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Embeddedness for singly periodic Scherk surfaces
with higher dihedral symmetry
Valmir Bucaj, Sarah Cannon, Michael Dorff,

Jamal Lawson and Ryan Viertel

(Communicated by Frank Morgan)

The singly periodic Scherk surfaces with higher dihedral symmetry have 2n-ends
that come together based upon the value of '. These surfaces are embedded
provided that �

2
�
�
n
< n�1

n
' < �

2
. Previously, this inequality has been proved

by turning the problem into a Plateau problem and solving, and by using the
Jenkins–Serrin solution and Krust’s theorem. In this paper we provide a proof of
the embeddedness of these surfaces by using some results about univalent planar
harmonic mappings from geometric function theory. This approach is more direct
and explicit, and it may provide an alternate way to prove embeddedness for some
complicated minimal surfaces.

1. Introduction

A minimal surface in R3 is a surface whose mean curvature vanishes at each
point on the surface. One area of minimal surface theory that has seen a lot of
interest and results recently is the study of complete embedded minimal surfaces.
Minimal surfaces can be parametrized by the classical Weierstrass representation.
However, these surfaces are not guaranteed to be complete and embedded. In this
paper we will consider the family of singly periodic Scherk surfaces with higher
dihedral symmetry that were first described in the seminal paper [Karcher 1988].
They belong to the larger class of embedded singly periodic minimal surfaces with
Scherk ends and genus 0 in the quotient that have been completely classified in
[Pérez and Traizet 2007]. The singly periodic Scherk surfaces with higher dihedral
symmetry have 2n-ends that come together based upon the value of '. In particular,
it was shown in [Weber 2005] that these surfaces are embedded provided that

�

2
�
�

n
<

n� 1

n
' <

�

2
: (1)
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Previously, this inequality has been established by turning the problem into a Plateau
problem and solving, and by using the Jenkins–Serrin solution and Krust’s theorem.
In this paper, we will provide a proof of the embeddedness of these surfaces by
using some results about univalent planar harmonic mappings from geometric
function theory. This approach is more direct and explicit, and it may provide
an alternate way to prove embeddedness for some complicated minimal surfaces.
In the interesting paper [McDougall and Schaubroeck 2008], the authors discuss
similar harmonic mappings and the corresponding minimal surfaces. They also
work to prove an inequality similar to (1). While their approach is sound, there
are unfortunately several small mistakes and errors, and the inequality they give
is incorrect and different from the result in [Weber 2005]. In our paper, we start
with planar harmonic mappings but then approach the proof of the inequality in a
different way and derive the correct inequality given by (1).

This approach involves the following steps. First, we will construct a '-variable
family of planar harmonic functions that map the unit disk univalently onto a 2n-gon
region. Next, we will compute the value of ' for which these functions are convex.
Then, we will use a simple convolution theorem to construct a “conjugate” family
of planar harmonic functions that are also univalent. Finally, using a Weierstrass
representation we will lift this last family to minimal graphs that turn out to be
the singly periodic Scherk surfaces with higher dihedral symmetry. Because of
the harmonic functions are univalent, the embeddedness of the Scherk surfaces is
guaranteed.

2. A family of univalent planar harmonic mappings

Definition 2.1. A continuous function f .x;y/D u.x;y/C iv.x;y/ defined in a
domain G � C is a complex-valued harmonic function in G if u and v are real
harmonic functions in G.

Complex-valued harmonic functions defined on D, the unit disk, are related to
analytic functions, as the following theorem shows.

Theorem 2.2 [Clunie and Sheil-Small 1984]. If f D uCiv is harmonic in a simply
connected domain G, then f can be written as f D hC Ng, where h and g are
analytic.

We are interested in univalent (one-to-one) harmonic mappings. While it is often
difficult to establish the univalency of a planar harmonic function, we do have the
following nice result about local univalency.

Lemma 2.3 [Lewy 1936]. The harmonic function f D hC Ng is locally univalent
and sense-preserving in D if and only if jg0.z/=h0.z/j< 1 for all z 2 D.



EMBEDDEDNESS FOR SINGLY PERIODIC SCHERK SURFACES 385

The function !.z/D g0.z/=h0.z/ is known as the dilatation and plays an impor-
tant role in the theory of univalent harmonic mappings.

We will now consider a specific family of planar harmonic mappings that are
related to Scherk surfaces. Let fn.z/ D hn.z/C gn.z/ be the family of planar
harmonic mappings from D into C, where

h0n.z/D
1

.zn� ei'/.zn� e�i'/
; g0n.z/D

z2n�2

.zn� ei'/.zn� e�i'/
;

n� 2 and ' 2 Œ0; �
2
�. Thus,

fn.z/D

Z z

0

d�

.�n� ei'/.�n� e�i'/
C

Z z

0

�2n�2 d�

.�n� ei'/.�n� e�i'/
:

Note that g0n.z/=h0n.z/D z2n�2. Letting � be the primitive n-th root of unity and
using the residue theorem, we can compute that

hn.z/D
1

2n sin'

Z z

0

 
nX

jD1

�ie�i.n�1
n
/'�j

� � ei '
n �j

C

nX
jD1

iei.n�1
n
/'�j

� � e�i '
n �j

!
d�

D
1

2n sin'

nX
kD1

�
�ie�i.n�1

n
'C 2k�

n
/ log

�
z� ei.'

n
� 2k�

n
/
�

C iei.n�1
n
'C 2k�

n / log
�
z� e�i.'n�

2k�
n /��:

Similarly,

gn.z/D
1

2n sin'

nX
kD1

�
�iei.n�1

n
'C 2k�

n
/ log

�
z� ei.'

n
� 2k�

n
/
�

C ie�i.n�1
n
'C 2k�

n
/ log

�
z� e�i.'

n
� 2k�

n
/
��
:

Since fn.z/D Re.hn.z/Cgn.z//C i Im.hn.z/�gn.z//, after normalizing so that
fn.0/D 0, we get

fn.z/D
1

n sin'

nX
kD1

�
cos

�
n� 1

n
'C

2k�

n

��
ˇ1�ˇ2C

4k�

n

�

� i sin
�

n� 1

n
'C

2k�

n

�
.ˇ1Cˇ2/

�
; (2)

where
ˇ1 D arg

�
zC ei.'

n
� 2k�

n
/
�
;

ˇ2 D arg
�
zC e�i.'

n
� 2k�

n
/
�
:
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Theorem 2.4. The harmonic function fn maps D onto a 2n-gon.

Because the dilatation!n.z/ equals g0n.z/=h0n.z/Dz2n�2, we know that fn maps
arcs of @D to either concave arcs or to stationary points [Bshouty and Hengartner
1997; Bshouty et al. 2008]. Letting z D ei� 2 @D, we see that the latter situation
occurs. In particular, fn maps @D to vertices, vm (m D 1; : : : ; 2n/, of a 2n-gon
such that

arg vm D e
i.j�1/�

n and jvmj D

�
jv1j if vm is odd,
jv2j if vm is even;

where it can be computed that

v1 D
�

n sin'

�
cos

.n� 1/'

n
C cot

�

n
sin

.n� 1/'

n

�
C 0i; (3)

v2 D
�

n sin'
sin

.n� 1/'

n

�
cot

�

n
C i

�
: (4)

Example 2.5. For nD 4, we have

f4.z/D Re.h4.z/Cg4.z//C i Im.h4.z/�g4.z//;

where

Re.h4.z/Cg4.z//D
1

4 sin'

�
cos

3'

4

�
arg
�
z�ei '

4

�
� arg

�
zCei '

4

�
� arg

�
z�e�i '

4

�
C arg

�
zCe�i '

4

��
C sin

3'

4

�
arg
�
z�ei.'

4
C�

2
/
�
� arg

�
zCei.'

4
C�

2
/
�

C arg
�
z�e�i.'

4
��

2
/
�
� arg

�
zCe�i.'

4
��

2
/
���

C
2�

4 sin'

�
cos

3'

4
C sin

3'

4

�

� D �=2 � D �=3 � D �=6 � D 0

Figure 1. Images under f4 of concentric circles in D for various
values of '.
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and

Im.h4.z/�g4.z//D
1

4 sin'

�
sin

3'

4

�
�arg

�
z�ei '

4

�
C arg

�
zCei '

4

�
� arg

�
z�e�i '

4

�
C arg

�
zCe�i '

4

��
C cos

3'

4

�
arg
�
z�ei.'

4
C�

2
/
�
C arg

�
z�ei.'

3
C 2�

3
/
�

� arg
�
z�e�i.'

4
��

2
/
�
C arg

�
zCe�i.'

4
��

2
/
���

:

Letting

M D
�

4 sin'
cos

3'

4
and N D

�

4 sin'
sin

3'

4
;

we see that f4 maps @D to the vertices of an octagon as follows (see Figure 1):

f4.e
i� /D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

v1 D .M CN / if �'
4
< � < '

4
;

v2 DN C iN if '
4
< � < �

2
�
'
4
;

v3 D i.M CN / if �
2
�
'
4
< � < �

2
C
'
4
;

v4 D�N C iN if �
2
C
'
4
< � < � � '

4
;

v5 D�.M CN / if � � '
4
< � < � C '

4
;

v6 D�N � iN if � C '
4
< � < 3�

2
�
'
4
;

v7 D�i.M CN / if 3�
2
�
'
4
< � < 3�

2
C
'
4
;

v8 DN � iN if 3�
2
C
'
4
< � < �'

4
:

Theorem 2.6. For n� 2, fn is univalent for all z 2 D and ' 2 .0; �
2
�.

Proof. This follows from a result by Duren, McDougall and Schaubroeck [Duren
et al. 2005] that states if a harmonic function f is of the form (2) constructed with
a piecewise constant boundary function and with values on the m vertices of a
polygonal region � and with ! D g0.z/=h0.z/ being a Blaschke product with at
most m� 2 factors, then

f .z/ is univalent in D () all the zeros of ! lie in D. �

Remark 2.7. For nD 3; 4, one can simply employ the shearing technique of Clunie
and Sheil-Small [1984] to prove univalency with even less background. However,
for n� 5 the shearing technique cannot be applied to fn.

Theorem 2.8. The image fn.D/ is convex for every ' 2
�

n
n�1

�
�
2
�
�
n

�
; �

2

�
.

Proof. Note that fn will be convex for every ' if

Re v2 >
1
2

Re.v1C v3/ and Im v2 >
1
2

Im.v1C v3/:
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From (3), it is clear that

Re v1 D v1; Im v1 D 0;

Re v2 D v1�
� cos .n�1/'

n

n sin'
; Im v2 D

� sin .n�1/'
n

n sin'
;

Re v3 D Re.ei 2�
n v1/D cos 2�

n
v1; Im v3 D Im.ei 2�

n v1/D sin 2�

n
v1:

Setting Re v2 D
1
2

Re.v1C v3/ and solving for v1 yields

v1 D
2�

n
�

cos .n�1/'
n

sin'
�
1� cos 2�

n

� : (5)

Likewise, setting Im.v2/D
1
2

Im.v1C v3/ and again solving for v1 yields

v1 D
2�

n
�

sin .n�1/'
n

sin' sin 2�
n

: (6)

Equating (5) and (6) and solving for ' we obtain

' D
n

n� 1
arctan

sin 2�
n

1� cos 2�
n

D
n

n� 1

�
�

2
�
�

n

�
: �

There is a convolution theorem for planar harmonic mappings that takes univalent
convex maps and transforms them into new harmonic maps while preserving univa-
lency. We will apply this convolution theorem to those functions fn that map D

onto a convex domain. But first, we need some background. For analytic functions

f .z/D

1X
nD0

anzn and F.z/D

1X
nD0

Anzn;

their convolution is defined as

f .z/�F.z/D

1X
nD0

anAnzn:

Note that the right half-plane mapping, f .z/D z=.1� z/, acts as the convolution
identity; that is, if F is an analytic function, then

z

1� z
�F.z/D F.z/:

Now let’s consider the case of harmonic convolutions.
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Definition 2.9. Given harmonic univalent functions

f .z/D h.z/C Ng.z/D zC

1X
nD2

anzn
C

1X
nD1

bn Nz
n;

F.z/DH.z/CG.z/D zC

1X
nD2

Anzn
C

1X
nD1

Bn Nz
n;

define the harmonic convolution as

f .z/�F.z/D h.z/�H.z/Cg.z/�G.z/D zC

1X
nD2

anAnzn
C

1X
nD1

bnBn Nz
n:

Lemma 2.10 [Clunie and Sheil-Small 1984]. Let f DhC Ng be a harmonic univalent
mapping from D onto a convex domain and normalized so that f .0/ D 0 and
fz.0/D 1. Also, let � be a normalized univalent analytic function from D onto a
convex domain. Then for .j˛j � 1/,

f � .˛�C�/D h��C˛g ��

is a univalent harmonic map D onto a close-to-convex domain.

Theorem 2.11. The function Fn is univalent on D for ' 2
�

n
n�1

�
�
2
�
�
n

�
; �

2

�
.

Proof. From Theorem 2.8, we know the fn are convex maps for n
n�1

�
�
2
�
�
n

�
<'� �

2
.

