

Free and very free morphisms into a Fermat hypersurface

Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu

Free and very free morphisms into a Fermat hypersurface

Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu

(Communicated by Ravi Vakil)

This paper studies the existence of free and very free curves on the degree 5 Fermat hypersurface in \mathbb{P}^5 over an algebraically closed field of characteristic 2. We explicitly compute a free curve in degree 8, and a very free curve in degree 9. We also prove that free and very free curves cannot exist in lower degrees.

1. Introduction

Any smooth projective Fano variety in characteristic zero is rationally connected and hence contains a very free rational curve. In positive characteristic a smooth projective Fano variety is rationally chain-connected. However, it is not known whether such varieties are separably rationally connected, or equivalently, whether they have a very free rational curve. This is an open question even for nonsingular Fano hypersurfaces. See [Kollár 1996], as well as [Debarre 2001].

Following [Shen 2012], we consider the degree 5 Fermat hypersurface

$$X: \quad X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5 + X_5^5 = 0$$

in \mathbb{P}^5 over an algebraically closed field k of characteristic 2. This is a nonsingular projective Fano variety.

Theorem 1.1. Any free rational curve $\varphi : \mathbb{P}^1 \to X$ has degree ≥ 8 , and there exists a free rational curve of degree 8. Any very free rational curve $\varphi : \mathbb{P}^1 \to X$ has degree ≥ 9 , and there exists a very free rational curve of degree 9.

This result, although perhaps expected, is interesting for several reasons. First, it is known that X is unirational; see [Debarre 2001, p. 52] (the corresponding rational map $\mathbb{P}^4 \rightarrow X$ is inseparable). Second, in [Beauville 1990], it is shown that

MSC2010: primary 14-02; secondary 14M22.

Keywords: free morphisms, very free morphisms, Fermat hypersurface, Fermat hypersurface over a field of characteristic 2.

Results in this paper were obtained during an REU at Columbia University led by A. J. de Jong in the summer of 2012.

438

every nonsingular hyperplane section of X is isomorphic to a Fermat hypersurface of dimension 3, and this property characterizes Fermat hypersurfaces among all hypersurfaces of degree 5 in characteristic 2. We believe that these facts single out the Fermat as a likely candidate for a counterexample to the conjecture below; instead, our theorem shows that they are evidence for it.

Conjecture 1.2. Nonsingular Fano hypersurfaces have very free rational curves.

Zhu [2011] discusses this question more broadly. Let us discuss a little bit about the method of proof. In Section 2, we translate the geometric question into an algebraic question which is computationally more accessible. In Sections 3, 4, and 5, we exclude low-degree solutions by theoretical methods. Finally, in Sections 6 and 7, we explicitly describe some curves which are free and very free in degrees 8 and 9, respectively.

2. The overall setup

In the rest of this paper, k will be an algebraically closed field of characteristic 2 and X will be the Fermat hypersurface of degree 5 over k. Let $\varphi : \mathbb{P}^1 \to X$ be a nonconstant morphism. We will repeatedly use that every vector bundle on \mathbb{P}^1 is a direct sum of line bundles; see [Grothendieck 1957]. Thus we can choose a splitting

$$\varphi^* T_X = \mathbb{O}_{\mathbb{P}^1}(a_1) \oplus \mathbb{O}_{\mathbb{P}^1}(a_2) \oplus \mathbb{O}_{\mathbb{P}^1}(a_3) \oplus \mathbb{O}_{\mathbb{P}^1}(a_4).$$

Recall that φ is said to be a *free curve* on X if $a_i \ge 0$, and φ is said to be *very free* if $a_i > 0$. Consider the commutative diagram

with exact rows and columns as indicated. We will call E_X the *extended tangent* bundle of X. The left vertical exact sequence determines a short exact sequence

$$0 \to \mathbb{O}_{\mathbb{P}^1} \to \varphi^* E_X \to \varphi^* T_X \to 0.$$

The splitting type of $\varphi^* E_X$ will consistently be denoted $(f_1, f_2, f_3, f_4, f_5)$ in this paper. Since $\operatorname{Hom}_{\mathbb{P}^1}(\mathbb{O}_{\mathbb{P}^1}(f), \mathbb{O}_{\mathbb{P}^1}(a)) = 0$ if f > a, we conclude:

- (1) If $f_i \ge 0$ for all *i*, then φ is free.
- (2) If $f_i > 0$ for all *i*, then φ is very free.

