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Extending the work of Deborah L. Massari and Kimberly L. Patti, this paper
makes progress toward finding the probability of k elements randomly chosen
without repetition generating a finite abelian group, where k is the minimum
number of elements required to generate the group. A proof of the formula for
finding such probabilities of groups of the form Zpm⊕Zpn , where m, n ∈N and p
is prime, is given, and the result is extended to groups of the form Zpn1⊕· · ·⊕Zpnk ,
where ni , k ∈N and p is prime. Examples demonstrating applications of these for-
mulas are given, and aspects of further generalization to finding the probabilities
of randomly generating any finite abelian group are investigated.

Introduction

Throughout this paper, let k be the minimum number of elements required to
generate a group G, AG be the event where k elements randomly chosen without
repetition generate G, and P(AG) be the probability of AG occurring. Massari
[1979] showed that, for a finite cyclic group G of order a, P(AG) = φ(a)/a,
where φ is the Euler phi function. Patti [2002] showed, among other things, that,
for G = Zp⊕· · ·⊕Zp (the external direct product of Zp taken k times, where p is
prime),

P(AG)=

∏k−1
i=0 (p

k
− pi )∏k−1

j=0(pn − j)
.

It is natural to ask what the probability of generating groups like G is when powers
are added to the p subscripts. We now turn to this problem.

Theorem 1. Let G = Zpm ⊕Zpn where m, n ∈ N and p is prime. Then

P(AG)=
p2(m+n−2)(p2

− 1)(p2
− p)

pm+n(pm+n − 1)
.
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Proof. Partition the elements of G into p2 subsets (these particular types of subsets
will be referred to as A-subsets from this point forward):

Ai j={(px+i mod pm, py+ j mod pn) : x ∈Zpm , y∈Zpn , i, j ∈{0, 1, . . . , p−1}}.

Note that
⋃

Ai j = G and |Ai j | = |G|/p2
= pm+n−2 for i = 0, 1, . . . , p− 1 and

j = 0, 1, . . . , p− 1.
From this point forward we assume without being explicit that, in any tuple

(px+ i, py+ j), i and j are reduced modulo p, px+ i is reduced modulo pm , and
py+ j is reduced modulo pn .

Note that, for any g ∈ G and any t1, t2 ∈ Z such that t1 ≡ t2 mod p, t1g and t2g
belong to the same A-subset. Therefore, any element g ∈ G can at most generate p
A-subsets since there are p possible choices for an integer t that have the potential
to place tg in different A-subsets. For an element g, let Fg denote the family of
A-subsets to which tg belongs for all possible values of t . Note that for each g /∈ A00

exactly p A-subsets belong to Fg (g does not necessarily generate all A-subsets
belonging to Fg, but it generates at least one element belonging to each A-subset).

Let g = (a, b) ∈ G, and let (c, d) and (e, f ) be two elements, each from any A-
subset belonging to Fg. Then (c, d) ≡ k1(a, b) mod p and (e, f ) ≡ k2(a, b)
mod p for some k1, k2 ∈ Z. Thus, for any k3, k4 ∈ Z, k3(c, d) + k4(e, f ) ≡
k3k1(a, b)+k4k2(a, b)=[k3k1+k4k2](a, b) mod p, which belongs to an A-subset
in Fg. Thus, these two elements generate at most p A-subsets and thus cannot
generate G. Note that, since A00 ∈ Fg for all g ∈G, it is impossible for two elements
to generate G when one of them belongs to A00.

Now suppose we choose elements a, b /∈ A00, say a = (px1+ i1, py1+ j1) and
b= (px2+i2, py2+ j2), such that a does not belong to any A-subset in Fb and b does
not belong to any A-subset in Fa (thus it is not the case that i1= i2= 0, j1= j2= 0,
i1 = j1 = 0, or i2 = j2 = 0). We will show that a and b together generate G.

