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For an integral domain D, the irreducible divisor graph G D(x) of a nonunit
x ∈ D gives a visual representation of the factorizations of x . Here we consider a
higher-dimensional generalization of this notion, the irreducible divisor simplicial
complex SD(x). We show how this new structure is a true generalization of G D(x),
and show that it often carries more information about the element x and the
domain D than its two-dimensional counterpart.

1. Introduction and preliminaries

The concept of an irreducible divisor graph of an element x in an integral domain
D was introduced in [Coykendall and Maney 2007]. The vertices of this graph are
a prechosen set of irreducible divisors of x , and any pair of vertices are connected
by an edge if and only if the corresponding irreducible divisors appear in the same
factorization of x . The relevance of the irreducible divisor graph was illustrated
in the same paper and in [Axtell et al. 2011]: an integral domain D is a unique
factorization domain if and only if each irreducible divisor graph is complete if and
only if each irreducible divisor graph is connected.

Since their introduction, irreducible divisor graphs have been studied in the
context of integral domains [Axtell et al. 2011; Maney 2008] and in more general
contexts [Axtell and Stickles 2008; Bachman et al. 2012; Smallwood and Swartz
2009; 2008]. Despite the appealing result mentioned above, it is difficult to pick
out the factorizations of an element given its irreducible divisor graph. In short,
irreducible divisor graphs fail to give us all the information we might wish to glean
about an element’s factorizations.

Our main goal is to introduce the concept of an irreducible divisor simplicial
complex, effectively a generalization of the irreducible divisor graph to higher
dimensions. As we shall see, irreducible divisor simplicial complexes often convey
more information about the factorization of an element than its two-dimensional
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counterpart. Maney [2008] uses homologies to study irreducible divisor graphs,
linking irreducible divisor graphs to certain zeroth and first homologies. Moreover,
higher homologies are considered which, although not explicitly mentioned in
[Maney 2008], are related to irreducible divisor simplicial complexes. This gives
yet another motivation for studying this new construct.

We now provide a brief overview of the ring- and graph-theoretic terminology that
will be required in the sequel. Throughout, D will denote an integral domain, D∗ the
nonzero elements of D, and U (D) the units of D. It will often be convenient for us to
speak of the set of nonzero nonunits of D which will be denoted by D∗ \U (D). An
element x ∈ D∗ \U (D) is irreducible if whenever x = yz with y, z ∈ D, then either
y∈U (D) or z∈U (D). We say x ∈D∗\U (D) is prime if whenever x | yz with y, z∈
D, then either x | y or x | z. An element x ∈D is square-free if it is not divisible by any
perfect square z2

∈ D∗\U (D), that is, if z2 divides x for z ∈ D, then z ∈U (D). Two
elements a and b of D are called associates if a= ub where u ∈U (D). The relation
a ∼ b on elements of D is an equivalence relation that partitions D into associate
classes. We denote the set of irreducibles in D as Irr(D)= {x : x is irreducible} and
define Irr(D) to be a (prechosen) set of associate class representatives, one from
each class of nonzero associates. We denote the irreducible divisors of a particular
element x ∈ D as Irr(x) and set Irr(x)= Irr(x)∩ Irr(D). Note that by considering
only Irr(D), we do not distinguish elements in D from their associates and we are
implicitly working in the reduced multiplicative monoid D•red (see [Geroldinger and
Halter-Koch 2006, Chapter 1]), which is the multiplicative monoid whose elements
are associate classes and whose identity is the set of units.