Hence for these values of ' we can apply Lemma 2.10 with � D z=.1� z/ and
˛ D�1 to create the planar harmonic maps

Fn.z/D Re .hn.z/�gn.z//C i Im .hn.z/Cgn.z//

which are univalent in D. �
Example 2.12. From Theorem 2.11, we conclude that the harmonic maps F4.z/

are univalent in D (see Figure 2).

3. Singly periodic Scherk surfaces with higher dihedral symmetry

The connection between planar harmonic mappings and minimal surfaces can be
seen in the following Weierstrass representation (see [Duren 2004], for example):

Theorem 3.1. Let f D hC Ng be an orientation-preserving harmonic univalent
mapping of D onto some domain � with dilatation ! D q2, where q is an analytic
function in D. Then

X.z/D

�
Re.h.z/Cg.z//; Im.h.z/�g.z//; 2 Im

Z z

0

p
g0.�/h0.�/ d�

�
gives an isothermal parametrization of a minimal graph whose projection in the
xy-plane is f.
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� D �=2 � D �=3

Figure 2. Images under F4 of concentric circles in D for various
values of '.

Thus, univalent planar harmonic mappings with a dilatation that is the square of
an analytic function lift to minimal graphs in R3. We have shown that both families
fn and Fn of harmonic mappings satisfy the hypotheses of Theorem 3.1 for a given
range of ' values and will thus lift to embedded minimal graphs. To identify these
surfaces, we use the following standard Weierstrass representation.

Theorem 3.2 (Weierstrass representation .G; dh/ [Weber 2005]). Every regular
minimal surface has a local isothermal parametric representation of the form

X.z/D Re
Z z

a

�
1

2

�
1

G
�G

�
;

i

2

�
1

G
CG

�
; 1
�

dh;

where G is the Gauss map, dh is the height differential, and a 2 D is a constant.

Proving the embeddedness of singly periodic Scherk surfaces with higher dihedral
symmetry is not easy. However, with the material we have developed it follows
naturally.

Theorem 3.3. Fn lifts to a family of embedded singly periodic Scherk surfaces with
higher dihedral symmetry for ' satisfying (1).

Proof. Scalings and reflections across planes containing two axes do not alter the
geometry of minimal surfaces. So we can use the coordinate functions from the
two Weierstrass representations to get

hD

Z z

0

1

G
dh; g D

Z z

0

G dh: (7)

In [Weber 2005] the Gauss map and height differential for a family of minimal
surfaces ranging from Scherk’s singly periodic surface with 2n ends when ' D �

2
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� D �=2 � D �=3

Figure 3. Singly periodic Scherk surfaces.

to the n-noid when ' D 0 is given by

G D zn�1; dhD
zn�1

.zn� ei'/.zn� e�i'/
:

Using the formulas in (7) we see

h� D

Z z

0

d�

.�n� ei'/.�n� e�i'/
; g� D�

Z z

0

�2n�2 d�

.�n� ei'/.�n� e�i'/
:

It is clear that Fn D h�Cg�. Hence, we see that Fn lifts to this family of singly
periodic Scherk’s surfaces for all ' 2

�
n

n�1

�
�
2
�
�
n

�
; �

2

�
. �

Remark 3.4. We could have used Krust’s theorem [Dierkes et al. 1992] instead of
Lemma 2.10. But this convolution theorem is not well known and is a generalization
of Krust’s Theorem applied to planar harmonic mappings.

Remark 3.5. The harmonic maps, fn, lift to a family of minimal surfaces that
continuously transform from Scherk’s first surface with 2n-ends to a minimal surface
with n-helicoidal ends. Because the harmonic maps are univalent, the resulting
minimal surfaces are graphs. However, they are graphs only over the domain D.
This does not contradict the fact that the minimal surface with n helicoidal ends is
not embedded since the surface is defined on a domain larger than D.

Area for further investigation. Apply the approach used in this paper to prove the
embeddedness for less symmetric Scherk-like surfaces and for the twist deformation
of Scherk’s singly periodic surfaces (see [Weber 2005, pp. 39–40]).
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An elementary inequality about the Mahler measure
Konstantin Stulov and Rongwei Yang

(Communicated by Andrew Granville)

Let p(z) be a degree n polynomial with zeros z j , j = 1, 2, . . . , n. The total
distance from the zeros of p to the unit circle is defined as td(p)=

∑n
j=1

∣∣|z j |−1
∣∣.

We show that up to scalar multiples, td(p) sits between M(p)−1 and m(p). This
leads to an equivalent statement of Lehmer’s problem in terms of td(p). The
proof is elementary.

1. Introduction

Let p(z)=
∑n

j=0 a j z j be a polynomial with complex coefficients of degree n. The
Mahler measure M(p) [Everest and Ward 1999] is defined as

M(p)= exp
(∫ 2π

0
log

∣∣p(eiθ )
∣∣ dθ

2π

)
.

We denote log M(p) by m(p). Jensen’s formula implies that

M(p)= |an|
∏
|z j |>1

|z j |,

where throughout this paper the z j , j = 1, 2, . . . , n, are the zeros of p(z), counting
multiplicity. We also assume that |an| = 1. It is then clear that M(p)≥ 1, and

0≤ m(p)= log
(
(M(p)− 1)+ 1

)
≤ M(p)− 1,

and when M(p) is close to 1, m(p) is close to M(p)− 1. Lehmer’s problem is to
verify that for integer-coefficient monic polynomials, m(p) is either 0 (for products
of cyclotomic polynomials and possibly a factor of zk) or is bounded away from 0
by a fixed positive constant. This is a deep and unsolved problem.

For a polynomial p of degree n, the associated polynomial p∗(z) is defined
as zn p(1/z). We say p is reciprocal if p = cp∗ for some complex number c of
modulus 1. One sees that the zeros of a reciprocal p off the unit circle appear in
conjugate reciprocal pairs. Interestingly, Lehmer’s problem was unsolved only for
reciprocal polynomials. A key ingredient of this paper is the total distance from the
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zeros of p to the unit circle T defined to be

td(p)=
n∑

j=1

∣∣|z j | − 1
∣∣.

Theorem. For every complex polynomial p(z)=
n∑

j=0
a j z j , with |an| = |a0| = 1, we

have
m(p)≤ td(p)≤ 2(M(p)− 1).

If p is reciprocal, then 2m(p)≤ td(p). Further, the equalities hold only if td(p)= 0.

Therefore, Lehmer’s problem can be stated equivalently as follows: There is an
ε > 0 such that if p has integer coefficients with |an| = |a0| = 1 and td(p) 6= 0,
then td(p)≥ ε.

2. Proof

Lemma 1. If t j , j = 1, 2, . . . , k are numbers in the interval [0, 1], then

k∑
j=1

(1− t j )≤
1∏k

j=1 t j
− 1,

where equality holds only if t j = 1 for each j .

Proof. The inequality is trivial if one of the t j is 0. Now, we assume t j > 0 for
each j . We prove by induction. It is easy to see that the lemma is true for k = 1.
Assume the lemma is true for k. For s and t in (0, 1], one checks that

1
ts
−

(1
t
+ 1− s

)
=
(1−s)(1−ts)

ts
≥ 0, (2-1)

and hence
1
ts
− 1≥ 1

t
− s.

Therefore
k∑

j=1

(1− t j )+ (1− tk+1)≤
1∏k
j t j
− 1+ (1− tk+1)

=
1∏k
j t j
− tk+1 ≤

1∏k+1
j t j

− 1. �

If {λ j : j = 1, 2, . . . } is a subset of the open unit disk D, the associated Blaschke
product is defined as

B(z)=
∞∏
j=1

z− λ j

1− λ j z
, z ∈ D.
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Clearly, the product is convergent for each z if and only if
∑
∞

j=0(1− |λ j |) <∞

[Garnett 2007]. In this case B(z) is a bounded analytic function on D. It follows
immediately from Lemma 1 that

∞∑
j=1

(1− |λ j |)≤
1
|B(0)|

− 1.

Proof of the Theorem. For a polynomial p(z), since
n∏

j=1
|z j | =

|a0|

|an|
, we have

M(p)
|a0|

− 1=
1∏

|z j |≤1 |z j |
− 1≥

∑
|z j |≤1

(1− |z j |) (2-2)

by Lemma 1. On the other hand, inductively using that (a− 1)+ (b− 1) < ab− 1
for a, b > 1, we have∑

|z j |>1

(|z j | − 1)≤
∏
|z j |>1

|z j | − 1= M(p)
|an|

− 1.

Here the equality is allowed only because there may not be a z j with |z j | > 1.
Combining with (2-2), we have td(p) ≤ M(p)(1/|an| + 1/|a0|)− 2. In the case
|a0| = |an| = 1, we have

td(p)≤ 2(M(p)− 1), (2-3)

with equality occurring only if td(p)= 0. The dominance of m(p) by td(p) is an
easy consequence of the inequality log(1+ t)≤ t . To be precise,

m(p)=
∑
|zk |>1

log |zk | ≤
∑
|zk |>1

(|zk | − 1)≤ td(p).

We establish a stronger inequality for reciprocal polynomials with |a0| = |an| = 1.
Let z1, z2, . . . , zk be the zeros of such a p that are outside of the unit circle, where
2k ≤ n. Then m(p)= log |z1| + log |z2| + · · · + log |zk | and

td(p)=
k∑

j=1

(|z j | − 1)+
(

1− 1
|z j |

)
.

Let f (t)= t− (1/t)−2 log t , t ≥ 1. One easily checks that f is strictly increasing
and f (1)= 0. It follows that |z j |−1/|z j |> 2 log |z j | for each 1≤ j ≤ k, and hence
2m(p) ≤ td(p), with equality precisely when k = 0, which occurs if and only if
td(p)= 0 since |a0| = |an| = 1. �

Example. Consider Lehmer’s polynomial

G(z)= z10
+ z9
− z7
− z6
− z5
− z4
− z3
+ z+ 1.
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It is well-known that eight of its zeros lie in the unit circle and the other two are
real and form a reciprocal pair. Since M(G)≈ 1.1763, we have

td(G)≈ (1.1763− 1)+ (1− 1/1.1763)≈ 0.3262,

2m(G)≈ 2× 0.1624= 0.3248,

2(M(p)− 1)≈ 0.3526.

Our Theorem has some interesting implications. We need two more definitions
to state them. Define

1(p)=max
{∣∣|α| − 1

∣∣ : p(α)= 0
}
,

δ(p)=min
{∣∣|α| − 1

∣∣ : p(α)= 0
}
.

Then it is clear that
δ(p)≤ td(p)

n
≤1(p). (2-4)

When p is reciprocal and α is a zero of p, 1/α is also a zero. Since t−1≥ 1−1/t
for t ≥ 1, we have

1(p)=max{|α| − 1 : p(α)= 0} =max{|α| : p(α)= 0}− 1.

Likewise
δ(p)= 1−max{|α| : |α| ≤ 1, p(α)= 0}.

For simplicity, we let
λ(p)=max{|α| : p(α)= 0}

and let
λ′(p)=max{|α| : |α| ≤ 1, p(α)= 0}.

In [Smyth 2008], λ(p) is called the house of the zeros of p. Geometrically, λ(p) is
the modulus of the zero that is the farthest from the unit circle, while λ′(p) is the
modulus of the zero that is the nearest to the unit circle. The next proposition then
follows easily from (2-4).

Proposition. For a reciprocal complex polynomial p of degree n ≥ 2,

λ(p)≥ 1+ td(p)
n

and λ′(p)≥ 1− td(p)
n

.

Regarding λ(p), there is an unsolved conjecture by Schinzel and Zassenhaus
that states that there is an absolute constant C so that if p is a monic irreducible
polynomial of degree n with integer coefficients, then λ(p) ≥ 1 + C/n. This
inequality will follow easily from a positive answer to Lehmer’s problem. Indeed,
one has λ(p)≥ 1+m(p)/n [Smyth 2008]. But in view of Theorem, Proposition
provides a better inequality for reciprocal polynomials.
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Ecological systems, nonlinear boundary conditions,
and 6-shaped bifurcation curves

Kathryn Ashley, Victoria Sincavage and Jerome Goddard II

(Communicated by John Baxley)

We examine a one-dimensional reaction diffusion model with a weak Allee growth
rate that appears in population dynamics. We combine grazing with a certain
nonlinear boundary condition that models negative density dependent dispersal
on the boundary and analyze the effects on the steady states. In particular, we
study the bifurcation curve of positive steady states as the grazing parameter is
varied. Our results are acquired through the adaptation of a quadrature method
and Mathematica computations. Specifically, we computationally ascertain the
existence of 6-shaped bifurcation curves with several positive steady states for a
certain range of the grazing parameter.

1. Introduction

Within population dynamics, the most accepted exemplar for modeling a designated
population is the logistic equation

f (u)= u(a− bu), (1-1)

which illustrates the inference that as a population burgeons, the per capita growth
rate

f̃ (u)= a− bu (1-2)

of that population declines linearly. Yet empirically several authors have witnessed
that at lower population densities, the per capita growth rate initially increases (see
[Allee 1938; Dennis 1989; Lewis and Kareiva 1993; Shi and Shivaji 2006]). This
phenomenon is known in the literature as the Allee effect [1938]. Since the logistic
growth model does not compensate for the initial increase, a model of the Allee
effect must be implemented to account for this phenomenon.

