hence the zeros of ζ(s)− c = 0, where c ∈ [0, 1), are either on the real lines
described above or on real lines that enter the critical strip from the left half-plane
and then curve back to the left half-plane. The lines coming from the left half-plane
are the lines on which ζ(s)− 1 is 0. By Proposition 7, we have

∣∣ζ (− 1
2 + i t

)∣∣> 1
for t ≥ 13.7. Furthermore, for 0 < t < 13.7, there are only two points where
<
(
ζ
(
−

1
2 + i t

))
= 0, that is, where the real lines with asymptote t = 2π/log 2 and

t = 3π/log 2 cross the line σ =−1
2 (see Remark 8). It follows that each of these

lines coming from the left contains a zero of ζ(s) and a zero of ζ(s)− 1 on the left
of σ = − 1

2 . It is well-known that the real part of the zeros of ζ(s) is between 0
and 1, and equals 1

2 if one assumes the Riemann hypothesis. An upper bound for
the real part zeros of ζ(s)− 1 was given by Skorokhodov [2003]; see Lemma 2
below.

3. Zero-free regions for ζ(s)− c on the right

A right bound σ = 3 for the zeros of ζ(s)−1 can easily be obtained with the triangle
inequality and an estimate for ζ(σ )− 1/2σ − 1. Skorokhodov was able to get a
better bound by applying the triangle inequality to a real-valued function that only
considers terms of the zeta function with n odd.
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Lemma 2 [Skorokhodov 2003]. The function ζ(s) is distinct from unity at
σ ∈ (σ0,∞), where

σ0 = 1.940101683745 . . .

is the zero of the function

f (σ )= 1+ 2−σ − (1− 2−σ )ζ(σ ), σ > 1.

For c ∈ [0, 1) we find zero-free regions of ζ(s)− c that depend on t . We obtain
them by considering the real and imaginary parts of ζ(s)− c separately.

Lemma 3. If c∈ [0, 1) and |sin(t log 2)| ≥ 2σ ζ(σ )−2σ−1, then ζ(σ+i t)−c 6= 0.

Proof. We consider the imaginary part of ζ(s)− c and obtain∣∣=(ζ(s)− c)
∣∣≥ ∣∣∣∣ 1

2σ
sin(t log 2)

∣∣∣∣− ∣∣∣∣ ∞∑
n=3

1
nσ

∣∣∣∣
=

∣∣∣∣ 1
2σ

sin(t log 2)
∣∣∣∣− ∣∣∣∣ζ(σ )− 1−

1
2σ

∣∣∣∣, (5)

which is greater than 0 when∣∣sin(t log 2)
∣∣≥ 2σ ζ(σ )− 2σ − 1. �

Lemma 4. If c ∈ [0, 1) and cos(t log 2)≥ 2σ ζ(σ )−2σ −1, then ζ(σ + i t)−c 6= 0.

Proof. For the real part of ζ(s)− c we obtain

<(ζ(s)− c)= 1− c+
1

2σ
cos(t log 2)+ · · ·

≥
1

2σ
cos(t log 2)−

(
ζ(σ )− 1−

1
2σ

)
assuming c = 1,

which is greater than 0 when

cos(t log 2)≥ 2σ ζ(σ )− 2σ − 1. �

These regions can be extended a bit if we restrict ourselves to certain values of t .

Lemma 5. If c ∈ [0, 1), m ∈ Z, and t is fixed at 2πm/log 2, then <(ζ(s)− c) 6= 0
for σ ≥ 1.95.

Proof. <(ζ(s)− c)= 1− c+ (1/2σ ) cos(t log 2)+ (1/3σ ) cos(t log 3)+ · · · When
t is fixed and t log 2= 2πm, we get

<(ζ(s)− c)≥ 1− c+
∞∑
ν=0

1
(2ν)σ

−

( ∞∑
n=2

1
nσ
−

∞∑
ν=0

1
(2ν)σ

)

= 2
∞∑
ν=1

( 1
2σ

)ν
− ζ(σ )=

2
1− 1/2σ

− ζ(σ ),
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which is greater than 1 for σ ≥ 1.95. �

4. Zero-free barrier for ζ(s)− c on the left

On the left, instead of finding a zero-free region, we find a horizontal line where
|ζ(s)|> 1. The line σ =−1

2 fulfills this condition with the exception of one point.
First we find a lower bound for the absolute value of ζ(s) where σ = 3

2 .

Lemma 6.
∣∣ζ ( 3

2 + i t
)∣∣> 0.46 for all t ∈ R.

Proof. To get a lower bound for |ζ(s)|, we use the Euler product. Let P be the set of
the first million prime numbers, and consider the expression

∏
p∈P |1− p−s

||ζ(s)|.
We have ∏

p∈P

|1− p−s
||ζ(s)| =

∣∣∣∣1+∑
p-n

p∈P

1
ns

∣∣∣∣ ≥ ∣∣∣∣1− ∣∣∣∣∑
p-n

p∈P

1
ns

∣∣∣∣∣∣∣∣
≥ 1−

∑
p-n

p∈P

1
nσ
= 2−

∏
p∈P

(1− p−σ )ζ(σ ).

We also have from the triangle inequality that |1− p−s
| ≤ 1+ p−σ , and thus

|ζ(s)| ≥
2−

∏
p∈P(1− p−σ )ζ(σ )∏
p∈P(1+ p−σ )

≥ 0.46 for σ = 3
2 .

So we get |ζ(s)| ≥ δ > 0 for σ = 3
2 and δ = 0.46. �

Now we can use δ and the functional equation to obtain a barrier for the zeros of
ζ(s)− c on the left.

Proposition 7. |ζ(− 1
2 + i t)|> 1 for t ≥ 13.7.

Proof. By the functional equation,

ζ(1− s)= 21−sπ−s sin
(π

2
(1− s)

)
0(s)ζ(s)

= 21−sπ−s cos
sπ
2
0(s)ζ(s).

Taking the absolute value of both sides gives

|ζ(1− s)| = 21−σπ−σ
∣∣∣cos

sπ
2

∣∣∣|0(s)||ζ(s)|.
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But ∣∣∣cos
sπ
2

∣∣∣= 1
2

∣∣e−π(σ i−t)/2
+ eπ(t−σ i)/2∣∣

=
1
2

∣∣e−tπ/2(cos σ + i sin σ)+ etπ/2(cos σ − i sin σ)
∣∣

=
1
2

∣∣cos σ(etπ/2
+ e−tπ/2)+ i sin σ(e−tπ/2

− etπ/2)
∣∣

=
1
2

(
cos2 σ(eπ t

+ e−π t
+ 2)+ sin2 σ(eπ t

+ e−π t
− 2)

) 1
2

=
1
2

(
eπ t
+ e−π t

+ 2(cos2 σ − sin2 σ)
) 1

2 .

As 0(z+ 1)= z0(z) for z ∈ C and as

∣∣0( 1
2 + i t

)∣∣=√π sech(π t)=

√
2π

eπ t + e−π t

for t ∈ R, we get

∣∣0( 3
2 + i t

)∣∣= ∣∣( 1
2 + i t

)
0
(1

2 + i t
)∣∣=√1

4 + t2 ·
√
π ·

√
2

eπ t + e−π t .

For σ = 3
2 we obtain

∣∣ζ (− 1
2 + i t

)∣∣≥ 2−0.5π−1 1
√

2

(
1+

4 cos2
( 3

2

)
− 2

eπ t + e−π t

)
·

√
1
4 + t2 · δ,

where the right-hand side is obviously increasing in t . With δ > 0.46, this gives∣∣ζ ( 1
2 + i t

)∣∣> 1 for t ≥ 13.7 by Lemma 6. �

Remark 8. The zeros of =
(
ζ
(
−

1
2 + i t

))
with 0 ≤ t < 13.7 are t0 = 0, t1 ≈ 2.93,

and t2 ≈ 9.92, where

ζ
(
−

1
2 + i t0

)
≈−0.21, ζ

(
−

1
2 + i t1

)
≈ 0.35, ζ

(
−

1
2 + i t2

)
≈ 2.03.

So the only hole in the barrier is− 1
2+i t1. This is where the real line with asymptote

π/log 2 crosses the line σ =− 1
2 .

5. Outlook

In our work, we investigated the behavior of the graphs of the continuous functions
s : [0, 1)→ C defined by the equation ζ(s(c))− c = 0 and an initial point s(0)
(a zero of the zeta function). If s(1) exists, such a graph connects a zero of ζ(s) to
a zero of ζ(s)− 1. The latter zeros are the first points on the conjectured chains of
zeros of derivatives.



ON THE ZEROS OF ζ(s)− c 145

A similar approach could also be used to investigate the conjectured chains of
zeros of the derivatives of ζ(s). For each zero s0 of

ζ(s)− 1=
∞∑

n=1

1
ns ,

one would consider the implicit function s : [0,∞)→ C given by

ζ (k)(s(k))= (−1)k
∞∑

n=1

logk n
ns(k) = 0,

with s(0) = s0. This function s(k) should yield the correspondence of zeros of
ζ (k)(s) and ζ (k+1)(s) for k ∈ Z, k ≥ 0 for two zeros which would be connected by
{s(x) | k ≤ x ≤ k+ 1}.

Together, the two implicit functions could give more detailed insight into the
distribution of the zeros of ζ(s) by relating it to the distribution of higher derivatives
(see Theorem 1). Furthermore it will be interesting to see how the conjectured
chains of zeros of the derivatives of ζ(s) fit in with the universality of ζ(s) found
by Voronin [1975].
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Dynamic impact of a particle
Jeongho Ahn and Jared R. Wolf

(Communicated by John Baxley)

In this work, we consider a moving particle which drops down onto a stationary
rigid foundation and bounces off after its contact. The equation of its motion
is formulated by a second-order ordinary differential equation. The particle
satisfies the Signorini contact conditions which can be interpreted in terms of
complementarity conditions. The existence of weak solutions is shown by using
a finite time step and the necessary a priori estimates which allow us to pass to
the limit. The uniqueness of the solutions can be proved under some additional
assumptions. Conservation of energy is also investigated theoretically and numer-
ically. Numerical solutions are computed via both finite- and infinite-dimensional
approaches.

1. Introduction

Contact between two bodies happens in our life everyday. Consider, for example,
the contact between a floor and an elastic ball such as a basketball or a volleyball, or
contact between a brake pad and a disc of a car’s wheel. These contact phenomena
may seem to be simple from physical or engineering points of view. However, prov-
ing the existence of solutions for these contact models requires very sophisticated
mathematical analysis and is a mathematical challenge.

Historically, the study of contact mechanics may have originated with [Hertz
1881], where the physicist analyzed a static contact problem of two elastic bodies.
Mathematical research on contact problems has become more active since Signorini
[1933] formulated the general static contact problem of linearly elastic bodies. Most
mathematical research on contact mechanics has focused on static or quasistatic
problems and relatively little research on dynamic contact problems has been carried
out. This has started to change, as mathematical tools and numerical methods for
dynamic contact problems have been developed.
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Readers interested in contact problems may refer to the remarkable paper [Stewart
2000] for rigid-body dynamics with friction and impact which is described by
ordinary differential equations (ODEs) and [Kikuchi and Oden 1988] for contact
in elasticity which deals with elliptic, parabolic, or hyperbolic types of partial
differential equations (PDEs).

The study of one-dimensional contact problems is of considerable importance, in
its own right and because it provides a foundation for higher-dimensional problems.
There are many one-dimensional dynamic contact models involving vibrating strings,
elastic rods, and elastic beams modeled in various ways: Euler–Bernoulli beams
(linear), Timoshenko beams, and many kinds of nonlinear beams. Nonlinear Gao
beams [Gao 1996] are especially noteworthy, as their model allows for buckling, and
their contact problems have recently been the subject of many interesting studies;
see [Ahn et al. 2012], for example.

There are many open questions in dynamic contact problems. For example,
showing the uniqueness of solutions for rigid dynamics models or dynamic contact
models between an elastic body and a rigid foundation with Signorini contact
conditions is a challenging problem. In addition, proving the existence of solutions
for dynamic contact between a purely elastic body and a rigid foundation over
more than three dimensions is still an open question. Indeed, the dynamic contact
problem has been studied in [Ahn and Stewart 2009], where the viscosity is added
to prove the existence of solutions. Mathematically speaking, inserting the viscosity
into the equation of motion is a great idea to obtain more regularized solutions
and to show the existence of solutions for almost elastic bodies. “Almost elastic”
implies that a viscous quantity dealing with the viscosity is chosen by a very small
number, which enables viscoelastic bodies of Kelvin–Voigt type to get closer to
elastic bodies.

One of the major concerns of dynamic contact problems is to show conser-
vation of energy for the elastic case or energy balance for the viscoelastic case.
This is an open question and in [Ahn 2007; 2008; 2012] it has been investigated
theoretically and numerically. However, proving it for the general case may be
a very difficult task. In rigid-body dynamic problems with frictionless impact,
showing conservation of energy depends on the coefficient of restitution (COR).
If COR = 1, that is, for the elastic case, energy conserves, but if 0 ≤ COR < 1,
that is, for the inelastic case, energy decreases. Furthermore, considering COR for
particles results in showing the uniqueness of solutions, which is stated at the end
of Section 4.

This work is motivated by the three-dimensional dynamic contact problem,
although particles are neither elastic nor viscoelastic. Our dynamic contact model
may be basic but will provide a great opportunity to think about significant issues on
higher-dimensional dynamic contact problems with elastic bodies or rigid bodies.
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rigid foundation

particle

N

f

Figure 1. Dynamic contact of a particle.

2. Continuous formulations and some mathematical backgrounds

The motion of a particle in this physical situation is described by the ordinary
differential equation (ODE)

ut t = N + f for all t ∈ (0, T ],

where u = u(t) is the displacement of a particle, f = f (t) is a given body force,
and N = N (t) is a contact force. The acceleration of the particle, ut t , is the second
derivative of u with respect to time t , and T is the final time for the motion of the
particle. When the particle drops down and hits the fixed flat rigid obstacle ϕ and
bounces off, the Signorini contact conditions are applied which can be understood
in terms of complementarity conditions (CCs). In general, the CCs 0≤ a ⊥ b ≥ 0
mean that the scalars a and b are nonnegative and either a or b is zero. Now,
we can see that the contact conditions satisfy the CCs (2-2) where the flat rigid
foundation ϕ does not depend on time t . When there is a gap between the particle
and the rigid foundation (u(t) > ϕ), the contact force N must be zero, and when
the particle is in contact with the rigid foundation (u(t) = ϕ), that is, there is no
gap, the contact force takes place (N (t)≥ 0). We note that u(t)≥ ϕ implies that
the particle does not penetrate the rigid foundation unless the normal compliance
applies to the stationary foundation. By Newton’s third law, the contact forces N
are always regarded as nonnegative. The physical situation is illustrated in Figure 1.

Thus, we establish the ODE and the CCs that describe the physical situation: for
all t ∈ (0, T ],

ut t(t)= N (t)+ f (t), (2-1)

0≤ u(t)−ϕ ⊥ N (t)≥ 0, (2-2)
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u0
= u(0), (2-3)

u0
t = ut(0), (2-4)

where u0 is the initial displacement and u0
t is the initial velocity of the particle. For

our convenience, it can be assumed that the flat rigid foundation ϕ = 0, without loss
of generality. In order to prove the existence of solutions, (2-1) has to be considered
in the sense of distributions and then we will seek solutions u : [0, T ] → R in
appropriate spaces.

Let q and g be any functions. Then we introduce the little o notation:

q = o(g) provided lim
t→∞

|q(t)|
|g(t)|

= 0.

This notation implies that the function g approaches infinity even faster than the
function q does as t ↑∞.

The Laplace transform of any function w, which is a useful tool for handling
ODEs, is defined by

(Lw(t))(s)=
∫
∞

0
w(t)e−st dt. (2-5)

It is important to take a restriction of the number s (possibly complex number)
into consideration, in order to see the convergence of (2-5). Lemma 1 in Section 3
requires Lerch’s theorem [Widder 1941, pp. 62–63]; generally speaking, it im-
plies that if (Lw)(s) = (L$)(s) with all s in some region of convergence, then
w(t)=$(t) for almost all t ∈ [0, T ]. This is called Lerch’s cancellation law.

3. Conservation of energy

In this dynamic contact problem, the energy function E(t) is defined by

E(t) := E[u, ut ] =
1
2 [ut(t)]2− f (t)u(t), (3-1)

where the first term and the second term in (3-1) are called the kinetic energy and
the potential energy, respectively, and ut denotes the velocity of a particle. One can
see that the velocity ut is replaced by the new variable v in Section 4.

If the conservation of energy is considered in terms of the atom level (see
[Moreau et al. 1988]), its mathematical proof will be much harder. Showing
conservation of energy might be the most difficult task in the dynamic contact
problems with Signorini contact conditions. However, if functions are piecewise
continuous, then the Laplace transform is one-to-one, which means that we can
apply Lerch’s cancellation law. In order to do so, we assume that the impact time
period is not instantaneous; that is, the impact time period is (t∗− ε, t∗+ ε) with
sufficiently small ε > 0. In the following lemma, the minimum requirement is
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that the displacement u is piecewise smooth which implies that u is differentiable
almost everywhere and ut has a jump discontinuity at a finite number of points.

Lemma 1. Assume that there is no change of body force and the solutions u satisfy-
ing the continuous formulations (2-1)–(2-4) are piecewise smooth and u(t)= ϕ for
all t ∈ (t∗− ε, t∗+ ε) with the fixed t∗ ∈ (0,∞). If E = o(et) as t ↑∞, then energy
conserves; that is, E(0)= E(t) for almost all t ∈ (0,∞).

Proof. Multiplying both sides of (2-1) by the velocity ut , we have ut t ut− f ut = Nut .
Since (d/dt)(u2

t /2)= ut t ut , we can obtain

d
dt

(
u2

t

2
− f u

)
= Nut .

Recall the CCs 0 ≤ u(t)− ϕ ⊥ N (t) ≥ 0 with 0 < t∗ < t ≤ T . There are two
cases; if N (t) = 0, then N (t)ut = 0 over the interval (0, T ], and if N (t) > 0
over (t∗ − ε, t∗ + ε) and N (t) = 0 outside of (t∗ − ε, t∗ + ε), then u(t) = ϕ over
(t∗− ε, t∗+ ε) and thus N (t)ut = 0 on (0, T ]. So E(0)= E(t) for t ∈ (0, T ]. Note
the velocity ut is piecewise continuous.

Now, we take the Laplace transform of both sides to get∫
∞

0

(
u2

t

2
− f u

)′
e−st dt =

∫
∞

0
Nut e−st dt. (3-2)

Here ′ means the derivative with respect to time t . Integrating by parts we get

0=
∫
∞

0

(
u2

t

2
− f u

)′
e−st dt

=
[(1

2 u2
t − f u

)
e−st]∞

0 + s
∫
∞

0

(
u2

t

2
− f u

)
e−st dt. (3-3)

Since E = o(et) as t ↑∞, there is a constant M > 0 such that

|E(t)| =
∣∣∣∣u2

t

2
− f u

∣∣∣∣≤ Met for some large t > 0.

Since we require the convergence of the improper integral on the right side of (3-3),
we need to impose the condition that 1− s < 0. Thus it follows from (3-3) that, for
s > 1,

(LE(t))(s)= (1/2s)
(
u2

t (0)− 2 f u(0)
)
.

We can also see that (LE(0))(s) = (1/2s)(u2
t (0)− 2 f u(0)) for s > 0. Thus, we

note that the Laplace transform requires one-to-one mapping for only s > 1. Since
(LE(t))(s) = (LE(0))(s) for s > 1, E(0) = E(t) for almost all t ∈ (0,∞), as
required. �
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Remarks 2. In Lemma 1, the displacement u may be semismooth (see its definition
in [Facchinei and Pang 2003b, Section 7.4]), since we have the condition u(t)= ϕ
for all t ∈ [t∗− ε, t∗+ ε] with the fixed t∗ ∈ (0,∞).

Unfortunately, the technique used in Lemma 1 does not work for the viscoelastic
or elastic cases, since it is relatively more difficult to handle the elastic energy
included in the energy function.

4. Numerical formulations and their convergence

In this section, we set up three numerical equations based on the continuous formu-
lations (2-1)–(2-2), with (4-2) being an extra equation where we set the change in
the displacement equal to the average velocity between the time steps. First, we
partition the time interval [0, T ] such that

0= t0 < t1 < t2 < · · ·< tl < · · ·< tn−1 < tn = T,

where n is the number of time steps. The uniform time step h = T/n is used and
thus the size of the time step is h = tl+1− tl and each discretized time is tl = l h
for any integers l ≥ 0. Then, the numerical approximations u(tl), v(tl) and N (tl)
are denoted by ul , vl and N l , respectively. Assume that there is no change of body
force f . Using the implicit Euler method (sometimes referred to as the backwards
Euler method) for the CCs, we are led to the following numerical formulations:

vl+1
− vl

h
= N l

+ f, (4-1)

ul+1
− ul

h
=
vl+1
+ vl

2
, (4-2)

0≤ ul+1
−ϕ ⊥ N l

≥ 0. (4-3)

The solutions (u, v, N ) of our contact problem (2-1)–(2-4) will be approximated
by the numerical trajectories (uh, vh, Nh), which satisfy the numerical formula-
tions (4-1)–(4-3); let uh(t) be a piecewise linear interpolant satisfying u(tl) = ul

and u(tl+1) = ul+1, and let vh(t) be a piecewise constant interpolant satisfy-
ing v(t) = vl+1 for t ∈ (tl, tl+1]. We also set up the numerical approximation
Nh(t) of the contact forces, which is the step function; that is, N (t) = N l for
t ∈ [tl, tl+1) and thus the approximation Nh has to be defined in the distributional
sense to be

Nh(t)= h
n−1∑
l=0

δ(t − (l + 1)h)N l, (4-4)

where δ is the Dirac delta function. We also define the energy function for the
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discrete case to be

E(tl) := E l
=

1
2(v

l)2− f ul, (4-5)

which plays a very important role in showing the boundedness of numerical solu-
tions from the theoretical perspective and addressing the stability in the numerical
perspective.

Thanks to our numerical scheme, the numerical formulations (4-1)–(4-3) con-
firm the regularity of numerical solutions (uh, vh, Nh) for any h > 0. Lemma 3
demonstrates a possibility of energy conservation and supports the regularity of
solutions.

Lemma 3. Suppose that our numerical solutions satisfy the numerical formula-
tions (4-1)–(4-3) for any time step h > 0 and the body force f is given as a constant
function. If the initial data u0, v0 are finite, we have the following estimates:

max
0≤l≤n

|vl
| ≤

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
<∞,

max
0≤l≤n

|ul
| ≤ |u0

| +
T
2

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
<∞.

Proof. Using (4-1) and (4-2), for any h > 0 we have

(vl+1)2− (vl)2

2h
=

N l(ul+1
− ul)

h
+

f (ul+1
− ul)

h
.

It follows from the numerical CCs that

(vl+1)2− (vl)2

2
− f (ul+1

− ul)= N l(ul+1
− ul)

= N l
[ul+1

−ϕ− (ul
−ϕ)]

= −N l(ul
−ϕ)≤ 0. (4-6)

Therefore, from (4-6),

E l+1
=

1
2(v

l+1)2− f ul+1
≤

1
2(v

l)2− f ul
= E l .

So repeating the inequality at each time step t = tl , we can get E l
≤ E0 for any l ≥ 1.

Thus,

1
2(v

l)2 ≤ E0
+ f ul

≤ E0
+ | f ||ul

| ≤ E0
+ | f |

(
|u0
| +

1
2

∫ tl

0
|vh(τ )| dτ

)
.

Note that

|ul
| ≤ |u0

| +
1
2

∫ tl

0
|vh(τ )| dτ. (4-7)
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Since vh is a constant interpolant, by Cauchy’s inequality, we can set up

|vh(tl)|2 ≤ 2E0
+ 2| f |

(
|u0
| +

1
2

T + 1
2

∫ tl

0
|vh(τ )|

2 dτ
)
.

Using Gronwall’s inequality, we have

(vl)2= |vh(tl)|2≤
(
2E0
+2| f ||u0

|+| f |T
)(

1+| f |T e| f |T
)

for any l ≥ 0. (4-8)

It also follows from (4-7)–(4-8) that

|ul
| ≤ |u0

| +
T
2

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
,

as desired. �

We note that the estimates in Lemma 3 can be obtained even if the body force f
is not a constant function. Now, we introduce notations to see how to show the
existence of solutions. If u : [0, T ] → R is continuous, then the p-th Hölder norm
of u is defined by

‖u‖C p[0,T ] = sup
t∈[0,T ]

|u(t)| + sup
s 6=t∈[0,T ]

|u(t)− u(s)|
|t − s|p

.

Considering Hölder spaces would be useful to show the compactness of continuous
solutions for PDEs. Applying Lemma 3 to the construction of numerical solutions,
we can see that uh ∈ C[0, T ] and vh ∈ L∞[0, T ] for any time step size h > 0.
However, showing the boundedness of solutions is not enough to prove the existence
of solutions. Thus, we need compactness to show that uh converges strongly
in C[0, T ] as h ↓ 0. Now, we choose any s1, s2 such that 0 ≤ s1 < s2 ≤ T ,
|s1− s2|< h, s1 ∈ (tl−1, tl], and s2 ∈ (tl, tl+1]. We can use Lemma 3 again to have

|uh(s2)− uh(s1)| = |uh(s2)− uh(s1)|
p
|uh(s2)− uh(s1)|

1−p

≤
1
2

(∫ s2

s1

|vh(t − h)+ vh(t)| dt
)p(
|uh(s2)| + |uh(s1)|

)1−p

≤ C |s2− s1|
p.

Consequently, we can see easily that the interpolant uh ∈ C p
[0, T ] with exponent

0 < p ≤ 1. By the Arzelà–Ascoli theorem, C p
[0, T ] is compactly embedded in

C[0, T ]. Therefore, there is a subsequence of uh (denoting this sequence by uh),
such that uh converges strongly to u, that is, uh→ u in C[0, T ], as h ↓ 0.

We regard the numerical contact force Nh as the Borel measure on the time
interval [0, T ]:

Nh([0, T ])=
∫
[0,T ]

Nh(t) dt.
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Using (4-4), we can show the boundedness of Nh easily. Recalling the numerical
formulation (4-1), we have∫

[0,T ]
Nh(t) dt = h

n−1∑
l=0

N l
= vn
− v0. (4-9)

Equation (4-9) does make sense from a physical point view, since the velocity v
moves down initially, and thus v0 < 0 and the particles bounce off, and thus their
velocity vn > 0. Therefore, for any h > 0 we have∫

[0,T ]
Nh(t) dt ≤

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
− v0 <∞.

Applying the Riesz representation theorem [Renardy and Rogers 1993, p. 199] and
Alaoglu’s theorem [ibid., p. 209], Nh has a subsequence that is weakly∗ convergent
to N in the sense of measures as h ↓ 0. We denote the subsequence by Nh . Thus,
Nh ⇀

∗ N . Finally, we check if our solutions, which converged by numerical
trajectories, satisfy the CCs (2-2). Since uh −ϕ ≥ 0 and uh→ u as h ↓ 0, we have
u− ϕ ≥ 0. Since Nh ≥ 0 and Nh ⇀

∗ N as h ↓ 0, we have N ≥ 0. We claim that
N (u−ϕ)= 0 in the weak sense. Taking the integral of Nh(uh −ϕ), we have∫ T

0
Nh(t)(uh(t)−ϕ) dt = h

∫ T

0

n−1∑
l=0

δ(t − (l + 1)h)N l(uh(t)−ϕ) dt

= h
∫ T

0

n−1∑
l=0

N l(ul+1
−ϕ) dt = 0. (4-10)

We notice that (4-10) is identified by the numerical CCs (4-3). Finally, we claim
that

∫ T
0 Nh(t)(uh(t)−ϕ) dt→

∫ T
0 N (t)(u(t)−ϕ) dt . Since uh→ u and N ⇀∗ N

as h ↓ 0,∣∣∣∣∫ T

0
Nh(t)(uh(t)−ϕ) dt −

∫ T

0
N (t)(u(t)−ϕ) dt

∣∣∣∣
≤

∫ T

0

∣∣Nh(t)(uh(t)−ϕ)− N (t)(u(t)−ϕ)
∣∣ dt

=

∫ T

0

∣∣Nh(t)(uh(t)−ϕ)−Nh(t)(u(t)−ϕ)+Nh(t)(u(t)−ϕ)−N (t)(u(t)−ϕ)
∣∣ dt

≤

∫ T

0

∣∣Nh(t)(uh(t)− u)
∣∣ dt +

∫ T

0

∣∣(Nh(t)− N (t))(u(t)−ϕ)
∣∣ dt→ 0.