As we will be studying the factorization of elements of D as products of irre-
ducibles, it will be useful to restrict our study to only atomic domains where each
element x ∈ D∗ \U (D) can be factored into a finite product of irreducible elements.
Clearly every prime in an integral domain is irreducible. If D is an atomic domain,
then D is a unique factorization domain (UFD) if and only if all irreducibles in D
are prime [Geroldinger and Halter-Koch 2006, Theorem 1.1.10.2]. We now give a
brief introduction of some special types of atomic domains and related terminology.
We say D is a finite factorization domain (FFD) if every nonzero nonunit in D
has only finitely many distinct nonassociate irreducible divisors. If D is a finite
factorization domain, the set of lengths (of factorizations) of x ∈ D∗ \U (D) is
L(x) = {t : x = a1a2 · · · at where each ai is irreducible}. A FFD D is a bounded
factorization domain (BFD) if there is a bound on the length of factorization
into products of irreducible elements for each nonzero nonunit element in D. If
|L(x)| = 1 for all x ∈ D∗ \U (D), we say that D is a half-factorial domain (HFD).
The elasticity ρ(D) of D gives a measure of how far D is from being a HFD; it
is defined as the supremum of the elasticity ρ(x) :=max L(x)/min L(x) of each
element x ∈ D∗ \U (D).
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A graph is an ordered pair of sets (V, E), where V is called the vertex set, and
E is the edge set, whose elements are subsets of V of cardinality 2. We denote an
edge between vertices a and b as {a, b} and note that the edge {a, b} is the same as
the edge {b, a}. The edge {a, b} is said to be incident with both vertices a and b.
We denote the set of vertices of a graph G as V (G) and the set of edges of G as
E(G). In addition, we define a loop to be an edge between a and itself. We now
define a higher-dimensional analog of graphs. A simplicial complex S is an ordered
pair (V, F) where V is a set of vertices and the set of faces F is a collection of
subsets of V satisfying: (1) {v} ∈ F for all v ∈ V (vertices are faces) and (2) if
σ ∈ F and τ ⊆ σ , then τ ∈ F (subsets of faces are faces). As with graphs, we
denote the set of vertices of S as V (S), and the set of faces of S as F(S). The
dimension of a face β of finite cardinality in a simplicial complex S is one less than
its cardinality and is denoted as dim(β)= |β| − 1. Faces with maximal cardinality
(with respect to inclusion) are referred to as facets. For a nonnegative integer k, the
k-skeleton Kk(S) of a simplicial complex S is the subsimplex of S consisting of all
the faces of S whose dimension is at most k. We note that K1(S) is a graph.

2. Irreducible divisor graphs

In this section, we introduce the irreducible divisor graph of an element in an atomic
domain and summarize results from [Axtell et al. 2011; Coykendall and Maney
2007].

Definition 2.1. Let D be an atomic domain and let x ∈ D∗ \ U (D). The irre-
ducible divisor graph of x , denoted G D(x), is given by (V, E) where the vertex set
V = {Irr(x) : x ∈ D}, and given y1, y2 ∈ V , there is an edge {y1, y2} ∈ E between
vertices y1 and y2 if and only if y1 y2 | x .

When it is clear from context, we will drop the subscript D from G D(x) and
write G(x). If the same element a ∈ Irr(D) appears multiple times in a particular
factorization of x ∈ D∗ \U (D), then we add one or more loops to the vertex a in
G(x). We place n loops on vertex a provided an+1

| x and an+2 - x . When a vertex
has more than one loop, we will denote the number of loops in the graph with a
superscript over the loop.

Example 2.2. Let D = Z[
√
−5] and consider the irreducible divisor graph G(18).

Recall that 18 factors as

18= 2 · 32
= 3(1+

√
−5)(1−

√
−5)= 2(2+

√
−5)(2−

√
−5).

To simplify notation, we set α = (1+
√
−5) and β = (2+

√
−5), with α and β

denoting their complex conjugates. Using the rules provided in Definition 2.1, we
construct the irreducible divisor graph shown in Figure 1. For example, {2, β} is an
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α ᾱ

2
3

β β̄

Figure 1. G(18) in Z[
√
−5].

edge in G(18) since 2β | 18. Since 32
| 18 but 33 - 18, we place a single loop on

vertex 3. We note G(18) is connected but not complete.