MSC2010: 34B08, 34B18.
Keywords: nonlinear boundary conditions, weak Allee effect, positive solutions.
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The Allee effect can be either strong, in which the per capita growth rate is
initially negative, or weak, in which the per capita growth rate is initially positive.
The Allee effect is generally modeled in the literature via quadratic per capita
growth rate functions of the population density. In this case, the analysis is more
difficult since the per capita growth rate is not linear or even nonincreasing. As a
contrast with (1-1), a weak Allee effect has been modeled as

f (u)= u(u+ 1)(b− u), (1-3)

where b > 1.
By analyzing additional factors that can influence a population, such as grazing

or harvesting, a better understanding can be had of the dynamics of the population.
Therefore, through the inclusion of an extra term to account for these factors, specifi-
cally grazing, a more precise model can be obtained. Grazing can be considered as a
category of natural predation, for example, when an owl preys upon the surrounding
rodent population. The term cu2/(1+u2) is commonly employed to model grazing
of a population (see [Causey et al. 2010; Lee et al. 2011; Poole et al. 2012; van
Nes and Scheffer 2005]).

Density dependent dispersal, or more specifically density dependent emigration,
describes a situation in which the dispersal/emigration of individuals living within a
patch is based on the population density, in our case, on the habitat border. A positive
density dependent emigration characterizes a case where individuals have a tendency
to leave if the population density is large and a tendency to stay if the population
density is small. On the contrary, a negative density dependent emigration represents
a case where individuals have a tendency to stay if the population density is large
and a tendency to leave if the population density is small.

Initially and intuitively it was believed that the majority of animals exhibit
positive density dependent dispersal. However, recent studies of several animals,
including the bighorn sheep, roe deer, house mouse, prairie vole, European badger,
and the Glanville fritillary butterfly Melitaea cinxia, have proven otherwise (see
[Kuussaari et al. 1996; Matthysen 2005]). In the literature, several factors have
been suggested as a cause of negative density dependent dispersal, including: niche
breadth, increased predator abundance, and, in particular, conspecific attraction
(see [Kuussaari et al. 1996; Matthysen 2005]). Conspecific attraction most simply
means that there is a predisposition of individuals within a population to become
enticed to areas where there are more conspecifics.

Cantrel and Cosner proposed the following nonlinear boundary condition to
model conspecific attraction on the boundary of a patch (see [Cantrell and Cosner
2003; 2007; Goddard et al. 2010a; 2010b; 2011a; 2011b; 2012]):

d(Ou · η)α(x, u)+ [1−α(x, u)]u = 0; ∂�, (1-4)



ECOLOGICAL SYSTEMS,BOUNDARY CONDITIONS, AND BIFURCATION CURVES 401

where α : �̄× [0,∞)→ [0, 1] is C1 and nondecreasing, d > 0 is the diffusion
parameter, Ou ·η is the outward normal derivative, and �⊂Rn (n ≥ 1) is a smooth
bounded domain. The α(x, u)’s of biological importance are of the form

α(x, u)= α(u)=
u

u+ g(u)
, (1-5)

where g : [0,∞)→ [δ,∞) is a C1 function, δ > 0, and g(u)/u→ 0 as u→∞.
Here, α(u) represents the fraction of the population that stays on the boundary
when reached. Notice that if α(u)≡ 0 then (1-4) becomes the Dirichlet boundary
condition (u = 0; ∂�), and if α(u)≡ 1 then (1-4) becomes the Neumann boundary
condition (Ou · η = 0; ∂�). In terms of this paper, we consider the case when
g(u)≡ d , where d > 0 is the diffusion parameter.

Our purpose is to analyze the effects of grazing in combination with a weak Allee
effect and the nonlinear boundary conditions (1-4) on the steady state solutions of
a reaction diffusion model. In particular, we study the one-dimensional case when
n = 1 and �= (0, 1):

ut =
1
λ

uxx + u f̃ (u)−
cu2

1+ u2 ; (0, 1), (1-6)

with nonlinear boundary conditions, namely

−u′′ = λ
[

u f̃ (u)−
cu2

1+ u2

]
= λ f (u); (0, 1),

u(0)
[
−

1
λ

u′(0)+
1
λ

]
= 0,

u(1)
[

1
λ

u′(1)+
1
λ

]
= 0,

(1-7)

where u represents the population density, f̃ (u) represents the per capita growth
rate, λ= 1/d and d > 0 represents the diffusion coefficient, and c ≥ 0 represents
the maximum grazing rate. Notice that the boundary conditions found in (1-7) can
be separated into the following four cases:

−u′′ = λ f (u); (0, 1), u(0)= 0, u(1)= 0, (1-8)

−u′′ = λ f (u); (0, 1), u(0)= 0, u′(1)=−1, (1-9)

−u′′ = λ f (u); (0, 1), u′(0)= 1, u(1)= 0, (1-10)

−u′′ = λ f (u); (0, 1), u′(0)= 1, u′(1)=−1. (1-11)

Thus, the positive solutions of (1-8)–(1-11) are the positive solutions of (1-7).
Further, it is clear that if u(x) is a positive solution of (1-9), then v(x)= u(1− x)
also satisfies (1-10). Thus, it suffices to only consider (1-8), (1-9), and (1-11).
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ρ

λ

Figure 1. S-shaped bifurcation curve.

Prior studies have gathered information and analyzed the positive solutions to
both strong and weak Allee problems. Additionally, the analysis of the positive
solutions to the combination of grazing and the Allee effect has also been made;
however, to the best of our understanding no analysis has been made in regards to
the Allee effect with grazing and nonlinear boundary conditions. In the case when
α(u) ≡ 0, (1-8) has a rich history. For the logistic case with Dirichlet boundary
conditions, Lee, Sasi, and Shivaji proved the existence of an S-shaped bifurcation
curve in one dimension, as well as higher dimensions for a certain range of the
grazing parameter [Lee et al. 2011]. Regarding the one-dimensional weak Allee
effect model with Dirichlet boundary conditions, Poole, Roberson, and Stephenson
showed the existence of an S-shaped bifurcation curve, resembling Figure 1, both
computationally and analytically for certain parameter ranges [Poole et al. 2012].
In particular, our focus is to further examine the structure of positive solutions
of (1-7) when the nonlinear boundary conditions (1-4) are satisfied for the range
of the parameters where Poole et al. [2012] showed the existence of an S-shaped
bifurcation curve of positive solutions. Computationally, we show the existence of
6-shaped bifurcation curves as exemplified in Figure 2.

We employ and adapt the quadrature method first developed by Laetsch [1970] to
study the structure of positive solutions of (1-7). First, some important preliminaries
will be presented in Section 2, followed by a discussion of applying and adapting
the quadrature method for the specific cases (1-8), (1-9), and (1-11). In Section 6,
we provide the complete evolution of the bifurcation curve of positive solutions
of (1-7), followed by analytical results confirming some of our observations in
Section 7.
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ρ

λ

Figure 2. 6-shaped bifurcation curves.

2. Preliminaries

We examine the combination of the weak Allee effect and grazing in the subsequent
reaction term:

f (u)= u(u+ 1)(b− u)−
cu2

1+ u2 for b > 1, c ≥ 0

=
u(u+ 1)(b− u)(1+ u2)− cu2

1+ u2 .

Through observation it is apparent that the numerator of f (u) can be written as a
fifth-degree polynomial. Regardless of any specific values for b and c, by analyzing
the roots of f (u) the existence of three roots — a negative root, a positive root,
and a root at u = 0 — can be determined. As c is varied the remaining three roots
alternate between imaginary and real values. For the purpose of this paper, denote
σ = σ(b, c) as the smallest positive root of f (u). Also, allow σ0 = σ0(b, c) and
σ1 = σ1(b, c) to represent the remaining roots. Regardless of the value of c > 0,
for certain values of b, specifically b ∈ (1, b0) (some b0 > 0), there exists only one
positive real root of f (u) represented by σ .

Remark 1. Through calculation and the use of Mathematica, it is estimated that
b0 ≈ 2.852.

Specifically, when b ∈ (b0,∞), it has been determined that the shape of f (u)
changes when c is varied. Note when c ∈ [0, c0) (some c0 = c0(b) > 0), there exists
exactly one positive real root denoted by σ(b, c). Figure 3 depicts this case. The
shape of f (u) is modified as c becomes larger. Specifically, when c∈ [c0, c1) (some
c1 = c1(b) ∈ (c0,∞)), f (u) has 3 positive real roots, namely σ(b, c), σ0(b, c), and
σ1(b, c), as depicted in Figure 4. For c > c1, f (u) is shifted downward resulting in
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σ

f (u)

Figure 3. Graph of f (u) for b > b0 and c ∈ [0, c0).

σ σ0 σ1

f (u)

Figure 4. Graph of f (u) for b > b0 and c ∈ [c0, c1).

exactly one positive real root σ(b, c), meaning σ0(b, c) and σ1(b, c) are imaginary
roots. This particular case is illustrated in Figure 5.

In the preceding cases the structure of the positive solutions of (1-7) varies. As
our primary interest is the structure of positive solutions for the range of parameters
where Poole et al. [2012] showed the existence of S-shaped bifurcation curves, we
focus on the case when c ∈ [0, c0).

3. Quadrature method for (1-8)

For completeness, we reestablish the results obtained through the quadrature method
actualized by Laetsch [1970] and Brown, Ibrahim, and Shivaji [Brown et al. 1981].
Additionally we recapitulate the subsequent boundary value problem analyzed by
Poole et al. [2012] for positive solutions:

−u′′(x)= λ f (u(x)); x ∈ (0, 1), u(0)= 0, u(1)= 0, (3-1)

where f : [0,∞)→ (0,∞) is a C1 function. Clearly, a positive solution of (3-1)
must resemble Figure 6.
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σ f (u)

Figure 5. Graph of f (u) for b > b0 and c > c1.

ρ

x

u(
x)

Figure 6. Graph of a typical positive solution of (3-1).

Theorem 3.1 [Brown et al. 1981; Laetsch 1970]. Suppose u(x) is a positive solution
to (3-1) with ‖u‖∞ = ρ = u(1

2), where ρ > 0. Such a solution to (3-1) exists if and
only if

G1(ρ)=
√

2
∫ ρ

0

ds
√

F(ρ)−F(s)
=
√
λ, (3-2)

where F(x)=
∫ x

0 f (s) ds.

Proof. (⇒) Recognizing that (3-1) is an autonomous differential equation, we see
that if u is a positive solution to (3-1) with u′(x0)= 0 for a particular x0 ∈ (0, 1),
then m(x)= u(x0+ x) and n(x)= u(x0− x) both satiate the initial value problem

−k ′′(x)= λ f (k(x)), k(0)= u(x0), k ′(0)= 0, (3-3)
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where x ∈ [0, l) and l =min{x0, 1− x0}. Using Picard’s existence and uniqueness
theorem, we have that u(x0 + x) ≡ u(x0 − x) for all x ∈ [0, l) and thus u(x) is
symmetric about x = 1

2 , which is notedly where u(x) achieves its maximum.
By multiplying the differential equation in (3-1) by u′(x), we have

−

[
[u′(x)]2

2

]′
=
[
λF(u(x))

]′
. (3-4)

Integration of both sides of (3-4) gives

u′(x)
√

F(ρ)− F(u(x))
=
√

2λ; x ∈ [0, 1
2). (3-5)

By integrating a second time and using the fact that u(0)= 0, we have∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx; x ∈ [0, 1
2 ]. (3-6)

Substituting x = 1
2 and utilizing u(1

2)= ρ, (3-6) can be written as

G1(ρ)=
√

2
∫ ρ

0

dt
√

F(ρ)− F(t)
=
√
λ. (3-7)

Therefore, if u(x) is a positive solution to (3-1) where ‖u‖∞ = ρ, then ρ must
fulfill G1(ρ)=

√
λ.

(⇐) Assume G1(ρ)=
√
λ for ρ > 0. Now define a function u : [0, 1

2 ] → [0,∞)
by ∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx; x ∈ [0, 1
2 ]. (3-8)

We now show that u(x) satisfies (3-1). Notice that u(x) is well defined and via
the implicit function theorem also twice differentiable. Hence, differentiating (3-8)
yields

u′(x)=
√

2λ
[
F(ρ)− F(u(x))

]
.

By differentiating a second time we obtain

−u′′(x)= λ f (u(x)).

In addition, it is clear that u(0)= 0. By defining u(x) as a symmetric solution on
[0, 1], it is apparent that u(x) is a positive solution to (3-1) with ‖u‖∞ = ρ. �

It is important to discern that G1(ρ) is well defined and the improper integral is
convergent. To that end, we state an important remark.

Remark 2. The improper integral in (3-7) is both well defined and convergent for
ρ-values that fulfill:
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ρ

q
u(

x)

x0x

Figure 7. Graph of a typical positive solution of (4-1).