Therefore, by the squeeze theorem, we can obtain

0=
∫ T

0
Nh(t)(uh(t)−ϕ) dt→

∫ T

0
N (t)(u(t)−ϕ) dt as h ↓ 0.
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Thus, we conclude that there exist solutions u ∈ C[0, T ] ∩C p
[0, T ] ∩W 1,∞

[0, T ]
with 0< p ≤ 1 satisfying (2-1)–(2-4), where the space W 1,∞

[0, T ] is defined by
W 1,∞

[0, T ] = {u | sup0≤t≤T (|u(t)|+|ut(t)|)<∞}. We notice that the derivative ut

has to be considered in the weak sense.
Lemma 4 requires an additional condition that the solutions are absolutely

continuous. We denote by COR(u) the coefficient of restitution for the particle
which is defined by COR(u) = −va/vb, where va is the velocity after contact
and vb is the velocity before contact. Therefore, solutions that we seek have to be
considered in the stronger sense in order to prove their uniqueness. We note that
showing the uniqueness is trivial unless we take contact forces into consideration.

Lemma 4. Suppose that there exist two solutions (u, N1) and (w, N2) satisfying
(2-1)–(2-4). If either the initial velocity u0

t = 0 and ut(t) = wt(t) = 0 for some
t ∈ [0, T ] or COR(u)= COR(w)= 1, then the two solutions are the same; that is,
u(t)= w(t) for all t ∈ [0, T ] and N1(t)= N2(t) for almost all t ∈ [0, T ].

Proof. We assume that there exist two solutions (u, N1) and (w, N2) such that

ut t = N1(t)+ f (t) and wt t = N2(t)+ f (t). (4-11)

Letting z(t)= u(t)−w(t), it is easy to see that zt t = N1(t)− N2(t). Multiplying
by zt and taking the integral over [0, t] ⊂ [0, T ], we can obtain∫ t

0
zττ zτ dτ =

∫ t

0
(N1(τ )− N2(τ ))(uτ (τ )−wτ (τ )) dτ

=

∫ t

0
N1(τ )uτ (τ )− N1(τ )wτ (τ )− N2(τ )uτ (τ )+ N2(τ )wτ (τ ) dτ.

In Lemma 1, it has been shown from the CCs (2-2) that

N1(τ )uτ (τ )= N2(τ )wτ (τ )= 0.

Using the two equations in (4-11) and applying integration by parts, we have

1
2

∫ t

0

d
dτ
(z2
τ (τ )) dτ

=−

∫ t

0
N1(τ )wτ (τ )+N2(τ )uτ (τ ) dτ

=−

∫ t

0
uττ (τ )wτ (τ )+wττ (τ )uτ (τ ) dτ

=−

(
ut(t)wt(t)−ut(0)wt(0)−

∫ t

0
uτ (τ )wττ (τ ) dτ+

∫ t

0
wττ (τ )uτ (τ ) dτ

)
=−ut(t)wt(t)+ut(0)wt(0). (4-12)
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If the initial two velocities ut(0) = wt(0) = 0 and ut(t) = wt(t) = 0 for some
t ∈ [0, T ], it is easy to see from (4-12) that

1
2

∫ t

0

d
dτ
(z2
τ (τ )) dτ = z2

t (t)− z2
t (0)= 0. (4-13)

If COR(u)= COR(w)= 1, the identities (4-13) also hold. Since the two solutions
satisfy the initial data (2-4), from both cases we have z2

t (0) = 0, which gives
us ut(t)= vt(t) for almost all t ∈ [0, T ]. Therefore, u(t)= w(t) for all t ∈ [0, T ]
and the corresponding contact forces N1(t) = N2(t) for almost all t ∈ [0, T ], as
required. �

When we consider Equation (4-12), we could impose the more general condition
that COR(u),COR(w) ≥ 1. However, the condition requires that the obstacle is
deformed. Therefore, the uniqueness is shown under the assumption that particles
collide with the rigid foundation elastically.

5. Numerical results and discussion

In this section, numerical results are presented implementing several methods. For
the sake of simplicity, we assume that ϕ = 0 throughout this section. Even though
we use different methods with f = 0 and without considering the coefficient of
restitution, we obtain almost equivalent numerical results (simulations) which are
displayed in Figures 2–3. These results may enable us to demonstrate some evidence
for the numerical stability. Lemma 1 is proven by the main idea that our numerical
schemes guarantee that energy does not increase. We shall observe numerical
results later on that show the numerical evidence for energy conservation. This
means that the numerical solutions are stable, because they satisfy the criterion
that solutions never show increasing energy. The first method that we describe is
an infinite-dimensional approach that has a completely different perspective from
the other two numerical schemes. Indeed, the infinite-dimensional approach is
motivated by the normal compliance (see [Klarbring et al. 1988]). If the contact
conditions are rather changed to the normal compliance condition, the contact
forces N will be replaced by

N (t)= p(u(t)−ϕ),

where a prescribed function p can be defined by p(r)= cN max(r, 0) for cN ≥ 0
and cN is called the normal compliance stiffness coefficient. As we shall see in
Lemma 5, contact forces satisfying Signorini contact conditions (or CCs) can be
approximated as cN ↑∞. Instead of using Signorini contact conditions, the normal
compliance condition enables us to consider well-conditioned dynamic contact
problems and more realistic physical situations. In Section 5.1, we shall use the
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normal compliance to see how to construct approximations, depending on the
parameter of penetration, ε > 0. Mathematically speaking, the normal compliance
plays a fundamental role in showing better regularity of solutions and the uniqueness
of solutions for dynamic contact problems. In Section 5.2, we shall discuss two
numerical methods based on time discretization; one is directly implemented from
the numerical CCs (4-3) and another is carried out with the nonsmooth Newton’s
method. There is a classification for dynamic contact problems on Rd with d ≥ 1;
one class is a class of thick obstacle problems and the other is a class of boundary
thin obstacle problems. The meaning of “thick” is that obstacles (or constraints) are
applied over a subset of the whole domain, while the meaning of “thin” is that the
obstacles are applied on a subset of only the boundary of the domain. Readers who
are interested in this classification may refer to [Ahn and Stewart 2006]. Concerning
the corresponding numerical schemes for the two classes, the nonsmooth Newton’s
method will be very useful and efficient for thick obstacle problems and it is not
necessary for the boundary thin obstacle problems in the case that d = 1.

5.1. Numerical results via the infinite-dimensional approach. Our physical in-
terpretation is that particles touch and penetrate a rigid obstacle over the short
contact time period (t∗− ε, t∗+ ε) with ε > 0. We assume that the solutions to the
ODE (2-1) are smooth enough. Then, assuming that f (t)= 0, we can construct the
natural cubic splines to interpolate the solutions:S1(t)=−

3
2
(t − t∗+ ε)+

1
2ε2 (t − t∗+ ε)3 on (t∗− ε, t∗],

S2(t)=−ε+
3
2ε
(t − t∗)2−

1
2ε2 (t − t∗)3 on [t∗, t∗+ ε),

where ε is called an approximate parameter of penetration. The piecewise linear
functions below are included in the entire solution for the displacement:{

S3(t)=− 3
2(t − t∗)− 3

2ε on [0, t∗− ε],

S4(t)= 3
2(t − t∗)− 3

2ε on [t∗+ ε,∞).

So S3(t) and S4(t) are the outer functions for the piecewise solution for the dis-
placement of the particle. Let Sε = S1 ∪ S2 ∪ S3 ∪ S4 be an approximation of the
solutions u. Then, this approximation S is a smooth function, but it does not satisfy
Signorini contact conditions. In Lemma 5, we will see that the approximation of
the contact forces Nε satisfying the normal compliance condition converges to δ in
the distributional sense, as ε ↓ 0. Since we expect contact forces over the interval
(t∗−ε, t∗+ε), we consider the translated Dirac delta function δ(t− t∗) in Lemma 5.
Let � be a nonempty open set in R. Then, the set of all test functions on � is
denoted by D(�).
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Lemma 5. Let Nε = S′′1 ∪S′′2 be an approximation of contact forces over the interval
(t∗−ε, t∗+ε) for t∗> 0 with small ε > 0. Then, Nε→ δ in the sense of distributions.

Proof. We consider the sequence of contact forces as follows:

Nε(t) :=
1
6


S′′1 (t)=

3
ε2 (t − t∗+ ε) if t ∈ (t∗− ε, t∗],

S′′2 (t)=
3
ε
−

3
ε2 (t − t∗) if t ∈ [t∗, t∗+ ε),

0 if t ∈ (0, t∗− ε] ∪ [t∗+ ε,∞).

Then, we claim that, for any test function ψ ∈ D(R+),∫
∞

0
Nε(t)ψ(t) dt→

∫
∞

0
δ(t − t∗)ψ(t) dt as ε ↓ 0.

For any fixed t∗ > 0 and ε > 0 we define the integral functions F1 and F2 to be

F1(τ )=

∫ τ

t∗
(t − t∗+ ε)ψ(t) dt,

F2(τ )=

∫ τ

t∗

(
1−

1
ε
(t − t∗)

)
ψ(t) dt for τ > 0.

Thus, it follows that∫
∞

0
Nε(t)ψ(t) dt

=
1

2ε2

∫ t∗

t∗−ε
(t − t∗+ ε)ψ(t) dt +

1
2ε

∫ t∗+ε

t∗

(
1−

1
ε
(t − t∗)

)
ψ(t) dt

=
1
2ε

F1(t∗− ε)− F1(t∗)
−ε

+
1
2

F2(t∗+ ε)− F2(t∗)
ε

=
1
2ε

d F1(t∗)
dt

+
1
2

d F2(t∗)
dt

.

By the fundamental theorem of calculus, part 2, we can obtain∫
∞

0
Nε(t)ψ(t) dt = 1

2ψ(t∗)+
1
2ψ(t∗)= ψ(t∗)=

∫
∞

0
δ(t − t∗)ψ(t) dt as ε ↓ 0,

which implies that Nε→ δ in the distributional sense as ε ↓ 0, as desired. �

The approximation Sε computed with the small parameter ε = 10−3 is presented
in Figure 2. The top of Figure 2 is a visual representation of the natural cubic splines
(S1(t) and S2(t) and their applicable derivatives) for the displacement, velocity,
and contact forces. We can observe a little penetration of a particle due to the
parameter ε = 10−3. In addition, we can guess that the less the penetration depth
is, the larger the magnitude of the contact forces is. While the cubic splines only
consider the time period when the particle is in contact with the rigid obstacle,
the piecewise linear functions S3(t) and S4(t) and their applicable derivatives are
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Figure 2. For ε = 0.001 and t∗ = 5, the graphs on the left, (a)–(c),
represent the natural cubic splines for u, v, and N over the short
time period [t∗−ε, t∗+ε]; the graphs on the right, (d)–(f), represent
the entire piecewise functions for u, v, and N .

added to the ends of the splines to get the total picture of what is really happening
throughout the particle’s motion. This can be seen in the graphs in the right-hand
column of Figure 2. Unfortunately, this infinite approach does not work in the
dynamic adhesive contact model; see [Wolf 2012].

5.2. Numerical results via the finite-dimensional approach. In this subsection,
two different numerical schemes are introduced and it is assumed that the body
force f is a constant.
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First, we explain our numerical scheme where we can directly compute the next
step solution from the numerical CCs (4-3). The numerical equations (4-1)–(4-3)
can be manipulated so that we obtain the solutions (ul+1, N l) at the next time
step t = tl+1. Using (4-2), from (4-1) we can solve for the next step solution ul+1:

ul+1
= h

(
h(N l

+ f )
2

+ vl
)
+ ul . (5-1)

The next step solution ul+1 needs to satisfy the CCs (4-3). So, if ul+1 > ϕ, we
accept the solution (ul+1, N l) with N l

= 0. If ul+1
= ϕ, then we need to compute

the previous contact force N l :

N l
=

2
h

(
ϕ− ul

h
− vl

)
− f.

Once the next step solution ul+1 is obtained, we can compute the next step veloc-
ity vl+1 from the extra equation (4-2):

vl+1
=

2
h
(ul+1

− ul)− vl .

Secondly, we apply the nonsmooth Newton’s method to compute ul+1. Basically,
solutions of dynamic contact problems are not smooth, because of the nature of the
CCs. However, we can reformulate the approach by substituting a smooth function;
see [Facchinei and Pang 2003a, p. 73 ff.]. One of the functions commonly used for
this purpose is the Fischer–Burmeister function F , given by

F(a, b)= (a+ b)−
√

a2+ b2. (5-2)

It is not hard to see that 0≤ a⊥ b≥ 0 is equivalent to the equation F(a, b)= 0. This
function is not still applied practically. In order to avoid the singularity happening,
we set up the approximate function

Fε(a, b)= (a+ b)−
√

a2+ b2+ ε

for sufficiently small ε > 0, where ε is called a smoothing parameter. As ε ↓ 0,
Fε(a, b)→ F(a, b) in the strong sense.

Thanks to the equations (4-1)–(4-2), we can express the previous contact force N l

in terms of the next step solution ul+1:

N l
=

2
h

(
ul+1
− ul

h
− vl

)
− f.

Thus, finding the next step solution ul+1 satisfying the CCs (4-3) is equivalent to
finding the solution ul+1 satisfying the following nonlinear equation:



162 JEONGHO AHN AND JARED R. WOLF(
ul+1
+

[
2
h

(ul+1

h
−

ul

h
− vl

)
− f

])

=

√
(ul+1)2+

[
2
h

(ul+1

h
−

ul

h
− vl

)
− f

]2

+ ε. (5-3)

Now, we move the right side of (5-3) and replace the left side by the nonlinear
function Sε(ul+1). So the next step solution ul+1 can be found for nonlinear
equation Sε(ul+1)= 0. In order to compute the next step solution ul+1, we can set
up Newton’s iterative formula:

ul+1
m+1 = ul+1

m −
Sε(ul+1

m )

S′ε(u
l+1
m )

,

where ul+1
m+1 is the next solution and ul+1

m is the previous solution for Newton’s
iteration. We note that S′ε does not contain any singularity.

Based on the numerical equations (4-1)–(4-3), we tested the two numerical
schemes. The results, which are almost indistinguishable, are shown in Figures 3
and 4, using an initial displacement of u0

= 5, an initial velocity of v0
= −1, an

end time T = 10, and the step size h = 0.001. The body force f is not applied in
this numerical experiment. When we implement the nonsmooth Newton’s method,
the smoothing parameter ε = 10−15 is used and 10−15 is used for the stop criterion.

As can be seen in the left column of graphs in Figure 3, with no coefficient of
restitution, the particle’s motion reflects that of an absolute value function. Also
note that we see a very similar graph as our natural cubic spline for the particle’s
displacement (as was displayed in Figure 2). Its velocity resembles the Heaviside
function, as expected from our continuous result for the velocity of the particle.
The impulse function δ can be seen in the graph of the contact force. The bottom
left picture in Figure 3 supports conservation of energy numerically.

Numerically, we would also like to consider the particle’s motion with a given
coefficient of restitution since this would be more realistic. To change our numerical
code to take the COR into account, we must alter the velocity at the instant that the
particle is in contact with the surface where

0≤ COR=
−va

vb
≤ 1.

As expected, when a coefficient of restitution is introduced into our numerical
formulations (in this inelastic case COR = 0.75), both the displacement and the
velocity of the particle are dampened after impact; see Figure 3, right column. The
implementation of a coefficient of restitution has no effect on the results of the
contact force, but does have a rather large effect on the graph of the energy function.
With a coefficient of restitution, we see that energy is lost after the particle’s impact,
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Figure 3. Numerical results without considering the coefficient of
restitution (left) and with COR= 0.75 (right).



164 JEONGHO AHN AND JARED R. WOLF

which can be shown theoretically. Also, the nonsmooth Newton’s method with the
Fischer–Burmeister equation still works very well when a coefficient of restitution
is thrown into the mix.

Going back to our original numerical equation of motion (4-1), we note that we
still need to incorporate a body force into the system. In a real-world sense of the
situation, there is no better choice for a body force to impose on the particle than
one that resembles Earth’s gravitational force.

With this gravity-like body force, f (t) = −9.80665, we see some interesting
graphs in Figure 4. The left column shows the simulations without a coefficient of
resitution. The top graph, for the displacement, shows that the body force causes the
particle to repeatedly bounce off the rigid obstacle until coming to a stop at around
t = 7.5 for the selected initial conditions. However, we note that the height of the
bounces does not decrease at a constant rate when only a body force is applied. The
velocity shows a continual “zig-zag” centered about a velocity of zero. Conceptually,
we can agree that the body force would continually pull the particle down, causing
an increasingly negative velocity before bouncing back up, causing a jump of the
function to a positive value, before falling again. Graphs of the contact forces each
show multiple Dirac deltas, whose magnitude decreases over time until the particle
comes to rest. With the energy function, like the contact and displacement graphs,
energy decreases in steps with just a body force applied. Without considering a
coefficient of restitution one might expect that energy conserves. Indeed, as the
time step size ht gets smaller and smaller, numerical simulations show that the
energy function becomes flatter than the graph in the left column of Figure 4.

The application of both a coefficient of restitution and a body force combines to
give us the most realistic solutions possible when thinking of a real-world situation.
As seen in the right-hand column of Figure 4, the coefficient of restitution, in
addition to the body force, gives us solutions for the displacement, velocity, and
energy function that trend more steadily in comparison to those on the left column.

6. Conclusion

In this paper, we consider a second-order ODE with constraints. The existence of
solutions is proved by using time discretization and passing to the limit as the time
step size h decreases to zero. Although conservation of energy and uniqueness are
proven in this paper under some restrictive assumptions, they are still open questions
in general. Several numerical methods are introduced to present simulations which
support conservation of energy. The two numerical methods provide almost identical
results when we use the same input data. Therefore, our numerical schemes seem to
be reasonably stable. In our future work, we will investigate a possibility of doing
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Figure 4. Numerical results with a body force of f (t)=−9.80665,
representing gravity: without considering a coefficient of restitution
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error analysis and study a more realistic contact model (see [Wolf 2012]) where we
add the effect of a bonding field.
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Magic polygrams
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Magic polygrams, which are extensions of magic squares, can be found with
computer programs through exhaustive searches. However, most polygrams are
too large for this method. Thus, these possibilities must be limited algorithmi-
cally. This paper investigates both a large traditional hexagram and a traditional
octagram. Systematic approaches based on the arrangement of even and odd
numbers are used to identify solutions.

1. Introduction

Magic squares are arrangements of numbers in which the orientation of the numbers
leads to particular properties. Across the world, people have regarded the construc-
tion of magic squares as a form of mathematical study or a form of artistic creation,
and the squares themselves were often believed to be objects with inherent good or
evil powers [Cammann 1960].

Definition 1. In a magic square, nonnegative numbers are arranged so that all rows,
columns, and main diagonals all sum to the same number. The common sum is
known as the magic constant. A traditional magic square is an n×n magic square
that is filled with the numbers 1 to n2 [Beck et al. 2003; Benjamin and Yasuda
1999; Xin 2008].

The first magic square is thought to have originated from the Lo Shu diagram in
the 23rd century BC, which is an orientation of dots supposedly originally revealed
on the shell of a sacred turtle [Cammann 1961]. Although the legend is probably
a more recent fabrication, this 3×3 traditional magic square was considered by
ancient Chinese as a deeply meaningful symbol [Biggs 1979; Cammann 1961].
Scholars in the Middle East and India also studied magic squares, placing greater
importance on them than their current classification in fields such as recreational
mathematics [Cammann 1969a; Datta and Singh 1992]. Methods of construction
of magic squares have varied greatly by culture and often reflected the philosophies
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k−b k+a+b k−a

generic form

Figure 1. A filled-in 3×3 magic square and a generic version that
works for any k, a, b [Chernick 1938].

of the particular culture [Biggs 1979; Cammann 1969a; 1969b; Datta and Singh
1992]. In India, 4×4 squares have been worn as amulets to bring luck [Datta and
Singh 1992]. To some who studied the mysticism of magic squares, the knowledge
that no 2×2 magic square exists was thought to reflect the imperfection of the
four elements taken alone [Calder 1949]. As a result of the significance placed on
magic squares, solutions have long been identified for traditional magic squares for
n = 3, 4, 5, 6, 7, 8, 9, 10 [Biggs 1979; Cammann 1960].

Figure 1, left, shows a 3×3 traditional magic square with a magic constant of
15. Using the variables a, b, and k, every 3×3 magic square can be represented by
a single pattern, as shown in the right half of the figure. There is only one unique
solution to the traditional 3×3 magic square [Chernick 1938]. Increasing from a
3×3 magic square to a 4×4 magic square increases both the number of possible
arrangements and the number of ordinary solutions. There are 880 unique 4×4
traditional magic squares [Beck et al. 2003].

A spin-off of the magic square is the magic hexagram.

Definition 2. A hexagram is a star with six points containing an arrangement of
twelve numbers (see Figure 2).

Unlike a magic square, a magic hexagram is considered to contain only “rows”.
As seen in Figure 2, a hexagram contains six rows of five triangles each, and a total
of twelve triangles. If you use the numbers 1 through 12 to fill every triangle in the
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Figure 2. Examples of hexagrams with outlines of every row.
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hexagram there are 12! different, but not necessarily unique, arrangements. While
a computer can use brute force to find solutions for magic squares, attempting to
identify solutions for a hexagram with 12! possible arrangements is computationally
challenging. The number of possible arrangements can be reduced algorithmically
in order to find solutions; see [Bolt et al. 1991; Gardner 2000].

Due to symmetry, hexagrams that are reflections or rotations of one another are
equivalent. Eliminating these equivalent hexagrams, the number of possible unique
arrangements is reduced to 11! ; see [Bolt et al. 1991; Gardner 2000]. To eliminate
the remaining duplicates, complementary solutions can be ignored [Gardner 2000].

Definition 3. [Gardner 2000] A complementary arrangement is obtained by sub-
tracting each number of a polygram from the pattern’s largest number plus 1.

Using Definition 3, the complement to a 3×3 square can be found be subtracting
every number from 10. While the complement of a magic square is just a rotation
of the original magic square, this is not the case for many other shapes [Gardner
2000]. To further reduce possibilities, the arrangements of even and odd numbers
can be examined. An odd/even arrangement is a pattern of zeros and ones in
which the ones represent odd numbers and the zeros represent even numbers [Bolt
et al. 1991; Gardner 2000]. Because all rows of a magic hexagram must have
a common sum, there must be either an odd number of odds in every row or an
even number of odds in every row, limiting possible odd/even patterns. Ignoring
transformations, there are only six different ways that even and odd numbers can
be arranged throughout the hexagram [Gardner 2000]. However, odd/even patterns
that represent complementary solutions are trivial variations of one another and can
be ignored, limiting the number of odd/even patterns.

The patterns of many complementary polygrams are opposites. Odd/even patterns
of a magic hexagram are considered complements when every number in one pattern
is the opposite in the other pattern. While these patterns are different, there exists a
complementary magic polygram for every magic polygram, so they are considered
trivial variations [Gardner 2000].

In the current paper, two polygrams are investigated to find magic arrangements.
Both the magic extended hexagram and the magic octagram are polygrams for
which a complete list of solutions is difficult to identify. In order to identify these
magic polygrams, odd/even arrangements are investigated, and upper and lower
bounds of the magic constant are considered as in [Gardner 2000]. To limit the
number of arrangements, distinct odd/even patterns are found in which every row
has an equivalent number of odds. Methods such as the investigation of odd/even
diagrams and magic constant bounds are used to focus the investigation because the
number of total arrangements in the polygrams makes computational investigations
challenging. The number of arrangements is further limited by finding the possible
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Figure 3. Extended hexagram structure with outlines of every row.

magic constants for each odd/even pattern. The goal of this research is to identify
solutions to magic extended hexagrams and to magic octagrams, but not necessarily
to find an exhaustive list. Only traditional polygrams are considered.

2. Generalizations about polygrams

The two polygrams that are considered in this study are (1) an extension of the
hexagram described in Section 1 [Gardner 2000] and (2) another arrangement we
will refer to as an octagram. By taking the magic hexagram described in Section 1
and outlining it, a larger hexagram with more triangles can be formed.

Definition 4. An extended hexagram is an arrangement of numbers in the shape of
a six pointed star composed of 42 total triangles as shown in Figure 3.

The extended hexagram contains six rows of eleven triangles each. Figure 3
highlights the six different rows of this hexagram.

A similar shape to the hexagram can be formed using an octagon as the center
of the diagram instead of a hexagon.

Definition 5. An octagram is a star with eight points containing an array of 16 num-
bers. An octagram has eight rows, containing six numbers each (see Figure 4).

In order to find magic extended hexagrams and magic octagrams, general results
that apply to multiple polygrams can be identified. For instance, the odd/even
pattern and its complement can be either the same or exact opposites depending on
the number of positions in the shape.

Figure 4. Octagram structure with outlines of the eight rows.
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Theorem 1. If a traditional magic polygram has an odd number of integers ar-
ranged within it, then the odd/even pattern of this polygram and its complement are
equivalent.

Proof. Suppose a magic polygram has 2N + 1 numbers arranged throughout it,
where N is some integer. Let O1, O2, . . . , O2N+1 represent the numbers in the
original polygram. Let C1, C2, . . . , C2N+1 represent the numbers in the equivalent
positions of the complementary polygram. By Definition 3, for some position P ,
CP = ((2N + 1)+ 1)− OP , or (2N + 2)− OP . There are two cases for what OP

could be. If OP is even, OP = 2K for some integer K . So, CP = (2N +2)− (2K ),
or 2(N − K + 1). This represents an even number, so when OP is even CP is also
even. For the second case, when OP is an odd number, it can be represented by
2K + 1. So, CP = (2N + 2)− (2K + 1), or 2(N − K )+ 1. This represents an
odd number, so when OP is odd, CP is also odd. As a result, the complementary
odd/even pattern is the same as the odd/even pattern for any traditional polygram
with an odd number of integers arranged throughout it. �

Theorem 2. If a traditional magic polygram has an even number of integers ar-
ranged within it, then the odd/even pattern of this polygram and its complementary
pattern are opposites.

Proof. Suppose a magic polygram has 2N numbers arranged throughout it, where
N is some integer. Let O1, O2, . . . , O2N represent the numbers in the original
polygram. Let C1, C2, . . . , C2N represent the numbers in the equivalent positions
of the complementary polygram. By Definition 3, CP = (2N + 1)− OP for some
position P . There are two cases for what OP could be. If OP is even, OP = 2K
for some integer K . So, CP = (2N + 1)− (2K ), or 2(N − K )+ 1. This represents
an odd number, so when OP is even, CP is odd. For the second case, when OP is
an odd number, it can be represented by 2K + 1. So, CP = (2N + 1)− (2K + 1),
or 2(N − K ). This represents an even number, so when OP is odd, CP is even.
As a result, the complementary odd/even pattern is the opposite of the original
odd/even pattern for any traditional polygram with an even number of integers
arranged throughout it. �

If the number of odds per row of a traditional polygram is fixed, the number of
odds in certain positions can be calculated.

Theorem 3. If a magic polygram containing O odd numbers has N rows, each
with K odds, and if a polygram is made up of only X positions appearing in A rows
and Y positions appearing in B rows, then there are (BO − N K )/(B− A) odds in
X positions and (N K − AO)/(B− A) odds in Y positions.

Proof. Suppose a magic polygram has O odd numbers arranged throughout N
different rows, and that each row contains K odds. Also, suppose the polygram
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is made up of X positions which hold X odds and appear in A rows, as well as
Y positions which hold Y odds and appear in B rows. Because every X position
appears in A rows and every Y position appears in B rows, AX + BY represents
the number of times an odd is a part of a sum of a row. Also, because K is the
number of times an odd is part of a sum of each row, and there are N rows, then
N K is the total number of times an odd is part of a sum of a row in the total sum.
Hence,

N K = AX + BY. (1)

Every number is placed in either an X position or a Y position, so the sum of the
number of odds in X positions and the number of odds in Y positions is equivalent
to the number of odds placed in this hexagram. Hence,

X + Y = O. (2)

By combining (1) and (2),

Y = (N K − AO)/(B− A).