For the converse, note that the map $\mathbb{O}_{\mathbb{P}^1} \to \varphi^* E_X$ has image contained in the direct sum of the summands with $f_i \ge 0$. Hence, if $f_i < 0$ for some *i*, then φ is not free. Finally, suppose that $f_i \ge 0$ for all *i*. If there are at least two f_i equal to 0, then we see that φ is free but not very free. We conclude:

- (3) If φ is free, then $f_i \ge 0$ for all *i*.
- (4) If φ is very free, then either
 - (a) $f_i > 0$ for all *i*, or
 - (b) exactly one f_i vanishes and all others are positive.

We do not know if (4b) occurs.

Translation into algebra. Here we work over the graded *k*-algebra R = k[S, T]. As usual, we let R(e) be the graded free *R*-module whose underlying module is *R* with grading given by $R(e)_n = R_{e+n}$. A *graded free R-module* will be any graded *R*-module isomorphic to a finite direct sum of R(e)'s. Such a module *M* has a *splitting type* which is uniquely defined up to reordering, namely, the sequence of integers u_1, \ldots, u_r such that $M \cong R(u_1) \oplus \cdots \oplus R(u_r)$.

We will think of a degree *d* morphism $\varphi : \mathbb{P}^1 \to \mathbb{P}^5$ as a 6-tuple (G_0, \ldots, G_5) of homogeneous elements in *R* of degree *d* with no common factors. Then φ is a morphism into *X* if and only if $G_0^5 + \cdots + G_5^5 = 0$. In this situation we define two graded *R*-modules. The first is called the *pullback of the cotangent bundle*

$$\Omega_X(\varphi) = \operatorname{Ker}(\tilde{\varphi} : R^{\oplus 6}(-d) \to R),$$

where the map $\tilde{\varphi}$ is given by $(A_0, \ldots, A_5) \mapsto \sum A_i G_i$. The second is called the *the pullback of the extended tangent bundle*

$$E_X(\varphi) = \operatorname{Ker}(R^{\oplus 6}(d) \to R(5d)),$$

where the map is given by $(A_0, \ldots, A_5) \mapsto \sum A_i G_i^4$. Since the kernel of a map of graded free *R*-modules is a graded free *R*-module, both $\Omega_X(\varphi)$ and $E_X(\varphi)$ are themselves graded free *R*-modules of rank 5.

Lemma 2.1. The splitting type of $\varphi^* E_X$ is equal to the splitting type of the *R*-module $E_X(\varphi)$.

Proof. Recall that $\mathbb{P}^1 = \operatorname{Proj}(R)$. Thus, a finitely generated graded *R*-module corresponds to a coherent sheaf on \mathbb{P}^1 ; see [Hartshorne 1977, Proposition 5.11]. Under this correspondence, the module R(e) corresponds to $\mathbb{O}_{\mathbb{P}^1}(e)$. The lemma follows

439

if we show that $\varphi^* E_X$ is the coherent sheaf associated to $E_X(\varphi)$. Diagram (2-1) shows that $\varphi^* E_X$ is the kernel of a map $\mathbb{O}_{\mathbb{P}^1}(d)^{\oplus 6} \to \mathbb{O}_{\mathbb{P}^1}$ given by substituting (G_0, \ldots, G_5) into the partial derivatives of the polynomial defining X. Since the equation is $X_0^5 + \cdots + X_5^5$, the derivatives are X_i^4 , and substituting we obtain G_i^4 as desired.

3. Relating the splitting types

Observe that $\Omega_X(\varphi)$ is also a graded free module of rank 5 and so has a splitting type, which we denote using e_1, \ldots, e_5 . In this section, we relate the splitting type of $\Omega_X(\varphi)$ to the splitting type of $E_X(\varphi)$.

If $(A_0, \ldots, A_5) \in \Omega_X(\varphi)$, then $A_0G_0 + \cdots + A_5G_5 = 0$ so that

$$A_0^4 G_0^4 + \dots + A_5^4 G_5^4 = 0$$

by the Frobenius endomorphism in characteristic 2. Let

$$\mathcal{T} = \{ (A_0^4, \dots, A_5^4) \mid (A_0, \dots, A_5) \in \Omega_X(\varphi) \}$$

in $E_X(\varphi)$. We denote the *R*-module generated by \mathcal{T} as $R\langle \mathcal{T} \rangle$.

Lemma 3.1. In the notation above, $E_X(\varphi) = R\langle \mathcal{T} \rangle$.