Case 1: At least one of i1, i2, j1, j2 is zero. Without loss of generality let i1 = 0.
Then i2 6= 0, j1 6= 0, and because gcd(py1 + j1, pn) = 1 there exists q ∈ Z such
that qa = (px, 1) for some x ∈ Zpm .

Subcase 1: j2=0. Then by similar reasoning there exists r ∈Z such that rb= (1, py)
for some y ∈Zpn . Now qa− pxrb= (0,−p2xy+1), and gcd(−p2xy+1, pn)= 1
so there exists s ∈Z such that s[qa−pxrb]= (0, 1). Finally, rb−pys[qa−pxrb]=
(1, 0).

Subcase 2: j2 6= 0. Then b− j2qa = (p[x2− j2x]+ i2, py2), and we arrive at the
same situation as Subcase 1.

Case 2: None of i1, i2, j1, j2 are zero. Let

e = i2a− i1b = (p[i2x1− i1x2], p[i2 y1− i1 y2] + c),
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where c = i2 j1− i1 j2. We will show that c 6= 0. Assume to the contrary that c = 0.
Since j2 6= 0, j2 ∈ {1, 2, . . . , p− 1} ⊂ Zp, and, because Zp is a field, there exists
k ∈ Zp such that k j2 ≡ 1 mod p. Let d = j1k. Because i1 j2 = i2 j1, we now have
i1 ≡ i1 j2k = i2 j1k = di2 mod p and j1 ≡ j1 j2k = d j2 mod p so that a and db
are in the same A-subset, a contradiction. Thus, c 6= 0.

Now, because gcd(p[i2 y1 − i1 y2] + c, pn) = 1, there exists q ∈ Z such that
qe = (px, 1) for some x ∈ Zpm . Further, f = b− qe[py2+ j2] = (px3+ i2, 0) for
some x3 ∈Zpm and gcd(px3+i2, pm)= 1, so there exists t ∈Z such that t f = (1, 0).
Finally, qe− pxt f = (0, 1).

In any case, we have shown that a and b generate (1, 0) and (0, 1), and thus a
and b together generate G.

It is left to show the value of P(AG). For the first element a, any element other
than an element from A00 can be chosen. Thus, there are pm+n−2 elements from each
of the p2

− 1 possible A-subsets from which to choose, a total of pm+n−2(p2
− 1)

elements out of the possible pm+n . For the second element, an element must be
chosen from an A-subset not belonging to Fa . Since p A-subsets belong to Fa ,
there are p2

− p such A-subsets, each containing pm+n−2 elements. Thus, there are
pm+n−2(p2

− p) elements out of the remaining pm+n
− 1 possible elements from

which to choose. Therefore,

P(AG)=
pm+n−2(p2

− 1)
pm+n ·

pm+n−2(p2
− p)

pm+n − 1

=
p2(m+n−2)(p2

− 1)(p2
− p)

pm+n(pm+n − 1)
. �

Example. Consider the group H = Z75 ⊕Z712 . Then

P(AH )=
72(5+12−2)(72

− 1)(72
− 7)

75+12(75+12− 1)

=
730(48)(42)
717(717− 1)

= 0.83965.

This result can be extended to the external direct product of any finite number
of Zpni .

Theorem 2. Let G = Zpn1 ⊕ · · · ⊕ Zpnk , where ni ∈ N and p is prime. Define
n =

∑k
i=1 ni . Then

P(AG)=
pk(n−k) ∏k−1

i=0 (p
k
− pi )∏k−1

j=0(pn − j)
.
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Proof. Partition the elements of G into pk A-subsets:

Ai1···ik={(px1+i1 mod pn1, . . . , pxk+ik mod pnk ) :x j ∈Zpn j , i j ∈{0,1, . . . , p−1}}.

Note that
⋃

Ai1···ik = G and |Ai1···ik | = |G|/pk
= pn−k for i j = 0, 1, . . . , p− 1.