By replacing Ys with (N K − AO)/(B− A), Equation (2) becomes

X = (BO − N K )/(B− A).

Therefore, to have K odd numbers as part of a sum of each row, there must be
(N K − AO)/(B− A) odd numbers in X positions and (BO − N K )/(B− A) odd
numbers in Y positions. �

The lower boundary of a magic constant can be found by placing the smallest
numbers in the positions that appear in the largest number of rows. The upper
boundary magic constant is found by doing the opposite. A magic polygram
containing N rows is made up of only X positions and Y positions such that there
are M number of X positions appearing in A rows, and O number of Y positions
appearing in B rows, and the number contained in the i-th X position is X i and the
number in the i-th Y position is Yi . The magic constant of a magic polygram is
equivalent to the total sum of all of the rows combined, divided by the number of
rows, so the magic constant is equal to

1
N

(
A

M∑
i=1

X i + B
O∑

i=1

Yi

)
. (3)

3. Traditional magic extended hexagram

If the numbers 1 through 42 are placed throughout the extended hexagram (as
shown in Figure 3), there are 42! (total) arrangements possible. In order to reduce
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this number and make identification of magic traditional extended hexagrams com-
putationally easier, the number of possibilities is reduced by considering odd/even
diagrams and by only considering nontrivial variations of a particular scenario.

Throughout the extended hexagram, 24 of the triangles (or numerical positions)
appear in two different rows, while the remaining 18 triangles only appear in one
row each. There are two ways for an extended hexagram to be magic. The first is
that every row has an odd number of odd numbers, and then the magic constant is
an odd number. The second is that every row has an even number of odd numbers,
resulting in an even magic constant. One specific scenario is when every row has
the same number of odd numbers, and the current paper will focus on this particular
case.

3.1. The possible number of odds in a row. To find the possible arrangements of
even and odd numbers throughout the hexagram where every row has the same
number of odds, the first step is finding the overall number of odd numbers in all of
the rows combined. Each number in the extended hexagram can be considered as
in an X position (appearing in two rows) or in a Y position (appearing in one row).
Because there are a total of twenty-one odd numbers placed throughout the six
rows in the extended hexagram, O is 21 and N equals 6 in Theorem 3. X positions
appear in two rows and Y positions appear in one, so A is 2 and B is 1. Using
Theorem 3, the number of odds in X positions can be found by

X = 6K − 21 (4)

and the number of odds in Y positions is

Y = 42− 6K . (5)

To find all distinct odd/even patterns in which every row has the same number of
odds, the possibilities of numbers of odds per row should first be found. X positions
appear in more rows than Y positions, so the maximum number of odds per row
can be found by maximizing the number of odds in X positions. Because there are
twenty-one odds placed throughout X and Y positions, when the number of odds in
X positions is maximized, the number in Y positions is minimized. Because there
are twenty-one odds and twenty-four X positions, the smallest possible number of
odds in Y positions is zero.

By minimizing the number of odds in Y positions, (5) is set equal to zero.
Solving 42−6K = 0 for K shows that K = 7 when there are no odds in Y positions.
Replacing K with 7 in (4) and (5) results in X = 21 and Y = 0. Hence, when there
are exactly seven odds per row, twenty-one odd numbers are in X positions and
zero odds are in Y positions.
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To find the minimum possible number of odds per row, the number of odds
in X positions must be minimized. Because there are twenty-one odds and only
eighteen Y positions, the minimum possible number of odds in X positions is three.
Three odds in X positions (6K − 21= 3) results in K = 4. Plugging this into (4)
and (5) shows that X = 3 and Y = 18. So, for there to be exactly four odds in each
row, there must be three odds in X positions and eighteen odds in Y positions.

Knowing that the number of odds per row must be between four and seven, the
possibilities in which K is either five or six must also be investigated. Using (4)
and (5), the number of odds in X and Y positions can be found. For there to be
five odd numbers in each row, there must be nine odds in X positions and twelve
odds in Y positions. To have exactly six odds per row, there must be fifteen odds in
X positions and six in Y positions.

3.2. Odd/even patterns. As determined in the previous section, there are four
different cases in which every row of a magic hexagram can have the same number
of odds. These cases are

(Case 1) 7 odds per row; 21 odds in X positions and 0 odds in Y positions.

(Case 2) 6 odds per row; 15 odds in X positions and 6 odds in Y positions.

(Case 3) 5 odds per row; 9 odds in X positions and 12 odds in Y positions.

(Case 4) 4 odds per row; 3 odds in X positions and 18 odds in Y positions.

The patterns resulting from each of these cases can be complementary to each
other, because the number of odds in X positions in one pattern is equivalent to
the number of evens in X positions in the complementary pattern. The number of
odds in Y positions in one pattern is also equivalent to the number of evens in Y

positions in the other pattern. For any pattern in which the Case 1 holds, if all of
the evens and odds are switched, Case 4 results. As a result, these two cases are
complementary and one of them can be considered trivial. Case 2 and Case 3 are
also complementary to each other. By considering Cases 3 and 4 as trivial, there are
only two nontrivial cases in which all rows have the same number of odds: when
there are either seven odds in each row (Case 1), or six odds in each row (Case 2).

There are many different ways to arrange patterns such that they have the same
magic constant and are therefore trivial variations. Numbers that appear in only
one row can be switched to other positions only appearing in the same row with-
out changing the magic constant. Arrangements that only switch ones and zeros
throughout these positions have equivalent odds in each row. Additionally, there
exist pairs of positions that appear in only the same two rows. If the numbers are
switched between these two positions, both numbers are still in the same two rows
and hence contribute to the same row sum. These switches, as a result, are trivial
in both the traditional extended magic hexagram and in the odd/even diagrams.
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Figure 5. The two distinct odd/even arrangements for which every
row in the extended hexagram has the same number of evens and
odds.

Considering patterns defined for Case 1 and Case 2 and ignoring trivial variations,
there are only two distinct arrangements for magic extended hexagrams for which
every row has the same number of odd numbers. These two patterns are shown in
Figure 5.

3.3. Magic constants. The upper and lower bounds of the magic constant can be
found for both of these extended hexagrams using (3). Because the extended magic
hexagram is made up of six rows, has twenty-four X positions each appearing in
two rows, and has eighteen Y positions each appearing in only one row, (3) can be
rewritten as

1
6

(
2

24∑
i=1

X i +

18∑
i=1

Yi

)
. (6)

Because X positions appear in a larger number of rows than Y positions, the
lower bound magic constant is found by placing the lowest possible numbers in
the X positions and the largest numbers in Y positions. The upper bound magic
constant is found by doing the opposite.

For the hexagram with seven odd numbers in each row, all twenty-one odd
numbers, along with three even numbers, are placed in positions that appear in two
different rows. By placing the lowest possible numbers in the X positions and the
largest in Y positions, (6) results in a lower bound of 226. By placing the largest
numbers in X positions and smallest in Y positions, (6) shows the upper bound
magic constant is 244.

Similarly, the lower and upper bound magic constants can be found for the
hexagram with six odd numbers in each row. This hexagram contains fifteen odds
in X positions and six odds in Y positions. Equation (6) shows this hexagram has
an upper bound magic constant of 269 and a lower bound magic constant of 203.
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The possible magic constants for each of the hexagrams can be further limited
by taking into account whether the magic constant must be odd or even. The magic
constant for the hexagram with seven odds in each row must be a number between
226 and 244. However, because the hexagram has exactly seven odds in each row,
the magic constant, or sum of the row, must be an odd number. So, the magic
constant for the hexagram with seven odds in each row must be an odd number
between 227 and 243.

The magic constant for the hexagram with six odds in each row is a number
between 203 and 269. However, if there are exactly six odds in every row, the
magic constant must be an even number. So, the magic constant for this hexagram
must be an even number between 204 and 268.

Using these limitations, a simple computer program was written in an attempt to
find solutions. Initially, each even and odd position was labeled sequentially. The
program initially placed each odd number in a position labeled odd, so that 1 was
placed in the first odd position, 3 in the second odd position, and so on. Similarly,
each even was placed in the appropriate even position. Each time the program looped
through, either two of the even numbers or two of the odd numbers were swapped
so that every combination of the numbers could be investigated in an attempt to
find arrangements where every row summed up to the magic constant. Every magic
constant was to be investigated, printing all solutions to a file. However, computer
programs written in both Prolog and C were not able to finish running within
weeks. A parallelized genetic algorithm was also not able to find any solutions
when run for an extended period of time. While the algorithm greatly limited the
possible arrangements of this extended hexagram, further reduction is necessary to
systematically identify solutions.

3.4. Solutions for magic hexagrams. Magic extended hexagram solutions can be
found for upper and lower bound magic constants by strategically placing numbers
in the polygram. The upper bounds of the magic constant for the seven odds per
row and six odds per row cases were found by placing the highest numbers in
X positions, but placing the very highest numbers in these locations would not
result in a solution. Similarly, lower bounds were identified for the magic constant
in both cases by placing the lowest numbers in X positions, but this arrangement
of the lowest numbers would not result in a solution. However, placing most of
the high numbers or low numbers in X positions can lead to solutions through the
recognition of patterns in the odd/even diagrams.

Figure 5 contains distinct odd/even arrangements for the seven odds per row and
six odds per row cases; numbers in X positions are blue and numbers in Y positions
are presented in red. In both diagrams, all X positions appear in diamond pairs, and
each number in the pair affects the same rows in the hexagram. The diamonds can
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be grouped into three categories:
• Pairs of odd numbers at the points of the star, or corner pairs, with sum C ,

• Mixed pairs of one even and one odd in the internal hexagon, or mixed internal
pairs, with sum M , or

• Pairs of two odds (7 odds per row) or two evens (6 odds per row) in the internal
hexagon, or consistent internal pairs, with sum I .

In order to reduce the magic extended hexagram to a problem that is more easily
solvable, the sums of the pairs in each category are set to be equal. Under these
conditions, the magic constant will be equal to 2C + M + I plus the sum of the
three numbers in the Y positions in any particular row. Additionally, by placing the
highest or lowest values in particular positions, particular solutions can be identified.

As described in Section 3.3, the upper bound for the magic constant is 243 for the
seven odds per row case. The upper bound was identified by placing all twenty-one
odds in X positions and the highest evens in the remaining X positions. In order to
identify magic extended hexagram solutions, the odd numbers from 19 to 41 are
placed in corner pair positions such that each pair totals 60. To try to find a solution
with a magic constant of 243, the highest evens should be placed in X positions
if possible. Because the corner pairs now contain odds, high evens are placed in
the only remaining X positions: the mixed internal pairs. If consecutive evens are
chosen for these three locations, any list of three consecutive odds may be chosen
in order to have a consistent sum M . As previously shown in Section 3.3, placing
the three highest even numbers (38, 40, and 42) in the mixed internal pair positions
will not result in a solution (because the magic constant must be odd in this case).
However, placing the consecutive even numbers 36, 38, and 40 in mixed internal
pair positions will lead to a solution (although using the numbers 34, 36, and 38
will not). The details of solutions of this form are as follows:
• The odd numbers 19 through 41 are placed in corner pair positions.

• The even numbers 36, 38, and 40 are paired with three consecutive odds (not
already in corner pair positions) for the mixed internal pairs.

• The six remaining odds can be ordered O1 > O2 > O3 > O4 > O5 > O6 and
then grouped into pairs (O1 and O6, O2 and O5, O3 and O4) for the consistent
internal pairs.

• The 18 remaining evens are separated into groups of three, each with sum 58,
and placed in the Y positions of six rows.

An example of a magic extended hexagram solution with this structure is shown in
Figure 6, left.

Solutions for the magic extended hexagram can also be found by placing low
numbers in X positions. The lower bound for the magic constant for the seven odds
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per row case was found by placing all twenty-one odd numbers in X positions and
the three lowest even numbers in the remaining X positions. In order to identify
solutions with a magic constant of 227, odd numbers from 1 to 21 were placed in
corner pair positions such that each pair totals 24. In order to identify a solution
with a magic constant of 227, low even numbers were placed in mixed internal pair
positions. The structure of existing examples of extended hexagrams with a magic
constant of 227 can be identified using a similar method to that used to identify
solutions for extended hexagrams with a magic constant of 243. The details of this
solution arrangement are as follows:

• The odd numbers 1 through 21 are placed in corner pair positions.

• The even numbers 4, 6, and 8 are paired with three consecutive odds (not
already in corner pair positions) for the mixed internal pairs.

• The six remaining odds can be ordered O1 > O2 > O3 > O4 > O5 > O6 and
then grouped into pairs (O1 and O6, O2 and O5, O3 and O4) for the consistent
internal pairs.

• The 18 remaining evens are separated into groups of 3, each with sum 74, and
placed in the Y positions of six rows.

An example of a magic extended hexagram solution with this structure is shown
in Figure 6, right. Complements for the magic extended hexagram solutions in
Figure 6 are shown in Figure 7.

As shown in Figure 6, solutions to the magic extended hexagram exist for the
seven odds per row case. The numbers can be moved around the hexagram and still
result in a solution as long as the numbers stay in the same category pair or particular

magic constant = 243 magic constant = 227

Figure 6. Examples of magic extended hexagram solutions for the
seven odds per row case when the magic constant is 243 (left) and
227 (right). Corner pairs are outlined in blue, mixed internal pairs
in green, and consistent internal pairs in red.
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magic constant = 230 magic constant = 246

Figure 7. Complements of the solutions shown in Figure 6 (color
conventions are the same).

set of three evens. Because these changes do not represent a simple rotation of
the entire polygram, movement of numbers within category pairs or particular sets
results in a new, nontrivial solution. Additionally, different lists of consecutive odds
could have been chosen for the mixed internal pairs. Because all odd numbers are
placed in one of the pairs (corner, mixed internal, or consistent internal), the odd
numbers likely could have been arranged differently to also arrive at a solution.
The complements shown in Figure 7 show examples of solutions for the four odds
per row case and also reflect the structure of keeping the paired sums equal.

Magic extended hexagram solutions can also be found for the six odds per row
case with upper and lower bound magic constants. In order to identify solutions that
have a magic constant of 268, the largest odds are placed in corner pair positions.
Because the largest even numbers can be placed in either of the internal pair blocks,
two different methods are used to find solutions. In the first scenario, the six largest
even numbers are placed in consistent internal pairs of the extended hexagram.
More details of the construction of this solution are as follows:

• The odd numbers 19 through 41 are placed in corner pair positions.

• The even numbers 32 through 42 are placed in consistent internal pair positions.

• The next highest even numbers (26, 28, 30) are placed in mixed internal pair
positions.

• All possible sets of three consecutive (remaining) odd numbers are investigated
as potential numbers for the mixed internal pair positions. The only possible
list is 11, 13, and 15, which forces the remaining three numbers in each row
to total 33.

• The 18 remaining numbers are separated into groups of three (one odd and
two evens), each with sum 33, and placed in the Y positions of six rows.
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Figure 8. Examples of magic extended hexagram solutions for
the six odds per row case when the magic constant is 268. Color
conventions are as in Figure 6.

An example of a magic extended hexagram solution with this structure is shown in
Figure 8, left. Alternatively, the three highest even numbers are placed in mixed
internal pairs of the extended hexagram. More details of solutions of this form are
as follows:

• The odd numbers 19 through 41 are placed in corner pair positions.

• The highest even numbers (38, 40, 42) are placed in mixed internal pair
positions.

• The even numbers 26 through 36 are placed in consistent internal pair positions.

• All possible sets of three consecutive (remaining) odd numbers are investigated
as potential numbers for the mixed internal pair positions. The only possible
list is 11, 13, and 15, which forces the remaining three numbers in each row
to total 33.

• The 18 remaining numbers are separated into groups of three (one odd and
two evens), each with sum 33, and placed in the Y positions of six rows.

An example of a magic extended hexagram solution with this structure is shown in
Figure 8, middle.

Note that the only differences in the solutions presented in the first two parts
of Figure 8 are the locations of even numbers in X positions in the interior of the
hexagram. However, this change is not the result of a rotation of the entire polygram
or of the interior of the hexagram.

Other solutions to the magic extended hexagram with six odds per row can be
found in similar ways. The more generalized process is this:

• The highest (or lowest) odd numbers are placed in corner pair positions.

• Even numbers are selected for the consistent internal pair positions. A set of
three consecutive evens are placed in mixed internal pair positions.
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Figure 9. Examples of magic extended hexagram solutions for the
six odds per row case when the magic constant is 204.

• All possible sets of three consecutive (remaining) odd numbers are investigated
as potential numbers for the mixed internal pair positions. If a viable list is
identified, the remaining 18 numbers are separated into groups of three each
(one odd and two evens) and placed in the Y positions.

An additional example of a magic extended hexagram with magic constant 268 is
presented in Figure 8, right. Examples of solutions with six odds per row when
the magic constant is 204 are shown in Figure 9. Figures 10 and 11 contain
complementary solutions to those in Figures 8 and 9, respectively.

As with the solutions presented for the seven odds per row and four odds per
row cases, the numbers in the presented solutions for the six odds per row case
can be moved around the hexagram within the same category pair and result in a
solution. Not only can numbers be rotated within category pairs and result in a
different solution, multiple structures are identified for the six odds per row case as
shown in Figures 8 and 9. The complements to the six odds per row case represent

Figure 10. Complements of the magic extended hexagram solu-
tions for the six odds per row case shown in Figure 8. The magic
constant is 205.
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Figure 11. Complements of the magic extended hexagram solu-
tions for the six odds per row case shown in Figure 9. The magic
constant is 269.

Figure 12. Example of a magic extended hexagram solution when
the number of odds per row is not fixed (left), together with its
complement (right).

solutions for the five odds per row case and also reflect the same structure. While
many solutions have been identified for the cases when there are the same number
of odds per row, a definitive list has not been established. Further, solutions for the
magic extended hexagram do exist for cases when the number of odds per row is
not fixed (as is shown in Figure 12).

4. Traditional magic octagram

The methods used to find magic extended hexagrams can also be applied to find other
magic polygrams, such as magic octagrams. If numbers 1 through 16 are placed
throughout the octagram (as shown in Figure 4), there are 16! (total) arrangements
possible. In order to reduce this number as in the investigation on magic extended
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hexagrams, the number of possibilities will be reduced by considering odd/even
diagrams and by only considering nontrivial variations.

The inner positions of the octagram each appear in four different rows, while the
outer positions each appear in two different rows. Similar to the magic hexagram,
there are two possible cases in which every row can add up to a single number. The
first case is when every row contains an odd number of odds. The magic constant,
or common sum of each row, must be an odd number. The second case is when
every row contains an even number of odds. In this case, the magic constant would
be an even number. As in Section 3, this paper investigates only scenarios in which
every row has exactly the same number of odds.

4.1. Odd/even patterns. As shown in Figure 4, the numbers in the eight positions
within the central octagon appear in four rows each (which we will refer to as
X positions), and the numbers in the eight positions that are the points of the star
only appear in two rows each (which we will refer to as Y positions). Because a
magic traditional octagram contains eight odd numbers and has eight rows with
eight X positions and eight Y positions, Theorem 3 shows that there are

4K − 8 (7)

odds in X positions and
16− 4K (8)

odds in Y positions.
Setting (8) to zero and solving for K shows that the maximum number of odds

per row is four. Plugging this into K for (7) and (8) shows that for there to be
exactly four odds in each row, there must be eight odd numbers in X positions
and zero odds in Y positions. Setting (7) to zero and solving for K shows that the
minimum number of odds per row is two. Equations (7) and (8) show that for K ,
or the number of odds per row, to be equal to two, there must be zero odds in X

positions and eight odd numbers in Y positions.
Because the maximum possible number of odds per row is four and the minimum

is two, the only other possible number of odd numbers per row is three. Substituting
3 for K in (7) and (8) shows that for there to be exactly three odds per row, there
must be four odd numbers in X positions and four odds in Y positions.

The octagram investigated in this paper has an even number of integers ar-
ranged throughout it, so by Theorem 2, two odd/even patterns of this octagram are
complements when the patterns are exact opposites of each other. The odd/even
arrangement for when there are four odds in a row (all odds in the central octagon)
is complementary to the odd/even arrangement when there are two odds in a row.
In the process of finding magic octagrams, only one of these two patterns needs
to be investigated. Figure 13 shows four of the distinct odd/even patterns for the
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(d) 3 odds per row

Figure 13. Four distinct odd/even patterns for the octagram.

magic octagram. There are multiple different patterns with three odds in every row,
and all of the possible patterns for this scenario have not been investigated.

4.2. Magic constants. The upper and lower bounds of the magic constant can be
found for distinct octagrams using (3). For the octagram, (3) can be rewritten as

1
8

(
4

8∑
i=1

X i + 2
8∑

i=1

Yi

)
. (9)

Similar to the process used to find the lower bound magic constant for hexagrams,
the lower bound magic constant for each odd/even pattern of this octagram is found
by placing the lowest possible numbers in X positions and the largest numbers in Y

positions, and the upper bound magic constant is found by doing the opposite. For
the octagram with four odd numbers in each row, all eight odd numbers are placed
in the X positions and all eight even numbers are placed in the Y positions. Because
there are only eight odd numbers to be placed in the eight X positions, there is only
one possible magic constant rather than a range of possibilities. Using (9), the only
possible magic constant for the octagram in which there are four odds per row is 50.

The lower and upper bound magic constants can be found for the octagrams with
three odd numbers in each row. This octagram contains four odds in X positions
and four odds in Y positions. Equation (9) shows that this octagram has an upper
bound magic constant of 59 and a lower bound magic constant of 43.

4.3. Solutions for magic octagrams. By limiting the possible arrangements of
numbers 1 through 16 throughout the octagram, the number of possibilities is small
enough for a computer program to find magic octagrams. A brute force computer
program with restrictions added in was written in C. Similar to the program
described in Section 3, this program labeled all of the even and odd positions,
initially arranged the numbers throughout their positions, and then stepped through
every appropriate arrangement to find solutions. The program investigated each
magic constant for every odd/even pattern, and with just these limitations, solutions
were found in adequate time. There were hundreds of solutions for each of the four
odd/even patterns in Figure 13.
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Figure 14. A magic octagram with four odds in each row (left)
and a magic octagram with two odds in each row (right).

For the pattern in which all eight odd numbers are in X positions, as shown in
Figure 13, there is only one possible magic constant, 50. For this magic constant, the
1920 different solutions were found computationally. The complementary pattern,
in which all eight odd numbers are in Y positions, has 1920 solutions. Each of the
solutions to the pattern with all eight odd numbers in Y positions is a complement
to a solution of the pattern with all eight odd numbers in X positions.

The data for the other three patterns in Figure 13, each of which have three
odds as a part of the sum in each row, is shown in Table 1. Pattern 1 has a total of
736 unique solutions, pattern 2 has 832, and pattern 3 has 1161, all among nine
different magic constants. One solution for each pattern is shown on the top row
of Figure 15. Each of these three patterns also has a complementary pattern. For
every complementary pattern, there is an equivalent number of solutions, each one
being the complement of an original solution. The complementary solutions for
those shown in on the top row of Figure 15 are shown on the bottom row.

magic constant pattern 1 pattern 2 pattern 3
Figure 13(b) Figure 13(c) Figure 13(d)

43 3 12 43
45 41 42 36
47 83 96 145
49 144 160 199
51 196 224 358
53 144 160 199
55 83 96 145
57 41 42 36
59 4 12 43

Table 1. Number of distinct octagram patterns of the forms shown
in Figure 13(b)–(d).
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Figure 15. Top: solutions with a magic constant of 45 and three
odds per row. Bottom: their complementary solutions, with magic
constant 57.

5. Discussion and conclusions

If restrictions are placed on the number of even and odd numbers per row of the
extended hexagram, characteristics of solutions can be identified. When there are
seven odds per row, the magic constant of this extended hexagram must be an odd
number between 227 and 243. The magic constant of the extended hexagram with
six odds per row must be an even number between 204 and 268. Although an
exhaustive list of solutions has not been established, multiple solutions have been
identified.

Using similar restrictions on the number of evens and odds in the rows of the
traditional extended hexagram, magic octagrams can also be identified. The possible
magic constants for restricted patterns were found to further limit possibilities before
using computer programs to identify specific solutions. The magic constant for the
octagram with four odd numbers per row must be 50. The octagrams with three
odds per row must have a magic constant between 43 and 59. The computationally
discovered solutions were categorized by pattern and magic constant, but not all
magic octagram solutions have necessarily been identified.

The only odd/even patterns that have been investigated for both polygrams are
cases in which there are an equivalent number of odds in each row. The solutions
for both polygrams when there are different numbers of odds in each row have not
been investigated. Similarly, not every odd/even pattern in which there are three
odds in every row of the octagram has been investigated. Additional studies could
investigate more focused algorithms to find solutions in the fixed number of odds
per row cases. Most hexagram solutions found in this study had the same number
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of odds per row, but solutions do exist without this restriction as shown in Figure 12.
Future investigations could focus on values in internal locations of the hexagram or
octagram without the overall expectation of a certain number of odds per row in
order to find solutions.

References

[Beck et al. 2003] M. Beck, M. Cohen, J. Cuomo, and P. Gribelyuk, “The number of ‘magic’
squares, cubes, and hypercubes”, Amer. Math. Monthly 110:8 (2003), 707–717. MR 2004k:05009
Zbl 1043.05501

[Benjamin and Yasuda 1999] A. T. Benjamin and K. Yasuda, “Magic ‘squares’ indeed!”, Amer. Math.
Monthly 106:2 (1999), 152–156. MR 1671865 Zbl 0979.05024

[Biggs 1979] N. L. Biggs, “The roots of combinatorics”, Historia Math. 6:2 (1979), 109–136.
MR 80h:05003 Zbl 0407.01002

[Bolt et al. 1991] B. Bolt, R. Eggleton, and J. Gilks, “The magic hexagram”, Math. Gaz. 75:472
(1991), 140–142.

[Calder 1949] I. R. F. Calder, “A note on magic squares in the philosophy of Agrippa of Nettesheim”,
J. Warburg Courtauld Inst. 12 (1949), 196–199.

[Cammann 1960] S. Cammann, “The evolution of magic squares in China”, J. Amer. Orient. Soc.
80:2 (1960), 116–124. Zbl 0102.24401

[Cammann 1961] S. Cammann, “The magic square of three in old Chinese philosophy and religion”,
Hist. Relig. 1:1 (1961), 37–80. Zbl 0102.24402

[Cammann 1969a] S. Cammann, “Islamic and Indian magic squares, I”, Hist. Relig. 8:3 (1969),
181–209.

[Cammann 1969b] S. Cammann, “Islamic and Indian magic squares, II”, Hist. Relig. 8:4 (1969),
271–299.