One of the goals in studying the irreducible divisor graph of an element x in an
integral domain D is to be able to draw conclusions about the factorization of the
element in question and of other elements of D. When we look closely at G(18)
and briefly try to forget what the factorizations of 18 look like, we can see that
there will be some factorization that will include β, β, and 2. Since β and β are
connected by an edge in G(18), 18 = ββx for some x ∈ D∗ \U (D). Similarly,
18= 2βy and 18= 2βz for some y, z ∈ D∗ \U (D). Since all irreducible factors
of x appear together with β and β in a factorization of 18 and since none of 2, β,
or β are looped in G(18), it must be the case that x = 2. Similarly, y = β and z= β.
Thus 18 factors as 18 = 2ββ, and this factorization corresponds to the complete
subgraph with vertex set {2, β, β}. Note that the maximal complete subgraphs {2, 3}
and {3, α, α} also correspond to factorizations of 18. However, this correspondence
requires a priori knowledge of the factorizations of 18 in Z[

√
−5] and we cannot

see simply by looking at the graph G(18) what the remaining factorizations of 18
are. This problem occurs because of the loop on the vertex 3. When we look at the
graph, we really have no way of assigning the element 32 to any one factorization.
As irreducible divisor graphs get more complicated with more irreducible divisors,
we will have much difficulty in deciphering what the factorization of a particular
element is by simply looking at its irreducible divisor graph.

In most situations, factorizations do not correspond to complete subgraphs.
Conversely, complete subgraphs need not correspond to factorizations. We now
consider another example where this is certainly the case.

Example 2.3. Let D = Z[
√
−5] and consider G(108). By considering norms, we

see that 108 factors only as

108= 2233
= 2 · 32(1+

√
−5)(1−

√
−5)

= 22
· 3(2+

√
−5)(2−

√
−5)= 3(1+

√
−5)2(1−

√
−5)2

= 2(1+
√
−5)(1−

√
−5)(2+

√
−5)(2−

√
−5).
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β β̄
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α ᾱ

Figure 2. G(108) in D = Z[
√
−5].

As before, let α = (1+
√
−5) and β = (2+

√
−5) with α and β denoting their

complex conjugates. The irreducible divisor graph is given in Figure 2. This graph
is complete, even though D is not a UFD. Certainly not all complete subgraphs
correspond to factorizations of 108, thus making it hard to glean factorization-
theoretic information from the irreducible divisor graph. We will return to this
example later in Example 3.4.

For variety, we now give an example of the irreducible divisor graph of an
element in a nonhalf-factorial domain.

Example 2.4. Let k be a field and let D = k[x10, x12, x18, x33
] denote the subring

of the polynomial ring k[x]. Then x66
∈ D and the only irreducible divisors of x66

in D are x10, x12, x18, and x33. Moreover, x66 factors only as

x66
= (x12)(x18)3 = (x12)4(x18)= (x10)3(x18)2 = (x10)3(x12)3 = (x33)2.

Therefore, the irreducible divisor graph G D(x66), shown in Figure 3, consists of a
complete graph on three vertices (x10, x12, and x18) with 2, 3, and 2 loops on these
respective vertices, along with a single vertex (x33) having a single loop.

We now turn to several important results that can be found in [Axtell et al.
2011; Coykendall and Maney 2007]. The first result gives necessary and sufficient

2

2 3x10

x18 x33

x12

Figure 3. G(x66) in D = k[x10, x12, x18, x33
].
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conditions for an atomic domain to be a UFD. The second result gives a bound on
the elasticity of an element given by its irreducible divisor graph. We will prove
generalizations of these results in Section 3.

Theorem 2.5 [Axtell et al. 2011, Theorem 2.1]. Let D be an atomic domain. The
following statements are equivalent.

(1) D is a UFD.

(2) G(x) is complete for all x ∈ D∗ \U (D).

(3) G(x) is connected for all x ∈ D∗ \U (D).

Proposition 2.6 [Axtell et al. 2011, Proposition 4.1]. Let x be an element which is
not irreducible of a BFD D. Then ρ(x) does not exceed

1
2 max{t + l : G(x) contains a complete subgraph with t vertices and l loops}.