Similar to the case where k = 2, any element g ∈ G can at most generate p
A-subsets, and for each g /∈ A0···0 exactly p A-subsets belong to Fg. When k
elements are chosen, if any two elements belong to A-subsets within the same
family, at most pk−1 A-subsets can be generated. Therefore, it is impossible to
generate G with such a choice of elements.

Now choose an element not in the null family, then choose another not in
the family of the first element, then choose another such that it is not in any
family generated by any linear combination of the first two elements, and so
forth until we have chosen k elements a1, . . . , ak . Then none of the elements
can be written as a linear combination of the other k − 1 elements. Define A =
{a1, . . . , ak}. Assume that none of the elements of A are part of an A-subset with
zero in its subscript. Then for any am1 and am2 there exist integers c1 and c2 so
that c1am1 + c2am2 ∈ A0i2···ik , where not all of the i j are zero. Therefore, we can
generate k − 1 elements a′1, . . . , a′k−1 where a′m = c1am + c2am+1 and c1 and c2

are such that a′m ∈ A0i2···ik , where not all of the i j are zero. Assume that i j 6= 0
for j = 2, . . . , k. Define A′ = {a′1, . . . , a′k−1}. Note that none of a′1, . . . , a′k−1 can
be written as linear combinations of the other k − 2 elements, for, if this were
possible, some a j could be written as a linear combination of the elements in A
other than a j , which contradicts our choice of the elements of A. We can now
generate k−2 elements a′′1 , . . . , a′′k−2 in a similar manner so that a′′m ∈ A00i3···ik , and
similar conditions and assumptions hold. Continuing in this manner, we generate
an element a(k) ∈ A0···0ik , where ik 6= 0. Now, because gcd(pxk + ik, pnk ) = 1,
there exists c such that ca(k)= (py1 mod pn1, . . . , pyk−1 mod pnk−1, 1) for some
yi ∈ Zpni .

Following a procedure similar to the one previously described, only changing
the order by which the linear combinations of the elements are taken, we can
generate k− 1 other elements so that we have a total of k elements b1, . . . , bk such
that the j-th coordinate of b j is 1 and the remaining coordinates are multiples of
p. Now linear combinations of these elements can be taken so that k elements
c1, . . . , ck are generated, where the j-th coordinate of c j is not a multiple of
p and the remaining coordinates are 0. Thus, the greatest common divisor of
the j-th coordinate of each c j and pn j is 1, and thus there exists t j for each c j

such that t j c j has 1 for the j-th coordinate and zero for the remaining coordi-
nates.

If, unlike our earlier assumptions, it happens at any point that some i j is zero,
notice that this is a subcase of our original case, where we already possess elements
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which otherwise we would have had to generate as we did in our original case.
Thus, our assumption that each i j be nonzero at each step is unnecessary and, in
any case, a1, . . . , ak together generate G.

It is left to show the value of P(AG). For the first element a1, any element other
than an element from A0···0 can be chosen. Thus, there are pn−k elements from
each of the pk

−1 possible A-subsets from which to choose, a total of pn−k(pk
−1)

elements out of the possible pn . For the second element a2, an element must be
chosen from an A-subset not belonging to Fa1 . Since p A-subsets belong to Fa1 ,
there are pk

− p such A-subsets, each containing pn−k elements. Thus, there are
pn−k(pk

− p) elements out of the remaining pn
− 1 possible elements from which

to choose. Continuing in this manner and multiplying the resulting probabilities,
we have

P(AG)=
pn−k(pk

− 1)
pn ·

pn−k(pk
− p)

pn − 1
· · ·

pn−k(pk
− pk−1)

pn − k

=
pk(n−k) ∏k−1

i=0 (p
k
− pi )∏k−1

j=0(pn − j)
. �

Example. Consider the group I =Z29⊕Z292⊕Z293⊕Z294 . Then 1+2+3+4= 10,
so

P(AI )=
294(10−4)(294

− 1)(294
− 29)(294

− 292)(294
− 293)

2910(2910− 1)(2910− 2)(2910− 3)
= 0.964.