[Chernick 1938] J. Chernick, “Solution of the general magic square”, Amer. Math. Monthly 45:3
(1938), 172–175. MR 1524224 Zbl 0018.20302

[Datta and Singh 1992] B. Datta and A. N. Singh, “Magic squares in India”, Indian J. Hist. Sci. 27:1
(1992), 51–120. MR 93b:01013 Zbl 0771.01002

[Gardner 2000] M. Gardner, “Some new results on magic hexagrams”, College Math. J. 31:4 (2000),
274–280. MR 1786804 Zbl 0995.05512

[Xin 2008] G. Xin, “Constructing all magic squares of order three”, Discrete Math. 308:15 (2008),
3393–3398. MR 2009e:05039 Zbl 1145.05012

Received: 2011-12-01 Revised: 2013-05-06 Accepted: 2013-05-15

bienz2@illinois.edu Department of Mathematics and Statistics, Elon University,
Elon, NC 27244, United States

kyokley@elon.edu Department of Mathematics and Statistics, Elon University,
Elon, NC 27244, United States

ccoles@elon.edu Department of Mathematics and Statistics, Elon University,
Elon, NC 27244, United States

mathematical sciences publishers msp

http://dx.doi.org/10.2307/3647853
http://dx.doi.org/10.2307/3647853
http://msp.org/idx/mr/2004k:05009
http://msp.org/idx/zbl/1043.05501
http://dx.doi.org/10.2307/2589051
http://msp.org/idx/mr/1671865
http://msp.org/idx/zbl/0979.05024
http://dx.doi.org/10.1016/0315-0860(79)90074-0
http://msp.org/idx/mr/80h:05003
http://msp.org/idx/zbl/0407.01002
http://dx.doi.org/10.2307/3620238
http://dx.doi.org/10.2307/750267
http://dx.doi.org/10.2307/595587
http://msp.org/idx/zbl/0102.24401
http://www.jstor.org/stable/1061970
http://msp.org/idx/zbl/0102.24402
http://dx.doi.org/10.1086/462584
http://dx.doi.org/10.1086/462589
http://dx.doi.org/10.2307/2302981
http://msp.org/idx/mr/1524224
http://msp.org/idx/zbl/0018.20302
http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20005b5a_51.pdf
http://msp.org/idx/mr/93b:01013
http://msp.org/idx/zbl/0771.01002
http://dx.doi.org/10.2307/2687416
http://msp.org/idx/mr/1786804
http://msp.org/idx/zbl/0995.05512
http://dx.doi.org/10.1016/j.disc.2007.06.022
http://msp.org/idx/mr/2009e:05039
http://msp.org/idx/zbl/1145.05012
mailto:bienz2@illinois.edu
mailto:kyokley@elon.edu
mailto:ccoles@elon.edu
http://msp.org


msp
INVOLVE 6:2 (2013)

dx.doi.org/10.2140/involve.2013.6.191

Trading cookies in a gambler’s ruin scenario
Kuejai Jungjaturapit, Timothy Pluta, Reza Rastegar,

Alexander Roitershtein, Matthew Temba, Chad N. Vidden and Brian Wu

(Communicated by Anant Godbole)

We consider several variations of a two-person game between a “buyer” and a
“seller”, whose major component is a random walk of the buyer on an interval of
integers. We assume a gambler’s ruin scenario, where in contrast to the classical
version the walker (buyer) has the option of consuming “cookies”, which, when
used, increase the probability of moving in the desired direction for the next
step. The cookies are supplied to the buyer by the second player (seller). We
determine the equilibrium price policy for the seller and the equilibrium “cookie
store” location. An initial motivation for this question is provided by the popular
model of “cookie” or “excited” random walks.

1. Introduction

Consider the following modification of the classical one-dimensional gambler’s
ruin problem [Durrett 1996; El-Shehawey 2009], where the walker has the option
of consuming a cookie which, when used, changes transition probabilities for the
next step in a desired way. The cookies are supplied to the walker (called buyer
in what follows) by a seller. The buyer starts at point a ∈ N located between 0
and b ∈ N, b ≥ 2, and performs a nearest-neighbor random walk on the integer
lattice Z. If the buyer gets to point b before 0 she is rewarded with r > 0 dollars
while if she gets to 0 before b she wins 0 dollars. Meanwhile, the seller sets up a
shop somewhere on integer sites within the interval (0, b). The seller sells a certain
amount of cookies at a fixed price, and each cookie gives the buyer an instant
probability boost in the direction of b. The walker thus always moves one step to
the right with a fixed probability p ∈ (0, 1) from regular sites and with a larger
probability p+ ε ∈ [p, 1] from the store locations, if she consumes a cookie there.
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The buyer seeks to maximize her expected utility function, and she can either accept
the help of the cookie service for the offered price or reject it. Informally speaking,
the goal of this paper is to determine the equilibrium price for a cookie as well as
the optimal (from the perspective of the seller) placement for the store.

From the probability theory point of view, the problems that we investigate can
be described collectively as an attempt to measure the gain of the walker from
exploiting a reinforcing mechanism represented by cookies; see for instance (13)
below. It is natural to study this type of problem within a game-theoretic framework,
where exact features of the reinforcing mechanism are determined through the
interaction between the walker and a supplier. This is in contrast to the usual excited
or cookie random walk [Antal and Redner 2005; Zerner 2005] (see [Menshikov
et al. 2012] for an up-to-date review and references), where the walker, as a price-
taker in a large market, has no effect on determining the parameters of the cookie
environment.

More specifically, we will study subgame perfect equilibria for several variants
of a two-person Stackelberg game [Gibbons 1992], that is, a game where the seller
takes an action first while the buyer observes the move of the seller and then acts.
An action of the leader (seller) consists of setting the price for a cookie and choosing
the store location, and a strategy of the follower (buyer) consists of specifying a set
of seller’s actions in response to which she would be willing to consume a cookie
upon each visit to the store. The variations of the game that we study in the paper
differ by the form of the payoff function that is assigned to the buyer. For instance,
in the basic form considered in Section 3, the buyer seeks to maximize her expected
earnings, while in Section 5 the buyer is risk-averse and thus also takes the extent
of the risk involved in her decisions into consideration. Throughout this paper the
buyer makes a simple a-priori commitment to either purchase a cookie each time
when the opportunity is present or to “ignore” the store permanently, rather than
devises a strategy contingent on the realization of the random walk path. It can
be shown that this assumption is actually not restrictive for a risk-neutral buyer
in the basic game considered in Sections 2 and 3 while, say, a risk-averse buyer
considered in Section 5 might benefit from employing a policy conditional on the
number of cookies currently available at the store. Intuitively, the attractiveness
of the investment in cookies decreases for a risk-averse buyer as the amount of
available cookies is decreasing and hence the risk involved in the investment is
increasing in the course of the game. We remark that the optimization problem
which the seller faces is somewhat similar to that of a monopoly whose market is a
spatially nonhomogeneous Hotelling beach [Anderson et al. 1992; Hotelling 1929]
with demand curve varying randomly across the population.

The game can serve as a simplified model to explore the relationship between
economic agents in a risky environment, for instance a firm in an innovative and
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competitive segment of a hi-tech industry and an experienced consulting company.
The firm (buyer) seeks to reduce uncertainty and increase the expected profit by
investing in the consulting service at a bottleneck point of its production line, while
the consultant (seller) wants to optimize the configuration and the price of its service
package.

We next define the underlying (buyer’s) random walk. Fix any p ∈ (0, 1) and let
q = 1− p. Fix the store placement n ∈N and the cookie strength ε ∈ [0, q]. Let Xk

and mk denote the location of the walker and the number of cookies available at
the store at time k ∈ N∪ {0}, respectively. Formally, the pairs (Xk,mk)k≥0 form a
Markov chain on Z× (N∪ {0,∞}) with transition kernel given by

Pn(Xk+1 = j,mk+1 = m | Xk = i,mk = l)

=


p+ 1{i=n,l>0} · ε if j = i + 1,m = l − 1,
q − 1{i=n,l>0} · ε if j = i − 1,m = l − 1,

0 otherwise.

Here we use the standard convention that∞−1=∞ and denote by 1A the indicator
function of the event A. That is, 1A is either 1 or 0 according to whether A occurred
or not.

The parameters m0, p, and ε (as well as the parameters a, b, and r introduced
later in this section) are considered as given exogenous variables. Let Pa,n denote
the probability measure on the path of the random walk associated with the buyer
starting with probability one at X0=a, while the cookie store is placed at n. Let Ea,n

be the expectation operator associated with the probability measure Pa,n . We will
denote by Pa and Ea , respectively, the distribution and the expectation associated
with the corresponding usual random walk, that is, the one with ε = 0.

Choose any b ∈ N, b > n, and let

T=min{T0, Tb} with T j = inf{k : Xk = j}, j ∈ Z. (1)

Assume that X0 ∈ (0, b) with probability one and that 0 and b are absorbing points
for the buyer’s random walk; that is, P(XT+k = XT for k ≥ 0) = 1. If the buyer
visits b before 0 she is rewarded with r > 0 dollars, otherwise she receives 0 dollars.
The strategies of the seller are represented by the pairs (c, n), where c denotes the
price for a cookie which remains fixed during the game (cf. Remark 3.1). The
strategies of the buyer are represented by the mappings of the pairs (c, n) into the
set {Pa,n, Pa}, where Pa,n means the decision to use the cookies whereas Pa means
the decision to ignore the cookie store and proceed as a usual random walk.

The usual cookie random walk model allows cookies to be located at each site of
the integer lattice. Our assumption that all the cookies are placed in the same location
makes the buyer’s random walk into a nearly Markovian process, and thus ensures
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a more easily treatable model. In particular, the exit probabilities Pa,n(Tb < T0)

can be explicitly computed. Random walks defined by, in a sense, small, local
perturbations of Pa , have been considered by many authors. In the context of excited
random walks see for instance [Davis 1999; Raimond and Schapira 2010]. It turns
out that, even though our underlying random walk does not exhibit as interesting
a deviation from the corresponding regular random walk as the excited random
walks do (compare for instance Theorem 3.5 and Remark 7.4(a)), the perturbation
by a single cookie store produces many interesting quantitative effects, and its
influence is not negligible even when b is taken to infinity. For instance, according
to Theorem 3.5 either a supply of cookies m0 or a reward r of the same order
as b allows the seller to maintain expected revenue when b goes to infinity, ceteris
paribus. The structure of the equilibrium cost is quite curious, and is discussed in
detail in Remark 3.1.

The rest of the paper is organized as follows. In Sections 2 and 3 we study the
basic version of the game which is described above. In Section 4 we consider a
walker with initial position uniformly distributed over the interval [1, b− 1]. To
further explore which factors are dominant in designing the equilibrium strategies
of the players, we then consider buyers with utility functions different from the
expected value of their earnings. In Section 5 we consider a risk-averse buyer
whereas in Section 6 we study the game where the buyer is concerned not only
with the expected reward but also with the expected time it takes to achieve the
reward. For comparison, we then consider in Section 7 a variant of the game with
the 1-excited random walk, that is, when exactly one cookie is placed everywhere
on Z. Finally, some concluding remarks are given in Section 8.

2. Basic game: Preliminaries

In this section and the next section, we consider the following scenario. Fix any
integer b ≥ 2. There is one buyer, starting the random walk at a fixed integer point
X0 = a between 0 and b. There is one seller, who is seeking to maximize her
expected revenue by choosing the store’s location n and the price of a cookie c.
There is no production cost for the seller. The seller has m cookies to sell to the
buyer, either m ∈N or m =∞. The seller charges the same price for each cookie.
The walker has an option to ignore (not to buy) cookies if the price is not attractive.
If the buyer chooses to use the cookie she moves on Z according to Pa,n , otherwise
her motion is according to Pa . The walker seeks to maximize her expected earnings.

Thus possible actions of the seller are represented by the collection of feasible
pairs (c, n), while possible strategies of the buyer are represented by the set of
functions

B(c, n) : [0,∞)×{1, . . . , b− 1} → {Pa,n, Pa}.
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The walker chooses to consume or not to consume the cookies which are supplied
by the seller at site n for the marginal price c, according to whether B(c, n)= Pa,n

or not. We next give a formal definition of the game. Let �b := {2, . . . , b− 1} be
the set of feasible store’s locations. Recall T from (1) and define

ηn =

T∑
i=0

1{X i=n} and ηn,m =min{ηn,m}. (2)

That is, ηn,m is the total number of “successful visits” to the store (i.e., visits when
the cookies are still available) by the random walk before the absorption at either 0
or b.

Definition 2.1 (game 0m,a). • 0m,a is a two-person Stackelberg game (the first
player takes an action, the second player observes the action and then moves).
The (random) payoffs of the players depend on the realization of the underlying
random walk (action of Nature). In order to determine their strategies, the
players consider the corresponding expected payoffs.

• The strategy set of the first player (seller) is S := [0,∞)×�b. Each pair
(c, n) ∈ S specifies the cookie’s price c > 0 and the store’s location n ∈ �b

chosen by the seller.

• The seller moves first and communicates her action to the second player (buyer).
Then the second player determines her strategy, and starts the random walk.

• Nature determines realization of the random walk.

• The strategies of the buyer are functions B : [0,∞)×�b→ {Pa,n, Pa}. The
buyer will either consume a cookie priced c ∈ [0,∞) upon each visit to a store
located at n ∈�b or will refrain from ever making a purchase, according to
whether B(c, n)= Pa,n or B(c, n)= Pa , respectively.

• For given cookie price c > 0, store location n ∈ (0, b), response strategy B of
the buyer, and realization of buyer’s random walk, player’s payoffs are defined
as follows:

uc,n,B := r · 1{Tb<T0}− c · ηn,m · 1{B(c,n)=Pa,n} (buyer),

vc,n,B := c · ηn,m · 1{B(c,n)=Pa,n} (seller).

Notice that the payoffs are random and depend on the realization of the underlying
random walk. We next specify the game solution concept invoking expected utilities
which is used throughout the paper. Denote by B the collection of all functions
from S to {Pa,n, Pa}. For any pair of strategies S = (c, n) ∈ S and B ∈B denote
by US,B and VS,B , respectively, the expected payoffs of the buyer and the seller
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who play according to the strategy profile (S, B). That is,

US,B =

{
Ea,n(uc,n,B) if B(c, n)= Pa,n,

Ea(uc,n,B) if B(c, n)= Pa,

VS,B =

{
Ea,n(vc,n,B)= c · Ea,n(ηn,m) if B(c, n)= Pa,n,

Ea(vc,n,B)= 0 if B(c, n)= Pa.

In the next sections we will consider several variants of the above game with
different payoff functions for the seller. For the basic game 0m,a we have

US,B =

{
r ·Pa,n(Tb < T0)− c · Ea,n(ηn,m) if B(c, n)= Pa,n,

r · Pa(Tb < T0) if B(c, n)= Pa.

Definition 2.2 [Gibbons 1992]. A subgame perfect equilibrium of 0m,a is defined
as a profile of strategies (S∗, B∗) ∈ S×B such that

US∗,B∗ ≥US,B∗ for all S ∈ S, (3)

VS,B∗ ≥ VS,B for all S ∈ S, B ∈B. (4)

More generally, (3) and (4) define a subgame perfect equilibrium for any Stack-
elberg two-person game with arbitrary payoffs (U, V ) and strategy sets (S,B).
Throughout the paper we use “equilibrium” as synonymous to the “subgame perfect
equilibrium”. The following remark is in order.

Remark 2.3. The assumption that neither the seller can change the price during
the course of the game, nor can the buyer reconsider her decision upon an arrival
to the store, might seem to be restrictive. However, it turns out that in fact this
assumption does not put a real constraint on the strategies of the players. This is
discussed in Remark 3.1 below, and is due to the fact that the equilibrium price for
a cookie is actually independent of m, as long as m > 0.

For given cookie price c> 0 and store location n ∈ (0, b) let Uc(a, n) denote the
expected payoff of the buyer who uses the cookies. That is,

Uc(a, n) := Ea,n(uc,n,Pa,n )= r ·Pa,n(Tb < T0)− c · Ea,n(ηn,m).

The corresponding expected revenue of the seller is denoted by Vc(a, n). That is,

Vc(a, n) := Ea,n(vc,n,Pa,n )= c · Ea,n(ηn,m). (5)

Thus, for fixed a and n, the seller will set the maximal possible price for each
cookie. The maximal price c∗(a, n) that the buyer would be willing to pay for a
cookie is determined from the equation

Uc∗(a,n)(a, n)= r · Pa(Tb < T0), (6)
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where the right-hand side is the expected payoff of the buyer without cookie
reinforcement. It will turn out that this equation has a unique solution for any
feasible pair (a, n). The optimal location of the store n∗ = n∗(a) is then given as
the solution of the optimization problem

Vc∗(a,n∗)(a, n∗)= max
n∈�b

Vc∗(a,n)(a, n). (7)

We will show below (see Lemma 3.2) that n∗(a)= a is the unique solution to (7).
The price is determined from (6), which can be alternatively written as

c∗(a, n)=
r ·Pa,n(Tb < T0)− r · Pa(Tb < T0)

Ea,n(ηn,m)
. (8)

The core result of this section is the following observation.

Theorem 2.4. For a fixed store location n, the maximal price c∗(a, n) that the
buyer would be willing to pay for a cookie in a game 0m,a is independent of the
value of a.

Proof. Given a store location n ∈ (0, b), the maximal price c∗(a, n) is determined
from (6). If n ≥ a, we have Uc∗(a,n)(a, n) = Pa(Tn < T0) ·Uc∗(a,n)(n, n). Thus,
using the strong Markov property, identity (6) yields

Pa(Tn < T0) ·Uc∗(a,n)(n, n)= r Pa(Tb < T0)= r Pa(Tn < T0)Pn(Tb < T0),

which implies

Uc∗(a,n)(n, n)= r Pn(Tb < T0). (9)

If n ≤ a, we have Uc∗(a,n)(a, n) = Pa(Tn < Tb) ·Uc∗(a,n)(n, n)+ r Pa(Tb < Tn).
Hence, using again the strong Markov property, identity (6) yields

Pa(Tn < Tb) ·Uc∗(a,n)(n, n)+ r Pa(Tb < Tn)

= r Pa(Tb < T0)= r Pa(Tn < Tb)Pn(Tb < T0)+ r Pa(Tb < Tn),

which also leads to (9) in the case n ≤ a. This completes the proof of the theorem,
since (9) for c∗(a, n) is independent of the value of a. �

Proof. Let ρ = q/p and recall Tn from (1). For any integer n ∈ [0, a] we have
[Durrett 1996, p. 274]:

Pa(Tn < Tb)=


ρb
− ρa

ρb− ρn if p 6= q,

b− a
b− n

if p = q.

�
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We conclude this section with the computation of Ea,n(ηn,m). Let Jn (respec-
tively, Kn) denote the probability of returning (not returning) to n after consuming
a cookie at n:

Kn = 1− Jn = Rn + Ln, (10)

where
Rn := (p+ ε)Pn+1(Tb < Tn),

Ln := (q − ε)Pn−1(T0 < Tn).

We have
Ea,n = Pa,n(Tn < T) · En,n,

En,n = (1− Jn)

m−1∑
i=1

i J i−1
n +m J m−1

n =
1− J m

n

1− Jn
. (11)

Throughout the paper, we use the convention that if m =∞ then J m
= m J m

= 0
for any constant J ∈ (0, 1) in our calculations.

3. Basic game: Main results

Our main results in this section are collected in Theorem 3.3 which includes explicit
results for the values of the equilibrium price and store location in0m,a . Theorem 3.4
extends the results to the infinite interval (−∞, 0] when ρ < 1.

In Theorem 3.5, for the case p = q , we find a natural scaling of the parameters r
and m when b goes to infinity. In particular, this theorem shows that an increase
in cookie supply proportional to the change in the value of b allows the seller
to maintain her revenue. In other words, the effect of a single store with an
adequate cookie supply on the underlying random walk cannot be neglected, even
asymptotically.

Finally, Theorem 3.6 establishes monotonicity of the seller’s equilibrium revenue
as a function of the parameter ε. The latter result is interesting because, even though
the higher quality (i.e., higher strength of the cookie, ε) means higher price for a
cookie, it also means that the buyer is expected to finish the game sooner and hence
implies the drop in the expected amount of cookies sold.

We will frequently make use of the “decomposition according to the first step”
arguments for the underlying Markov chain (Xk,mk)k≥0, in particular exploiting
the following equality:

Pk(T= Tx)= pPk+1(T= Tx)+ q Pk−1(T= Tx), (12)

with x ∈ {0, b} and n = 1, . . . , b − 1. The recurrence relationship (12) can
be equivalently stated as the martingale-type identity E(Zk+1 | Xk) = Zk for
Zk = PXk (T= Tx). We will denote c∗(a, n∗(a)) (which will turn out to be c∗(a, a);
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see Lemma 3.2 below) by c∗(a) and refer to this value as the equilibrium price of
the cookie in 0m,a . Thus, according to (8),

c∗(a)=
r ·Pa,n∗(a)(Tb < T0)− r · Pa(Tb < T0)

Ea,n∗(a)(ηn∗(a),m)
. (13)

We next compute the equilibrium price c∗(a). We will first calculate Uc(n, n) for
general c > 0 and n ∈ (0, b). To simplify notation we will abbreviate Uc(n, n)
to Uc(n) and Vc(n, n) to Vc(n). Recall (10). We have

Uc(n)=
m−1∑
k=1

[
(r − kc)Rn J k−1

n − kcLn J k−1
n

]
+ J m−1

n
[
r [(p+ ε)Pn+1(Tb < T0)+ (q − ε)Pn−1(Tb < T0)] −mc

]
. (14)

It follows from (12) that

Uc(n)=
Rnr(1− J m−1

n )

Kn
− c

[
(m− 1)J m

n −m J m−1
n + 1

Kn
+m J m−1

n

]
+ J m−1

n r
[
Pn(Tb < T0)+ ε

(
Pn+1(Tb < T0)− Pn−1(Tb < T0)

)]
.

Therefore, using (6) and the following identity (recall that Kn = 1− Jn):

(m− 1)J m
n −m J m−1

n + 1
Kn

+m J m−1
n =

1− J m
n

Kn
,

we obtain

c∗(n)(1− J m
n )

Kn
=

Rnr(1− J m−1
n )

Kn
+ J m−1

n r
[
Pn(Tb < T0)+ ε(Pn+1(Tb < T0)

− Pn−1(Tb < T0))
]
− r Pn(Tb < T0).

Thus c∗(n) can be expressed as

c∗(n)=
c1(n)+ c2(n)

1− J m
n

,

where

c1(n)= r [Rn − Kn · Pn(Tb < T0)],

c2(n)= r J m−1
n

[
Kn[Pn(Tb < T0)+ ε(Pn+1(Tb < T0)− Pn−1(Tb < T0))] − Rn

]
= J m−1

n
[
rεKn[Pn+1(Tb < T0)− Pn−1(Tb < T0)] − c1(n)

]
.
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We have

c1(n)= r(p+ε)Pn+1(Tb<Tn)

−r [(p+ε)Pn+1(Tb<Tn)+(q−ε)Pn−1(T0<Tn)]·Pn(Tb<T0)

= r(p+ε)Pn+1(Tb<Tn)·Pn(T0<Tb)−r(q−ε)Pn−1(T0<Tn)·Pn(Tb<T0)

= r [pPn+1(Tb<Tn)·Pn(T0<Tb)−q Pn−1(T0<Tn)·Pn(Tb<T0)]

+εr [Pn+1(Tb<Tn)·Pn(T0<Tb)+Pn−1(T0<Tn)·Pn(Tb<T0)]

:= c1,1(n)+c1,2(n),

where the last equality serves as the definition of c1,1(n) and c1,2(n). Using the
Markov property and (12), we obtain

c1,1(n)=r [p(1−Pn+1(Tn<Tb))·Pn(T0<Tb)−q(1−Pn−1(Tn<T0))·Pn(Tb<T0)]

=r [p(Pn(T0<Tb)−Pn+1(T0<Tb))−q(Pn(Tb<T0)−Pn−1(Tb<T0))]

=r [p(Pn(T0<Tb)−Pn+1(T0<Tb))−q(Pn−1(T0<Tb)−Pn(T0<Tb))]

=0

and

c1,2(n)=εr [(1−Pn+1(Tn<Tb))·Pn(T0<Tb)+(1−Pn−1(Tn<T0))·Pn(Tb<T0)]

=εr [1−Pn+1(Tn<Tb)Pn(T0<Tb)−Pn−1(Tb<T0)]

=εr [Pn−1(T0<Tb)−Pn+1(T0<Tb)]=εr [Pn+1(Tb<T0)−Pn−1(Tb<T0)].

Further,

c2(n)= J m−1
n

[
rεKn[Pn+1(Tb < T0)− Pn−1(Tb < T0)] − c1(n)

]
=−J m−1

n rε(1− Kn) · [Pn+1(Tb < T0)− Pn−1(Tb < T0)]

= −J m
n rε · [Pn+1(Tb < T0)− Pn−1(Tb < T0)].

Thus

c∗(n)=
c1(n)+ c2(n)

1− J m
n

= rε[Pn+1(Tb < T0)− Pn−1(Tb < T0)], (15)

which yields

c∗(n)=


rερn(ρ−1

− ρ)

1− ρb if p 6= q,

2εr/b if p = q.
(16)

Remark 3.1. Remarkably, c∗(n) is independent of m. Furthermore, (15) implies
that, given the store location n, the equilibrium price c∗(n) is the unique positive
constant c which makes Mk = r · PXk (Tb < T0) − c ·

∑min{k,m}
i=0 1{X i=n} into a

martingale under Pa,n with respect to the natural filtration Fk = σ((X i , yi ) : i ≤ k)
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of the Markov chain formed by the pairs (Xk, yk). Notice that PXk (Tb < T0), k ≥ 0,
is a martingale with respect to its natural filtration under Pa , but not under Pa,n .

The independence of c∗(n) of m is an implication of the Markov property and
our assumption that the buyer is risk-neutral, and thus is concerned only with the
expected value of her earnings. Using the Markov property, (8) can be rewritten as

c∗(n)=
r ·Pn,n(Tb < T0)− r · Pn(Tb < T0)

En,n(ηn,m)
.

The difference Pn,n(Tb < T0)− r · Pn(Tb < T0) can be decomposed into the sum of
the expected gain from using 1 cookie until either returning to the store or finishing
the game. Notice that, between two successive visits to the store, the buyer’s motion
is described by the measure Pa . Given the possibility to reconsider her decision to
use cookies upon the next return to the store, the buyer would evaluate her expected
earnings again according to (6). Therefore, using the Markov property, the buyer’s
gain from using one cookie is, up to the multiplicative factor r ,

(p+ε)Pn+1(Tb< Tn)+[(p+ε)Pn+1(Tn < Tb)+(q−ε)Pn−1(Tn < T0)]Pn(Tb< T0)

−pPn+1(Tb<Tn)+[pPn+1(Tn<Tb)+q Pn−1(Tn<T0)]Pn(Tb<T0)

= εPn+1(Tb < Tn)+ ε[Pn+1(Tn < Tb)− Pn−1(Tn < T0)]Pn(Tb < T0)

= ε[Pn+1(Tb < T0)− εPn−1(Tb < T0)],

in agreement with (15).
As we already mentioned in Remark 2.3, the fact that c∗(n) is independent of m

implies that the buyer would not change her decision regarding the use of cookies
during the course of the game. This implies that the equilibrium price policy for
the seller is to maintain a fixed cookie price throughout the game even if the buyer
were allowed to change it according to the number of the cookies left in stock. The
fact that the price c∗(a) is a multiple of the boost ε is not surprising, though it is
not trivial a priori and is interesting.

We are now in a position to find the seller’s expected revenue with the store
located at n. For an arbitrary c > 0, write, using (11),

Vc(n)= c · En,n(ηn,m)=
c(1− J m

n )

1− Jn
. (17)

Recall the convention J m
n = m J m

n = 0 for m =∞. We have:

Lemma 3.2. For a fixed starting point of the buyer a, the unique subgame perfect
location of the cookie store is at n∗(a)= a.

Proof. The strong Markov property and Theorem 2.4 imply that

Vc∗(a,n)(a, n)= Pa(Tn < T) · Vc∗(n)(n), (18)
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where T is defined in (1). For real x ∈ (0, b) define

J (x)=


(p+ ε)

(
1−

1
b− x

)
+ (q − ε)

(
1−

1
x

)
if p = q,

(p+ ε)
ρb
− ρx+1

ρb− ρx + (q − ε)
ρx−1
− 1

ρx − 1
if p 6= q.

For real numbers x ∈ (0, b) define

fρ,m(x)=



1
x
·

1− J m(x)
1− J (x)

if x ≥ a and ρ = 1,

1
b−x

·
1− J m(x)
1− J (x)

if x ≤ a and ρ = 1,

ρx

ρx−1
·

1− J m(x)
1− J (x)

if x ≥ a and ρ 6= 1,

ρx

ρb−ρx ·
1− J m(x)
1− J (x)

if x ≤ a and ρ 6= 1.

Then Jn = J (n), where Jn is given by (10). It follows from (16), (17), and (18)
that fρ,m(x) differs from Vc∗(x)(a, x) only by a positive constant multiplicative factor
on both the intervals [1, a] and [a, n]. Considering the sign of the derivative f ′ρ,m(x)
and using the fact that(

1− J m(x)
1− J (x)

)′
= J ′(x)

m∑
k=0

k J k−1(x),

it is easy to verify that, if the lemma is true for m =∞, it is true for any m ∈ N.
It is then routine to check, using the first derivative test, that fρ,∞(x) (and hence
Vc∗(x)(a, x)) attains its maximum when x = a for any ρ > 0. The proof of the
lemma is completed. �

Note that, in the extreme case ε = 1− p, any location n ≤ a will have the same
effect from perspective of the buyer. Thus, in that case, the seller is only concerned
with optimizing the chances of the buyer to ever visit the store. We summarize our
results for the subgame perfect equilibrium strategy (c∗(a), n∗(a)) of the seller and
her corresponding revenue in the following statement.