The proof of this result makes note of the fact that if x = am1
1 am2

2 · · · a
mn
n , where

a1, a2, . . . , an ∈ Irr(x), then G(x) contains a complete subgraph with a vertex
corresponding to each ai . In the special case that x is square-free we produce a
more accurate result.

Corollary 2.7 [Axtell et al. 2011, Corollary 4.4]. Let x be a square-free nonirre-
ducible element of a domain D. Then

ρ(x)≤ 1
2 max{t : G(x) contains a complete subgraph with t vertices}.

We note that the bounds given in Proposition 2.6 and Corollary 2.7 are, in general,
not tight. There are three reasons: First, it is often the case that not all vertices
belonging to a complete subgraph of G D(x) are involved in a single factorization
of x . Second, the minimal length of a factorization of x is often larger than 2.
Finally, when counting loops, it is impossible to know how many come from a
given factorization of x . As was done in Corollary 2.7, assuming that x is square-free
eliminates the third problem. We will consider these other two issues in Section 3.

3. Irreducible divisor simplicial complexes

We now extend the definition of irreducible divisor graphs given in Section 2 to
higher dimensions. We do this in the hopes that this extension will yield more
information about the factorization of elements in an atomic domain. After giving
a couple of examples, we generalize the results given in Section 2, but in terms of
irreducible divisor simplicial complexes.

Definition 3.1. Let D be an atomic domain and let x ∈ D∗ \U (D). The irreducible
divisor simplicial complex of x , denoted SD(x), is given by (V, F) with vertex
set V given by V = {Irr(x) : x ∈ D} and with {y1, y2, . . . , yn} ∈ F a face if and
only if y1 y2 · · · yn | x . In addition, to satisfy convention, we also put ∅ ∈ F .



IRREDUCIBLE DIVISOR SIMPLICIAL COMPLEXES 453

Whenever the context is clear we will drop the subscript D from SD(x) giving S(x).

Remark 3.2. Let S(x)= (V, F) be an irreducible simplicial complex. Clearly F
is a collection of subsets of V . If y ∈ V = Irr(x), then {y} ∈ F since y | x and hence
vertices are faces. Second, suppose that σ ∈ F and τ ⊆ σ . Since σ ∈ F , we know
σ = {y1, . . . , yn} where y1 · · · yn | x . Hence τ = {yi1, . . . , yi j }, some subcollection
of the yi , and clearly yi1 · · · yi j | x . Thus τ ∈ F , and hence subsets of faces are
faces. Therefore irreducible simplicial complexes are indeed simplicial complexes.

We graphically represent irreducible divisor simplicial complexes and irreducible
divisor graphs in similar ways. Points represent vertices and edges represent
faces of dimension 1. If we have some element x which factors into irreducibles as
xm1

1 · · · x
mn
n with distinct irreducible xi and mi ≥ 1 for all i , then the vertex represent-

ing xi will be drawn with mi − 1 loops. Graphically, we illustrate two-dimensional
faces by shaded triangles and three-dimensional faces by solid tetrahedra. We have
no effective way to graphically depict higher-dimensional faces, so readers are on
their own.

Example 3.3. Recall the irreducible divisor graph G(18) in Figure 1. We now
show the corresponding irreducible divisor simplicial complex S(18):

α ᾱ

2 3

β β̄

Figure 4. S(18) in Z[
√
−5].

Here we have the same general structure as G(18), but we now have two-
dimensional facets {2, β, β} and {3, α, α} which are represented graphically as
shaded faces. In this higher-dimensional structure, we avoid the difficulty in
determining factorizations as in Example 2.2. Indeed, the facets {2, 3}, {2, β, β},
and {3, α, α} correspond directly to the factorizations of 18. We will make this idea
more precise in Propositions 3.7 and 3.8.

Example 3.4. We now consider the irreducible divisor simplicial complex S(108)
in D = Z[

√
−5]. Recall that 108 factors as

108= 2233
= 2 · 32αα = 223ββ = 3α2α2

= 2ααββ.