Proof. Let (B_0, \ldots, B_5) be an element of $E_X(\varphi)$, where B_i is a homogeneous polynomial of degree *b*. We consider the case $b \equiv 0 \mod 4$.

Observe that we can rewrite each monomial term of B_i as $(c^{1/4}S^{\ell}T^k)^4S^iT^{4-i}$ or $(c^{1/4}S^{\ell}T^k)^4$ for some integers ℓ , k, where $c \in k$ and 0 < i < 4. After collecting terms and applying the Frobenius endomorphism, we obtain

$$B_i = a_{i1}^4 + a_{i2}^4 S^3 T + a_{i3}^4 S^2 T^2 + a_{i4}^4 S T^3,$$

where each a_{ij} is an element of R. Then, since $B_0G_0^4 + \cdots + B_5G_5^4 = 0$, substituting our expression for the B_i 's and applying Frobenius, we obtain

$$\left(\sum_{i=0}^{5} a_{i1}G_i\right)^4 + \left(\sum_{i=0}^{5} a_{i2}G_i\right)^4 S^3 T + \left(\sum_{i=0}^{5} a_{i3}G_i\right)^4 S^2 T^2 + \left(\sum_{i=0}^{5} a_{i4}G_i\right)^4 S T^3 = 0.$$

The sums $\sum_{i=0}^{5} a_{ij}G_i$ are each themselves homogeneous polynomials. But since the degree of *T* in each term above is distinct modulo 4, the equation $\sum_{i=0}^{5} a_{ij}G_i = 0$ implies that $(a_{0j}, \ldots, a_{5j}) \in \Omega_X(\varphi)$ so that $(a_{0j}^4, \ldots, a_{5j}^4) \in \mathcal{T}$ for $1 \le j \le 4$.

Hence, every homogeneous element of $E_X(\varphi)$ is contained in the submodule generated by \mathcal{T} . Since the reverse containment is trivial, it follows that $E_X(\varphi) = R\langle \mathcal{T} \rangle$. The cases for $b \equiv 1, 2, 3 \mod 4$ follow similarly.

Proposition 3.2. If $x_i = (x_{i0}, \ldots, x_{i5})$, for $1 \le i \le 5$, form a basis for $\Omega_X(\varphi)$, then $y_i = (x_{i0}^4, \ldots, x_{i5}^4)$, for $1 \le i \le 5$, form a basis for $E_X(\varphi)$.

440

Proof. If $x_i \in \Omega_X(\varphi)$, then $y_i \in \mathcal{T}$, and every element of \mathcal{T} is an *R*-linear combination of the y_i 's. Since $E_X(\varphi) = R\langle \mathcal{T} \rangle$, every element of $E_X(\varphi)$ is also an *R*-linear combination of the y_i 's so that the y_i 's generate $E_X(\varphi)$. Moreover, $E_X(\varphi)$ is a free module of rank 5 over a domain, so the generators y_i for $E_X(\varphi)$ must also be linearly independent and hence form a basis.

Accounting for twist, a simple computation using the results above gives us the following.

Corollary 3.3. Let φ be a degree d morphism, and e_1, \ldots, e_5 be the splitting type of $\Omega_X(\varphi)$. If $f_1 = 4e_1 + 5d$, $f_2 = 4e_2 + 5d$, \ldots , $f_5 = 4e_5 + 5d$, then f_1, \ldots, f_5 is the splitting type of $E_X(\varphi)$.

4. Numerology

We now utilize some facts about graded free modules in order to give constraints on potential splitting types. Given a graded free module

$$M = R(u_1) \oplus \cdots \oplus R(u_r),$$

one can observe that the Hilbert polynomial H_M is given by

$$H_M(m) = rm + u_1 + \dots + u_r + r.$$

Let φ denote a free morphism of degree d into X. Noting that the map

$$\tilde{\varphi}: R(-d)_m^{\oplus n+1} \to R_m$$

is surjective for $m \gg 0$, we obtain

$$H_{\Omega(\varphi)}(m) = \dim_k \left(\ker(R(-d)_m^{\oplus n+1} \to R_m) \right)$$
$$= (n+1)(-d+m+1) - (m+1)$$
$$= nm + -d(n+1) + n.$$