Theorem 3.3. Consider a game 0m,a .

(a) For a fixed starting point of the buyer a, the unique subgame perfect equilibrium
location of the store is at n∗ = a.

(b) The subgame perfect equilibrium cost c∗(a) is given by (16) with n = a; thus

c∗(a)=


rερa(ρ−1

− ρ)

1− ρb if p 6= q,

2εr/b if p = q.
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Figure 1. Sketch of the graph of c∗(n) and buyer’s equilibrium
policy. From left to right, the graphs exemplify the cases ρ > 1,
ρ = 1, ρ < 1. In all cases, b = r = 10 and ε = 0.2.

In particular, c∗(a) is independent of the value of m.

(c) The expected revenue of the seller at equilibrium is given by

V ∗(a) := Vc∗(a)(a)=
c∗(a)(1− J m

a )

1− Ja
.

Figure 1 provides a graphical representation of the equilibrium strategy of the
buyer in the first quadrant of the plane (c, n), where each point corresponds to an
available strategy of the seller. In all three cases illustrated, b= r = 10 and ε = 0.2.

Assuming q > p, one can consider a version of the game on the interval (−∞, 0]
with a reward r > 0 given to the walker when (and if) she arrives at 0. The
equilibrium strategies for the game on (−∞, 0) can be formally obtained from the
corresponding results for a finite interval by replacing a with a+ b and taking the
limit as b→∞. We state this as follows. Let

J inf
a = (p+ ε)Pa+1(Ta < T0)+ (q − ε)Pa−1(Ta < T−∞)

= (p+ ε)
ρa+1
− 1

ρa − 1
+ (q − ε)ρ−1

= 1+ ε(ρ− ρ−1)− (p+ ε)
ρ− 1
1− ρa .

Theorem 3.4. Consider the variant of 0m,a where the buyer’s random walk is
taking place on the infinite interval (−∞, 0], the site 0 is the unique absorbing
point for the random walk, ρ > 1, the buyer is rewarded with r > 0 dollars when
(and if ) she reaches 0, and the buyer’s starting point is a fixed constant a ∈ (−∞, 0).

(a) The equilibrium location of the store is at n∗inf = a.

(b) For a given price for a cookie c, provided that the buyer will use the cookies,
the expected revenue of the seller is given by

V inf
c (a)= c ·

1− (J inf
a )m

1− J inf
a

.

(c) The equilibrium cost c∗inf(a) is given by c∗inf(a)= rερa(ρ−ρ−1). In particular,
c∗inf(a) is independent of the value of m.
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The explicit formulas provided by Theorem 3.3 allow one also to study how the
main characteristics of the buyer-seller game depend on the parameters b and ε. In
the next theorem we find natural scalings for the parameters m and r when p = q
and b goes to infinity. The scaling factors turn out to be of order b, indicating that
the effect of the cookie store on the simple random walk is considerably large.

Theorem 3.5. (a) For any a ∈ N and m ∈ N∪ {∞}, if limb→∞ b−1r(b)= α for
some constant α ∈ (0,∞), we have limb→∞ c∗(a)= 2εα.

(b) For any x>0, if r>0 and limb→∞ b−1
·m(b)=β for some constant β ∈ (0,∞)

(and giving bbxc its usual meaning, max{n ∈ N : n ≤ bx}), we have

lim
b→∞

V ∗(bbxc)= 2εr ·
1− e−βK0

K0
, where K0 =

1
2

(
1+ 2ε
1− x

+
1− 2ε

x

)
.

We next investigate the equilibrium revenue of the seller V ∗(a) as a function
of the parameter ε. On one hand, the seller provides cookies creating a positive
reinforcement to the random walk to terminate at b. On the other hand, in order
to increase consumption of cookies, she is interested in keeping the walker in the
game as long as possible. The following result shows that, in the trade-off between
the equilibrium price c∗(a) (increasing function of ε) and the expected number of
visits to the store (decreasing function of ε), the former is the dominant factor for
establishing the equilibrium policy of the seller.

Theorem 3.6. V ∗(a) is an increasing function of the parameter ε.

Proof. Observe that, for any ρ > 0, c∗(a) has the form c∗(a) = Cε where C > 0
does not depend on ε. Therefore, by Theorem 3.3,

∂V ∗(a)
∂ε

=
C(1− J m

a )

1− Ja
+
∂ Ja

∂ε
·

Cε(1−m J m−1
a + (m− 1)J m

a )

(1− Ja)2
. (19)

According to (10),

∂ Ja

∂ε
= Pa+1(Ta < Tb)− Pa−1(Ta < T0) >

Ja − 1
ε

.

Furthermore,

1−m J m−1
a + (m− 1)J m

a

(1− Ja)2
=

∂

∂ Ja

(
1− J m

a

1− Ja

)
=

m∑
k=1

k J k−1
a > 0.

Therefore, replacing ∂ Ja
∂ε

with Ja−1
ε

in (19), we obtain

∂V ∗(a)
∂ε

>
C(1− J m

a )

1− Ja
−

C(1−m J m−1
a + (m− 1)J m

a )

1− Ja
= Cm J m−1

a ≥ 0.

This completes the proof of the theorem. �
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4. Population of buyers. Randomized entry point for the buyer

In this section we aim to find the equilibrium policy (c, n) for a single seller dealing
with a population of walkers. Notice that, according to Theorem 2.4, once the store
is placed, the equilibrium price for a cookie is independent of the buyer’s entry
point and therefore is determined by the store placement only.

Assume that the buyers are independent of each other, and the starting position of
each buyer is distributed uniformly on {1, . . . , b−1}. Further, assume that the path
of the random walk associated with the buyer with X0=a is distributed according to
Pa,n with m =∞. It then follows from (2) that the problem is basically equivalent
to its analogue with a single buyer whose initial position is uniformly distributed
over the integers within (0, b). In what follows we will therefore consider a slightly
more general scenario, formally allowing m <∞.

Definition 4.1. The game 0m,unif is the same as 0m,a , except that the buyer starts
her random walk at a random integer point X0, uniformly distributed over (0, b).

Let V unif
c (n) denote the expected revenue of a seller whose store is located at

site n. For n ∈ [1, b− 1] we have

V unif
c (n)=

1
b− 1

b−1∑
a=1

Vc(a, n)=
Vc(n)
b− 1

b−1∑
a=1

Pa(Tn < T)

=
Vc(n)
b− 1

[
1+

n−1∑
a=1

Pa(Tn < T0)+

b−1∑
a=n+1

Pa(Tn < Tb)

]
,

with the usual convention that the last sum vanishes if n+1> b−1. For p = q we
obtain

1+
n−1∑
a=1

Pa(Tn < T0)+

b−1∑
a=n+1

Pa(Tn < Tb)

=

n−1∑
a=1

a
n
+

b−1∑
a=n

b−a
b−n

=
n−1

2
+b−

(b−1)b−(n−1)n
2(b−n)

=
n−1

2
+b−

b+n−1
2

=
b
2
.

For p 6= q we obtain

1+
n−1∑
a=1

Pa(Tn<T0)+

b−1∑
a=n+1

Pa(Tn<Tb)=

n−1∑
a=1

ρa
−1

ρn−1
+

b−1∑
a=n

ρb
−ρa

ρb−ρn

=

ρn
−1

ρ−1 −1

ρn−1
−

n−1
ρn−1

+
ρb(b−n)
ρb−ρn −

ρb
−ρn

ρ−1

ρb−ρn

=−
n

ρn−1
+
ρb(b−n)
ρb−ρn .
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We summarize this calculation in the following lemma. Recall Vc(n) from page 199.

Lemma 4.2. Consider a game 0m,unif.

(a) If p = q, we have

V unif
c (n)=

Vc(n)b
2(b− 1)

.

(b) If p 6= q , we have

V unif
c (n)=

Vc(n)
b− 1

·

(
−

n
ρn − 1

+
ρb(b− n)
ρb− ρn

)
.

Let V ∗unif(n) denote the maximal expected revenue in 0m,unif of the store located
at n ∈ (0, b). That is, V ∗unif(n)= V unif

c∗(n)(n), where c∗(n) is defined in (13). Recall Jn

from (10). Combining Lemma 4.2 with (17) and Theorem 3.3(a), we obtain:

Corollary 4.3. Consider a game 0m,unif.

(a) If p = q, we have

V ∗unif(n)=
εr(1− J m

n )

(b− 1)(1− Jn)
.

(b) If p 6= q , we have

V ∗unif(n)=
rερn(ρ−1

− ρ)

1− ρb ·
1− J m

n

(b− 1)(1− Jn)
·

(
−

n
ρn − 1

+
ρb(b− n)
ρb− ρn

)
.

Corollary 4.4. Let a real number t ∈ [0, 1] be fixed and let (nb)b∈N be any sequence
of integers such that limb→∞ nb/b = t . Then

lim
b→∞

V ∗unif(nb)

V ∗(nb)
=


1− t if ρ > 1,
1/2 if ρ = 1,

t if ρ < 1,

where both V ∗unif(nb) and V ∗(nb) are computed for arbitrary but always the same
values of m and r , which may or may not depend on b.

We turn now to the study of the equilibrium location of the cookie store under
the assumption given in Definition 4.1. For p = q we have

Jn = (p+ ε)
(

1−
1

b− n

)
+ (q − ε)

(
1−

1
n

)
= 1−

(
p+ ε
b− n

+
q − ε

n

)
.

For a real number x ∈ (0, b) let

f (x)=
(

p+ ε
b− x

+
q − ε

x

)
.

Then limx→0 f (x) = limx→b f (x) = +∞ and f (x) is minimal over (0, b) when
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f ′(x)= 0, that is, when
p+ ε
(b− x)2

=
q − ε

x2 .

This yields (p− q + 2ε)x2
+ 2bx(q − ε)− b2(q − ε)= 0. The unique root of this

equation which belongs to the interval (0, b) is given by

x0(ε)=
−2b(q − ε)+ 2b

√
(q − ε)2+ (p− q + 2ε)(q − ε)

2(p− q + 2ε)

= b
−(1− 2ε)+

√
1− 4ε2

4ε
. (20)

For the equilibrium location of the store n∗unif we have |n∗unif− x0(ε)|< 1. Notice
that limε→0 x0(ε)= b/2, x0(1/2)= 0, and

x ′0(ε)=
1−
√

1− 4ε2

4ε2 −
1

√
1− 4ε2

=
1

1+
√

1− 4ε2
−

1
√

1− 4ε2
< 0.

We next examine the optimal location of the store for the case p 6= q and m =∞.
Let A = (p+ ε)(1− ρ) and B = (q − ε)(1− ρ−1). Then it is routine to check,
using the first derivative test, that |n∗unif− x0(ε)| < 1, where x0(ε) ∈ (0, b) is the
unique solution of the equation

x ln ρ · (A+ Bρb)+ [A+ Bρb
− Bbρb ln ρ] = ρx(A+ B). (21)

It is not hard to check that

lim
ε→0

x0(ε)=
bρb

ρb− 1
−

1
ln ρ

> 0, lim
ε→q

x0(ε)= 0, x ′0(ε) < 0.

The value of x0(ε) that solves (21) gives us insight as to which point will maximize
the seller’s expected revenue. We summarize the calculations above as follows.

Lemma 4.5. Consider a game 0m,unif. If p 6= q, assume in addition that m =∞.
Then |n∗unif− x0(ε)|< 1 where, for p = q, x0(ε) is given by (20), while for p 6= q,
x0(ε) is determined as the unique positive solution to (21).

Corollary 4.6. Under the conditions of Lemma 4.5, x0(ε) is a decreasing function
of the parameter ε. Furthermore:

(1) limε→q x0(ε)= 0;

(2) limε→0 x0(ε)= b/2 for p = q;

(3) For a fixed ρ > 0 and for p 6= q and m =∞, we have

lim
ε→0

x0(ε)=
bρb

ρb− 1
−

1
ln ρ

> 0.
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Corollary 4.7. Under the conditions of Lemma 4.5, for fixed ρ, r , and ε > 0 we
have:

(1) The quotient x0(ε)/b is a decreasing, constant, or increasing function of b
according to whether ρ is less than, equal to, or greater than one.

(2) If ρ > 1 (and m =∞), then limb→∞ n∗unif = b− 1.

(3) If ρ < 1 (and m =∞), then limb→∞ x0(ε)= x̂ε where x̂ε is the unique positive
solution to the equation A(1+ x ln ρ)= ρx(A+ B).

Corollary 4.6 implies that the range for the equilibrium store placement computed
for all possible values of ε and fixed b, r , and ρ, is the whole interval (0, nmax) for
some integer nmax ∈ (0, b). This is in stark contrast with the basic model, where the
buyer’s initial position is the major factor influencing the seller’s decision regarding
the optimal store placement. This can be heuristically explained recalling that the
optimal store location is determined in the trade-off between the equilibrium price
for a cookie and the expected number of visits to the store. The assumption that the
buyer’s entry point is spread uniformly over (0, b) smooths out the influence of the
“accessibility” factor, and therefore implies that the price optimization gets more
weight than it had for a “deterministically starting” buyer.

5. Risk aversion

In this section we aim to compare the two-person game considered in Section 2 with
a version where the buyer is risk-averse when making decisions under uncertainty.
The main result of the section is stated in Theorem 5.2.

In this section we consider the following variation of the basic game.

Definition 5.1. The game 0m,ra is the same as same as 0m,a except that the buyer’s
goal is to maximize her utility function given, for some fixed constants A ≥ 0 and
α ∈ (0, 1), by

U ra
c (a, n)= Ea,n(x − Aαx), (22)

where x = r · 1{T=Tb}− c · ηn,m is the total earnings of the buyer during the game
(possibly negative). Here, as before, c is the price taken by a seller for a cookie, m
is the number of cookies available at the store, and ηn,m is introduced in (2).

The individual utility function in the form (22) is a particularly popular choice
in economics literature, used for modeling risk-averse behavior. See for instance
[Bell 1988; Bell and Fishburn 2001] for its axiomatic characterization. The utility
function of the seller in this section is the same as the one in Section 3, namely the
expected payment of the buyer to the seller, Ea,n(c · ηn,m). That is, in contrast to
the buyer, the seller is risk-neutral.
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The equilibrium price for a cookie c∗ra(a, n) can be determined as a solution for
unknown variable c to the equation

U ra
c (a, n)= (r − Aαr ) · Pa(Tb < T0)− A · Pa(T0 < Tb), (23)

which is the counterpart of (6) for a risk-averse buyer. Notice that, according to (22),
U ra

c (a, n) is a decreasing function of the parameter c with limc→∞U ra
c (a, n)=−∞.

Furthermore, U ra
0 (a, n)= (r− Aαr ) ·Pa,n(Tb < T0)− A ·Pa,n(T0 < Tb), and hence

U ra
0 (a, n)− (r − Aαr ) · Pa(Tb < T0)− A · Pa(T0 < Tb)

= [Pa,n(Tb < T0)− Pa(Tb < T0)] · [r + A(1−αr )]> 0.

Therefore, (23) has a unique positive solution. The main result of this section is
stated in the following theorem. Recall c∗(n) from (13).

Theorem 5.2. Consider a game 0m,ra. Then c∗ra(a, n)≤ c∗(n).

Proof. Let RT = r1{Tb=T}. According to (23), c∗ra(a, n) is the unique solution for c
to the equation

Ea(x − Aαx)= Ea,n[(RT− cηn,m)− AαRT−cηn,m ].

To avoid using two different expectation functionals, namely Ea and Ea,n , in the
same equation, we can enlarge the probability space, where the random walk
(Xn)n≥0 is defined, to include a random walk Y = (Yn)n≥0 which is independent of
(Xn)n≥0, starts at Y0 = a with probability one, ignores cookies, and is distributed
according to Pa . We will assume that the second walker is also rewarded r dollars if
she reaches b. Let y denote buyer’s earnings; that is, y = r · 1{Y hits b before 0}. Using
this notation we obtain the equation for c∗ra(a, n) in the following form:

Ea,n(y− Aαy)= Ea,n[(RT− c∗ra(a, n) · ηn,m)− AαRT−c∗ra(a,n)·ηn,m ].

The latter is equivalent to

c∗ra(a, n)=
Ea,n(RT− y)

Ea,n(ηn,m)
− A ·

Ea,n[α
RT−c∗ra(a,n)·ηn,m −αy

]

Ea,n(ηn,m)

= c∗(n)− A ·
Ea,n[α

RT−c∗ra(a,n)·ηn,m −αy
]

Ea,n(ηn,m)
. (24)

Therefore, the statement of the theorem is equivalent to the claim that (recall that
two random walks under consideration are independent of each other)

Ea,n[α
RT−y−c∗ra(a,n)·ηn,m ]> 1.

Hence it suffices to show that the above inequality holds. Toward this end, observe
that f (c) := Ea,n(α

RT−y−cηn,m ) is an increasing function of the parameter c. There-
fore, if it were the case that c∗(n)≤ c∗ra(a, n) and Ea,n[α

RT−y−c∗ra(a,n)·ηn,m ] ≤ 1, we
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would also have
Ea,n[α

RT−y−c∗(n)·ηn,m ] ≤ 1. (25)

It follows from (8) that Ea,n[RT − y − c∗(n) · ηn,m] = 0, and hence (25) violates
Jensen’s inequality for the convex function αx . The proof of the theorem is therefore
completed. �

The intuitive explanation for the above result is as follows. While the walker
described by (Yn)n≥0 is risk-neutral and uses the expected earnings as her util-
ity function, the first walker is “more skeptical” (risk-averse) and therefore she
effectively values the expected earning less than its nominal value.

It is not hard to check that the proof of Theorem 2.4 goes through and hence its
conclusion is in force for 0m,ra. That is, for a fixed store location n, the maximal
price c∗ra(a, n) that the buyer would be willing to pay for a cookie is independent of
the value of a. This can also be derived directly from (24). Indeed, using the fact
that

Ea,n
[
(αRT−c∗ra(a,n)·ηn,m−αy)1{ηn,m=0}

]
= Ea(α

RT ·1{ηn,m=0})−Ea(α
RT ·1{ηn,m=0})= 0

and the Markov property, we obtain from (24) the following equation independent
of a:

c∗ra(a, n)= c∗(n)− A ·
Ea,n[α

RT−c∗ra(a,n)·ηn,m −αy
]

Ea,n(ηn,m)

= c∗(n)− A ·
En,n[α

RT−c∗ra(a,n)·ηn,m −αy
]

En,n(ηn,m)
.

We can therefore simplify the notation c∗ra(a, n) to c∗ra(n). Since ηn,m and RT

are independent random variables under Pn,n , we obtain that c∗ra(n) is the unique
solution of the equation

c∗ra(n)= c∗(n)− A ·
En,n(α

−c∗ra(n)·ηn,m ) · En,n(α
RT)− En(α

RT)

En,n(ηn,m)
. (26)

Though it seems impossible to determine the optimal location of the store from
this equation analytically, it can be useful for numerical analysis since all the
expectations appearing in the equation can be computed explicitly. We remark that,
in virtue of Theorem 5.2, (26) yields the following lower bound for c∗ra(n):

c∗ra(n)≥ c∗(n)− A ·
En,n(α

−c∗(n)·ηn,m ) · En,n(α
RT)− En(α

RT)

En,n(ηn,m)
. (27)

The right-hand side is negative and thus the bound is trivial for A large enough.
When A approaches infinity, c∗ra(n) converges to c∞(n) > 0 which is uniquely
determined from the equation En,n(α

−c∞(n)·ηn,m ) · En,n(α
RT)= En(α

RT).
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6. Time is money

We next consider a model where the buyer values not only the size of the reward but
also the time needed to achieve this reward. Time thus represents an opportunity
cost of participating in the cookie game. For simplicity, we do not assume that the
payoff is directly discounted or is subject to a “bias for the present” factorization,
as say in [O’Donoghue and Rabin 1999]. More precisely, we impose in this section
the following assumption regarding the buyer’s utility function.

Definition 6.1. The game 0m,time is the same as 0m,a except that the buyer’s goal
is to maximize her utility function given, for a fixed constant 3> 0, by

U time
c (a, n)= Ea,n(x −3T),

where x = r · 1{T=Tb}− c · ηn,m is the total earning of the buyer during the game
(possibly negative).

Our main result in this section is stated in Theorem 6.2, where the equilibrium
price for a cookie is determined. The equilibrium cost structure can be then
in principle used for finding the optimal store location. In general, the optimal
placement does not necessarily coincide with the starting point of the buyer. For
instance, if 3 is large enough, the buyer might be better off avoiding the use of the
cookies (at any positive price) in hopes of finishing the game quickly by exiting
[0, b] from the left. It can be shown that the optimal placement depends not only
on the entry point a and the relationship between the reward r and the “implicit
cost” 3, but also on the number of cookies initially available at the store, m. Since
there are many possible scenarios depending on the values of all the parameters
involved, we will not pursue details here.

Let c∗time(n) be the equilibrium price for a cookie 0m,time when the store is placed
at n ∈ (0, b). Similarly to (2), we define

ηn(k)=
min{m,k}∑

i=0

1{X i=n}. (28)

Notice that ηn(T)= ηn(T− 1)= ηn,m . We have:

Theorem 6.2. Consider a game 0m,time. Then

c∗time(n)=


rερn(ρ−1

− ρ)

1− ρb −
3ε

p− q
·

(bρn(ρ−1
− ρ)

1− ρb − 2
)

if p 6= q,

2rε/b− 2ε3(b− 2n) if p = q.

A negative value of c∗time(n) indicates that the walker will refrain from using cookies
regardless of the price, and hence the seller is better off not opening the store at
location n.
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Proof. (a) If p 6= q , let

Mk = Xk − k · (p− q)− 2ε · ηn(k− 1), k ≥ 0,

with the agreement that ηn(−1)= 0. Then (Mk)k≥0 is martingale with respect to the
natural filtration of the Markov chain formed by the pairs (Xk,mk)k≥0, where mk

is the number of cookies left at the store by time k, as defined in Section 1. By
the optional stopping theorem (see, for instance, Theorem 7.5 in [Durrett 1996,
Section 4.7]),

Ea,n(M0)= a = Ea,n(XT)− (p− q) · Ea,n(T)− 2ε · Ea,n(ηn,m).

Therefore

Ea,n(T)− Ea(T)=
1

p− q
·
[
Ea,n(XT)− Ea(XT)− 2ε · Ea,n(ηn,m)

]
.

The equilibrium price is defined from

r
b
· Ea,n(XT)− c∗time(a, n) · Ea,n(ηn,m)−3 · Ea,n(T)=

r
b
· Ea(XT)−3 · Ea(T).

That is,

c∗time(a, n)=
1

Ea,n(ηn,m)

[
r
b
·
(
Ea,n(XT)− Ea(XT)

)
−3 ·

(
Ea,n(T)− Ea(T)

)]
,

and hence

c∗time(a, n)=
1

Ea,n(ηn,m)

[(
r
b
−

3

p−q

)
·
(
Ea,n(XT)−Ea(XT)

)
+

2ε3
p−q
·Ea,n(ηn,m)

]
=

(
r
b
−

3

p−q

)
·
Ea,n(XT)−Ea(XT)

Ea,n(ηn,m)
+

2ε3
p−q

=

(
1−

3b
r(p−q)

)
·c∗(n)+

2ε3
p−q

.

(b) If p = q , let

Mk = X2
k − k− 4ε · n · ηn,m(k− 1), k ≥ 0.

As before we convene that ηn,m(−1)= 0. Then (Mk)k≥0 is martingale with respect
to the natural filtration of the Markov chain (Xk,mk)k≥0. Hence

a2
= Ea,n(X2

T)− Ea,n(T)− 4ε · n · Ea,n(ηn,m),

and thus

Ea,n(T)− Ea(T)= [Ea,n(X2
T)− Ea(X2

T)− 4ε · n · Ea,n(ηn,m)].
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The equilibrium price is defined from the identity

r
b
· Ea,n(XT)− c∗time(n) · Ea,n(ηn,m)−3Ea,n(T)=

r
b
· Ea(XT)−3Ea(T).

That is,

c∗time(n)=
1

Ea,n(ηn,m)

[
r
b
· (Ea,n(XT)− Ea(XT))−3 · (Ea,n(T)− Ea(T))

]
,

and hence

c∗time(n)=
1

Ea,n(ηn,m)

[
(r −3b2) · (Pa,n(XT)− Pa(XT))+ 4εn3 · Ea,n(ηn,m)

]
=

(
1−

3b2

r

)
· c∗(n)+ 4εn3,

as required. �

7. Chain of stores associated with the 1-excited random walk

One is prompted to study the buyer-seller game described in Section 2 for more
complex initial configurations of cookies (store placements). In particular, it is
interesting to compare the effect of the cookie store perturbation on the underlying
random walk in different models. In what follows we focus on finding the equi-
librium price for a cookie when X0 = 1 and exactly one cookie is placed at each
integer site within the interval (0, b). The corresponding random walk (Xk)k≥0 is
usually referred to as the 1-excited random walk on Z (see, for instance, [Antal and
Redner 2005; Benjamini and Wilson 2003]). Our main results in this section are
stated in Theorems 7.1 and 7.2; see also two remarks concluding the section.

Let Pk be the probability that the 1-excited random walk starting at X0 = 1 will
reach site k > 0 before hitting 0. Our results in this section rely on an explicit
formula for Pk and its asymptotic analysis. These quantities are fundamental for
the random walk theory. They have been discussed in [Antal and Redner 2005],
based on arguments of a different type from ours.

Let U we
c (b) (here we abbreviates “weakly excited”) denote the expected earnings

of the buyer when the price for a cookie is c > 0 and she is using the cookies.
We will denote by c∗we(b) the subgame perfect equilibrium price for a cookie for a
buyer performing the 1-excited random walk on [0, b] with absorbing boundaries,
starting at X0 = 1. Since Pk −Pk+1 is the probability that the random walk started
at X0 = 1 will reach k but never k+ 1 before the ruin at 0, we have

U we
c (b)= Pb · [r − c(b− 1)] −

b−1∑
k=1

(Pk −Pk+1) · ck.
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Similarly to (8), we have

c∗we(b)=
r [Pb− P1(Tb < T0)]

Pb · (b− 1)+
∑b−1

k=1(Pk −Pk+1) · k
. (29)

Theorem 7.1. If p = q , we have limb→∞ bc∗we(b)= 2rε.

Proof. We have

Pk+1 = Pk · [p+ ε+ (q − ε)Pk−1(Tk+1 < T0)], (30)

which implies, for p = q,

Pk+1 = Pk ·

[
p+ ε+ (q − ε)

k− 1
k+ 1

]
=

Pk · (k+ 2ε)
k+ 1

.

Thus

Pk =
1
k!

k−1∏
j=1

( j + 2ε)=
1
k

k−1∏
j=1

(
1+

2ε
j

)
, k = 1, . . . , b,

with the usual convention that
∏0

k=1 ak = 1 for any reals ak . It follows from (29)
that

c∗we(b)=
r [Pb− b−1

]

Pb · (b− 1)+
∑b−1

k=1(Pk −Pk+1) · k
.

Observe that

(Pk −Pk+1) · k = Pk
k(1− 2ε)

k+ 1
. (31)

We will next show that

lim
n→∞

n1−2εPn = cε > 0 for some constant cε > 0. (32)

Let fn = n1−2εPn . Then

fn+1

fn
=
(n+ 1)1−2ε(n+ 2ε)

(n+ 1)n1−2ε =
(n+ 1)−2ε

n−2ε

n+ 2ε
n
=

(
1+

1
n

)−2ε

·

(
1+

2ε
n

)

<

(
1+

2ε
n

)−1

·

(
1+

2ε
n

)
= 1.