If we investigate Figure 2, we can see the difficulty in extracting a particular
factorization by simply analyzing the graph. However, this becomes much easier
if we consider the irreducible divisor simplicial complex S(108). We have that
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β

β̄

2 3
α

ᾱ

Figure 5. S(108) in Z[
√
−5].

S(108)= (V, F), with V = {2, 3, α, α, β, β} and F = {∅}∪F0∪F1∪F2∪F3∪F4,
where Fi denotes the set of faces of S(108) with dimension i :

F0 = {{v} : v ∈ V },

F1 = {S ⊆ V : |S| = 2},

F2 = {S ⊆ V : |S| = 3}− {{3, α, β}, {3, α, β}, {3, α, β}, {3, α, β}},

F3 =
{
{2, 3, β, β}, {2, 3, α, α}, {α, α, β, β}, {2, α, β, β},

{2, α, β, β}, {2, α, α, β}, {2, α, α, β}
}
,

F4 = {2, α, α, β, β}.

The maximal faces (facets) of S(x) are

{2, α, α, β, β}, {2, 3, β, β}, {2, 3, α, α}.

Note that in Figure 5, the red-colored outline illustrates the 4-dimensional facet
{2, α, α, β, β}. Unlike in G(108), we can actually see that there are factorizations
of 108 that contain 2, α, α, β, and β, since they form a face of S(108). We can
also conclude that there is a factorization of x that only contains 2, 3, α, and α,
a fact that is not immediately apparent when examining G(108). If we consider
only G(108) and consider the set A = {2, 3, α, α}, we see no clear way of proving
that a factorization of 108 given by 2 · 3 · αα will not include β or β. After all,
there are edges connecting β or β to each element of A. In other words, the graph
G(108) does not seem to provide enough information to support the conclusion that
108= 2i 3 jαkαl for i, j, k, l ≥ 1. In contrast, S(108) contains far more information,
as we will see in the results that follow.

Example 3.5. Recall the element x66
∈ D= k[x10, x12, x18, x33

] from Example 2.4.
Since no three distinct irreducible divisors of x66 occur together in a factorization
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of x66, the irreducible divisor simplicial complex contains no faces of dimension
higher than 1 and SD(x66) = G D(x66) as shown in Figure 3. Even though these
two constructions give identical objects in this case, the simplicial complex carries
more information. In particular, only by looking at SD(x66) can we see that there
are no factorizations involving more than two distinct irreducible factors.

We now generalize and extend the results from Section 2. First we note that the
irreducible divisor simplicial complex SD(x) properly contains as a subsimplex the
irreducible divisor graph G D(x).

Proposition 3.6. For D an atomic domain and x ∈ D∗ \U (D), we have

K1(S(x))= G(x).

Proof. Let G(x) = (V, E) denote the irreducible divisor graph of x , and let
S(x)= (V ′, F) denote the irreducible divisor simplicial complex of x . By definition,

V ′ = V = Irr(x).

Furthermore, E ⊆ F since if {a, b} ∈ E , then ab | x and hence {a, b} ∈ F . Moreover,
if {a, b} is a one-dimensional face of F , then ab | x and hence {a, b} ∈ E . That is,
the one-dimensional faces of S(x) are precisely the edges of G(x). �

The following results give a means for finding factorizations of an element x by
considering SD(x).

Proposition 3.7. For D an atomic domain and x ∈ D∗\U (D), let A={a1, . . . , an}

be a facet of the irreducible divisor simplicial complex S(x). Then there exists a
factorization of x given by x = am1

1 · · · a
mn
n , where mi ≥ 1 for each i .

Proof. Since A is a face of S(x), we know that a1 · · · an | x . In fact, since
x/(a1a2 · · · an) also has a factorization, there is a factorization of x that involves
each ai . Suppose, by way of contradiction, that there exists some factorization of
x of the form am1

1 · · · a
mn
n b1 · · · bk, where each b j is irreducible and b j is not an

associate of ai for all i, j . Then by the definition of S(x), {a1, . . . , an, b1} is a face
of S(x) properly containing A, contradicting the fact that A is a facet of S(x). �

The converse to Proposition 3.7 does not hold in general as seen in Example 3.4.
Indeed, 108= 2233

= 3α2α2 and yet neither {2, 3} nor {3, α, α} is a facet since they
are properly contained in the facet {2, 3, α, α}. However, if we apply an additional
restriction we find a partial converse.