A similar calculation shows that

$$H_{E_X(\varphi)}(m) = nm + d(n+1-5) + n.$$

We continue to refer to the splitting type components of $\Omega(\varphi)$ and $E_X(\varphi)$ as e_i and f_i , respectively. In both cases n = r = 5, so combining these two equations with the general form for the Hilbert polynomial of a graded free module, we obtain our first constraints:

$$e_1 + e_2 + e_3 + e_4 + e_5 = -6d,$$

 $f_1 + f_2 + f_3 + f_4 + f_5 = d.$

Recall from Section 2 that a curve is free or very free if $f_i \ge 0$ or $f_i > 0$, respectively, for each *i*. Since $f_i = 4e_i + 5d$, it follows that

$$e_i \ge -\frac{5d}{4},$$

where strict inequality implies the curve is very free. With these two bounds, we can quickly observe a few facts about curves of different degrees.

Remarks. (1) There exist no free curves in degrees 1, 2, 3, 6, and 7.

- (2) Any free curve of degree not divisible by 4 must be very free.
- (3) There are no very free curves in degrees 4 or 8.
- (4) The splitting type of $\Omega(\varphi)$ of a free curve of degree 4 must be

$$(-5, -5, -5, -5, -4).$$

(5) The splitting type of $\Omega(\varphi)$ of a very free curve of degree 5 must be

$$(-6, -6, -6, -6, -6)$$

All of these observation follow directly from the two constraints. For example, in degree 6, $e_1 + e_2 + e_3 + e_4 + e_5 = -6d = -36$. However, each $e_i \ge -30/4 = -7.5$. So even if each e_i is at best -7, the e_i cannot sum to -36.

The rest of the remarks follow in a similar manner. Note that one can glean even more information about these curves from the constraints, but the remarks listed above are sufficient for our purposes.

5. Degree 4 and 5 morphisms into X

We will now show that there are no free morphisms of degrees 4 or 5 into X. A morphism $\varphi = (G_0, \ldots, G_5)$, where each $G_i = \sum_{j=0}^d a_{ij} S^{d-j} T^j$ is a homogeneous polynomials of degree d, gives us a $6 \times (d+1)$ matrix (a_{ij}) . We will denote this matrix as M_{φ} .

Lemma 5.1. If φ is a degree 4 or 5 free morphism into X, then M_{φ} has maximal rank.

Proof. This follows from Remarks(4) and (5) by observing that for a degree d morphism into X, the transpose of M_{φ} is the matrix of the k-linear map

$$\tilde{\varphi}_d: (R(-d)^{\oplus 6})_d \to R_d.$$

Lemma 5.2.

- (a) There are no degree 4 free morphisms into X.
- (b) There are no degree 5 free morphisms into X.

Proof. (a) Assume a degree 4 free morphism $\varphi = (G_0, \ldots, G_5)$ exists. By the previous lemma, the 6×5 matrix $M_{\varphi} = (a_{ij})$ has maximal rank. Since permuting the G_i 's does not affect the splitting type of $E_X(\varphi)$, we can assume that the first 5 rows of M_{φ} are linearly independent over k. Then det $((a_{ij})_{i \le 4}) \ne 0$. Now consider the matrix $\overline{M}_{\varphi} = (a_{ij}^4)$. By the Frobenius endomorphism on k,

$$\det((a_{ij}^4)_{i\leq 4}) = \det((a_{ij})_{i\leq 4})^4 \neq 0,$$

proving that \overline{M}_{φ} has maximal rank as well.

Since $G_0^5 + \cdots + G_5^5 = 0$, computing the coefficients of $G_0^5 + \cdots + G_5^5$, we obtain for $0 \le j \le 4$

$$\sum_{i=0}^{5} a_{ij}^4 a_{i1} = 0 \quad \text{and} \quad \sum_{i=0}^{5} a_{ij}^4 a_{i3} = 0.$$
 (5-1)

The kernel of the map $k^6 \rightarrow k^5$ given by right multiplication by the matrix \overline{M}_{φ} has dimension 1 because rank $(\overline{M}_{\varphi}) = 5$. By (5-1),

$$(a_{01}, a_{11}, \dots, a_{51}), (a_{03}, a_{13}, \dots, a_{53}) \in \ker(k^6 \to k^5)$$

and since these 6-tuples are columns of M_{φ} , they are linearly independent over k. Then $\dim_k (\ker(k^6 \to k^5)) \ge 2$, a contradiction.