Therefore, fn is an increasing sequence. On the other hand, using convexity of the
function g(x)= 1/x and the inequality 1+ x ≤ ex , x ∈ R, we obtain

fn = n1−2εPn = n−2ε
n−1∏
j=1

(
1+

2ε
j

)
≤ n−2ε exp

( n−1∑
j=1

2ε j−1
)

< n−2ε exp
(

2ε+ 2ε
∫ n−1

1
x−1 dx

)
< e2ε <∞.
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Therefore, fn converges to a finite nonzero limit when n approaches infinity. Fur-
thermore, according to (32), fn is a regularly varying at infinity sequence of index
−(1− 2ε) [Bojanic and Seneta 1973]. This implies [ibid., Theorem 6]

lim
b→∞

(b2 fb)
−1

b∑
k=1

k2 fk(k+ 1)−1
= (2ε)−1.

This observation along with (31) imply

lim
b→∞

b·c∗we(b)= lim
b→∞

br(Pb−b−1)

Pb ·(b−1)+
∑b−1

k=1(Pk−Pk+1)·k

= lim
b→∞

brPb

Pb ·(b−1)+(2ε)−1(Pb−1−Pb)·(b−1)b

= lim
b→∞

brPb

Pb ·(b−1)+(2ε)−1Pb−1(b−1)(1−2ε)
=

r
1+(2ε)−1(1−2ε)

=2εr.

The proof of the theorem is completed. �

For p 6= q , recurrence relation (30) implies

Pk+1 = Pk ·

[
p+ ε+ (q − ε)

ρk−1
− 1

ρk+1− 1

]
= Pk

ρk
− 1+ ε(ρk+1

− ρk−1)

ρk+1− 1

= Pk

(
1+ ε

ρk+1
− ρk−1

ρk − 1

) ρk
− 1

ρk+1− 1
.

Thus P1 = 1 and

Pk =
ρ− 1
ρk − 1

k−1∏
j=1

(
1+ ε

ρ j+1
− ρ j−1

ρ j − 1

)
, k = 2, . . . , b.

In this case

c∗we(b)=
r
(
Pb−

ρ−1
ρb−1

)
Pb · (b− 1)+

∑b−1
k=1(Pk −Pk+1) · k

. (33)

Observe that

(Pk −Pk+1)= Pk

(
1−

ρk
− 1+ ε(ρk+1

− ρk−1)

ρk+1− 1

)
= Pk

(
ρk+1
− ρk
− ε(ρk+1

− ρk−1)

ρk+1− 1

)
= Pk · ρ

k−1
(
ρ(ρ− 1)− ε(ρ2

− 1)
ρk+1− 1

)
. (34)
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It follows from (33) that

c∗we(b)≤
rPb

Pb · (b− 1)
=

r
b− 1

.

The following theorem shows that this bound is asymptotically tight for ρ < 1,
regardless the value of ε.

Theorem 7.2. (a) If ρ > 1, we have

lim
b→∞

(
ρ

1+ ε(ρ− ρ−1)

)b

c∗we(b)= cε for some constant cε ∈ (0,∞).

(b) If ρ < 1, we have limb→∞ bc∗we(b)= r .

Proof. (a) Assume that ρ > 1. We will first show that

lim
n→∞

(
ρ

1+ ε(ρ− ρ−1)

)n

Pn = c̃ε for some constant c̃ε ∈ (0,∞). (35)

Notice that ρ

1+ε(ρ−ρ−1)
> 1 because ε < q . Let

fn =

(
ρ

1+ ε(ρ− ρ−1)

)n

Pn.

Then
fn+1

fn
=

ρ

1+ ε(ρ− ρ−1)
·
ρn
− 1

ρn+1− 1
·

(
1+ ε

ρn+1
− ρn−1

ρn − 1

)
=

ρ

1+ ε(ρ− ρ−1)
·
ρn
− 1+ ε(ρn+1

− ρn−1)

ρn+1− 1

=
ρn+1
− ρ+ ε(ρn+2

− ρn)

ρn+1− 1+ ε(ρn+2− ρn − ρ+ ρ−1)
< 1.

To verify the inequality in the last line above write

ρn+1
− ρ+ ε(ρn+2

− ρn) < ρn+1
− 1+ ε(ρn+2

− ρn
− ρ+ ρ−1)

⇐⇒ ε(ρ− ρ−1) < ρ− 1 ⇐⇒ ε(ρ+ 1) < ρ.

The last inequality is true because ε < q. Thus, we have proved that fn is a
decreasing sequence. On the other hand, since

ρn−1 ρ− 1
ρn − 1

>
ρ− 1
ρ

,
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we obtain

fn =

(
ρ

1+ ε(ρ− ρ−1)

)n−1

Pn

≥
ρ− 1
ρ
·

(
1

1+ ε(ρ− ρ−1)

)n−1 n−1∏
j=1

(
1+ ε

ρ j+1
− ρ j−1

ρ j − 1

)

≥
ρ− 1
ρ
·

(
1

1+ ε(ρ− ρ−1)

)n−1 n−1∏
j=1

(1+ ε(ρ− ρ−1)) >
ρ− 1
ρ

> 0.

Therefore, fn is a bounded away from zero decreasing sequence, and hence
limn→∞ fn exists and is strictly positive and finite. Notice that

ρ

1+ ε(ρ− ρ−1)
< ρ,

and hence

lim
n→∞

Pb

(
ρ− 1
ρb− 1

)−1

=∞.

Therefore, due to (34) and (35), the following limit exists and is strictly positive
and finite:

lim
b→∞

(
ρ

1+ ε(ρ− ρ−1)

)b

c∗we(b)= lim
b→∞

(
ρ

1+ε(ρ−ρ−1)

)brPb

Pb · (b− 1)+
∑b−1

k=1(Pk −Pk+1) · k

=
r c̃ε∑

∞

k=1(Pk −Pk+1) · k
:= cε ∈ (0,∞).

(b) We now turn to the case ρ < 1. In virtue of (33) and (34) it suffices to show that

lim
n→∞

Pn = lim
n→∞

(1−ρ)
n−1∏
j=1

(
1+ε

ρ j+1
−ρ j−1

ρ j−1

)
= ĉε

for some constant ĉε ∈ (0,∞). Let

fn =

n−1∏
j=1

(
1+ ε

ρ j+1
− ρ j−1

ρ j − 1

)
.

Then fn is an increasing sequence. On the other hand,

fn =

n−1∏
j=1

(
1+ ε

ρ j+1
− ρ j−1

ρ j − 1

)
≤

n−1∏
j=1

(
1+ ε

ρ j+1
− ρ j−1

ρ− 1

)

≤ exp
( ∞∑

j=1

ε
ρ j+1
− ρ j−1

ρ− 1

)
exp

(
ε

1+ ρ
1− ρ

)
<∞.
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Therefore, fn is a bounded and increasing sequence, and hence limn→∞Pn =

(1−ρ) limn→∞ fn exists and is strictly positive and finite. This completes the proof
of the theorem. �

Remark 7.3. We notice that Theorem 7.1 and Theorem 7.2 can be alternatively
stated as follows. We will write an ∼ bn when limn→∞ an/bn = 1 for two sequences
of real numbers (an)n∈N and (bn)n∈N.

(a) If p = q and r depends on b in such a way that r(b)∼ cb for some constant
c ∈ (0,∞), then limb→∞ c∗we(b)= 2cε.

(b) If ρ > 1 and r depends on b in such a way that

r(b)∼ c
(

ρ

1+ ε(ρ− ρ−1)

)b

for some constant c ∈ (0,∞), then limb→∞ c∗we(b) = cε for some constant
cε ∈ (0,∞).

(c) If ρ < 1 and r depends on b in such a way that r(b)∼ cb for some constant
c ∈ (0,∞), then limb→∞ c∗we(b)= c.

Remark 7.4. Let V ∗we(b) denote the expected revenue of the seller at the equilibrium.
Then V ∗we(b) = r · [Pb − b−1

] ∼ rPb as b goes to infinity. Thus the asymptotic
for Pb found in the course of the proof of Theorems 7.1 and 7.2 (see also [Antal
and Redner 2005] for a heuristic derivation) yields the asymptotic for V ∗we(b). More
precisely, for some strictly positive constants cε, c̃ε, and ĉε we have, as b goes to
infinity:

(a) If p = q , then V ∗we(b)∼ cεb−(1−2ε).

(b) If ρ > 1, then V ∗we(b)∼ c̃ε

(
ρ

1+ ε(ρ− ρ−1)

)−b

.

(c) If ρ < 1, then V ∗we(b)∼ ĉε.

8. Conclusion

We explored a simple game-theoretic modification of the gambler’s ruin problem.
The underlying random walk is defined through a single-point perturbation of the
transition probabilities of the regular nearest-neighbor random walk on Z, either
recurrent or transient. The perturbation is the same as the one in the excited (cookie)
random walks model, except being localized to a single point. Informally, the
deformation of the transition kernel can be described as a store that provides an
instant increase in probability in the positive direction when the buyer visits the
store. The price of a cookie is determined in the game (negotiation) between
the buyer (walker) and the seller (store’s owner). The equilibrium price can vary,
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depending on the store’s location. The seller chooses the location to maximize her
expected revenue. The goal of the buyer in the game is to maximize her expected
earning which is expressed in terms of a utility function. An analytical equation
for the equilibrium price, given the starting point of the walker and the store’s
location, is derived for several interesting choices of the utility function, including
risk-neutral behavior model, risk-averse behavior model, and a model including an
opportunity cost represented by time spent in the game. The difference between
the equilibrium price policies associated with different utility functions is quite
intuitive. The equilibrium price of the cookie has a nice scaling property when the
range of the interval approaches infinity. Thus the price is a natural characteristic
capturing the global effect of the “cookie store perturbation” on the regular random
walk. In fact, the structure of the equilibrium price is closely related to the structure
of exit probabilities (and local times) of the underlying (both perturbed and not
perturbed) random walks. For comparison, we include similar asymptotic results
for 1-excited random walk in our analysis. In principle, the spatial distribution of
the equilibrium price allows us to recover the optimal store location. The optimal
store placement coincides with the buyer’s starting point for the basic model of a
risk-neutral buyer, whereas in other cases it can be determined with the help of
numerical analysis. In a future work we consider continuous-time versions of the
problems studied in this paper by replacing the nearest-neighbor random walk with
a drifted Brownian motion. In a paper in preparation we enrich the game-theoretic
component of the basic game by including a third player, modeling both duopoly
competition and a state regulation of the market.
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Decomposing induced characters
of the centralizer of an n-cycle

in the symmetric group on 2n elements
Joseph Ricci

(Communicated by Nigel Boston)

We give explicit multiplicities and formulas for multiplicities of the characters
appearing in the decomposition of the induced character IndS2n

CS2n
.�/

1C , where �
is an n-cycle, CS2n

.�/ is the centralizer of � in S2n, and 1C is the trivial character
on CS2n

.�/.

1. Introduction

Throughout this paper we work only over the complex numbers, dealing with CSn

characters, where Sn is the symmetric group on n elements. Let � 2 Sn. In a
natural way, by fixing nC1; : : : ; 2n, we can regard � as an element of S2n as well.
Let C WD CS2n

.�/ be the centralizer of � in S2n. Let  be any linear character
of C . Hemmer [2011] showed that for m � n the induced character IndSm

C
 

becomes representation stable for m D 2n. Therefore, these induced characters
arise naturally when studying braid group cohomology. (For more on representation
stability and braid group cohomology, see [Church and Farb 2010].) It was proposed
that in general the decomposition of the induced character IndS2n

C
 into irreducible

characters of S2n was an open problem.
However, the case when � D .1 2 � � � n/ was studied in [Jöllenbeck and Schocker

2000; Kraśkiewicz and Weyman 2001]. In this case, CSn
.�/D h�i. Then the linear

characters of C are precisely the irreducible characters, which are indexed by the
numbers kD0; 1; : : : ; n�1 and take � to e

2�ik
n . It was shown that, for an irreducible

character �� of Sn, the multiplicity of �� in the decomposition of IndSn

h�i
 k is equal

to the number of standard Young tableaux of shape � with major index congruent to
k mod n. Once this is computed, one can use the Littlewood–Richardson rule or the
branching rule to induce the resulting characters up to S2n. So, in theory, the decom-
position of IndS2n

C
 k is known; however, no explicit formula is available in general.
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Keywords: representation theory, symmetric group, character theory.
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In this paper we will deal with the case when � is an n-cycle of Sn and  k D 1C

(i.e., k D 0), the trivial character. We present a partial result toward an explicit
formula as well as a formula for the multiplicities of certain irreducible CS2n

characters appearing in the decomposition.

2. Preliminaries

Partitions and Young diagrams.

Definition 2.1. We say that �D .�1; : : : ; �r / is a partition of n, written � ` n, if
�i � �iC1 � 0 for each �i 2Z and �1C� � �C�r D n. We say each �i is a part of �.

Definition 2.2. Let �D .�1; : : : ; �r / ` n. The Young diagram, Œ��, of � is the set

Œ��D f.i; j / 2 N�N j j � �ig:

We say each .i; j / 2 Œ�� is a node of Œ��.

If � ` n, we represent Œ�� by an array of boxes. As an example, consider the
partition �D .5; 3; 2; 2; 1/ ` 13. Then we visualize Œ�� as

where the upper left box is defined to be the ordered pair .1; 1/, the upper right is
.1; 5/, the lower left is .5; 1/, just like the entries of a matrix.

We will often drop the bracket notation and use � and Œ�� interchangeably,
though it will be clear by context to which we are referring. If �i is a part of
� ` n, then �=�i is the partition of n � �i formed by deleting �i from �. So
.5; 3; 2; 2; 1/=�2 D .5; 2; 2; 1/. If b D .i; j / is a node in the Young diagram of �,
we will write b 2 �. Suppose �D .3; 2; 1/. Returning to our previous example, it
is easy to see that each node b 2 � is also a node of �. We will denote this in the
obvious way, �� �. With this idea in mind, we make a definition.

Definition 2.3. Let � and � be partitions such that �� �. Then the skew diagram
�=� is the set of nodes

� D �=�D fb 2 � j b 62 �g:

In the case of our example, the skew diagram �=� would be this:
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One important aspect of Young diagrams that will be of great important in this
paper are rim hooks.

Definition 2.4. For a skew diagram �, we say the unique node .i0; j0/ such that
i0 � i and j0 � j for all .i; j / 2 � is the top node of �.

Definition 2.5. A rim hook is a skew diagram � such that if .i; j / is not the top
node of � then either .i � 1; j / 2 � or .i; j C 1/ 2 � , but not both.

We will say a rim k-hook or simply a k-hook is a rim hook consisting of k nodes.
We will say that a partition � has a k-hook if it is possible to remove a k-hook
from � and have the resulting diagram be the Young diagram of some partition �0.
To each rim hook � is assigned the leg length of �.

Definition 2.6. Let � be a rim hook. The leg length of � , denoted by ll.�/, is

ll.�/D (the number of rows in �)� 1:

Once again returning to our example where �D .5; 3; 2; 2; 1/, we see that � has
three rim 4-hooks:

�

� �

�

�

�

� � �

� � �

In the first and third cases, the 4-hooks have leg length 2, while in the second
case the 4-hook has leg length 1. One can also see that � does not have any rim
5-hooks, since it is not possible to remove a 5-hook from � and have the resulting
diagram be the Young diagram of a partition.

Character theory of the symmetric group. The basics of representation and char-
acter theory will be assumed, and can be found in [James and Liebeck 2001]. It is
well known [Sagan 2001, 2.3.4, 2.4.4] that there is a one-to-one correspondence
between the set of partitions of n and the set of irreducible characters of Sn. For
example, �.n/ corresponds to the trivial character, �.n�1;1/ corresponds to the
number of fixed points minus one, and �.1

n/ corresponds to the sign character.
Also, the conjugacy classes of Sn have a natural correspondence to the partitions
of n. If � 2 Sn is of cycle type �, � ` n, then we will denote the conjugacy class
of � by K�. Let �;� ` n. Suppose one wants to evaluate the character �� on the
conjugacy class K�, which we will denote by ���. The following theorem, known
as the Murnaghan–Nakayama rule, allows one to recursively compute ���:
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Theorem 2.7 [Sagan 2001, 4.10.2]. Let � D .�1; : : : ; �s/ and assume �; � ` n.
Then

��� D
X
�

.�1/ll.�/�
�=�

�=�1
;

where the sum is taken over all rim hooks � of � containing �1 nodes.

Now, in a natural way, one can think of Sn�1 as a subgroup of Sn. Suppose �� is
the character of Sn corresponding to � and �� is the character of Sn�1 corresponding
to �. Then one can easily compute the restricted character ��#Sn�1

and the induced
character IndSn

Sn�1
�� using the branching rule.

Definition 2.8. Let � ` n. We say an inner corner of Œ�� is a node .i; j / 2 Œ��
such that Œ���f.i; j /g is the Young diagram of some partition of n� 1. We denote
any such partition by ��. We say an outer corner is a node .i; j / 62 Œ�� such that
Œ��[f.i; j /g is the Young diagram of some partition of nC 1. We denote any such
partition by �C.

Theorem 2.9 (branching rule [Sagan 2001, 2.8.3]). Let � ` n� 1, � ` n. Then

��#Sn�1
D

X
��

��
�

and IndSn

Sn�1
�� D

X
�C

��
C

:

As an example, suppose � D .3; 3; 2/ and � D .5; 2/. Using Theorem 2.9 we
calculate

�.3;3;2/#S7
D �.3;2;2/C�.3;3;1/;

IndS8

S7
�.5;2/ D �.6;2/C�.5;3/C�.5;2;1/:

3. The decomposition of �

Some preliminary results. Recall that in the introduction we defined C WDCS2n
.�/,

with � D .1 2 � � � n/. One can compute that C Š h�i � Sn [Dummit and Foote
2004, 4.3]. Keeping this in mind we have the following notation:

Notation. For � 2 C , we will write � D .�k ; �/ for k 2 Z and � 2 Sn.

Also, if �D .�1; : : : ; �r / ` n then

.n; �/ WD .n; �1; : : : ; �r / ` 2n and .�; 1n/ WD .�1; : : : ; �r ; 1
n/ ` 2n:

Notation. When evaluating any character � on the conjugacy class of S2n corre-
sponding to .n; �/ or .�; 1n/, we will write �.n;�/ and �.�;1n/, respectively.

For the remainder of this paper, we will write � D IndS2n

C
1.

Proposition 3.1. Let n � 1. Let �.2n/ be the irreducible character of S2n corre-
sponding to the partition .2n/. Then

h�; �.2n/
iS2n
D 1:
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Proof. Using Frobenius reciprocity, we have

h�; �.2n/
iS2n
D h1C ; �

.2n/
#C iC :

But since �.2n/ is the trivial character, �.2n/#CD 1C , so we have

h�; �.2n/
iS2n
D 1: �

Proposition 3.2. Let n � 2. Let �.2n�1;1/ be the irreducible character of S2n

corresponding to .2n� 1; 1/. Then

h�; �.2n�1;1/
iS2n
D 1:

Proof. First note that this character records the number points fixed by a permutation
and subtracts 1. Using Frobenius reciprocity, we expand the inner product as follows:

h�; �.2n�1;1/
iS2n
D h1C ; �

.2n�1;1/
#C iC D

1

nn!

X
�2C

�.2n�1;1/.�/: (3-1)

By remarks made at the beginning of this section, the last term in (3-1) becomes

1

nn!

n�1X
kD0

X
�2Sn

�.2n�1;1/..�k ; �//:

When k D 0, .�k ; �/D .1; �/ and .1; �/ fixes nC�.n�1;1/.�/C 1 points. When
k 6D 0, .�k ; �/ fixes �.n�1;1/.�/C 1 points, giving

1

nn!

n�1X
kD0

X
�2Sn

�.2n�1;1/..�k ; �//

D
1

nn!

� X
�2Sn

�
nC�.n�1;1/.�/

�
C .n� 1/

X
�2Sn

�.n�1;1/.�/

�

D
1

nn!

� X
�2Sn

nC
X
�2Sn

�.n�1;1/.�/C .n� 1/
X
�2Sn

�.n�1;1/.�/

�

D
1

nn!

�
nn!C nn!h�.n/; �.n�1;1/

iSn

�
: (3-2)

But since both �.n/ and �.n�1;1/ are irreducible, their inner product is 0. So (3-2)
becomes

1

nn!
nn!D 1: �

Proposition 3.3. Let n � 2. Let �.n;n/ be the irreducible character of S2n corre-
sponding to .n; n/. Then

h�; �.n;n/iS2n
D 1:
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Proof. Throughout, let dk D gcd.n; k/. Using Frobenius reciprocity, we write

h�; �.n;n/iS2n
D h1C ; �

.n;n/
#C iC D

1

nn!

n�1X
kD0

X
�2Sn

�.n;n/..�k ; �//:

We break the sum up into three pieces: one for k D 0, one for dk D 1 (of which
there are '.n/ such k, where ' denotes Euler’s totient function) and one for dk 6D 1:

h�; �.n;n/iS2n

D
1

nn!

� X
�2Sn

�.n;n/..1; �//C'.n/
X
�2Sn

�.n;n/..�; �//C
X

1<k<n
dk 6D1

X
�2Sn

�.n;n/..�k; �//

�
:

In order to use Theorem 2.7, we sum over all partitions of n and rewrite the sum as

h�; �.n;n/iS2n
D

1

nn!

�
n! h�.n/; �.n;n/#Sn

iSn
C'.n/

X
�`n

�
.n;n/

.n;�/
jK�j

C

X
1<k<n
dk 6D1

X
�`n

�
.n;n/

.. n
dk
/dk ;�/

jK�j

�
: (3-3)

By Theorem 2.9, we write

�.n;n/#Sn
D �.n/C

X
�`n
� 6D.n/

a��
�

where a� 2 f0; 1; 2; : : : g. Then, by linearity, we have

h�.n/; �.n;n/#Sn
iSn
D h�.n/; �.n/iSn

C

X
�`n
� 6D.n/

a�h�
.n/; ��iSn

D h�.n/; �.n/iSn
D 1; (3-4)

since all the �� are irreducible. Using Theorem 2.7,

�
.n;n/

.n;�/
D �

.n/

�
��

.n�1;1/

�

so thatX
�`n

�
.n;n/

.n;�/
jK�j D

X
�`n

�
�
.n/

�
��

.n�1;1/

�

�
jK�j

D

X
�`n

�
.n/

�
jK�j �

X
�`n

�
.n�1;1/

�
jK�j

D n! h�.n/; �.n/iSn
� n! h�.n/; �.n�1;1/

iSn
D n!: (3-5)
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Now let dk 6D 1, for some k. Again with Theorem 2.7, we write

�
.n;n/

.. n
dk
/dk ;�/

D �
.n/

�
C

X
�`n
� 6D.n/

c��
�

�

where c� 2 Z. ThenX
�`n

�
.n;n/

.. n
dk
/dk ;�/

jK�j D

X
�`n

�
.n/

�
jK�jC

X
�`n

X
�`n
� 6D.n/

c��
�

�
jK�j

D n! h�.n/; �.n/iSn
C

X
�`n
�6D.n/

n! c�h�
.n/; ��iSn

D n!: (3-6)

We note that there are n� '.n/� 1 numbers k strictly between 1 and n so that
dk 6D 1, so substituting (3-4), (3-5), and(3-6) into (3-3) we have

h�; �.n;n/iS2n
D

1

nn!

�
n!C'.n/n!C .n�'.n/� 1/n!

�
D

1

nn!
nn!D 1: �

In the case of nD 2 it turns out that Propositions 3.1, 3.2, and 3.3 give a full
decomposition. That is,

IndS4

CS4
..12//

1C D �
.4/
C�.3;1/C�.2;2/:

We notice that our first three results all showed that there are certain irreducible
characters appearing in the decomposition of � that have constant or stable multi-
plicities, independent of n. Our next result shows that this is not the case for all
constituents, but a closed-form formula for the multiplicity is known in some cases.

Proposition 3.4. Let n � 2. Let �.2n�2;2/ be the irreducible character of S2n

corresponding to .2n� 2; 2/. Then

h�; �.2n�2;2/
iS2n
D

8̂<̂
:

n

2
if n is even;

n�1

2
if n is odd:

Proof. Throughout, dk D gcd.n; k/. Using Frobenius reciprocity we write

h�; �.2n�2;2/
iS2n
D h1C ; �

.2n�2;2/
#C iC D

1

nn!

n�1X
kD0

X
�2Sn

�.2n�2;2/..�k ; �//:

If n D 2, we are done, by Proposition 3.3. Throughout the rest of the proof we
assume n � 3. As in the proof of Proposition 3.3, we break the sum into three
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pieces:

h�; �.2n�2;2/
iS2n

D
1

nn!

� X
�2Sn

�.2n�2;2/..1; �//C'.n/
X
�2Sn

�.2n�2;2/..�; �//

C

X
1<k<n
dk 6D1

X
�2Sn

�.2n�2;2/..�k ; �//

�

D
1

nn!

�
n! h�.n/; �.2n�2;2/

#Sn
iSn
C'.n/

X
�`n

�
.2n�2;2/

.n;�/
jK�j

C

X
1<k<n
dk 6D1

X
�`n

�
.2n�2;2/

.. n
dk
/dk ;�/

jK�j

�
. (3-7)

From Theorem 2.9, we have

h�.n/; �.2n�2;2/
#Sn
iSn
D

�
n

2

�
: (3-8)

Using Theorem 2.7 we write �.2n�2;2/

.n;�/
D �

.n�2;2/

�
; so thatX

�`n

�
.2n�2;2/

.n;�/
jK�j D

X
�`n

�
.n�2;2/

�
jK�j D n! h�.n/; �.n�2;2/

iSn
D 0: (3-9)

When n is even, n
2

divides n. Then d n
2
D

n
2

. We can then remove the 2-hook from
bottom row of .2n� 2; 2/, and then successively remove n

2
� 1 hooks of length 2

from the top row of .2n� 2; 2/. There are
�
n=2

1

�
D

n
2

ways to do this. We combine
this with Theorem 2.7 to see thatX

1<k<n
dk 6D1

�
.2n�2;2/

.. n
dk
/dk ;�/

D
n

2
�.n/C

X
�`n
�6D.n/

a��
�

�

with a� 2 Z. ThenX
1<k<n
dk 6D1

X
�`n

�
.2n�2;2/

.. n
dk
/dk ;�/

jK�j D

X
�`n

n

2
�.n/jK�jC

X
�`n

X
�`n
�6D.n/

a��
�

�
jK�j

D
n

2
n! h�.n/; �.n/iSn

C

X
�`n
�6D.n/

a�h�
.n/; ��iSn

D
n

2
n!: (3-10)
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So in the case when n is even, substituting (3-8)–(3-10) into (3-7), we have

h�; �.2n�2;2/
iS2n
D

1

nn!

��
n

2

�
n!C

n

2
n!

�
D

1

n

��
n

2

�
C

n

2

�
D

1

n

�
n.n� 1/

2
C

n

2

�
D

n� 1

2
C

1

2
D

n

2
;

as desired. Now, when n is odd, 2 does not divide n. Then n
2

is not an integer and
thus does not divide n. As a result, we cannot remove the hook of length 2 from
the bottom row of .2n�2; 2/. So when we apply Theorem 2.7, the trivial character
does not appear in the decomposition and we haveX

1<k<n
dk 6D1

�
.2n�2;2/

.. n
dk
/dk ;�/

D

X
�`n
�6D.n/

c��
�

�
with c� 2 Z:

Then X
1<k<n
dk 6D1

X
�`n

�
.2n�2;2/

.. n
dk
/dk ;�/

jK�j D

X
�`n

X
�`n
� 6D.n/

c��
�

�
jK�j

D

X
�`n
�6D.n/

n! c�h�
.n/; ��iSn

D 0: (3-11)

So then, substituting (3-8), (3-9), and (3-11) into (3-7), we have

h�; �.2n�2;2/
iS2n
D

1

nn!

�
n

2

�
n!D

1

n

�
n

2

�
D

1

n

n.n� 1/

2
D

n� 1

2
;

giving the result. �

A theorem for the partitions .2n � k;k/. We now present a theorem that general-
izes the previous propositions and gives a formula for the multiplicities of a number
of the irreducible characters of S2n appearing in the decomposition of �.