Proposition 3.8. Let D be an atomic domain and suppose x ∈ D∗\U (D) is square-
free. Then every factorization of x corresponds to a facet of S(x).
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Proof. By way of contradiction, suppose there exists a factorization x = a1a2 · · · an ,
with each ai irreducible, corresponding to the face A={a1, a2, . . . , an} of S(x) that
is not a facet. That is, A ( B for some facet B = {a1, a2, . . . , an, b1, b2, . . . , bm} of
S(x), where no bi is associate to any ai . Applying Proposition 3.7 and the fact that x
is square-free, the facet B corresponds to the factorization x=a1a2 · · · anb1b2 · · · am .
Setting these two factorizations equal, we have

x = a1a2 · · · an = a1a2 · · · anb1b2 · · · bm .

As D is an integral domain, we may repeatedly apply left-cancellation to find that
1= b1 · · · bm . This is a contradiction, since each of the bi is a nonunit irreducible
of D. Hence, A = B is a facet of S(x). �

We now produce a result analogous to Theorem 2.5 providing another necessary
and sufficient condition for an integral domain D to be a UFD. Recall that if X is a
set, then P(X) denotes the power set of X consisting of all subsets of X . We abuse
notation and write P(X) to denote the simplicial complex (X,P(X)) with vertex set
X and face set P(X). Recall that V (P(X))= X and F(P(X))=P(X). Recall from
Definition 3.1 that if the singleton {y} is a face of S(x), then y is an irreducible divi-
sor of x . In the next theorem, we may safely ignore all loops in both S(x) and G(x).

Theorem 3.9. Let D be an atomic domain. The following are equivalent.

(1) For every x ∈ D∗ \U (D), S(x)= P(A) for some A ⊆ Irr(x).

(2) D is a UFD.

Proof. Assume (1) and let x ∈ D∗ \U (D). Then S(x)=P(A) for some A⊆ Irr(x).
Since G(x) = K1(S(x)) by Proposition 3.6, and since K1(P(A)) is a complete
graph, G(x) is complete. Since this holds for all x ∈ D∗ \U (D), D is a UFD by
Theorem 2.5.

If D is a UFD, any x factors uniquely as x = am1
1 · · · a

mn
n , mi ≥ 1. Then

ai1 · · · ait | x for any subset {ai1, . . . , ait } ⊆ {a1, . . . , an}, and hence F(S(x)) =
P({ai , . . . , an}). That is, S(x)= P(Irr(x)). �

We now examine another necessary and sufficient condition for an integral
domain D to be a UFD. First, we require a definition and two lemmas. Recall that
for two simplicial complexes S = (V, F) and T = (W,G), their join S ∗ T is the
simplicial complex with vertex set V ∪W and with face set {A∪B : A ∈ F, B ∈G}.

Lemma 3.10. Let A and B be two sets. As simplicial complexes, P(A ∪ B) =
P(A) ∗P(B).

Proof. First we show that the vertex sets are equal. Suppose a ∈ V (P(A ∪ B)).
Then a ∈ A ∪ B, which by definition means a ∈ V (P(A) ∗P(B)). For the other
containment, suppose b ∈ V (P(A) ∗P(B)). By definition, b ∈ A ∪ B and hence
b ∈ V (P(A∪ B)).
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Now we show that P(A ∪ B) and P(A) ∗ P(B) have the same face set. Let
α ∈ F(P(A∪ B)), that is, α ⊆ A∪ B. Set αA := α∩ A⊆ A and αB := α \αA ⊆ B.
Clearly α=αA∪αB , and hence α∈ F(P(A)∗P(B)). To show the other containment,
select α ∈ F(P(A)∗P(B)) and write α= αA∪αB for some αA ⊆ A, αB ⊆ B. Then
α ⊆ A∪ B, and thus α ∈ F(P(A∪ B)). Since P(A∪ B) and P(A)∗P(B) have the
same vertex and face sets, they are equal as simplicial complexes. �

Lemma 3.11. Let a, b ∈ D∗ \U (D). Then V (S(b))∪V (S(a))⊆ V (S(ab)). More-
over, if D is a UFD, then equality holds.