(1) f (ρ) > 0;

(2) F(ρ) > F(s) for all s ∈ [0, ρ).

Notice that from Figure 3 if c ∈ [0, c0), then both (1) and (2) will be satisfied
for all ρ ∈ (0, σ (b, c)). We close this section by recalling an important result from
Brown et al.

Theorem 3.2 [Brown et al. 1981]. G1(ρ) is both differentiable and continuous on
the defined set T = {ρ > 0 | f (ρ) > 0 and F(ρ)− F(s) > 0 for all s ∈ [0, ρ)}
where

G ′1(ρ)=
√

2
∫ 1

0

H(ρ)− H(ρv)
[F(ρ)− F(ρv)]3/2

dv,

in which
H(s)= F(s)− s

2
f (s).

4. Quadrature method for (1-9)

In this section, we adapt the quadrature method to analyze the structure of positive
solutions of (1-9):

−u′′ = λ
[

u(u+1)(b−u)−
cu2

(u2+ 1)

]
; (0, 1), u(0)= 0, u′(1)=−1. (4-1)

Define

f (u)=
[

u(u+ 1)(b− u)−
cu2

(u2+ 1)

]
and F(x)=

∫ x

0
f (s) ds.

It is apparent that a positive solution of (4-1) must resemble Figure 7.
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Assume u(x) is a positive solution to (4-1) with ‖u‖∞ = ρ and u(1) = q for
q ∈ [0, ρ). By multiplying the differential equation in (4-1) by u′(x) we obtain

−

[
[u′(x)]2

2

]′
=
[
λF(u(x))

]′
. (4-2)

Integrating both sides of (4-2) yields

−(u′(x))2

2
= λF(u(x))+C. (4-3)

Recalling that u(x0)= ρ and u′(x0)= 0, (4-3) becomes

C =−λF(ρ). (4-4)

Similarly, using u(1)= q and u′(1)=−1, (4-3) is utilized to determine a second
value for C ,

C =− 1
2 − λF(q). (4-5)

Combining (4-4) and (4-5) gives

√
2λ=

1
√

F(ρ)− F(q)
. (4-6)

In utilizing the C-value from (4-4) while solving for u′(x), (4-3) becomes

u′(x)=
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [0, x0], (4-7)

u′(x)=−
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [x0, 1]. (4-8)

Rearranging (4-7) and (4-8) gives

u′(x)
√

F(ρ)− F(u(x))
=
√

2λ; x ∈ [0, x0), (4-9)

u′(x)
√

F(ρ)− F(u(x))
=−
√

2λ; x ∈ (x0, 1]. (4-10)

Integration of (4-9) from 0 to x and (4-10) from x0 to x yields∫ x

0

u′(x)
√

F(ρ)− F(u(x))
=

∫ x

0

√
2λ; x ∈ [0, x0), (4-11)∫ x

x0

u′(x)
√

F(ρ)− F(u(x))
=

∫ x

x0

−
√

2λ; x ∈ (x0, 1]. (4-12)
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Using a change of variables and recalling u(0)= 0 and u(x0)= ρ we obtain∫ u(x)

0

dw
√

F(ρ)− F(w)
=
√

2λx; x ∈ [0, x0], (4-13)∫ u(x)

ρ

dw
√

F(ρ)− F(w)
=−
√

2λ(x − x0); x ∈ [x0, 1]. (4-14)

By substituting x = x0 into (4-13) and x = 1 into (4-14) we obtain∫ ρ

0

dw
√

F(ρ)− F(w)
=
√

2λxo, (4-15)∫ q

ρ

dw
√

F(ρ)− F(w)
=−
√

2λ(1− x0). (4-16)

Subtracting (4-16) from (4-15) we have

√
2
∫ ρ

0

dw
√

F(ρ)− F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)− F(w)
=
√
λ. (4-17)

By synthesizing (4-6) with (4-17) we denote

G̃2(ρ, q)=
√

2
∫ ρ

0

dw
√

F(ρ)−F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)−F(w)
−

1
√

2
√

F(ρ)−F(q)
. (4-18)

By Remark 2, the improper integral in G̃2(ρ, q) exists and is convergent for ρ in
(0, σ (b, c)). Also, for a given ρ ∈ (0, σ (b, c)) Picard’s existence and uniqueness
theorem guarantees that the corresponding q = u(1) ∈ [0, ρ) must be unique. If for
each ρ ∈ (0, σ (b, c)) there exists a unique q(ρ) ∈ [0, ρ) where G̃2(ρ, q(ρ)) = 0,
then there exists a unique λ ∈ (0,∞) such that

√
2
∫ ρ

0

ds
√

F(ρ)− F(s)
−

1
√

2

∫ q(ρ)

0

ds
√

F(ρ)− F(s)

=
1

√
2
√

F(ρ)− F(q(ρ))
=
√
λ (4-19)

will be satisfied. Therefore it is imperative to examine the existence and uniqueness
of such a q = q(ρ). Hence, we recall and prove Lemma 1, adapted from [Goddard
et al. 2010a], which outlines necessary properties of G̃2(ρ, q).

Lemma 1 [Goddard et al. 2010a]. If ρ ∈ (0, σ (b, c)) then:

(1) G̃2(ρ, q)→−∞ as q→ ρ− for fixed ρ ∈ (0, σ (b, c)).

(2) [G̃2]q < 0 for every q ∈ [0, ρ) and fixed ρ ∈ (0, σ (b, c)).

(3) G̃2(ρ, 0)→∞ when ρ→ σ(b, c)−.
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(4) G̃2(ρ, 0)→−∞ when ρ→ 0+.

Proof. (1) Accomplished via the mean value theorem and the fact that F(u) is an
increasing function on (0, σ (b, c)).

(2) Let ρ ∈ (0, σ (b, c)). Thus

[G̃2(ρ, q)]q =−
1

√
2
√

F(ρ)− F(q)
−

f (q)

2
√

2[F(ρ)− F(q)]
3
2

< 0

for all q ∈ [0, ρ), since f (s) > 0 for s ∈ (0, σ (b, c)).

(3) For every ρ ∈ (0, σ (b, c)), we have

G̃2(ρ, 0)=
√

2
∫ ρ

0

ds
√

F(ρ)− F(s)
−

1
√

2
√

F(ρ)
= G1(ρ)−

1
√

2
√

F(ρ)
. (4-20)

Laetsch [1970] showed that G1(ρ) → ∞ as ρ → σ(b, c)−. This implies that
G̃2(ρ, 0)→∞ when ρ→ σ(b, c)−.

(4) Ascertained via the mean value theorem and the monotonicity of F(u) on
(0, σ (b, c)). �

According to Lemma 1, G̃2(ρ, q) must resemble Figure 8, whereas Figures 9
and 10 illustrate G̃2(ρ, 0). Noteworthy from Lemma 1, if G̃2(ρ, 0)≥ 0 then there
exists a unique q(ρ) ∈ [0, ρ) wherefore G̃2(ρ, q(ρ))= 0. We conjecture as a result
of our computations that there is a unique ρ∗ = ρ∗(b, c) > 0 wherefore if ρ ≥ ρ∗,
then G̃2(ρ, 0)≥ 0. Also if ρ < ρ∗ then G̃2(ρ, 0) < 0. So, for all ρ ∈ [ρ∗,∞) there
exists a unique q = q(ρ) ∈ [0, ρ) where G̃2(ρ, q(ρ))= 0. In this case, we have

G2(ρ, q(ρ))=
1

√
2
√

F(ρ)− F(q)
=
√
λ. (4-21)

G̃
2(
ρ
,
q)

q

q(ρ)
ρ

Figure 8. Graph of G̃2(ρ, q).
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G̃
2(
ρ
,
0)

ρ∗ ρ

σ

Figure 9. Graph of G̃2(ρ, 0) when b = 10 and c = 0.

G̃
2(
ρ
,
0)

ρ∗ ρ

σ

Figure 10. Graph of G̃2(ρ, 0) when b = 10 and c = 33.

We now state and prove the main theorem of the section.

Theorem 4.1. The function u(x) is a positive solution to (4-1) with

‖u‖∞ = ρ ∈ S(b, c) :=
[
ρ∗(b, c), σ (b, c)

)
if and only if

G2(ρ, q(ρ))=
1

√
2
√

F(ρ)− F(q)
=
√
λ

for a positive λ for which q = q(ρ) ∈ [0, ρ) is the unique solution of

G̃2(ρ, q(ρ))

=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)− F(w)
−

1
√

2
√

F(ρ)− F(q)
= 0.
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Proof. (⇒) Accomplished in the above analysis.

(⇐) Assume that there exist λ ∈ (0,∞) and ρ ∈ S(b, c) wherefore G2(ρ, q(ρ))=
√
λ in which the unique solution of G̃2(ρ, q(ρ))= 0 is q(ρ) ∈ [0, ρ). Define

u(x) : [0, 1] → R

via ∫ u(x)

0

ds
√

F(ρ)− F(s)
=
√

2λx; x ∈ [0, x0], (4-22)∫ u(x)

ρ

ds
√

F(ρ)− F(s)
=−
√

2λ(x − x0); x ∈ [x0, 1]. (4-23)

Now, we will exhibit u(x) as a positive solution to (4-1). Note that u(x) has a
turning point at x0 denoted by

x0 =
1
√

2λ

∫ ρ

0

ds
√

F(ρ)− F(s)
. (4-24)

For the given λ > 0, it is apparent that

1
√

2λ

∫ u(x)

0

ds
√

F(ρ)− F(s)
(4-25)

is both a differentiable function of u and an increasing function ranging from 0
to x0 when u takes on the values from 0 to ρ. Therefore, for each x ∈ [0, x0] there
is a unique u(x) wherefore∫ u(x)

0

ds
√

F(ρ)− F(s)
=
√

2λx . (4-26)

The implicit function theorem gives that u(x) is a twice-differentiable function with
respect to x . Differentiating (4-26) with respect to x gives

u′(x)=
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [0, x0]. (4-27)

Through a similar argument,

u′(x)=−
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [x0, 1]. (4-28)

By utilizing (4-27) and (4-28) we obtain

[u′(x)]2

2
= λ

[
F(ρ)− F(u(x))

]
; x ∈ [0, 1]. (4-29)

Through differentiation of (4-29) we have

−u′′u′ = λ f (u)u′; x ∈ (0, 1), (4-30)
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which can be rewritten as

−u′′ = λ f (u); x ∈ (0, 1). (4-31)

Thus, we have proved that u(x) satisfies the differential equation in (4-1). Now,
we show that u(x) satisfies the boundary value conditions in (4-1); however, it is
apparent that u(0)= 0. Additionally, using G2(ρ, q(ρ))=

√
λ, we ascertain√

F(ρ)− F(q)= 1
√

2λ
. (4-32)

Substitution of x = 1 in (4-28) yields

u′(1)=−
√

2λ
√

F(ρ)− F(q). (4-33)

When (4-32) and (4-33) are synthesized we obtain

u′(1)=−1. (4-34)

Therefore, the boundary conditions in (4-1) are satisfied by u(x). �

5. Quadrature method for (1-11)

Further extension of the quadrature method is performed in this section to analyze
the structure of positive solutions of (1-11):

−u′′ = λ
[

u(u+ 1)(b− u)−
cu2

(u2+ 1)

]
; (0, 1), u′(0)= 1, u′(1)=−1. (5-1)

Define

f (u)=
[

u(u+ 1)(b− u)−
cu2

(u2+ 1)

]
and F(x)=

∫ x

0
f (s) ds.

Clearly, a positive solution of (5-1) must resemble Figure 11, where ‖u‖∞ = ρ,
ρ ∈ (0,∞), q = u(0) = u(1), and q ∈ [0, ρ). Through a similar argument as in
Section 4, we articulate the main theorem of this section.

Theorem 5.1. The function u(x) is a positive solution of (5-1) with

‖u‖∞ = ρ ∈ S(b, c)=
[
ρ∗(b, c), σ (b, c)

)
if and only if

G3(ρ, q(ρ))=
1

√
2
√

F(ρ)− F(q)
=
√
λ, (5-2)
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ρ

u(
x)

q

x

Figure 11. Graph of a typical positive solution of (5-1).

for which q = q(ρ) ∈ [0, ρ) is the unique solution of

G̃3(ρ, q(ρ))

=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−
√

2
∫ q

0

dw
√

F(ρ)− F(w)
−

1
√

2
√

F(ρ)− F(q)
= 0.

6. Computational results

Within this section we exhibit the complete evolution of the bifurcation curve of
positive solutions of (1-7) for c ∈ [0, c0(b)). The results for (1-8) are reestablished
via Mathematica computations and by recalling Theorem 3.1. For (1-9) and (1-11),
we recall Theorems 4.1 and 5.1 and utilize a standard root-finding algorithm to
find the unique ρ∗(b, c) > 0. Then for ρ ∈ [ρ∗(b, c), σ (b, c)) we employ a root-
finding algorithm to find the corresponding unique q(ρ), which is delineated in
Theorems 4.1 and 5.1. These diagrams were acquired via Mathematica for a single
b-value as c-values are varied. If b ∈ (b0,∞) then there exist

0< c∗0 < c∗1 < c∗2 < c∗3 < c∗4 < c∗5 < c∗6 < c∗7 < c0(b)

such that we have the following cases. In the subsequent figures, (1-8) is represented
in black, cases (1-9) and (1-10) in red, and (1-11) in blue.