Extension. The fundamental theorem of finite abelian groups states that every finite
abelian group is isomorphic to a direct product of cyclic groups of prime-power
order, that is, groups of the form Zp1

n1 ⊕ · · · ⊕ Zpk
nk , where ni ∈ N and pi are

prime [Gallian 2006]. We would thus hope that extending the previous theorem by
varying the primes would be simple. This is not the case, however. Consider the
following three groups and the probabilities of generating them:

(1) Let G1 = Z2⊕Z2. Then P(AG1)= 1/2.

(2) Let G2 = Z3⊕Z3. Then P(AG2)= 2/3.

(3) Let G3 = Z2⊕Z2⊕Z3⊕Z3. Then P(AG3)= 8/35.

Notice that, although we have a formula for finding the probabilities of generating (1)
and (2) and G3 is isomorphic to G1⊕G2, the relationship between the probabilities
of generating each of the three groups (1/2, 2/3, and 8/35) is not obvious. The
following is a conjecture for the probability of generating groups of form similar
to G3.
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Conjecture. Let G = Zpn1 ⊕Zpn2 ⊕Zqn3 ⊕Zqn4 , where ni ∈ N and p and q are
prime. Then

P(AG)=
p2(n1+n2−2)q2(n3+n4−2)(p2q2

− p2
− q2
+ 1)(p2q2

− p2q − q2 p+ pq)
pn1+n2qn3+n4(pn1+n2qn3+n4 − 1)

.

This equation is similar in form to our previous theorem, yet it differs significantly
in the number of A-subsets from which elements can be chosen that successfully
generate G; the first element can be chosen from p2q2

− p2
−q2
+1 A-subsets and

the second element can be chosen from p2q2
− p2q − q2 p+ pq A-subsets. The

following conjecture shows how similar complexities arise in a group form similar
to the previous case:

Conjecture. Let G = Zpn1 ⊕ Zpn2 ⊕ Zpn3 ⊕ Zqn4 where ni ∈ N and p and q are
prime. Then

P(AG)=
p3(n1+n2+n3−3)qn4−1(p3

− 1)(p3
− p)(p3

− p2)(q3
− 1)

pn1+n2+n3qn4(pn1+n2+n3qn4 − 1)(pn1+n2+n3qn4 − 2)
.

Finally, since a set of elements from a group will either generate the whole group
or a proper subgroup, if we let BG be the event where k elements randomly chosen
without repetition generate a proper subgroup of G, then P(BG), the probability of
BG occurring, is

P(BG)= 1− P(AG).

Acknowledgements

I would like to express my gratitude to Dr. Daniel Kiteck for dedicating time to
oversee the research, continually checking my proofs, and giving guidance, advice,
and encouragement. I would also like to thank Dr. Bob Mallison for invaluable
hints which led to the completion of the proofs of the theorems.

References

[Gallian 2006] J. A. Gallian, Contemporary abstract algebra, 6th ed., Houghton Mifflin, Boston and
New York, 2006.

[Massari 1979] D. L. Massari, “The probability of generating a cyclic group”, Pi Mu Epsilon Journal
7:1 (1979), 3–6. Zbl 0435.20055

[Patti 2002] K. L. Patti, “The probability of randomly generating a finite group”, Pi Mu Epsilon
Journal 11:6 (2002), 313–316.

Received: 2012-07-26 Revised: 2012-10-26 Accepted: 2012-11-13

supernaturalgospel@gmail.com 202-0004 Tokyo, Nishitokyo-shi, Shimohoya 3-11-23, Japan

mathematical sciences publishers msp

http://msp.org/idx/zbl/0435.20055
mailto:supernaturalgospel@gmail.com
http://msp.org


involve
msp.org/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS
Colin Adams Williams College, USA