(b) Assume $\varphi = (G_0, \ldots, G_5)$ is a degree 5 free morphism. By the previous lemma, the matrix $M_{\varphi} = (a_{ij})$ has maximal rank and is invertible. Thus $\overline{M}_{\varphi} = (a_{ij}^4)$ is invertible by the same argument above. Since $G_0^5 + \cdots + G_5^5 = 0$, computing the coefficients of the polynomial $G_0^5 + \cdots + G_5^5$, we get

$$\sum_{i=0}^{5} a_{ij}^4 a_{i2} = 0 \quad \text{for } 0 \le j \le 5$$

Thus, the product of the row matrix $(a_{02}, a_{12}, \ldots, a_{52})$ and the matrix \overline{M}_{φ} is 0, which is impossible because $(a_{02}, a_{12}, \ldots, a_{52}) \neq 0$ and \overline{M}_{φ} is invertible.

6. Computations for the degree 8 free curve

Let $\varphi : \mathbb{P}^1 \to \mathbb{P}^5$ be a morphism given by the 6-tuple

$$\begin{split} G_0 &= S^7 T, & G_1 = S^4 T^4 + S^3 T^5, \\ G_2 &= S^4 T^4 + S^3 T^5 + T^8, & G_3 = S^7 T + S^6 T^2 + S^5 T^3 + S^4 T^4 + S^3 T^5, \\ G_4 &= S^8 + S^7 T + S^6 T^2 + S^5 T^3 + S^4 T^4 + S^3 T^5 + T^8, \\ G_5 &= S^8 + S^7 T + S^6 T^2 + S^5 T^3 + S^4 T^4 + S^3 T^5 + S^2 T^6 + ST^7. \end{split}$$

One can check by computer or by hand that this curve lies on the Fermat hypersurface $X \subset \mathbb{P}^5$. Due to twisting, the domain of the map $\tilde{\varphi} : R(-8)^{\oplus 6} \to R$ has its first non-trivial graded piece in dimension 8. The G_i are linearly independent over k, hence the kernel is trivial in dimension 8. The matrix for the map $\tilde{\varphi}_9 : R(-8)_9^{\oplus 6} \to R_9$ is

where each direct summand of the domain has a basis {(*S*, 0), (0, *T*)}, of which we take six copies (for total dimension 12), and the range has basis given by the degree 9 monomials in *S* and *T*, ordered by increasing *T*-degree (for total dimension 10). This matrix has rank 10, which means that the map in degree 9 is surjective. By rank-nullity, two dimensions of the kernel live in degree 9; denote the generators by x_1, x_2 . Surjectivity of $\tilde{\varphi}$ in degree 9 implies surjectivity in all higher degrees. A second application of rank-nullity gives dim $_k \Omega(\varphi)_{10} = 7$. Four of the generators are inherited from the previous degree, taking the forms

$$x_1S, x_2S, x_1T, x_2T.$$

We conclude that there are three additional generators in degree 10. Therefore, the splitting type of $\Omega_X(\varphi)$ is $(e_1, \ldots, e_5) = (-10, -10, -10, -9, -9)$, which corresponds to a splitting type for $E_X(\varphi)$ of $(f_1, \ldots, f_5) = (0, 0, 0, 4, 4)$, hence the curve is free.

7. A very free rational curve of degree 9

We conclude by giving an example of a degree 9 very free curve lying on X. Let $\varphi : \mathbb{P}^1 \to \mathbb{P}^5$ be a morphism into the Fermat hypersurface given by the 6-tuple

$$\begin{split} G_0 &= S^4 T^5, & G_1 = S^9 + S^8 T + S^5 T^4, \\ G_2 &= S^9 + S^4 T^5 + S T^8, & G_3 = S^9 + S^8 T + S^4 T^5 + S^3 T^6 + S^2 T^7 + S T^8, \\ G_4 &= S^9 + S^5 T^4 + S^3 T^6 + S^2 T^7 + S T^8 + T^9, \\ G_5 &= S^7 T^2 + S^6 T^3 + S^5 T^4 + S^3 T^6 + S^2 T^7 + S T^8 + T^9. \end{split}$$