Proof. Suppose x ∈ V (S(a))∪V (S(b)). If x ∈ V (S(a)), then x | a. If x ∈ V (S(b)),
then x | b. In either case, x | ab and hence x ∈ V (S(ab)).

Now suppose that D is a UFD and let x ∈ V (S(ab)). Then x | ab, with x
irreducible and hence prime. If x | a, then x ∈ V (S(a)). If x - a, then x | b and
hence x ∈ V (S(b)). Thus x ∈ V (S(a))∪ V (S(b)). �

Theorem 3.12. Let D be an atomic domain. The following are equivalent.

(1) S(a) ∗ S(b)= S(ab) for all a, b ∈ D∗ \U (D).

(2) D is a UFD.

Proof. Suppose D is not a UFD. Then there exists an irreducible z ∈ D that is not
prime. That is, there exists a, b ∈ D where z | ab, but z - a and z - b. Since z | ab,
we have z ∈ V (S(ab)). We now consider S(a) ∗ S(b). By definition, z 6∈ V (S(a))
and z 6∈ V (S(b)), and hence z 6∈ V (S(a))∪ V (S(b)). But then z 6∈ V (S(a) ∗ S(b)),
since V (S(a) ∗ S(b))= V (S(a))∪ V (S(b)). Therefore S(a) ∗ S(b) 6= S(ab).

Now let D be a UFD and let a, b ∈ D∗ \ U (D). We want to show that
S(a) ∗ S(b) = S(ab). Since D is a UFD, we know from Theorem 3.9 that
S(x)=P(V (S(x))) for any x ∈D∗\U (D). From Lemma 3.11, we have V (S(ab))=
V (S(a))∪ V (S(b)). Also, using Lemma 3.10, we have

S(ab)= P
(
V (S(ab))

)
= P

(
V (S(a))∪ V (S(b))

)
= P

(
V (S(a))

)
∗P

(
V (S(b))

)
= S(a) ∗ S(b).

Thus S(ab)= S(a) ∗ S(b) for all a, b ∈ D∗ \U (D). �

We now provide improvements to the elasticity results of Section 2.

Theorem 3.13. Let D be a BFD. For x ∈ D∗ \U (D) a non irreducible element, let
A(x) and B(x) be sets of positive integers defined as:

A(x)= {v+ l : S(x) contains a facet with v vertices and l loops} ,

B(x)= {v+ l : G(x) contains a complete subgraph with v vertices and l loops} .

Then
max L(x)≤max A(x)≤max B(x).
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Moreover,
ρ(x)≤ 1

2 max A(x)≤ 1
2 max B(x).

Note that 1
2 B(x) is precisely the bound given in Proposition 2.6.

Proof. Let {a1, . . . , av} be a facet of S(x) with a total of l loops on these vertices.
Then a1 · · · av | x , and thus {a1, . . . , av} is the vertex set of a complete subgraph
of G(x). Loops are preserved when moving from S(x) to G(x). Therefore if
n ∈ A(x), then n ∈ B(x). Thus max A(x)≤max B(x). If M =max L(x), then we
can write x = an1

1 an2
2 · · · a

nt
t , where the ai are distinct irreducibles and

∑t
i=1 ni =M .

The set {a1, a2, . . . , at } is a face in S(x) which is contained in some facet of S(x).
Also, for each i with 1≤ i ≤ t , there are ni − 1 loops drawn on the vertex ai . Thus
for any factorization of x of length M we can find a facet of S(x) that contains at
least M vertices/loops, and hence max L(x) ≤ max X (x). Finally, since x is not
irreducible, min(L(x))≥ 2 and thus ρ(x)≤ 1

2 max(A(x))≤ 1
2 max(B(x)). �

We now consider the sharpness of these bounds by looking at two examples.