Theorem 3.5. Let n � 2k. Let �.2n�k;k/ be the irreducible character of S2n

corresponding to .2n� k; k/. For 1< h< n, let dh D gcd.n; h/, and lk D kdh=n.
Then

h�; �.2n�k;k/
iS2n
D

1

n

��
n

k

�
C

X
1<h<n
dh 6D1

n
dh
jk

�
dh

lk

��
:

Proof. With Frobenius reciprocity, we write

h�; �.2n�k;k/
iS2n
D h1C ; �

.2n�k;k/
#C iC D

1

nn!

n�1X
jD0

X
�2Sn

�.2n�k;k/..�j ; �//:
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As usual, we split the sum into three pieces:

h�; �.2n�k;k/
#S2n
iS2n

D
1

nn!

� X
�2Sn

�.2n�k;k/..1; �//

C'.n/
X
�2Sn

�.2n�k;k/..�; �//C
X

1<h<n
dh 6D1

X
�2Sn

�.2n�k;k/..�h; �//

�

D
1

nn!

�
n!h�.n/; �.2n�k;k/

#Sn
iSn

C'.n/
X
�`n

�
.2n�k;k/

.n;�/
jK�jC

X
1<h<n
dh 6D1

X
�`n

�
.2n�k;k/

.. n
dh
/dh ;�/

jK�j

�
: (3-12)

Since n � 2k, we can remove the k blocks from the bottom row of .2n� k; k/

and remove n� k blocks from the top row of .2n� k; k/, which leaves n blocks
remaining. We can do this removal in

�
n
k

�
ways, so, with 2:9, we have

h�.n/; �.2n�k;k/
#Sn
iSn
D

�
n

k

�
: (3-13)

Theorem 2.7 gives
�
.2n�k;k/

.n;�/
D �

.n�k;k/

�
;

since n� 2k. ThenX
�`n

�
.2n�k;k/

.n;�/
jK�j D

X
�`n

�
.n�k;k/

�
jK�j D n! h�.n/; �.n�k;k/

iSn
D 0: (3-14)

Now suppose there is some h so that dh 6D 1. Then �h is a product of dh
n

dh
-cycles.

If � is of cycle type � then

�.2n�k;k/..�h; �//D �
.2n�k;k/

.. n
dh
/dh ;�/

: (3-15)

By Theorem 2.7, in order for �.n/ to have nonzero multiplicity in the decomposition
of the right-hand side of (3-15), we have to be able to remove the k-hook from
the bottom row of .2n� k; k/. So if n

dh
does not divide k then this is not possible.

Then in this case
�
.2n�k;k/

.. n
dh
/dh ;�/

D

X
�`n
�6D.n/

a��
�

�
(3-16)

with a� 2 Z. Now, suppose that, for some h, dh 6D 1, and furthermore that n
dh

divides k. Then we can successively remove the lk hooks of length n
dh

from
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the bottom row of .2n� k; k/ and remove the dh � lk hooks of length n
dh

from

the top row of .2n� k; k/, which will result in �.n/ having positive multiplicity
in the aforementioned decomposition. In fact, a simple counting argument via
Theorem 2.9 shows the exact multiplicity will be

�dh

lk

�
: Then in this case

�
.2n�k;k/

.. n
dh
/dh ;�/

D

�
dh

lk

�
�
.n/

�
C

X
�`n
�6D.n/

c��
�

�
(3-17)

with c� 2 Z. Then (3-16) and (3-17) giveX
1<h<n
dh 6D1

X
�`n

�
.2n�k;k/

.. n
dh
/dh ;�/

jK�j

D

X
1<h<n
dh 6D1

n
dh

−k

X
�`n

X
�`n
� 6D.n/

a��
�

�
jK�jC

X
1<h<n
dh 6D1
n

dh
jgk

X
�`n

�
dh

lk

�
�
.n/

�
jK�j

C

X
1<h<n
dh 6D1
n

dh
jgk

X
�`n

X
�`n
�6D.n/

c��
�

�
jK�j

D

X
1<h<n
dh 6D1
n

dh
jgk

X
�`n

�
dh

lk

�
�
.n/

�
jK�j D

X
1<h<n
dh 6D1
n

dh
jgk

�
dh

lk

�
n!: (3-18)

Substituting (3-13), (3-14), (3-18) into (3-12) we have

h�; �.2n�k;k/
iS2n
D

1

nn!

��
n

k

�
n!C

X
1<h<n
dh 6D1

n
dh
jk

�
dh

lk

�
n!

�

D
1

n

��
n

k

�
C

X
1<h<n
dh 6D1

n
dh
jk

�
dh

lk

��
; (3-19)

as claimed. �

4. Future problems

The preceding work is only the beginning of a large selection of problems to be
worked out. It is possible that there are more stable multiplicities (independent
of n) in this decomposition. Also, the multiplicities and formulas found here only
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cover a small number of partitions and therefore characters. One may find that all
characters have a stable or closed-form formula for their multiplicities. Note that
in this paper we only discuss the trivial character of C , and much can be learned
from studying the decomposition of the nontrivial characters of C when induced up
to S2n, which arise in braid group cohomology. It may be possible to learn more by
first decomposing the character IndSn

C
 , studying this character, and then inducing

the resulting constituents up to S2n.
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On the geometric deformations of functions
in L2
[D]

Luis Contreras, Derek DeSantis and Kathryn Leonard

(Communicated by David Royal Larson)

We derive a formal relationship between the coefficients of a function expanded
in either the Legendre basis or Haar wavelet basis, before and after a polynomial
deformation of the function’s domain. We compute the relationship of coefficients
explicitly in three cases: linear deformation with Haar basis, linear deformation
with Legendre basis, and polynomial deformation with Legendre basis.

1. Introduction

This paper explores the relationship between Schauder coefficients of a function
before and after the domain of that function has been deformed in some reasonably
well-behaved manner. As an analogy, one may think of a function as a melody
recorded on an LP, and its domain as the position in the groove on the LP. The
groove will become deformed if the LP is left in the sun, but the melody played on
the LP after deformation will be related to the original melody. We are interested in
understanding that relationship. Our results are a preliminary step toward addressing
the inverse question of how to recover information about the undeformed function
given the deformed function and an unknown deformation.

More formally, let W = {w : D → D | w is a diffeomorphism} be a class of
diffeomorphisms defined on a closed subinterval D ⊂ R. Then each w ∈ W

defines a function Fw on L2
[D], where Fw( f ) = f ◦ w. Below, we provide

necessary background information to pose our question in terms of coefficients
of elements in L2

[D]. In Section 2, we derive a general relationship between the
coefficients of f , w, and g= Fw( f ). In Section 3, we compute precise relationships
between coefficients of f and g in the Legendre and Haar wavelet bases for linear
deformations, and in Section 4, in the Legendre basis for polynomial deformations.
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1.1. Background. For the Hilbert space L2
[D] = { f : D → R |

∫
D f 2 < ∞},

recall that the inner product is given by 〈 f, g〉 =
∫

D f g. Therefore, given an or-
thonormal basis {φi (x)}∞i=0 for L2

[D], the Schauder coefficients {ai } corresponding
to a function expanded in that basis, f (x) =

∑
∞

i=0 aiφi (x), can be computed by
ai =

∫
D f (x)φi (x) dx [Kreyszig 1989].

We will be exploring two orthonormal bases in our work: the Legendre basis,
which is a basis of polynomials, and the Haar wavelet basis, a basis that localizes
in scale and location. As noted above, domain deformation corresponds to com-
position of functions. The Legendre basis has the advantage that computations
involving composition with polynomial deformations are straightforward. On the
other hand, because the support of each basis function is the entire domain D,
localized deformations will produce changes in every Legendre coefficient. The
Haar wavelet basis has the opposite problem: local deformations will change only
the subset of coefficients corresponding to that locale, but composing basis functions
with polynomial deformations is computationally intimidating. Examined together,
however, these two bases provide a wide view of possible behaviors. We now define
each basis formally.

1.1.1. Legendre basis for L2
[−1, 1]. The Legendre basis arises by applying the

Gram–Schmidt orthonormalization process to the simplest basis for L2
[−1, 1],

the monomials {x i
}
∞

i=0. For D = [−1, 1], the resulting basis is as below (though
choosing a different D will produce a different normalizing constant K ):

ψi (x)=


√

2i + 1
2

N∑
n=0

(−1)n
(2i − 2n)!

2i n!(i − n)!(i − 2n)!
x i−2n for −1≤ x ≤ 1,

0 otherwise,

where N = i/2 when i is even, and N = (i − 1)/2 when i is odd [Jackson 2004].
Rewriting the normalizing constant

Kin =

√
2i + 1

2
(−1)n

(2i − 2n)!
2i n!(i − n)!(i − 2n)!

,

our basis becomes

ψi (x)=
N∑

n=0

Kinx i−2n. (1)

A function f (x) ∈ L2
[−1, 1] can therefore be written as

f (x)=
∞∑

i=0

ai

N∑
n=0

Kinx i−2n
=

∑
i

∑
n

ai Kinx i−2n.
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1.1.2. Haar basis for L2
[0, 1]. The Haar wavelet basis is generated by shifting and

scaling the simplest mother wavelet,

ψ(x)=


1 for 0≤ x < 1

2 ,
−1 for 1

2 ≤ x < 1,
0 otherwise,

which can be thought of as a coarse piecewise constant approximation to a sine
curve. After scaling and shifting, the resulting orthonormal basis is given by

ψi j (x)=


2i/2 for j

2i ≤ x < j+1/2
2i ,

−2i/2 for j+1/2
2i ≤ x < j+1

2i ,
0 otherwise,

where i ∈ N and 0≤ j ≤ 2i
− 1 [Radunović 2009].

2. General relationships of coefficients

Our first result presents a general relationship between Schauder coefficients of f
and those of g.

Theorem 1. Consider f (x) ∈ L2
[D], where D ⊂ R is a a closed interval, and let

w(x) = h−1(x) : D → D be a diffeomorphism. Set g(x) = f ◦w(x). Then for
f (x)=

∑
i aiψi (x), where {ψi } is an orthonormal basis for L2

[D],

g(x)=
∑

i

ciψi (x)=
∑

i

∑
j

αi j a jψi (x),

where αi j = 〈ψ j ◦w(x), ψi (x)〉L2 .

Proof. We claim that g ∈ L2(D). Because w is a diffeomorphism, w′ is continuous
and nonvanishing on D. Therefore, 1/w′ is also continuous on D and thus bounded
above by some M<∞. We then have

∫
D g2
=
∫

D( f ◦w)2=
∫

f 2/w′≤M‖ f ‖22<∞,
and so g ∈ L2

[D].
Thus, we can write g(x) as the convergent series

∑
i ciψi (x), where ci = 〈g, ψi 〉.

Remembering that g = f ◦w =
∑

j a j (ψ j ◦w), we have

ci = 〈g, ψi 〉 = 〈 f ◦w,ψi 〉

=

〈∑
j

a j (ψ j ◦w),ψi

〉
=

∑
j

a j 〈ψ j ◦w,ψi 〉 =
∑

j

a jαi j . �

Note that the coefficients {αi j } can be computed independently of f . Given a
deformation w, these may be computed and reused for multiple choices of f . Alas,
such a clean theorem requires dues to be paid elsewhere. We will see below the
challenges of computing the {αi j } coefficients in specific cases.
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3. Explicit relationships: linear deformations

3.1. Linear deformations and the Legendre basis for L2[−1, 1]. We first exam-
ine deformations of the form w(x)= βx , with 0< β < 1, for D = [−1, 1]. We are
cheating slightly here, as h = w−1 maps D to a larger interval D ⊂ h(D), and so
the setting of this first example does not match with Theorem 1. Nonetheless, the
results for linear w will be helpful in understanding the results for polynomial w in
Section 4, and so we persevere. We start with a simple fact from calculus:

Fact. For A = [−a, a] and t odd,
∫

A x t dx = 0. �

Theorem 2. Following Theorem 1, we take D = [−1, 1], {ψi (x)} as the Legendre
basis, and w(x)= βx , β > 0. Then

αi j =

2
N ,M∑

n,m=0

Kin K jmβ
i−2n

(i − 2n)+ ( j − 2m)+ 1
if i + j is even

0 otherwise.

Proof. Expanding a function f in the Legendre basis, we can write f (x) as∑
i ai

∑N
n=0 Kinx i−2n , where N = i/2 when i is even and N = (i −1)/2 when i is

odd. We are concerned with g(x)= f (w(x))=
∑

i aiψi (w(x)), where

ψi (w(x))= ψi (βx)=
N∑

n=0

Kin(βx)i−2n
=

N∑
n=0

Kinx i−2nβ i−2n.

Therefore,

g(x)=
∑

i

ai

N∑
n=0

Kinx i−2nβ i−2n.

Substituting in βx , we obtain the following formula for {αi j }:

αi j = 〈ψi (βx), ψ j (x)〉

=

∫ 1

−1

( N∑
n=0

Kinx i−2nβ i−2n
)( M∑

m=0

K jm x j−2m
)

dx

=

∫ 1

−1

N ,M∑
n,m=0

(Kinx i−2nβ i−2n)(K jm x j−2m) dx

=

N ,M∑
n,m=0

∫ 1

−1
(Kinx i−2nβ i−2n)(K jm x j−2m) dx .

=

N ,M∑
n,m=0

∫ 1

−1
Kin K jm x i−2n+ j−2mβ i−2n dx
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In view of the Fact quoted above, if i + j is odd, the integral is zero. Otherwise,

αi j =

N ,M∑
n,m=0

∫ 1

−1
Kin K jm x i−2n+ j−2mβ i−2n dx= 2

N ,M∑
n,m=0

Kin K jmβ
i−2n

(i−2n)+( j−2m)+1
. �

3.2. Linear deformations and the Haar basis for L2[0, 1]. We again examine
linear deformations of the form w(x)= βx , now with β > 0 and D = [0, 1]. Note
that for the Haar wavelet basis, each basis element has two indices: one for scale
and one for location. Hence, the {αi j } coefficients defined in Theorem 1 become
{αi jkl} = 〈ψi j ◦w,ψkl〉.

As before, we must compute

ψi j (w(x))= ψi j (βx)=


2i/2 for j

2i ≤ βx < j+1/2
2i

−2i/2 for j+1/2
2i ≤ βx < j+1

2i

0 otherwise.

=


2i/2 for j

β2i ≤ x < j+1/2
β2i

−2i/2 for j+1/2
β2i ≤ x < j+1

β2i

0 otherwise.

Let

I+i j =

[ j
β2i ,

j + 1/2
β2i

)
and I−i j =

[ j + 1/2
β2i ,

j + 1
β2i

)
,

the regions where ψi j (w(x)) > 0 and ψi j (w(x)) < 0, respectively. Similarly, let

I+kl =

[ l
2k ,

l + 1/2
2k

)
and I−kl =

[ l + 1/2
2k ,

l + 1
2k

)
.

Note that a particular αi jkl will be nonzero only if (a) (I+i j ∪ I−i j ) ∩ I+kl 6= ∅ and
(I+i j ∪ I−i j )∩ I−kl 6=∅ and (vice versa) (b) (I+kl ∪ I−kl )∩ I+i j 6=∅ and (I+kl ∪ I−kl )∩ I−i j 6=∅.
Otherwise, αi jkl will vanish; either the supports will be disjoint, or the support of one
will be contained entirely in the positive or negative domain of the other. Analyzing
the possibilities for nonzero values of αi jkl produces the following theorem.

Theorem 3. Following Theorem 1, we take D=[0, 1], {ψi j (x)} as the Haar wavelet
basis, and w(x)= βx , β > 0. Then nonzero values for αi jkl are of the form

αi jkl =

3∑
m=1

ξm2m−k−2
+ ξ̃m2m−i−2,

where ξ1= 1±β, ξ2 ∈ {−β,±lβ, (1+l)β,±(3l+1)β}, ξ3 ∈ {±lβ, (1+l)β}, ξ̃1= 0,
ξ̃2 ∈ {±1,± j,±(1+ j), 3 j,−(3 j + 1)}, and ξ̃3 ∈ {1,± j, (1+ j)}.
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Proof. Expanding some f in the Haar basis, we can write f (x)=
∞∑

i=0

2i
−1∑

j=0
ai jψi j (x).

Therefore,

g(x)= f (w(x))=
∞∑

i=0

2i
−1∑

j=0

ai jψi j (w(x))=
∞∑

i=0

2i
−1∑

j=0

ai jψi j (βx).

The formula for αi jkl is then

αi jkl = 〈ψi j (βx), ψkl(x)〉

=

∫
(I+i j ∩I+kl )∪(I

−

i j ∩I−kl )

2i/22k/2 dx −
∫
(I+i j ∩I−kl )∪(I

−

i j ∩I+kl )

2i/22k/2 dx

= 2(i+k)/2
(∫

(I+i j ∩I+kl )∪(I
−

i j ∩I−kl )

dx −
∫
(I+i j ∩I−kl )∪(I

−

i j ∩I+kl )

dx
)

= 2(i+k)/2[µ((I+i j ∩ I+kl )∪ (I
−

i j ∩ I−kl )
)
−µ

(
(I+i j ∩ I−kl )∪ (I

−

i j ∩ I+kl )
)]
,

where µ is the standard Lebesgue measure. Hence, to compute αi jkl , we must
compute M = µ

(
(I+i j ∩ I+kl )∪ (I

−

i j ∩ I−kl )
)
−µ

(
(I+i j ∩ I−kl )∪ (I

−

i j ∩ I+kl )
)
. From the

14 possible arrangements of the values
{ l

2k ,
l+1/2

2k , l+1
2k ,

j
β2i ,

j+1/2
β2i ,

j+1
β2i

}
satisfying

(a) and (b) as in the discussion preceding Theorem 3, we find possible values for
M as follows. Given positive integers {i jkl} corresponding to αi jkl , the value of
β2i+k+2 M 6= 0 is one of

• (1+ j)2k+3
− lβ2i+3

−β2i+2

• (1+ j)2k+2
− lβ2i+2

• − j2k+3
+ lβ2i+3

+ (1+β2i+1
}

• −(3 j + 1)2k+2
+ (3l + 1)β2i+2

+ (1+β)2i+1

• − j2k+2
+ lβ2i+2

+ (1−β)2i+1

• ± j2k+2
∓ (1+ l)β2i+2

• −(1+ j)2k+2
+ (1+ l)β2i+2

• − j2k+3
− 2k+2

+ (1+ l)β2i+3

• j2k+3
+ 2k+2

− lβ2i+3

• 2k+3
+ 3 j2k+2

− (3l + 1)β2i+2

• j2k+2
− lβ2i+2

• −(1+ j)2k+2
+ lβ2i+2

• (1+ j)2k+2
− (1+ l)β2i+2.

Substituting these values for M into the formula for αi jkl gives the desired result. �
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4. Explicit relationships: polynomial deformations and the Legendre basis

Because the Legendre basis is a basis of polynomials, it is less challenging to com-
pute values for {αi j } when w is a polynomial than it would be for a nonpolynomial
basis such as the Haar basis. We now consider deformations w(x)=

∑v
s=0 βs x s ,

where the {βs} are chosen so that w(x) maps [−1, 1] onto itself diffeomorphically
and dw/dx > 0. This increase in complexity of the deformations requires careful
accounting, as we shall see below.

As before, we compute

ψi (w(x))= ψi

( v∑
s=0

βs x s
)
=

N∑
n=0

Kin

( v∑
s=0

βs x s
)i−2n

=

N∑
n=0

Kin

( ∑
p0+p1+···+pv=i−2n

( i − 2n
p0, p1, . . . , pv

)
(β0x0)p0(β1x1)p1 · · · (βvxv)pv

)

=

N∑
n=0

Kin

( ∑
p0+p1+···+pv=i−2n

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps

)

=

N∑
n=0

∑
P

Kin

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps

using the multinomial theorem, where P = p0+ p1+· · ·+ pv is the collective sum
of partitions of i − 2n. Therefore,

g(x)= f (w(x))=
∑

i

ai

N∑
n=0

∑
P

Kin

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps .

In order to apply the Fact to compute 〈ψ j (w(x)), ψi (x)〉, we must identify which
of the powers of x , given by

∑v
s=0 sps , are even and which are odd. Certainly,

when s is even, sps will be even. We rewrite

v∑
s=0

sps =

bv/2c∑
t=0

(
2tp2t + (2t + 1)p2t+1

)
=

bv/2c∑
t=0

2tp2t +

bv/2c∑
t=0

(2t + 1)p2t+1.

Analyzing the sum over odd s= 2t+1, we see that if p2t+1 is even for a given t , the
product (2t + 1)p2t+1 will be even. In other words, the parity of the total exponent∑v

s=0 sps is determined entirely by the parity of the number of odd-indexed elements
of the partition that are themselves odd. More precisely, let NP be the number of
odd-valued elements in the set {p2t+1}. If NP is odd, then

∑bv/2c
t=0 (2t + 1)p2t+1

will sum an odd number of odd elements, and will therefore be odd. If NP is even,∑bv/2c
t=0 (2t + 1)p2t+1 will sum an even number of odd elements, and will therefore

be even. We have proved the following lemma.
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Lemma. Let P : p1+ · · ·+ pv = i − 2n be a particular choice of partition. Then
the value of

∑v
s=0 sps will be even if NP , the number of odd-indexed, odd-valued

elements of P , is even, or odd if NP is odd.

We now state the result for polynomial deformations.

Theorem 4. Following Theorem 1, we take D = [−1, 1], {ψi (x)} as the Legendre
basis, and w(x)=

∑v
s=0 βs x s to be monotone increasing on D. Then

αi j = 2
N ,M∑

n,m=0

∑
P,2| j+NP

( i − 2n
p0, p1, . . . , pv

) Kin K jm
(∏v

s=0 βs
ps
)

j − 2m+ 1+
∑v

s=0 sps
.

Proof. Calculating αi j , we find

αi j = 〈ψi (w(x)), ψ j (x)〉

=

∫ 1

−1

[ N∑
n=0

i−2n∑
P

Kin

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)
x
∑v

s=0 sps

][ M∑
m=0

K jm x j−2m
]

dx

=

N ,M∑
n,m=0

i−2n∑
P

Kin K jm

( i − 2n
p0, p1, . . . , pv

)( v∏
s=0

βs
ps

)∫ 1

−1
x j−2m+

∑v
s=0 sps dx .

Each integral term of the sum will vanish or not depending on the parity of
j − 2m +

∑v
s=0 sps . Because 2m is always even, we focus on the parity of

j +
∑v

s=0 sps . For each αi j , j is fixed along with its parity. From the discussion
leading up to Theorem 4, we know that NP determines the parity of

∑v
s=0 sps .

Putting this together, we see that the exponent j − 2m +
∑v

s=0 sps will be odd
(and so will have vanishing integral) when j + NP is odd. When j + NP is even,
however, the exponent will be even and the integral nonzero. �

5. Conclusion and future work

Based on the computational challenges apparent in the few simple examples given
in this paper, we believe there are very few cases where the coefficients {αi j } that
capture the relationship between the deformed and undeformed function can be
computed explicitly. Nonetheless, we would like to be able to say something in
other situations. Currently, we are exploring distributions of coefficients of periodic
functions after deformation by randomly generated b-splines with between 5 and
25 knots. We hope to make conjectures based on those empirical results about what
we can realistically say mathematically. Because of the highly structured nature of
periodic functions, we expect meaningful results. For example, since the oscillations
of a periodic function cannot change in number or amplitude after composition
with a deformation, there should be a formulation for a wavelet basis that relates
scale and location of periodic behavior with the local energy of a deformation.
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The motivation for this project comes from a similar problem in two dimensions
related to modeling textures in images [Liu et al. 2004a; 2004b; Park et al. 2009].
When a periodic texture such as a wallpaper pattern appears in an image, it is often
not periodic within the image. That is, geometric distortions arising from lighting,
occlusion, or projection of a three-dimensional object onto the two-dimensional
image plane, create a near-periodic texture in the image. To recognize the periodic
structures in these distorted textures requires solving this problem: given a deformed
near-periodic function, what is the underlying periodic function and the associated
deformation? This inverse problem is ill-posed, but our work gives insight into
a similar problem in one dimension. Future work will focus on examining that
inverse problem in the one-dimensional setting and deriving similar results to the
ones in this paper for functions on R2.
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Spectral characterization for von Neumann’s
iterative algorithm in Rn

Rudy Joly, Marco López, Douglas Mupasiri and Michael Newsome
(Communicated by Jim Haglund)

Our work is motivated by a theorem proved by von Neumann: Let S1 and S2 be
subspaces of a closed Hilbert space X and let x ∈ X . Then

lim
k→∞

(PS2 PS1)
k(x)= PS1∩S2(x),

where PS denotes the orthogonal projection of x onto the subspace S. We
look at the linear algebra realization of the von Neumann theorem in Rn . The
matrix A that represents the composition PS2 PS1 has a form simple enough that
the calculation of lim k→∞Ak x becomes easy. However, a more interesting result
lies in the analysis of eigenvalues and eigenvectors of A and their geometrical
interpretation. A characterization of such eigenvalues and eigenvectors is shown
for subspaces with dimension n− 1.

1. Introduction

In Euclidean n-space, we wish to find the point x∞ in the intersection of two
(n− 1)-dimensional subspaces, S1 and S2, that is closest to an initial point x0 in
Rn . That is, we want x∞ ∈ S1 ∩ S2 to be such that

‖x0− x∞‖ ≤ ‖x0− y‖ for all y ∈ S1 ∩ S2.

We call x∞ the orthogonal projection of x0 onto S1 ∩ S2. We start by stating
von Neumann’s theorem; see [Deutsch 2001], for example.

Theorem 1. Let S1 and S2 be subspaces of a closed Hilbert space X and let x ∈ X.
Then

lim
k→∞

(PS2 PS1)
k(x)= PS1∩S2(x), (1-1)

where PS denotes the orthogonal projection onto the subspace S.

Von Neumann’s theorem provides an iterative procedure (left-hand side of (1-1))
to find the orthogonal projection of x onto S1 ∩ S2 (right-hand side of (1-1)).

MSC2010: primary 41A65; secondary 47N10.
Keywords: orthogonal projections, von Neumann, best approximations.
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2. An example in R2

To illustrate von Neumann’s theorem we consider the R2 case. Let a1, b1, a2, b2 ∈R

and let

S1 = {(x, y) | a1x + b1 y = 0} and S2 = {(x, y) | a2x + b2 y = 0}.

In order for S1 and S2 to be distinct 1-dimensional subspaces, we require that the ai

and bi are not both zero1 and that a1/b1 6= a2/b2. Since the orthogonal projection
onto a subspace is a linear transformation, we can represent such transformations
by matrices. In the plane, the matrix that projects any point in R2 onto Si is given
by

Ai =
1

a2
i + b2

i

(
b2

i −ai bi

−ai bi a2
i

)
,

where i = 1, 2. Therefore, the matrix A = A2 A1 gives us the composition of the
two projections.

A =
a1a2+ b1b2

(a2
1 + b2

1)(a
2
2 + b2

2)

(
b1b2 −a1b2

−a2b1 a1a2

)
To compute iterations of the matrix A, we wish to express A in terms of a

diagonal matrix D similar to A. This is possible, of course, if A is nondefective;
that is, if the dimension of each of the eigenspaces of A is equal to the multiplicity
of the corresponding eigenvalue. It is easily shown that A is nondefective in the R2

case. The matrix S of eigenvectors of A is then

S =
(

a1 b1

b1 −a2

)
,

with D being
D = S−1 AS.

Computing powers of the matrix A is then a matter of raising the eigenvalues of
A to that power:

Ak
= SDk S−1.

Applying von Neumann’s theorem to this equation, we obtain

lim
k→∞

(A2 A1)
k
= lim

k→∞
Ak
= S

(
lim

k→∞
Dk)S−1

= A∞,

where A∞ is the matrix representation of PS1∩S2 . Note that the limit exists if the
eigenvalues of A have absolute value less than or equal to unity.

1If, say, a1 = b1 = 0 then S1 = R2.
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3. Solution algorithm

It is possible to extend the solution method in the previous section to Rn . Here
we present a brief outline of the solution algorithm, as explained in [Hoffman and
Kunze 1971].

(1) Choose bases for S1 and S2.

(2) Use the Gram–Schmidt procedure to produce orthonormal bases β(1) and β(2)

for S1 and S2 respectively:

β(1) = {u(1)1 , . . . , u(1)n−1}, β(2) = {u(2)1 , . . . , u(2)n−1}. (3-1)

(3) Use the standard basis β = {e1, . . . , en} for the parent vector space Rn .