444

Let e_1, \ldots, e_5 again denote the splitting type of $\Omega_X(\varphi)$. As in Section 6, we know that $e_i \leq -9$. Since the G_i are linearly independent over k, $\dim_k(\Omega_X(\varphi)_9) = 0$. Next we claim that $\varphi_{10} : R_1^{\oplus 6} \to R_{10}$ is surjective. In fact, it can be checked that the $\tilde{\varphi}(b_i)$ span R_{10} , where the b_i are distinct basis elements of $R_1^{\oplus 6}$. It follows that $\tilde{\varphi_n} : R(-9)_n^{\oplus 6} \to R_n$ is surjective for $n \geq 10$. Hence,

$$\dim_k(\Omega_X(\varphi)_{10}) = \dim_k(R_1^{\oplus 6}) - \dim_k(R_{10}) = 1,$$

$$\dim_k(\Omega_X(\varphi)_{11}) = \dim_k(R_2^{\oplus 6}) - \dim_k(R_{11}) = 6.$$

After reordering, this yields $(e_1, \ldots, e_5) = (-11, -11, -11, -11, -10)$, which corresponds to the splitting type (1, 1, 1, 1, 5) of $E_X(\varphi)$, showing that φ is very free. This completes the proof of Theorem 1.1.

References

- [Beauville 1990] A. Beauville, "Sur les hypersurfaces dont les sections hyperplanes sont à module constant", pp. 121–133 in *The Grothendieck Festschrift, I*, edited by P. Cartier et al., Progr. Math. **86**, Birkhäuser, Boston, 1990. MR 91m:14070 Zbl 0723.14031
- [Debarre 2001] O. Debarre, *Higher-dimensional algebraic geometry*, Springer, New York, 2001. MR 2002g:14001 Zbl 0978.14001
- [Grothendieck 1957] A. Grothendieck, "Sur la classification des fibrés holomorphes sur la sphère de Riemann", *Amer. J. Math.* **79** (1957), 121–138. MR 19,315b Zbl 0079.17001
- [Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977. MR 57 #3116 Zbl 0367.14001
- [Kollár 1996] J. Kollár, *Rational curves on algebraic varieties*, Ergebnisse der Math. (3) **32**, Springer, Berlin, 1996. MR 98c:14001 Zbl 0877.14012
- [Shen 2012] M. Shen, "Rational curves on Fermat hypersurfaces", C. R. Math. Acad. Sci. Paris **350**:15-16 (2012), 781–784. MR 2981353 Zbl 06100626

[Zhu 2011] Y. Zhu, "Fano hypersurfaces in positive characteristic", preprint, 2011. arXiv 1111.2964

Received: 2012-08-05	Revised: 2012-11-06 Accepted: 2012-11-08
mbridg5@uic.edu	Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, United States
rankeya@umich.edu	Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
jle2129@columbia.edu	Department of Mathematics, Columbia University, New York, NY 10027, United States
mgnewman@umich.edu	Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
jy2433@columbia.edu	Department of Mathematics, Columbia University, New York, NY 10027, United States

involve

msp.org/involve

EDITORS

MANAGING EDITOR Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

	BUARD O	F EDITORS	
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US \$105/year for the electronic version, and \$145/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2013 Mathematical Sciences Publishers

2013 vol. 6 no. 4

Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry VALMIR BUCAJ, SARAH CANNON, MICHAEL DORFF, JAMAL LAWSON AND RYAN VIERTEL	383
An elementary inequality about the Mahler measure KONSTANTIN STULOV AND RONGWEI YANG	393
Ecological systems, nonlinear boundary conditions, and Σ -shaped bifurcation curves KATHRYN ASHLEY, VICTORIA SINCAVAGE AND JEROME GODDARD II	399
The probability of randomly generating finite abelian groups TYLER CARRICO	431
Free and very free morphisms into a Fermat hypersurface TABES BRIDGES, RANKEYA DATTA, JOSEPH EDDY, MICHAEL NEWMAN AND JOHN YU	437
Irreducible divisor simplicial complexes NICHOLAS R. BAETH AND JOHN J. HOBSON	447
Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers DANIEL E. LYONS	461
An orbit Cartan type decomposition of the inertia space of SO(2m) acting on \mathbb{R}^{2m} CHRISTOPHER SEATON AND JOHN WELLS	467
Optional unrelated-question randomized response models SAT GUPTA, ANNA TUCK, TRACY SPEARS GILL AND MARY CROWE	483
On the difference between an integer and the sum of its proper divisors NICHOLE DAVIS, DOMINIC KLYVE AND NICOLE KRAGHT	493
A Pexider difference associated to a Pexider quartic functional equation in topological vector spaces SAEID OSTADBASHI, ABBAS NAJATI, MAHSA SOLAIMANINIA AND THEMISTOCLES M. RASSIAS	505