Case 1. If c ∈ [0, c∗0) then there exist λi > 0 for i = 1, 2, 3, 4 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ [λ0,∞), then (1-7) has exactly 4 positive solutions;
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ρ

λ2 λ3 λ4 λ1 λ0 λ

Figure 12. ρ versus λ when b = 10 and c = 0 (Case 1).

• λ ∈ (λ1, λ0), then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 12 illustrates Case 1.

Case 2. If c ∈ [c0, c1) (some c1(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 6
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ [λ0,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ5) and λ ∈ (λ6, λ0), then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), λ= λ5, and λ= λ6, then (1-7) has exactly 6 positive solutions;

• λ= λ4 and λ ∈ (λ5, λ6), then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 13 illustrates Case 2.

Case 3. If c = c1 then there exist λi > 0 for i = 1, 2, . . . , 5 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;
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ρ

λ λ5 λ6 λ0

Figure 13. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 8.97 (Case 2).

• λ= λ3 and λ ∈ [λ0,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ5) and λ= λ0, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), λ= λ5, then (1-7) has exactly 6 positive solutions;

• λ= λ4 and λ ∈ (λ5, λ0), then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 14 illustrates Case 3.
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Figure 14. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 8.972 (Case 3).

Case 4. If c ∈ (c1, c2) (some c2(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 6
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ6,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ5) and λ= λ6, then (1-7) has exactly 5 positive solutions;
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Figure 15. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 8.99 (Case 4).

• λ∈ (λ3, λ4), λ∈[λ0, λ6), and λ=λ5, then (1-7) has exactly 6 positive solutions;

• λ= λ4 and λ ∈ (λ5, λ0), then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 15 illustrates Case 4.

Case 5. If c = c2 then there exist λi > 0 for i = 1, 2, . . . , 5 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;
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Figure 16. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 9 (Case 5).

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ5,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ0] and λ= λ5, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4) and λ ∈ (λ0, λ5), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 16 illustrates Case 5.
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λ2 λ3 λ4 λ λ0 λ1 λ5

ρ

Figure 17. ρ versus λ when b = 10 and c = 18 (Case 6).

Case 6. If c ∈ (c2, c3] (some c3(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 5
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ5,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ5, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ1, λ5), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ1], then (1-7) has exactly 9 positive solutions.

Figure 17 illustrates Case 6.

Case 7. If c ∈ (c3, c4) (some c4 > 0) then there exist λi > 0 for i = 1, 2, . . . , 7
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ7,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ7, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ1, λ7), then (1-7) has exactly 6 positive solutions;
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Figure 18. ρ versus λ when b = 10 and c = 26 (Case 7).

ρ
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Figure 19. ρ versus λ when b = 10 and c = 27.3 (Case 8).

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), (λ6, λ1], then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ= λ6, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 13 positive solutions.

Figure 18 illustrates Case 7. Notice that the red curve has become 6-shaped and
this shape persists through c ≤ c0(b).
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Case 8. If c = c4 then there exist λi > 0 for i = 1, 2, . . . , 6 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ6,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ6, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ1, λ6), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ1, λ= λ5, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ5, λ1), then (1-7) has exactly 13 positive solutions.

Figure 19 illustrates Case 8.

Case 9. If c ∈ (c4, c5] (some c5(b) > 0), then there exist λi > 0 for i = 1, 2, . . . , 7
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ7,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ7, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ6, λ7), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ6, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ ∈ (λ1, λ6), then (1-7) has exactly 10 positive solutions;

• λ= λ5, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ5, λ1], then (1-7) has exactly 13 positive solutions.

Figure 20 illustrates Case 9.
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Figure 20. ρ versus λ when b = 10 and c = 28 (Case 9).

Case 10. If c ∈ (c5, c6) (some c6(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 9
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ9,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ9, then (1-7) has exactly 5 positive solutions;

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−1

10
0

10
1

λ2 λ3 λ4 λ0 λ5λ6λ7 λ1 λ8 λ9

ρ

λ

Figure 21. ρ versus λ when b = 10 and c = 29 (Case 10).
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• λ ∈ (λ3, λ4), (λ8, λ9), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ8, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), (λ6, λ7), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ= λ6, λ ∈ (λ1, λ8), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), λ= λ7, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ7, λ1], then (1-7) has exactly 13 positive solutions.

Figure 21 illustrates Case 10. Notice that the blue curve has now also become
6-shaped and its shape persists through c ≤ c0(b).

Case 11. If c = c6 then there exist λi > 0 for i = 1, 2, . . . , 8 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ8,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ8, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ7, λ8), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ7, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

ρ

λ2λ3λ4 λ0 λ5λ6 λ1 λ7 λ8λ

Figure 22. ρ versus λ when b = 10 and c = 30 (Case 11).
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• λ= λ5, λ ∈ (λ1, λ7), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 11 positive solutions;

• λ= λ6, then (1-7) has exactly 12 positive solutions;

• λ ∈ (λ6, λ1], then (1-7) has exactly 13 positive solutions.

Figure 22 illustrates Case 11.

Case 12. If c ∈ (c6, c7) (some c7(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 9
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ9,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ9, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ8, λ9), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ8, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ ∈ (λ1, λ8), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 11 positive solutions;

• λ= λ6, λ ∈ (λ7, λ1], then (1-7) has exactly 13 positive solutions;

ρ

λ2λ3λ4 λ0 λ5λ6λ7λ1 λ8 λ9λ

Figure 23. ρ versus λ when b = 10 and c = 30.1 (Case 12).
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• λ= λ7, then (1-7) has exactly 14 positive solutions;

• λ ∈ (λ6, λ7), then (1-7) has exactly 15 positive solutions.

Figure 23 illustrates Case 12.

Case 13. If c = c7 then there exist λi > 0 for i = 1, 2, . . . , 8 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ8,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ8, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ7, λ8), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ7, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ ∈ (λ1, λ7), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 11 positive solutions;

• λ= λ6, then (1-7) has exactly 13 positive solutions;

• λ= λ1, then (1-7) has exactly 14 positive solutions;

• λ ∈ (λ6, λ1), then (1-7) has exactly 15 positive solutions.

Figure 24 illustrates Case 13.

ρ

λ2λ3 λ4 λ0 λ5 λ6λ1 λ7 λ λ8

Figure 24. ρ versus λ when b = 10 and c = 30.3 (Case 13).
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Figure 25. ρ versus λ when b = 10 and c = 32 (Case 14).

Case 14. If c ∈ (c7, c0(b)) then there exist λi > 0 for i = 1, 2, . . . , 9 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ9,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ9, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ8, λ9), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ8, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ ∈ (λ7, λ8), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), λ= λ7, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ1, λ7), then (1-7) has exactly 12 positive solutions;

• λ= λ6, then (1-7) has exactly 13 positive solutions;

• λ ∈ (λ6, λ1], then (1-7) has exactly 15 positive solutions;

Figure 25 illustrates Case 14.

7. Analytical results

In order to bolster our computational results as well as elaborate on the behavior of
the bifurcation curves, we procure some analytical results. First, we recall some
results from [Laetsch 1970] detailing the behavior of G1(ρ) when ρ→ σ(b, c)−
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and when ρ→ 0+ in the following lemmas, where σ(b, c) represents the smallest
positive root of f (u).

Lemma 2 [Laetsch 1970]. limρ→σ(b,c)− G1(ρ)=∞.

Lemma 3 [Laetsch 1970]. limρ→0+ G1(ρ)= π/(2
√

b).

Our main goal for this section is to establish the following analytical results
for (1-9) and (1-11). Recall that λ= [G2(ρ, q)]2 and λ= [G3(ρ, q)]2 from Theo-
rems 4.1 and 5.1, respectively. Thus, we can obtain some global behavior of the ρ
versus λ bifurcation curve via study of G2(ρ, q) and G3(ρ, q).

Theorem 7.1.

(1)
(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)
≤ G2(ρ, q)≤

√
2
∫ ρ

0

dw
√

F(ρ)− F(w)
;

(2) G3(ρ, q)≤
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
.

Proof. To prove (1), recall

G2(ρ, q)=
1

√
2
√

F(ρ)− F(q)

=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)− F(w)
. (7-1)

We ascertain an upper bound by substituting q = 0 into (7-1) yielding

G2(ρ, q)≤
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
.

Also, recalling q ∈ [0, ρ) and allowing q→ ρ− in (7-1) we obtain

G2(ρ, q)≥
(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)

as the lower bound. Hence,(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)
≤ G2(ρ, q)≤

√
2
∫ ρ

0

dw
√

F(ρ)− F(w)
.

Now to prove (2). Recall

G3(ρ, q)=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−
√

2
∫ q

0

dw
√

F(ρ)− F(w)
. (7-2)

Similarly, by substituting q = 0 into (7-2) we obtain

G3(ρ, q)≤
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)

as the upper bound. �
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Theorem 7.2. lim
ρ→σ(b,c)−

G2(ρ, q)=∞.

Proof. By Theorem 7.1, we have

G2(ρ, q)≥
(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)
. (7-3)

From Lemma 2, it is clear that the right side of (7-3) approaches infinity as

ρ→ σ(b, c)−.

Therefore, it is apparent that

lim
ρ→σ(b,c)−

G2(ρ, q)=∞. �
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The probability of randomly generating
finite abelian groups

Tyler Carrico

(Communicated by Joseph Gallian)

Extending the work of Deborah L. Massari and Kimberly L. Patti, this paper
makes progress toward finding the probability of k elements randomly chosen
without repetition generating a finite abelian group, where k is the minimum
number of elements required to generate the group. A proof of the formula for
finding such probabilities of groups of the form Zpm⊕Zpn , where m, n ∈N and p
is prime, is given, and the result is extended to groups of the form Zpn1⊕· · ·⊕Zpnk ,
where ni , k ∈N and p is prime. Examples demonstrating applications of these for-
mulas are given, and aspects of further generalization to finding the probabilities
of randomly generating any finite abelian group are investigated.

Introduction

Throughout this paper, let k be the minimum number of elements required to
generate a group G, AG be the event where k elements randomly chosen without
repetition generate G, and P(AG) be the probability of AG occurring. Massari
[1979] showed that, for a finite cyclic group G of order a, P(AG) = φ(a)/a,
where φ is the Euler phi function. Patti [2002] showed, among other things, that,
for G = Zp⊕· · ·⊕Zp (the external direct product of Zp taken k times, where p is
prime),

P(AG)=

∏k−1
i=0 (p

k
− pi )∏k−1

j=0(pn − j)
.

It is natural to ask what the probability of generating groups like G is when powers
are added to the p subscripts. We now turn to this problem.

Theorem 1. Let G = Zpm ⊕Zpn where m, n ∈ N and p is prime. Then

P(AG)=
p2(m+n−2)(p2

− 1)(p2
− p)

pm+n(pm+n − 1)
.
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Proof. Partition the elements of G into p2 subsets (these particular types of subsets
will be referred to as A-subsets from this point forward):

Ai j={(px+i mod pm, py+ j mod pn) : x ∈Zpm , y∈Zpn , i, j ∈{0, 1, . . . , p−1}}.

Note that
⋃

Ai j = G and |Ai j | = |G|/p2
= pm+n−2 for i = 0, 1, . . . , p− 1 and

j = 0, 1, . . . , p− 1.
From this point forward we assume without being explicit that, in any tuple

(px+ i, py+ j), i and j are reduced modulo p, px+ i is reduced modulo pm , and
py+ j is reduced modulo pn .

Note that, for any g ∈ G and any t1, t2 ∈ Z such that t1 ≡ t2 mod p, t1g and t2g
belong to the same A-subset. Therefore, any element g ∈ G can at most generate p
A-subsets since there are p possible choices for an integer t that have the potential
to place tg in different A-subsets. For an element g, let Fg denote the family of
A-subsets to which tg belongs for all possible values of t . Note that for each g /∈ A00

exactly p A-subsets belong to Fg (g does not necessarily generate all A-subsets
belonging to Fg, but it generates at least one element belonging to each A-subset).

Let g = (a, b) ∈ G, and let (c, d) and (e, f ) be two elements, each from any A-
subset belonging to Fg. Then (c, d) ≡ k1(a, b) mod p and (e, f ) ≡ k2(a, b)
mod p for some k1, k2 ∈ Z. Thus, for any k3, k4 ∈ Z, k3(c, d) + k4(e, f ) ≡
k3k1(a, b)+k4k2(a, b)=[k3k1+k4k2](a, b) mod p, which belongs to an A-subset
in Fg. Thus, these two elements generate at most p A-subsets and thus cannot
generate G. Note that, since A00 ∈ Fg for all g ∈G, it is impossible for two elements
to generate G when one of them belongs to A00.