(4) Use the following general formula to obtain the matrix representations Ai ,
with i = 1, 2, of the orthogonal projections Pi : R

n
→ Si :

Ai =

[(n−1∑
j=1

〈e1, u(i)j 〉u
(i)
j

)
, . . . ,

(n−1∑
j=1

〈en, u(i)j 〉u
(i)
j

)]
.

(5) Compute A = A2 A1. Find the eigenvalues λ1, . . . , λn and corresponding
independent eigenvectors E1, . . . , En of A. These give us the n× n matrices

D =

λ1 0
. . .

0 λn

 , S = (E1, . . . , En).

(6) Compute S−1.

(7) Iteration now proceeds as follows:

vk = Avk−1 = (SDS−1)vk−1 = (SDS−1)(SDS−1)vk−2

= · · · = (SDk S−1)v0 = Akv0 (3-2)

for k = 1, 2, 3, . . . .

(8) Finally, we obtain v∞ = [S(limk→∞ Dk)S−1
]v0.

In step (5), we rely on the assumption that the matrix A is nondefective in order
to find a similar diagonal matrix. We address this question in Section 5.

4. Eigenvalues in R3: geometric argument

If we consider two 2-dimensional subspaces in 3-space, S1 and S2, it is easy to
illustrate geometrically the eigenvectors of the alternating projections. By examining
a picture of two planes containing the origin in R3, we see three different types of
eigenvectors; the first two are trivial, but the third is less so (refer to Figure 1).
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S1

S2
S2

S1

S2

S1

x1

x2x0

Figure 1. Top left: a vector orthogonal to S1 gets projected to the
origin (eigenvalue 0). Top right: a vector in S1 ∩ S2 remains fixed
(eigenvalue 1). Bottom: a vector in (S1 ∩ S2)

⊥ gets projected to a
collinear vector (eigenvalue in [0, 1]).

(1) A vector orthogonal to S1 is in the kernel of PS1 ; therefore, it is an eigenvector
of PS1 with eigenvalue 0.

(2) A vector in S1 ∩ S2 is an eigenvector of both PS2 and PS1 with eigenvalue 1.

(3) A vector in the orthogonal complement (S1 ∩ S2)
⊥ will stay in (S1 ∩ S2)

⊥ as
it is projected orthogonally onto S1 and S2; i.e., (S1 ∩ S2)

⊥ is invariant under
both PS1 and PS2 . Therefore, a vector in S2 ∩ (S1 ∩ S2)

⊥ is an eigenvector of
PS2 PS1 . We claim that this eigenvector corresponds to an eigenvalue in the
interval [0, 1].

It is easy to see from this geometric argument the characterization of eigenvalues
in the case of R3. Next we address the question of whether this geometric intuition
somehow generalizes to Rn .

5. Characterization of eigenvalues in Rn.

When we consider (n− 1)-dimensional subspaces in Rn , it is easy to see that the
first two eigenvectors described in Section 4 generalize to higher dimensions. It
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is less trivial to show that the third type of eigenvector also generalizes to higher
dimensions, and that these three types of vectors fully characterize the spectrum
of PS2 PS1 .

Let S1 and S2 be (n− 1)-dimensional subspaces of Rn with S1 6= S2.

Lemma 2. S1 ∩ S2 is a proper subspace of Rn with dim(S1 ∩ S2)= n− 2.

Proof. The intersection of two subspaces is always a subspace. Note that for two
distinct subspaces, we have

n = dim(S1)+ dim(S2)− dim(S1 ∩ S2).

Therefore,
dim(S1 ∩ S2)= dim(S1)+ dim(S2)− n

= n− 1+ n− 1− n = n− 2. �

Now, let S3 = (S1 ∩ S2)
⊥. Note that n = dim(S1 ∩ S2)+ dim(S3), which implies

that dim(S3)= 2.

Lemma 3. dim(S3 ∩ S1)= dim(S3 ∩ S2)= 1.

Proof. We write dim(S3 ∩ S1) = dim(S3)+ dim(S1)− n = 2+ n − 1− n = 1.
Similarly, dim(S3 ∩ S2)= 1. �

Lemma 4. Let T1 : R
n
→ S1 and T2 : R

n
→ S2 be the orthogonal projections onto

S1 and S2, respectively. Then S3 is invariant under T1 and T2.

Proof. Let {w,w⊥} be a basis for S3 such that w ∈ S1 and w⊥ ∈ S⊥1 . If v0 ∈ S3,
then v0 = c1w+ c2w

⊥ for some scalars c1, c2; therefore,

T1(v0)= c1T1(w)+ c2T1(w
⊥)= c1w ∈ S3.

Similarly, we can construct a basis {u, u⊥} for S3 such that u ∈ S2 and u⊥ ∈ S⊥2
to conclude that T2(v0) ∈ S3. �

Now we are ready to prove the following theorem. Let θ be the angle between
two hyperplanes defined as the angle between two vectors n1 and n2 normal to S1

and S2, respectively. Note that n1, n2 ∈ S3.

Theorem 5. Let S1 and S2 be distinct (n− 1)-dimensional subspaces of Rn , and
let T1 : Rn

→ S1 and T2 : Rn
→ S2 be the orthogonal projections onto S1 and

S2, respectively. Also, let 0 < θ < π
2 be the angle between the two hyperplanes.

The spectrum of T := T2T1 is characterized by the following eigenvalues and
multiplicities:

λ1 = 0, m1 = 1, λ2 = 1, m2 = n− 2, λ3 = cos2 θ, m3 = 1.
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Proof. First, consider u0 to be a vector orthogonal to S1. Then T (u0)= 0, and so
m1 ≥ 1. Now let {w1, . . . , wn−2} be a basis for S1 ∩ S2. Then T (wi )= wi for all
1≤ i ≤ n−2. Therefore, λ2= 1 is an eigenvalue. Since the basis vectors for S1∩ S2

are linearly independent eigenvectors corresponding to λ2, we have m2 ≥ n − 2.
Furthermore, consider v0 ∈ S3∩ S2. Then T (v0) ∈ S3 by Lemma 4, and T (v0) ∈ S2

since the range of T is S2. Moreover,

dim(S3 ∩ S2)= 1;

therefore, T (v0) = λv0 for some scalar λ. Furthermore, let v1 := T1(v0) and
v2 := T2(v1)= T (v0). For vectors n1 and n2 in the orthogonal complement of S1

and S2, respectively, we have that n1, n2, v0, v1, and v2 are coplanar, since they are
in the 2-dimensional subspace S3. Thus

6 (v0, v1)= 6 (v1, v2)= 6 (n1, n2)= θ.

Hence, cos θ = 〈v0, v1〉

‖v0‖‖v1‖
and

‖v2‖‖v1‖ cos θ =
‖v2‖

‖v0‖
〈v0, v1〉 = λ〈v0, v1〉.

Note that 〈v1, (v0− v1)〉 = 〈v2, (v1− v2)〉 = 0, so

‖v2‖‖v1‖ cos θ = λ〈v1+ (v0− v1), v1〉 = λ‖v1‖
2
:

thus ‖v2‖

‖v1‖
cos θ = λ. Moreover,

‖v2‖‖v1‖ cos θ = 〈v2, v1〉 = 〈v2, v2+ (v1− v2)〉 = ‖v2‖
2,

so cos θ = ‖v2‖

‖v1‖
. It follows that λ= cos2 θ . �

6. Conclusion

We have shown that for every finite-dimensional inner product space, the method
of alternating orthogonal projections between two hyperplane subspaces S1 and S2

yields at most three distinct eigenvalues when we consider the composition of
two orthogonal projections. Also, the eigenvectors of such a composition can be
quickly identified to be in the subspaces S⊥1 , S1 ∩ S2, and S2 ∩ (S1 ∩ S2)

⊥. We
should mention the special, and somewhat trivial, cases where the angle between S1

and S2 is 0◦ or 90◦. In the case where θ = 90◦, we have that PS2 PS1 = PS1∩S2 , and
PS2 PS1 = PS1 = PS2 when θ = 0◦. In these cases, there are two distinct eigenvalues:
0 and 1. For θ = 90◦, the respective multiplicities are 2 and n− 2; for θ = 0◦, they
are 1 and n− 1. It is also noteworthy that the multiplicities obtained in Theorem 5
guarantee that PS2 PS1 is nondefective, a necessary condition for the algorithm
presented in Section 3.
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The 3-point Steiner problem on a cylinder
Denise M. Halverson and Andrew E. Logan

(Communicated by Frank Morgan)

The 3-point Steiner problem in the Euclidean plane is to find the least length path
network connecting three points. In this paper we will demonstrate an algorithm
for solving the 3-point Steiner problem on the cylinder.

1. Introduction

Say we have three points on a cylinder. What would be the shortest possible path
network connecting our three points? Our goal is to develop an algorithm to find
the minimal path network connecting three points on a cylinder. Finding the least
length path network connecting a given set of fixed points in a surface is called
the Steiner problem. We will first show that the Steiner problem on the cylinder
is related to the Steiner problem on the plane. We then will work with a covering
map from the plane to the cylinder so that the correspondence between the Steiner
problem on the plane and on the cylinder is clarified. We will follow this with a
few results culminating in the cutting theorem. The cutting theorem, Theorem 5.3,
guarantees that for any configuration of three points on a cylinder there exists a
straight line in the cylinder through which we can make a “cut,” then flatten the cut
surface out in the plane, and finally construct the minimal path network connecting
the three points within the flattened surface. The cutting theorem is an important
result that leads us to the cutting algorithm. The cutting algorithm determines the
minimal path network connecting the three points on the cylinder. The algorithm
requires two cuts in order to compare the principal minimal path network candidates
obtained when flattening the cut surface of the cylinder out in the plane.

Only within the last 40 years has the Steiner problem really begun to be studied
on nonplanar surfaces. Local properties of minimal path networks on smooth
surfaces were investigated in [Weng 2001]. Cockayne [1972] and Brazil et al.
[1998] provided analytic methods to solve the 3-point Steiner problem in the sphere.
Analytic methods for finding the solution to Steiner problems on the hyperbolic
plane and surfaces of revolution were given in [Halverson and March 2005] and
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Keywords: Steiner problem, length minimization, cylinder.
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[Caffarelli et al. 2012], respectively. Geometric methods for solving the two- and
3-point Steiner problems on the regular tetrahedron were provided in [Brune and
Sipe 2009; Moon et al. 2011]. A cutting algorithm to find the solution to 3-point
Steiner problems on the cone, similar to the one in this paper, is given in [Lee et al.
2011]. Results providing for reductions in solving the 3-point Steiner problem on
the torus are found in [Halverson and Penrod 2007; Ivanov and Tuzhilin 1994;
May and Mitchell 2007]. Furthermore, Ivanov and Tuzhilin [1994] classify all the
closed local minimal networks on closed surfaces of constant nonnegative curvature
(spheres, projective planes, flat tori, and Klein bottles) and present similar results
for the regular tetrahedron. Helmandollar and Penrod [2007] used a generalization
of the method of paired calibrations to solve Steiner problems in the hyperbolic
plane for four fixed points that are the vertices of a square. Hwang et al. [1992]
offer a detailed discussion on various strategies, extensions, and modifications of
the Steiner problem.

The importance of this paper is that it provides an algorithm that does not just
give a reduction to the list of possible solutions or refer to a set of analytic equations
which must be solved, but finds an actual geometric solution to any 3-point Steiner
problem on the cylinder.

2. The Steiner problem on the plane

In this section we will give a brief background of the Steiner problem in the plane.
For a more extensive study on the Steiner problem in the Euclidean plane see
[Hwang et al. 1992; Ivanov and Tuzhilin 1994]. First we will begin with a few
definitions and a basic result concerning the Steiner problem. Then we will give a
brief history of the development of solutions to this problem. Finally, we will finish
with an algorithm for finding a minimal path network connecting three points in
the plane.

Definition 2.1. Let A, B, and C be points in R2. A Steiner minimal tree, denoted
SMT(A, B,C), is the set of minimal length path networks contained in R2 that
connect A, B, and C .

It is a classical result that, for three points A, B, and C in the plane, SMT(A, B,C)
contains precisely one element (see [Hwang et al. 1992]). It is a common practice
to denote this unique path network itself as SMT(A, B,C). We will also apply
this practice in our paper when considering the 3-point Steiner problem on the
plane. It is also a classical result that, if 4ABC has no interior angle with measure
≥ 120◦, then SMT(A, B,C)= AS ∪ BS ∪C S for some point S, called the Steiner
point (see [Courant and Robbins 1979]). In this case we say that SMT(A, B,C) is
full. If 4ABC has an interior angle with measure ≥ 120◦, say m 6 ABC ≥ 120◦,
then SMT(A, B,C)= AB∪ BC . In this case we say SMT(A, B,C) is degenerate.
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A

C

B

A0

S0
S

Figure 1. Demonstrating that τ0 is shorter than τ in the proof of Propositon 2.3.

Note that in this case SMT(A, B,C)= AB ∪ B B ∪ BC , so in some sense B takes
on a similar role as the Steiner point in the full case.

Definition 2.2. Let A, B, and C be points in R2. We call the point S a generalized
Steiner point if AS ∪ BS ∪C S ∈ SMT(A, B,C).

Another result of the Steiner problem in the plane is that the minimal path
network connecting three points in a plane is contained in the convex hull of the
triangle whose vertices lie on those three points. Since we use this result in proving
future theorems in this paper, we will demonstrate a proof here in this section.

Propositon 2.3. If A, B, and C are points in the plane, then SMT(A, B,C) is
contained in the convex hull of 4ABC.

Proof. Let τ ∈ SMT(A, B,C) and let S ∈ R2 be the generalized Steiner point of τ .
Suppose τ is not contained in the convex hull of 4ABC . Then S lies outside

of the convex hull of 4ABC . Hence S is opposite one of the points A, B, or C
of the lines

←−→

BC ,
←−→

AC , or
←−→

AB, respectively. Suppose without loss of generality S is
on the side of the line

←−→

BC opposite point A (see Figure 1). Then there is a line
perpendicular to

←−→

BC that passes through S. Let S0 be the point of intersection of
the two lines. Let τ0 = AS0 ∪ BS0 ∪C S0. Note that SS0 > 0 because S is not on
←−→

BC . Since BS=
√
(BS0)2+ (SS0)2 and C S=

√
(C S0)2+ (SS0)2, then BS0< BS

and C S0 < C S. Let l be the line parallel to BC passing through A and let A0 be
the point of intersection of l and

←−→

SS0. Since A0S0 < A0S,

AS =
√
(AA0)2+ (A0S)2 >

√
(AA0)2+ (A0S0)2 = AS0.

Thus τ0 is shorter than τ , which yields a contradiction.
Therefore τ is contained in the convex hull of 4ABC . �

Other interesting results of the Steiner problem on the plane are found in [Cieslik
1998; Hwang et al. 1992; Ivanov and Tuzhilin 1994; Jarník and Kössler 1934; Lee
et al. 2011; Roussos 2012].
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B

A

C

Figure 2. Torricelli’s solution.

Brief history. The history of the Steiner problem is briefly described in [Cieslik
1998; Courant and Robbins 1979; Kuhn 1974; Roussos 2012]. We give a summary
here.

Fermat posed the following problem in the early 17th century: “Given three
points in the plane, find a fourth point such that the sum of its distances to the three
given points is minimal.” Around 1640 Torricelli presented a geometric solution to
Fermat’s problem. He showed in the full case that the three circles circumscribing
the equilateral triangles constructed on the sides of and outside the triangle intersect
at the desired point which is often referred to as the Fermat–Torricelli point [Cieslik
1998] (see Figure 2). SMT(A, B,C) is the configuration of the bold lines in Figure 2.
In 1836 Gauss considered the Fermat problem for n > 3 points, sometimes referred
to as Gauss’s problem.

Steiner gave a geometric construction of the Fermat–Torricelli point in the early
19th century and used it in the construction of distance-minimizing trees and graphs
[Roussos 2012]. Courant and Robbins [1979] popularized the minimizing of path
networks for n points and (mis)labeled it the Steiner problem; see [Cieslik 1998]
for discussion.

Note that Torricelli’s solution only holds when all angles in 4ABC are less than
or equal to 120◦. If we were to perform Torricelli’s algorithm of the solution on
a triangle with an interior angle greater than 120 degrees we would get a point
outside of the convex hull of that triangle which contradicts Propositon 2.3; hence
the distinction between full and degenerate minimal path networks.

Solution to the 3-point Steiner problem in the plane. We will now present a useful
algorithm [Melzak 1961] for finding SMT(A, B,C) and its length.

First draw the triangle connecting the three points. If one of the angles of4ABC
has measure ≥ 120◦, remove the opposite side. The union of the remaining two
sides is SMT(A, B,C) and its length is the sum of the lengths of the two sides. In
this case SMT(A, B,C) is degenerate.

Otherwise choose one of the sides of the triangle (for example in Figure 3 we
chose side BC) and draw an equilateral triangle, 4BC E , where E is on the side of
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AB

C

S

E

Figure 3. Constructing a full minimal length path network in the plane.

the line BC opposite point A. Draw a circle circumscribing 4BC E and draw a
line from point E to point A. The intersection of the line and the circle will give us
the point S, the Steiner point. Then E A will be the length of SMT(A, B,C), and
SMT(A, B,C)= AS ∪ BS ∪C S. In this case SMT(A, B,C) is full.

3. The cylinder

We will now introduce the cylinder and the covering map we will be using in this
paper. (Refer to Figure 4.)

Let C⊆ R3 be the cylinder defined by C : x2
+ y2
= 1. Then R2 is a covering

for C, where p : R2
→ C is the covering map such that p(u, v)= (cos u, sin u, v).

Let x denote an arbitrary point of C. Let X i be the point of p−1(x) contained in
[−π + 2iπ, π + 2iπ). We denote by (u X , vX ) the coordinates of an arbitrary point
X in R2.

Definition 3.1. For points A, B ∈ R2 where A = (u A, vA) and B = (u B, vB), the
strip 6AB is the set 6AB = {(u, v) ∈ R2

| u A ≤ u ≤ u B}.

In this paper we will order without loss of generality the three fixed points a, b,
and c in such a way that uA0

≤ uB0
≤ uC0

.
For a 3-point Steiner problem on a cylinder with fixed points a, b, and c, it will

be convenient to distinguish the three regions partitioned by the vertical lines for

2π

A−1

B−1

A0

B0

A1

p−1
a

b

←−−−−→σab

←−−−→
6a−1b−1

←−−−→
6a0b0

Figure 4. The covering map p.
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each of the fixed points. In particular, let σab = p(6A0 B0), σbc = p(6B0C0), and
σca = p(6C0 A0).

Definition 3.2. Let Z be a subset of C. A map f :Z→R2 is said to be a lift of the
inclusion map Z ↪→ C provided, for all z ∈ Z, z = p ◦ f (z). We also say the set
f (Z) is a lift of Z.

4. Regarding the 3-point Steiner problem on a smooth surface

The Steiner problem on any smooth surface is similar to, but more complicated than,
the Steiner problem in the plane [Weng 2001]. In this section we provide definitions
and notations for a minimal length path network and a generalized Steiner point on
a smooth surface. On a cylinder, and in other smooth surfaces, the minimal length
path network need not be unique. Hence we have the following definitions.

Definition 4.1. Let a, b, and c be points in a smooth surface X. Then SMT(a, b, c)
is the set of minimal path networks contained in X that connect a, b, and c.

Definition 4.2. Let a, b, and c be points in a smooth surface X. If τ = as∪bs∪cs ∈
SMT(a, b, c), then we say that s is a generalized Steiner point for τ .

There have been many studies of the Steiner problem on general curved surfaces.
We cannot address all results and studies in this paper, but refer the interested reader
to [Brazil et al. 1998; Cockayne 1972; Dolan et al. 1991; Ivanov and Tuzhilin 1994;
Weng 2001] for more details.

5. The cutting theorem

Our purpose in this paper is to present an algorithm for finding a minimal path
network on a cylinder. We first need to prove the cutting theorem that we will use in
the cutting algorithm; this result, in short, informs us that any minimal path network
on a cylinder will be contained in the union of two of the strips σab, σbc, and σca . In
preparation for the proof of the cutting theorem we need the following proposition.

Propositon 5.1. Let T be a minimal path network for three fixed points in the plane
such that p(T ) ∈ SMT(a, b, c), S be the generalized Steiner point of T , and X ∈ T
be a fixed point of T such that p(X) ∈ {a, b, c}. Then |u X − uS| ≤ π .

Proof. Suppose |u X − uS| > π . By properties of the covering map p there is a
point X i ∈ p−1(p(X)) so that |u X i − uS| ≤ π . Then T ′ obtained by replacing X S
in T with X i S is a shorter path network where p(T ′) connects a, b, c. Hence
p(T ) /∈ SMT(a, b, c). This is a contradiction, so |u X − uS| ≤ π . �

Corollary 5.2. Let T be a minimal path network for three fixed points in the plane
such that p(T ) ∈ SMT(a, b, c) and S be the generalized Steiner point of T . Then
T ⊆ 0 = {(u, v) ∈ R2

: |u− uS| ≤ π}.
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Proof. Let T = Al S ∪ Bm S ∪Cn S. Since |uAl
− uS| ≤ π , then Al S ⊂ 0. Likewise

Bm S, Cn S ⊂ 0. Thus T ⊆ 0. �

The following theorem demonstrates that the lift of a minimal path network
connecting three points a, b, and c on a cylinder is contained in one of the following:

6Bk−1 Ak =6Bk−1Ck−1 ∪6Ck−1 Ak ,

6Ck−1 Bk =6Ck−1 Ak ∪6Ak Bk ,

6AkCk =6Ak Bk ∪6BkCk .

A proof of a similar result regarding the flat torus can be found in [Halverson and
Penrod 2007].

Theorem 5.3 (cutting theorem). Let T be a minimal path network for three fixed
points in the plane such that p(T ) ∈ SMT(a, b, c). Then T is contained in one of
6Bk−1 Ak , 6Ck−1 Bk , and 6AkCk for some k ∈ Z+.

Proof. Let T = Al S ∪ Bm S ∪ Cn S. Let t = min{uAl
, uBm

, uCn
}. Without loss of

generality let t = uAl
. By Corollary 5.2, |uAl

− uS| ≤ π and |uBm
− uS| ≤ π . Using

uAl
≤ uBm

and the triangle inequality, we have

uBm
− uAl

= |uBm
− uAl
| ≤ |uBm

− uS| + |uAl
− uS| ≤ 2π.

Note that m ≥ l. Let m = l+ j for some j ∈ Z+. Then uBm
= uBl

+2π j ≤ 2π+uAl
.

Thus

0≤ uBl
− uAl

≤ 2π − 2π j.

This is only possible if j is either 0 or 1. Furthermore, when j = 1 equality must
occur. In particular, if j = 1, then uBl

= uAl
and hence uBm

= uAl+1
. So either

m = l or m = l + 1, and in the case m = l + 1 necessarily uBm
= uAl+1

. Similar
considerations of Cn yield either n = l or n = l + 1, and in the case n = l + 1
necessarily uCn

= uAl+1
.

Case 1. Suppose m = l and n = l. Then T = SMT(Al, Bl,Cl). By Propositon 2.3,
T is in the convex hull of 4Al BlCl . Thus T ⊂ 6Al Cl . Letting k = l gives the
desired result.

Case 2. Suppose m = l + 1 and n = l. Then uBm
= uAl+1

and hence uBm−1
= uAl

.
Thus T is in the convex hull of 4Al Bl+1Cl . It follows that T ⊂6Al Bl+1 =6Bl Al+1 .
Letting k = l + 1 gives the desired result.

Case 3. Suppose n= l+1. Then uCn
= uAl+1

. Thus uAl
= uCl

. Since uAl
≤ uBl

≤ uCl
,

then uAl
= uBl

= uCl
. Since vX i = vX j for any i , j ∈ Z, the length of T is
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(uS−uAl+1

)2+(vS−vAl+1
)2+

√
(uS−uBm

)2+(vS−vBm
)2+

√
(uS−uCn

)2+(vS−vCn
)2

≥ |vS − vAl+1
| + |vS − vBm

| + |vS − vCl+1
|

≥ |vS − vAl
| + |vS − vBl

| + |vS − vCl
|

≥max{|vAl
− vCl
|, |vAl

− vBl
|, |vBl

− vCl
|}

=max{AlCl, Al Bl, BlCl}.

Let T ′ be the minimal path connecting Al , Bl , and Cl . Note that, since Al , Bl

and Cl are collinear, T ′ is one of AlCl , Al Bl , and BlCl . Then the length of T ′ is
max{AlCl, Al Bl, BlCl} which is less than or equal to the length of T . Also note
that equality can only hold when uS = uAl

= uBl
= uCl

, implying T = T ′ which is a
contradiction. Therefore this case is not possible.

Similar arguments apply when t = uBm
and t = uCn

. �

6. The cutting algorithm

Justification. Let a, b, and c be points on the cylinder C and let T be a lift of
τ ∈ SMT(a, b, c) contained in 6B−1C0 . This is possible from the cutting theorem
since we know that there is a lift of τ contained in one of 6B−1 A0 , 6C−1 B0 , and
6A0C0 . Notice that if we cut along the vertical line containing a and lay it out in
a plane we get copies of 6B−1 A0 and 6A0C0 , contained in the cut surface. If we
cut along the vertical line containing b and lay it out in a plane we get copies of
6B−1 A0 and 6C−1 B0 , contained in the cut surface. If we cut along the vertical line
containing c and lay it out in a plane we get copies of 6A0C0 and 6C−1 B0 , contained
in the cut surface. With all three cuts together we get copies of each of 6B−1 A0 ,
6C−1 B0 , and 6A0C0 twice. One way to determine the SMT(a, b, c) is comparing the
minimal path networks in each strip. However the following algorithm demonstrates
how to do this more efficiently with just two cuts.

The cutting algorithm. Step 1. Cut along the vertical line containing a of our
cylinder. Then there are two possible minimal path networks, one in 6A0C0 and one
in 6B−1 A0 . Let T1 be SMT(A0, B0,C0), and T2 be SMT(B−1,C−1, A0). Since T1

and T2 are both in the plane, perform the algorithm presented in Section 2 to
compare the two minimal path networks and find which one is shorter.

Step 2. If T1 is at least as short as T2, then cut vertically up the cylinder at the
point c and unwrap it as before, laying it out on the plane contained in 6C−1C0 .
Then there are two possible minimal path networks, one in 6C−1 B0 and the other in
6A0C0 . Let T3 be SMT(C−1, A0, B0). Note that T1 is contained in 6A0C0 . Since T3

is in the plane, use the algorithm for finding minimal path networks in the plane
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presented in Section 2 and compare T3 to T1. Let i be any index where Ti is at least
as short as T j for all j 6= i . Then p(Ti ) ∈ SMT(a, b, c).

Otherwise, cut vertically up the cylinder at the point b and unwrap it, laying it
out on the plane contained in 6B−1 B0 . Then there are two possible minimal path
networks, one in 6B−1 A0 and the other in 6C−1 B0 . Let T3 be SMT(C−1, A0, B0) as
in the first case. Note that T2 is contained in 6B−1 A0 . Since T3 is in the plane use
the algorithm for finding minimal path networks in the plane presented in Section 2
and compare T3 to T2. Let i be any index where Ti is at least as short as T j where
j 6= i . Then p(Ti ) ∈ SMT(a, b, c).

That’s all there is to it.

7. Conclusion

Further problems that can be investigated include:

(1) The n-point Steiner problem on the cylinder. Jarník and Kössler [1934] have
developed an algorithm for solving any n-point Steiner problem in the plane.
How could the results in this paper be generalized to solve any n-point problem
on the cylinder?

(2) The 3-point Steiner problem on the flat torus in 4-space. The cylinder is a
covering space for the flat torus in 4-space. How can the results produced in
this paper be applied to solve the 3-point Steiner problem on the flat torus in
4-space?

(3) The n-point Steiner problem on the flat torus in 4-space. Could results of (1)
and (2) be combined to solve any n-point Steiner problem on the flat torus in
4-space?

We hope that the results found in this paper can serve as a basis in many future
findings.
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