colin.c.adams@williams.edu
John V. Baxley Wake Forest University, NC, USA

baxley@wfu.edu
Arthur T. Benjamin Harvey Mudd College, USA

benjamin@hmc.edu
Martin Bohner Missouri U of Science and Technology, USA

bohner@mst.edu
Nigel Boston University of Wisconsin, USA

boston@math.wisc.edu
Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA

budhiraj@email.unc.edu
Pietro Cerone Victoria University, Australia

pietro.cerone@vu.edu.au
Scott Chapman Sam Houston State University, USA

scott.chapman@shsu.edu
Joshua N. Cooper University of South Carolina, USA

cooper@math.sc.edu
Jem N. Corcoran University of Colorado, USA

corcoran@colorado.edu
Toka Diagana Howard University, USA

tdiagana@howard.edu
Michael Dorff Brigham Young University, USA

mdorff@math.byu.edu
Sever S. Dragomir Victoria University, Australia

sever@matilda.vu.edu.au
Behrouz Emamizadeh The Petroleum Institute, UAE

bemamizadeh@pi.ac.ae
Joel Foisy SUNY Potsdam

foisyjs@potsdam.edu
Errin W. Fulp Wake Forest University, USA

fulp@wfu.edu
Joseph Gallian University of Minnesota Duluth, USA

jgallian@d.umn.edu
Stephan R. Garcia Pomona College, USA

stephan.garcia@pomona.edu
Anant Godbole East Tennessee State University, USA

godbole@etsu.edu
Ron Gould Emory University, USA

rg@mathcs.emory.edu
Andrew Granville Université Montréal, Canada

andrew@dms.umontreal.ca
Jerrold Griggs University of South Carolina, USA

griggs@math.sc.edu
Sat Gupta U of North Carolina, Greensboro, USA

sngupta@uncg.edu
Jim Haglund University of Pennsylvania, USA

jhaglund@math.upenn.edu
Johnny Henderson Baylor University, USA

johnny_henderson@baylor.edu
Jim Hoste Pitzer College

jhoste@pitzer.edu
Natalia Hritonenko Prairie View A&M University, USA

nahritonenko@pvamu.edu
Glenn H. Hurlbert Arizona State University,USA

hurlbert@asu.edu
Charles R. Johnson College of William and Mary, USA

crjohnso@math.wm.edu
K. B. Kulasekera Clemson University, USA

kk@ces.clemson.edu
Gerry Ladas University of Rhode Island, USA

gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $105/year for the electronic version, and
$145/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.berkeley.edu/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2013 vol. 6 no. 4

383Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry
VALMIR BUCAJ, SARAH CANNON, MICHAEL DORFF, JAMAL LAWSON AND RYAN
VIERTEL

393An elementary inequality about the Mahler measure
KONSTANTIN STULOV AND RONGWEI YANG

399Ecological systems, nonlinear boundary conditions, and 6-shaped bifurcation curves
KATHRYN ASHLEY, VICTORIA SINCAVAGE AND JEROME GODDARD II

431The probability of randomly generating finite abelian groups
TYLER CARRICO

437Free and very free morphisms into a Fermat hypersurface
TABES BRIDGES, RANKEYA DATTA, JOSEPH EDDY, MICHAEL NEWMAN AND
JOHN YU

447Irreducible divisor simplicial complexes
NICHOLAS R. BAETH AND JOHN J. HOBSON

461Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers
DANIEL E. LYONS

467An orbit Cartan type decomposition of the inertia space of SO(2m) acting on R2m

CHRISTOPHER SEATON AND JOHN WELLS

483Optional unrelated-question randomized response models
SAT GUPTA, ANNA TUCK, TRACY SPEARS GILL AND MARY CROWE

493On the difference between an integer and the sum of its proper divisors
NICHOLE DAVIS, DOMINIC KLYVE AND NICOLE KRAGHT

505A Pexider difference associated to a Pexider quartic functional equation in topological
vector spaces

SAEID OSTADBASHI, ABBAS NAJATI, MAHSA SOLAIMANINIA AND
THEMISTOCLES M. RASSIAS

1944-4176(2013)6:4;1-7

involve
2013

vol.6,
no.4


	Introduction
	Acknowledgements
	References
	
	