Now suppose we choose elements a, b /∈ A00, say a = (px1+ i1, py1+ j1) and
b= (px2+i2, py2+ j2), such that a does not belong to any A-subset in Fb and b does
not belong to any A-subset in Fa (thus it is not the case that i1= i2= 0, j1= j2= 0,
i1 = j1 = 0, or i2 = j2 = 0). We will show that a and b together generate G.

Case 1: At least one of i1, i2, j1, j2 is zero. Without loss of generality let i1 = 0.
Then i2 6= 0, j1 6= 0, and because gcd(py1 + j1, pn) = 1 there exists q ∈ Z such
that qa = (px, 1) for some x ∈ Zpm .

Subcase 1: j2=0. Then by similar reasoning there exists r ∈Z such that rb= (1, py)
for some y ∈Zpn . Now qa− pxrb= (0,−p2xy+1), and gcd(−p2xy+1, pn)= 1
so there exists s ∈Z such that s[qa−pxrb]= (0, 1). Finally, rb−pys[qa−pxrb]=
(1, 0).

Subcase 2: j2 6= 0. Then b− j2qa = (p[x2− j2x]+ i2, py2), and we arrive at the
same situation as Subcase 1.

Case 2: None of i1, i2, j1, j2 are zero. Let

e = i2a− i1b = (p[i2x1− i1x2], p[i2 y1− i1 y2] + c),



THE PROBABILITY OF RANDOMLY GENERATING FINITE ABELIAN GROUPS 433

where c = i2 j1− i1 j2. We will show that c 6= 0. Assume to the contrary that c = 0.
Since j2 6= 0, j2 ∈ {1, 2, . . . , p− 1} ⊂ Zp, and, because Zp is a field, there exists
k ∈ Zp such that k j2 ≡ 1 mod p. Let d = j1k. Because i1 j2 = i2 j1, we now have
i1 ≡ i1 j2k = i2 j1k = di2 mod p and j1 ≡ j1 j2k = d j2 mod p so that a and db
are in the same A-subset, a contradiction. Thus, c 6= 0.

Now, because gcd(p[i2 y1 − i1 y2] + c, pn) = 1, there exists q ∈ Z such that
qe = (px, 1) for some x ∈ Zpm . Further, f = b− qe[py2+ j2] = (px3+ i2, 0) for
some x3 ∈Zpm and gcd(px3+i2, pm)= 1, so there exists t ∈Z such that t f = (1, 0).
Finally, qe− pxt f = (0, 1).

In any case, we have shown that a and b generate (1, 0) and (0, 1), and thus a
and b together generate G.

It is left to show the value of P(AG). For the first element a, any element other
than an element from A00 can be chosen. Thus, there are pm+n−2 elements from each
of the p2

− 1 possible A-subsets from which to choose, a total of pm+n−2(p2
− 1)

elements out of the possible pm+n . For the second element, an element must be
chosen from an A-subset not belonging to Fa . Since p A-subsets belong to Fa ,
there are p2

− p such A-subsets, each containing pm+n−2 elements. Thus, there are
pm+n−2(p2

− p) elements out of the remaining pm+n
− 1 possible elements from

which to choose. Therefore,

P(AG)=
pm+n−2(p2

− 1)
pm+n ·

pm+n−2(p2
− p)

pm+n − 1

=
p2(m+n−2)(p2

− 1)(p2
− p)

pm+n(pm+n − 1)
. �

Example. Consider the group H = Z75 ⊕Z712 . Then

P(AH )=
72(5+12−2)(72

− 1)(72
− 7)

75+12(75+12− 1)

=
730(48)(42)
717(717− 1)

= 0.83965.

This result can be extended to the external direct product of any finite number
of Zpni .

Theorem 2. Let G = Zpn1 ⊕ · · · ⊕ Zpnk , where ni ∈ N and p is prime. Define
n =

∑k
i=1 ni . Then

P(AG)=
pk(n−k) ∏k−1

i=0 (p
k
− pi )∏k−1

j=0(pn − j)
.
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Proof. Partition the elements of G into pk A-subsets:

Ai1···ik={(px1+i1 mod pn1, . . . , pxk+ik mod pnk ) :x j ∈Zpn j , i j ∈{0,1, . . . , p−1}}.

Note that
⋃

Ai1···ik = G and |Ai1···ik | = |G|/pk
= pn−k for i j = 0, 1, . . . , p− 1.

Similar to the case where k = 2, any element g ∈ G can at most generate p
A-subsets, and for each g /∈ A0···0 exactly p A-subsets belong to Fg. When k
elements are chosen, if any two elements belong to A-subsets within the same
family, at most pk−1 A-subsets can be generated. Therefore, it is impossible to
generate G with such a choice of elements.

Now choose an element not in the null family, then choose another not in
the family of the first element, then choose another such that it is not in any
family generated by any linear combination of the first two elements, and so
forth until we have chosen k elements a1, . . . , ak . Then none of the elements
can be written as a linear combination of the other k − 1 elements. Define A =
{a1, . . . , ak}. Assume that none of the elements of A are part of an A-subset with
zero in its subscript. Then for any am1 and am2 there exist integers c1 and c2 so
that c1am1 + c2am2 ∈ A0i2···ik , where not all of the i j are zero. Therefore, we can
generate k − 1 elements a′1, . . . , a′k−1 where a′m = c1am + c2am+1 and c1 and c2

are such that a′m ∈ A0i2···ik , where not all of the i j are zero. Assume that i j 6= 0
for j = 2, . . . , k. Define A′ = {a′1, . . . , a′k−1}. Note that none of a′1, . . . , a′k−1 can
be written as linear combinations of the other k − 2 elements, for, if this were
possible, some a j could be written as a linear combination of the elements in A
other than a j , which contradicts our choice of the elements of A. We can now
generate k−2 elements a′′1 , . . . , a′′k−2 in a similar manner so that a′′m ∈ A00i3···ik , and
similar conditions and assumptions hold. Continuing in this manner, we generate
an element a(k) ∈ A0···0ik , where ik 6= 0. Now, because gcd(pxk + ik, pnk ) = 1,
there exists c such that ca(k)= (py1 mod pn1, . . . , pyk−1 mod pnk−1, 1) for some
yi ∈ Zpni .

Following a procedure similar to the one previously described, only changing
the order by which the linear combinations of the elements are taken, we can
generate k− 1 other elements so that we have a total of k elements b1, . . . , bk such
that the j-th coordinate of b j is 1 and the remaining coordinates are multiples of
p. Now linear combinations of these elements can be taken so that k elements
c1, . . . , ck are generated, where the j-th coordinate of c j is not a multiple of
p and the remaining coordinates are 0. Thus, the greatest common divisor of
the j-th coordinate of each c j and pn j is 1, and thus there exists t j for each c j

such that t j c j has 1 for the j-th coordinate and zero for the remaining coordi-
nates.

If, unlike our earlier assumptions, it happens at any point that some i j is zero,
notice that this is a subcase of our original case, where we already possess elements
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which otherwise we would have had to generate as we did in our original case.
Thus, our assumption that each i j be nonzero at each step is unnecessary and, in
any case, a1, . . . , ak together generate G.

It is left to show the value of P(AG). For the first element a1, any element other
than an element from A0···0 can be chosen. Thus, there are pn−k elements from
each of the pk

−1 possible A-subsets from which to choose, a total of pn−k(pk
−1)

elements out of the possible pn . For the second element a2, an element must be
chosen from an A-subset not belonging to Fa1 . Since p A-subsets belong to Fa1 ,
there are pk

− p such A-subsets, each containing pn−k elements. Thus, there are
pn−k(pk

− p) elements out of the remaining pn
− 1 possible elements from which

to choose. Continuing in this manner and multiplying the resulting probabilities,
we have

P(AG)=
pn−k(pk

− 1)
pn ·

pn−k(pk
− p)

pn − 1
· · ·

pn−k(pk
− pk−1)

pn − k

=
pk(n−k) ∏k−1

i=0 (p
k
− pi )∏k−1

j=0(pn − j)
. �

Example. Consider the group I =Z29⊕Z292⊕Z293⊕Z294 . Then 1+2+3+4= 10,
so

P(AI )=
294(10−4)(294

− 1)(294
− 29)(294

− 292)(294
− 293)

2910(2910− 1)(2910− 2)(2910− 3)
= 0.964.

Extension. The fundamental theorem of finite abelian groups states that every finite
abelian group is isomorphic to a direct product of cyclic groups of prime-power
order, that is, groups of the form Zp1

n1 ⊕ · · · ⊕ Zpk
nk , where ni ∈ N and pi are

prime [Gallian 2006]. We would thus hope that extending the previous theorem by
varying the primes would be simple. This is not the case, however. Consider the
following three groups and the probabilities of generating them:

(1) Let G1 = Z2⊕Z2. Then P(AG1)= 1/2.

(2) Let G2 = Z3⊕Z3. Then P(AG2)= 2/3.

(3) Let G3 = Z2⊕Z2⊕Z3⊕Z3. Then P(AG3)= 8/35.

Notice that, although we have a formula for finding the probabilities of generating (1)
and (2) and G3 is isomorphic to G1⊕G2, the relationship between the probabilities
of generating each of the three groups (1/2, 2/3, and 8/35) is not obvious. The
following is a conjecture for the probability of generating groups of form similar
to G3.
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Conjecture. Let G = Zpn1 ⊕Zpn2 ⊕Zqn3 ⊕Zqn4 , where ni ∈ N and p and q are
prime. Then

P(AG)=
p2(n1+n2−2)q2(n3+n4−2)(p2q2

− p2
− q2
+ 1)(p2q2

− p2q − q2 p+ pq)
pn1+n2qn3+n4(pn1+n2qn3+n4 − 1)

.

This equation is similar in form to our previous theorem, yet it differs significantly
in the number of A-subsets from which elements can be chosen that successfully
generate G; the first element can be chosen from p2q2

− p2
−q2
+1 A-subsets and

the second element can be chosen from p2q2
− p2q − q2 p+ pq A-subsets. The

following conjecture shows how similar complexities arise in a group form similar
to the previous case:

Conjecture. Let G = Zpn1 ⊕ Zpn2 ⊕ Zpn3 ⊕ Zqn4 where ni ∈ N and p and q are
prime. Then

P(AG)=
p3(n1+n2+n3−3)qn4−1(p3

− 1)(p3
− p)(p3

− p2)(q3
− 1)

pn1+n2+n3qn4(pn1+n2+n3qn4 − 1)(pn1+n2+n3qn4 − 2)
.

Finally, since a set of elements from a group will either generate the whole group
or a proper subgroup, if we let BG be the event where k elements randomly chosen
without repetition generate a proper subgroup of G, then P(BG), the probability of
BG occurring, is

P(BG)= 1− P(AG).
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This paper studies the existence of free and very free curves on the degree 5
Fermat hypersurface in P5 over an algebraically closed field of characteristic 2.
We explicitly compute a free curve in degree 8, and a very free curve in degree 9.
We also prove that free and very free curves cannot exist in lower degrees.

1. Introduction

Any smooth projective Fano variety in characteristic zero is rationally connected
and hence contains a very free rational curve. In positive characteristic a smooth
projective Fano variety is rationally chain-connected. However, it is not known
whether such varieties are separably rationally connected, or equivalently, whether
they have a very free rational curve. This is an open question even for nonsingular
Fano hypersurfaces. See [Kollár 1996], as well as [Debarre 2001].

Following [Shen 2012], we consider the degree 5 Fermat hypersurface

X : X5
0 + X5

1 + X5
2 + X5

3 + X5
4 + X5

5 = 0

in P5 over an algebraically closed field k of characteristic 2. This is a nonsingular
projective Fano variety.

Theorem 1.1. Any free rational curve ϕ : P1
→ X has degree ≥ 8, and there exists

a free rational curve of degree 8. Any very free rational curve ϕ : P1
→ X has

degree ≥ 9, and there exists a very free rational curve of degree 9.

This result, although perhaps expected, is interesting for several reasons. First,
it is known that X is unirational; see [Debarre 2001, p. 52] (the corresponding
rational map P4 99K X is inseparable). Second, in [Beauville 1990], it is shown that

MSC2010: primary 14-02; secondary 14M22.
Keywords: free morphisms, very free morphisms, Fermat hypersurface, Fermat hypersurface over a

field of characteristic 2.
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every nonsingular hyperplane section of X is isomorphic to a Fermat hypersurface
of dimension 3, and this property characterizes Fermat hypersurfaces among all
hypersurfaces of degree 5 in characteristic 2. We believe that these facts single
out the Fermat as a likely candidate for a counterexample to the conjecture below;
instead, our theorem shows that they are evidence for it.

Conjecture 1.2. Nonsingular Fano hypersurfaces have very free rational curves.

Zhu [2011] discusses this question more broadly. Let us discuss a little bit about
the method of proof. In Section 2, we translate the geometric question into an
algebraic question which is computationally more accessible. In Sections 3, 4, and
5, we exclude low-degree solutions by theoretical methods. Finally, in Sections 6
and 7, we explicitly describe some curves which are free and very free in degrees 8
and 9, respectively.