Example 3.14. Consider G(108) in Figure 2. The graph G(108) is complete and
thus to find the bound on elasticity using Corollary 2.7 we count all vertices and
all loops giving us ρ(108) ≤ 1

2(6+ 5) = 11
2 . Though not explicitly mentioned in

Corollary 2.7, we also see that max L(x)≤11. Now consider S(108) in Example 3.4.
In order to maximize the total of vertices of and loops in a facet of S(108), we select
the facet {2, α, α, β, β}. By Theorem 3.13, max L(x)≤5 and ρ(108)≤ 1

2(5+3)=4.
Here we see that the bound on max L(x) achieved by Theorem 3.13 is sharp, while
the bound on max L(x) from Corollary 2.7 is not. Since Z[

√
−5] is half-factorial,

ρ(108)= 1 and neither of the bounds on elasticity are sharp.

Example 3.15. Consider x66
∈D=k[x10, x12, x18, x33

] from Examples 2.4 and 3.5.
Since we know precisely the factorizations of x66, we see that max L(x66) =

6, min L(x66) = 2, and ρ(x66) = 3. The bounds given by Corollary 2.7 are
max L(x66) ≤ 13 and ρ(x66) ≤ 13

2 . The bounds from Theorem 3.13 are much
sharper, with max L(x66)≤ 7 and ρ(x66)≤ 7

2 .

In the special case where x is square-free, we determine in Theorem 3.16 both
the minimum and maximum of L(x) as well as the elasticity precisely when using
irreducible divisor simplicial complexes, which is a vast improvement over the
bound given in Corollary 2.7.

Theorem 3.16. Let D be a BFD and let x ∈ D∗ \U (D) be square-free. Choose
facets β and α such that β has maximal cardinality and α has minimal cardinality
among the set of all facets of S(x). Then

max L(x)= dim(β)+ 1, min L(x)= dim(α)+ 1, ρ(x)=
dim(β)+ 1
dim(α)+ 1

.
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Proof. By Proposition 3.8, each factorization of x corresponds to a facet of S(x).
Therefore

max L(x)=max{|β| : β ∈ F(S(x))},

min L(x)=min{|α| : α ∈ F(S(x))}.

By definition,
ρ(x)=

max L(x)
min L(x)

,

and thus

ρ(x)=
dim(β)+ 1
dim(α)+ 1

. �

Example 3.17. Let k be a field and let

D = k
[
xy2w, xz, y2, z3w, x2 y2, y2z2, z2w2]

be a subring of the polynomial ring k[x, y, z, w]. Then the element x2 y4z4w2

factors in D only as

x2 y4z4w2
= (xy2w)(xz)(y2)(z3w)= (x2 y2)(y2z2)(z2w2).

Thus L(x2 y4z4w2)= {3, 4} and ρ(x2 y4z4w2)= 4
3 . The irreducible divisor graph

G D(x2 y4z4w2), shown at the top of Figure 6, consists of two disjoint components,
a 4-clique and a 3-clique, with no looped vertices. The irreducible divisor simplicial
complex, shown at the bottom of Figure 6, consists of two disjoint facets, one of
dimension 3, the other of dimension 2. Again, no vertices are looped. The bounds

z3w

xy2w

xz

yz z2w2

x2 y2

y2z2

G(x2 y4z4w2)

z3w

xy2w

xz

yz z2w2

x2 y2

y2z2

S(x2 y4z4w2)

Figure 6. G(x2 y4z4w2) (top) and S(x2 y4z4w2) (bottom) in D =
k[xy2w, xz, y2, z3w, x2 y2, y2z2, z2w2

].
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from Corollary 2.7 are

max L(x2 y4z4w2)≤ 4 and ρ(x2 y4z4w2)≤ 2.

The values from Theorem 3.13 are precise, with

max L(x2 y4z4w2)= 4, min L(x2 y4z4w2)= 3, ρ(x2 y4z4w2)= 4
3 .
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