2. The overall setup

In the rest of this paper, k will be an algebraically closed field of characteristic 2
and X will be the Fermat hypersurface of degree 5 over k. Let ϕ : P1

→ X be a
nonconstant morphism. We will repeatedly use that every vector bundle on P1 is a
direct sum of line bundles; see [Grothendieck 1957]. Thus we can choose a splitting

ϕ∗TX = OP1(a1)⊕OP1(a2)⊕OP1(a3)⊕OP1(a4).

Recall that ϕ is said to be a free curve on X if ai ≥ 0, and ϕ is said to be very free
if ai > 0. Consider the commutative diagram

0

��

0

��
OX

��

OX

��
0 // EX

��

// OX (1)⊕6

��

// OX (5) // 0

0 // TX //

��

TP5 |X //

��

NX/P5 // 0

0 0

(2-1)

with exact rows and columns as indicated. We will call EX the extended tangent
bundle of X . The left vertical exact sequence determines a short exact sequence

0→ OP1 → ϕ∗EX → ϕ∗TX → 0.
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The splitting type of ϕ∗EX will consistently be denoted ( f1, f2, f3, f4, f5) in this
paper. Since HomP1(OP1( f ), OP1(a))= 0 if f > a, we conclude:

(1) If fi ≥ 0 for all i , then ϕ is free.

(2) If fi > 0 for all i , then ϕ is very free.

For the converse, note that the map OP1 → ϕ∗EX has image contained in the direct
sum of the summands with fi ≥ 0. Hence, if fi < 0 for some i , then ϕ is not free.
Finally, suppose that fi ≥ 0 for all i . If there are at least two fi equal to 0, then we
see that ϕ is free but not very free. We conclude:

(3) If ϕ is free, then fi ≥ 0 for all i .

(4) If ϕ is very free, then either
(a) fi > 0 for all i , or
(b) exactly one fi vanishes and all others are positive.

We do not know if (4b) occurs.

Translation into algebra. Here we work over the graded k-algebra R = k[S, T ].
As usual, we let R(e) be the graded free R-module whose underlying module is R
with grading given by R(e)n = Re+n . A graded free R-module will be any graded
R-module isomorphic to a finite direct sum of R(e)’s. Such a module M has a
splitting type which is uniquely defined up to reordering, namely, the sequence of
integers u1, . . . , ur such that M ∼= R(u1)⊕ · · ·⊕ R(ur ).

We will think of a degree d morphism ϕ : P1
→ P5 as a 6-tuple (G0, . . . , G5)

of homogeneous elements in R of degree d with no common factors. Then ϕ is a
morphism into X if and only if G5

0+ · · ·+G5
5 = 0. In this situation we define two

graded R-modules. The first is called the pullback of the cotangent bundle

�X (ϕ)= Ker(ϕ̃ : R⊕6(−d)→ R),

where the map ϕ̃ is given by (A0, . . . , A5) 7→
∑

Ai Gi . The second is called the
the pullback of the extended tangent bundle

EX (ϕ)= Ker(R⊕6(d)→ R(5d)),

where the map is given by (A0, . . . , A5) 7→
∑

Ai G4
i . Since the kernel of a map

of graded free R-modules is a graded free R-module, both �X (ϕ) and EX (ϕ) are
themselves graded free R-modules of rank 5.

Lemma 2.1. The splitting type of ϕ∗EX is equal to the splitting type of the R-
module EX (ϕ).

Proof. Recall that P1
= Proj(R). Thus, a finitely generated graded R-module corre-

sponds to a coherent sheaf on P1; see [Hartshorne 1977, Proposition 5.11]. Under
this correspondence, the module R(e) corresponds to OP1(e). The lemma follows
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if we show that ϕ∗EX is the coherent sheaf associated to EX (ϕ). Diagram (2-1)
shows that ϕ∗EX is the kernel of a map OP1(d)⊕6

→ OP1 given by substituting
(G0, . . . , G5) into the partial derivatives of the polynomial defining X . Since the
equation is X5

0 + · · · + X5
5, the derivatives are X4

i , and substituting we obtain G4
i

as desired. �

3. Relating the splitting types

Observe that �X (ϕ) is also a graded free module of rank 5 and so has a splitting
type, which we denote using e1, . . . , e5. In this section, we relate the splitting type
of �X (ϕ) to the splitting type of EX (ϕ).

If (A0, . . . , A5) ∈�X (ϕ), then A0G0+ · · ·+ A5G5 = 0 so that

A4
0G4

0+ · · ·+ A4
5G4

5 = 0

by the Frobenius endomorphism in characteristic 2. Let

T= {(A4
0, . . . , A4

5) | (A0, . . . , A5) ∈�X (ϕ)}

in EX (ϕ). We denote the R-module generated by T as R〈T〉.

Lemma 3.1. In the notation above, EX (ϕ)= R〈T〉.

Proof. Let (B0, . . . , B5) be an element of EX (ϕ), where Bi is a homogeneous
polynomial of degree b. We consider the case b ≡ 0 mod 4.

Observe that we can rewrite each monomial term of Bi as (c1/4S`T k)4Si T 4−i

or (c1/4S`T k)4 for some integers `, k, where c ∈ k and 0 < i < 4. After collecting
terms and applying the Frobenius endomorphism, we obtain

Bi = a4
i1+ a4

i2S3T + a4
i3S2T 2

+ a4
i4ST 3,

where each ai j is an element of R. Then, since B0G4
0+· · ·+B5G4

5= 0, substituting
our expression for the Bi ’s and applying Frobenius, we obtain( 5∑

i=0

ai1Gi

)4

+

( 5∑
i=0

ai2Gi

)4

S3T +
( 5∑

i=0

ai3Gi

)4

S2T 2
+

( 5∑
i=0

ai4Gi

)4

ST 3
= 0.

The sums
∑5

i=0 ai j Gi are each themselves homogeneous polynomials. But since the
degree of T in each term above is distinct modulo 4, the equation

∑5
i=0 ai j Gi = 0

implies that (a0 j , . . . , a5 j ) ∈�X (ϕ) so that (a4
0 j , . . . , a4

5 j ) ∈ T for 1≤ j ≤ 4.
Hence, every homogeneous element of EX (ϕ) is contained in the submodule gen-

erated by T. Since the reverse containment is trivial, it follows that EX (ϕ)= R〈T〉.
The cases for b ≡ 1, 2, 3 mod 4 follow similarly. �

Proposition 3.2. If xi = (xi0, . . . , xi5), for 1≤ i ≤ 5, form a basis for �X (ϕ), then
yi = (x4

i0, . . . , x4
i5), for 1≤ i ≤ 5, form a basis for EX (ϕ).
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Proof. If xi ∈�X (ϕ), then yi ∈T, and every element of T is an R-linear combination
of the yi ’s. Since EX (ϕ) = R〈T〉, every element of EX (ϕ) is also an R-linear
combination of the yi ’s so that the yi ’s generate EX (ϕ). Moreover, EX (ϕ) is a
free module of rank 5 over a domain, so the generators yi for EX (ϕ) must also be
linearly independent and hence form a basis. �

Accounting for twist, a simple computation using the results above gives us the
following.

Corollary 3.3. Let ϕ be a degree d morphism, and e1, . . . , e5 be the splitting type
of �X (ϕ). If f1 = 4e1+ 5d, f2 = 4e2+ 5d, . . . , f5 = 4e5+ 5d, then f1, . . . , f5 is
the splitting type of EX (ϕ).

4. Numerology

We now utilize some facts about graded free modules in order to give constraints
on potential splitting types. Given a graded free module

M = R(u1)⊕ · · ·⊕ R(ur ),

one can observe that the Hilbert polynomial HM is given by

HM(m)= rm+ u1+ · · ·+ ur + r.

Let ϕ denote a free morphism of degree d into X . Noting that the map

ϕ̃ : R(−d)⊕n+1
m → Rm

is surjective for m� 0, we obtain

H�(ϕ)(m)= dimk
(
ker(R(−d)⊕n+1

m → Rm)
)

= (n+ 1)(−d +m+ 1)− (m+ 1)

= nm+−d(n+ 1)+ n.

A similar calculation shows that

HEX (ϕ)(m)= nm+ d(n+ 1− 5)+ n.

We continue to refer to the splitting type components of �(ϕ) and EX (ϕ) as
ei and fi , respectively. In both cases n = r = 5, so combining these two equations
with the general form for the Hilbert polynomial of a graded free module, we obtain
our first constraints:

e1+ e2+ e3+ e4+ e5 =−6d,

f1+ f2+ f3+ f4+ f5 = d.
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Recall from Section 2 that a curve is free or very free if fi ≥ 0 or fi > 0, respectively,
for each i . Since fi = 4ei + 5d, it follows that

ei ≥−
5d
4

,

where strict inequality implies the curve is very free. With these two bounds, we
can quickly observe a few facts about curves of different degrees.

Remarks. (1) There exist no free curves in degrees 1, 2, 3, 6, and 7.

(2) Any free curve of degree not divisible by 4 must be very free.

(3) There are no very free curves in degrees 4 or 8.

(4) The splitting type of �(ϕ) of a free curve of degree 4 must be

(−5,−5,−5,−5,−4).

(5) The splitting type of �(ϕ) of a very free curve of degree 5 must be

(−6,−6,−6,−6,−6).

All of these observation follow directly from the two constraints. For example, in
degree 6, e1+e2+e3+e4+e5 =−6d =−36. However, each ei ≥−30/4=−7.5.
So even if each ei is at best −7, the ei cannot sum to −36.

The rest of the remarks follow in a similar manner. Note that one can glean even
more information about these curves from the constraints, but the remarks listed
above are sufficient for our purposes.

5. Degree 4 and 5 morphisms into X

We will now show that there are no free morphisms of degrees 4 or 5 into X . A
morphism ϕ= (G0, . . . , G5), where each Gi =

∑d
j=0 ai j Sd− j T j is a homogeneous

polynomials of degree d, gives us a 6×(d + 1) matrix (ai j ). We will denote this
matrix as Mϕ .

Lemma 5.1. If ϕ is a degree 4 or 5 free morphism into X , then Mϕ has maximal
rank.

Proof. This follows from Remarks(4) and (5) by observing that for a degree d
morphism into X , the transpose of Mϕ is the matrix of the k-linear map

ϕ̃d : (R(−d)⊕6)d → Rd . �

Lemma 5.2.

(a) There are no degree 4 free morphisms into X.

(b) There are no degree 5 free morphisms into X.
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Proof. (a) Assume a degree 4 free morphism ϕ = (G0, . . . , G5) exists. By the
previous lemma, the 6×5 matrix Mϕ = (ai j ) has maximal rank. Since permuting
the Gi ’s does not affect the splitting type of EX (ϕ), we can assume that the first
5 rows of Mϕ are linearly independent over k. Then det

(
(ai j )i≤4

)
6=0. Now consider

the matrix Mϕ = (a4
i j ). By the Frobenius endomorphism on k,

det
(
(a4

i j )i≤4
)
= det

(
(ai j )i≤4

)4
6= 0,

proving that Mϕ has maximal rank as well.
Since G5

0+· · ·+G5
5= 0, computing the coefficients of G5

0+· · ·+G5
5, we obtain

for 0≤ j ≤ 4
5∑

i=0

a4
i j ai1 = 0 and

5∑
i=0

a4
i j ai3 = 0. (5-1)

The kernel of the map k6
→ k5 given by right multiplication by the matrix Mϕ has

dimension 1 because rank(Mϕ)= 5. By (5-1),

(a01, a11, . . . , a51), (a03, a13, . . . , a53) ∈ ker(k6
→ k5),

and since these 6-tuples are columns of Mϕ , they are linearly independent over k.
Then dimk

(
ker(k6

→ k5)
)
≥ 2, a contradiction.

(b) Assume ϕ= (G0, . . . , G5) is a degree 5 free morphism. By the previous lemma,
the matrix Mϕ = (ai j ) has maximal rank and is invertible. Thus Mϕ = (a4

i j ) is
invertible by the same argument above. Since G5

0+ · · ·+G5
5 = 0, computing the

coefficients of the polynomial G5
0+ · · ·+G5

5, we get

5∑
i=0

a4
i j ai2 = 0 for 0≤ j ≤ 5.

Thus, the product of the row matrix (a02, a12, . . . , a52) and the matrix Mϕ is 0,
which is impossible because (a02, a12, . . . , a52) 6= 0 and Mϕ is invertible. �

6. Computations for the degree 8 free curve

Let ϕ : P1
→ P5 be a morphism given by the 6-tuple

G0 = S7T, G1 = S4T 4
+ S3T 5,

G2 = S4T 4
+ S3T 5

+ T 8, G3 = S7T + S6T 2
+ S5T 3

+ S4T 4
+ S3T 5,

G4 = S8
+ S7T + S6T 2

+ S5T 3
+ S4T 4

+ S3T 5
+ T 8,

G5 = S8
+ S7T + S6T 2

+ S5T 3
+ S4T 4

+ S3T 5
+ S2T 6

+ ST 7.
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One can check by computer or by hand that this curve lies on the Fermat hypersurface
X ⊂P5. Due to twisting, the domain of the map ϕ̃ : R(−8)⊕6

→ R has its first non-
trivial graded piece in dimension 8. The Gi are linearly independent over k, hence
the kernel is trivial in dimension 8. The matrix for the map ϕ̃9 : R(−8)⊕6

9 → R9 is

0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 1 1 1
0 1 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0


,

where each direct summand of the domain has a basis {(S, 0), (0, T )}, of which we
take six copies (for total dimension 12), and the range has basis given by the degree 9
monomials in S and T , ordered by increasing T -degree (for total dimension 10).
This matrix has rank 10, which means that the map in degree 9 is surjective. By
rank-nullity, two dimensions of the kernel live in degree 9; denote the generators
by x1, x2. Surjectivity of ϕ̃ in degree 9 implies surjectivity in all higher degrees.
A second application of rank-nullity gives dimk �(ϕ)10 = 7. Four of the generators
are inherited from the previous degree, taking the forms

x1S, x2S, x1T, x2T .

We conclude that there are three additional generators in degree 10. Therefore,
the splitting type of �X (ϕ) is (e1, . . . , e5) = (−10,−10,−10,−9,−9), which
corresponds to a splitting type for EX (ϕ) of ( f1, . . . , f5) = (0, 0, 0, 4, 4), hence
the curve is free.

7. A very free rational curve of degree 9

We conclude by giving an example of a degree 9 very free curve lying on X . Let
ϕ : P1

→ P5 be a morphism into the Fermat hypersurface given by the 6-tuple

G0 = S4T 5, G1 = S9
+ S8T + S5T 4,

G2 = S9
+ S4T 5

+ ST 8, G3 = S9
+ S8T + S4T 5

+ S3T 6
+ S2T 7

+ ST 8,

G4 = S9
+ S5T 4

+ S3T 6
+ S2T 7

+ ST 8
+ T 9,

G5 = S7T 2
+ S6T 3

+ S5T 4
+ S3T 6

+ S2T 7
+ ST 8

+ T 9.
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Let e1, . . . , e5 again denote the splitting type of �X (ϕ). As in Section 6, we know
that ei ≤ −9. Since the Gi are linearly independent over k, dimk(�X (ϕ)9) = 0.
Next we claim that ˜ϕ10 : R⊕6

1 → R10 is surjective. In fact, it can be checked that
the ϕ̃(bi ) span R10, where the bi are distinct basis elements of R⊕6

1 . It follows that
ϕ̃n : R(−9)⊕6

n → Rn is surjective for n ≥ 10. Hence,

dimk(�X (ϕ)10)= dimk(R⊕6
1 )− dimk(R10)= 1,

dimk(�X (ϕ)11)= dimk(R⊕6
2 )− dimk(R11)= 6.

After reordering, this yields (e1, . . . , e5) = (−11,−11,−11,−11,−10), which
corresponds to the splitting type (1, 1, 1, 1, 5) of EX (ϕ), showing that ϕ is very
free. This completes the proof of Theorem 1.1.
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Irreducible divisor simplicial complexes
Nicholas R. Baeth and John J. Hobson

(Communicated by Scott Chapman)

For an integral domain D, the irreducible divisor graph G D(x) of a nonunit
x ∈ D gives a visual representation of the factorizations of x . Here we consider a
higher-dimensional generalization of this notion, the irreducible divisor simplicial
complex SD(x). We show how this new structure is a true generalization of G D(x),
and show that it often carries more information about the element x and the
domain D than its two-dimensional counterpart.

1. Introduction and preliminaries

The concept of an irreducible divisor graph of an element x in an integral domain
D was introduced in [Coykendall and Maney 2007]. The vertices of this graph are
a prechosen set of irreducible divisors of x , and any pair of vertices are connected
by an edge if and only if the corresponding irreducible divisors appear in the same
factorization of x . The relevance of the irreducible divisor graph was illustrated
in the same paper and in [Axtell et al. 2011]: an integral domain D is a unique
factorization domain if and only if each irreducible divisor graph is complete if and
only if each irreducible divisor graph is connected.

Since their introduction, irreducible divisor graphs have been studied in the
context of integral domains [Axtell et al. 2011; Maney 2008] and in more general
contexts [Axtell and Stickles 2008; Bachman et al. 2012; Smallwood and Swartz
2009; 2008]. Despite the appealing result mentioned above, it is difficult to pick
out the factorizations of an element given its irreducible divisor graph. In short,
irreducible divisor graphs fail to give us all the information we might wish to glean
about an element’s factorizations.

Our main goal is to introduce the concept of an irreducible divisor simplicial
complex, effectively a generalization of the irreducible divisor graph to higher
dimensions. As we shall see, irreducible divisor simplicial complexes often convey
more information about the factorization of an element than its two-dimensional
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counterpart. Maney [2008] uses homologies to study irreducible divisor graphs,
linking irreducible divisor graphs to certain zeroth and first homologies. Moreover,
higher homologies are considered which, although not explicitly mentioned in
[Maney 2008], are related to irreducible divisor simplicial complexes. This gives
yet another motivation for studying this new construct.

We now provide a brief overview of the ring- and graph-theoretic terminology that
will be required in the sequel. Throughout, D will denote an integral domain, D∗ the
nonzero elements of D, and U (D) the units of D. It will often be convenient for us to
speak of the set of nonzero nonunits of D which will be denoted by D∗ \U (D). An
element x ∈ D∗ \U (D) is irreducible if whenever x = yz with y, z ∈ D, then either
y∈U (D) or z∈U (D). We say x ∈D∗\U (D) is prime if whenever x | yz with y, z∈
D, then either x | y or x | z. An element x ∈D is square-free if it is not divisible by any
perfect square z2

∈ D∗\U (D), that is, if z2 divides x for z ∈ D, then z ∈U (D). Two
elements a and b of D are called associates if a= ub where u ∈U (D). The relation
a ∼ b on elements of D is an equivalence relation that partitions D into associate
classes. We denote the set of irreducibles in D as Irr(D)= {x : x is irreducible} and
define Irr(D) to be a (prechosen) set of associate class representatives, one from
each class of nonzero associates. We denote the irreducible divisors of a particular
element x ∈ D as Irr(x) and set Irr(x)= Irr(x)∩ Irr(D). Note that by considering
only Irr(D), we do not distinguish elements in D from their associates and we are
implicitly working in the reduced multiplicative monoid D•red (see [Geroldinger and
Halter-Koch 2006, Chapter 1]), which is the multiplicative monoid whose elements
are associate classes and whose identity is the set of units.

As we will be studying the factorization of elements of D as products of irre-
ducibles, it will be useful to restrict our study to only atomic domains where each
element x ∈ D∗ \U (D) can be factored into a finite product of irreducible elements.
Clearly every prime in an integral domain is irreducible. If D is an atomic domain,
then D is a unique factorization domain (UFD) if and only if all irreducibles in D
are prime [Geroldinger and Halter-Koch 2006, Theorem 1.1.10.2]. We now give a
brief introduction of some special types of atomic domains and related terminology.
We say D is a finite factorization domain (FFD) if every nonzero nonunit in D
has only finitely many distinct nonassociate irreducible divisors. If D is a finite
factorization domain, the set of lengths (of factorizations) of x ∈ D∗ \U (D) is
L(x) = {t : x = a1a2 · · · at where each ai is irreducible}. A FFD D is a bounded
factorization domain (BFD) if there is a bound on the length of factorization
into products of irreducible elements for each nonzero nonunit element in D. If
|L(x)| = 1 for all x ∈ D∗ \U (D), we say that D is a half-factorial domain (HFD).
The elasticity ρ(D) of D gives a measure of how far D is from being a HFD; it
is defined as the supremum of the elasticity ρ(x) :=max L(x)/min L(x) of each
element x ∈ D∗ \U (D).
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A graph is an ordered pair of sets (V, E), where V is called the vertex set, and
E is the edge set, whose elements are subsets of V of cardinality 2. We denote an
edge between vertices a and b as {a, b} and note that the edge {a, b} is the same as
the edge {b, a}. The edge {a, b} is said to be incident with both vertices a and b.
We denote the set of vertices of a graph G as V (G) and the set of edges of G as
E(G). In addition, we define a loop to be an edge between a and itself. We now
define a higher-dimensional analog of graphs. A simplicial complex S is an ordered
pair (V, F) where V is a set of vertices and the set of faces F is a collection of
subsets of V satisfying: (1) {v} ∈ F for all v ∈ V (vertices are faces) and (2) if
σ ∈ F and τ ⊆ σ , then τ ∈ F (subsets of faces are faces). As with graphs, we
denote the set of vertices of S as V (S), and the set of faces of S as F(S). The
dimension of a face β of finite cardinality in a simplicial complex S is one less than
its cardinality and is denoted as dim(β)= |β| − 1. Faces with maximal cardinality
(with respect to inclusion) are referred to as facets. For a nonnegative integer k, the
k-skeleton Kk(S) of a simplicial complex S is the subsimplex of S consisting of all
the faces of S whose dimension is at most k. We note that K1(S) is a graph.

2. Irreducible divisor graphs

In this section, we introduce the irreducible divisor graph of an element in an atomic
domain and summarize results from [Axtell et al. 2011; Coykendall and Maney
2007].

Definition 2.1. Let D be an atomic domain and let x ∈ D∗ \ U (D). The irre-
ducible divisor graph of x , denoted G D(x), is given by (V, E) where the vertex set
V = {Irr(x) : x ∈ D}, and given y1, y2 ∈ V , there is an edge {y1, y2} ∈ E between
vertices y1 and y2 if and only if y1 y2 | x .

When it is clear from context, we will drop the subscript D from G D(x) and
write G(x). If the same element a ∈ Irr(D) appears multiple times in a particular
factorization of x ∈ D∗ \U (D), then we add one or more loops to the vertex a in
G(x). We place n loops on vertex a provided an+1

| x and an+2 - x . When a vertex
has more than one loop, we will denote the number of loops in the graph with a
superscript over the loop.

Example 2.2. Let D = Z[
√
−5] and consider the irreducible divisor graph G(18).

Recall that 18 factors as

18= 2 · 32
= 3(1+

√
−5)(1−

√
−5)= 2(2+

√
−5)(2−

√
−5).

To simplify notation, we set α = (1+
√
−5) and β = (2+

√
−5), with α and β

denoting their complex conjugates. Using the rules provided in Definition 2.1, we
construct the irreducible divisor graph shown in Figure 1. For example, {2, β} is an
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α ᾱ

2
3

β β̄

Figure 1. G(18) in Z[
√
−5].

edge in G(18) since 2β | 18. Since 32
| 18 but 33 - 18, we place a single loop on

vertex 3. We note G(18) is connected but not complete.

One of the goals in studying the irreducible divisor graph of an element x in an
integral domain D is to be able to draw conclusions about the factorization of the
element in question and of other elements of D. When we look closely at G(18)
and briefly try to forget what the factorizations of 18 look like, we can see that
there will be some factorization that will include β, β, and 2. Since β and β are
connected by an edge in G(18), 18 = ββx for some x ∈ D∗ \U (D). Similarly,
18= 2βy and 18= 2βz for some y, z ∈ D∗ \U (D). Since all irreducible factors
of x appear together with β and β in a factorization of 18 and since none of 2, β,
or β are looped in G(18), it must be the case that x = 2. Similarly, y = β and z= β.
Thus 18 factors as 18 = 2ββ, and this factorization corresponds to the complete
subgraph with vertex set {2, β, β}. Note that the maximal complete subgraphs {2, 3}
and {3, α, α} also correspond to factorizations of 18. However, this correspondence
requires a priori knowledge of the factorizations of 18 in Z[

√
−5] and we cannot

see simply by looking at the graph G(18) what the remaining factorizations of 18
are. This problem occurs because of the loop on the vertex 3. When we look at the
graph, we really have no way of assigning the element 32 to any one factorization.
As irreducible divisor graphs get more complicated with more irreducible divisors,
we will have much difficulty in deciphering what the factorization of a particular
element is by simply looking at its irreducible divisor graph.

In most situations, factorizations do not correspond to complete subgraphs.
Conversely, complete subgraphs need not correspond to factorizations. We now
consider another example where this is certainly the case.

Example 2.3. Let D = Z[
√
−5] and consider G(108). By considering norms, we

see that 108 factors only as

108= 2233
= 2 · 32(1+

√
−5)(1−

√
−5)

= 22
· 3(2+

√
−5)(2−

√
−5)= 3(1+

√
−5)2(1−

√
−5)2

= 2(1+
√
−5)(1−

√
−5)(2+

√
−5)(2−

√
−5).
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β β̄

2

2

3

α ᾱ

Figure 2. G(108) in D = Z[
√
−5].

As before, let α = (1+
√
−5) and β = (2+

√
−5) with α and β denoting their

complex conjugates. The irreducible divisor graph is given in Figure 2. This graph
is complete, even though D is not a UFD. Certainly not all complete subgraphs
correspond to factorizations of 108, thus making it hard to glean factorization-
theoretic information from the irreducible divisor graph. We will return to this
example later in Example 3.4.

For variety, we now give an example of the irreducible divisor graph of an
element in a nonhalf-factorial domain.

Example 2.4. Let k be a field and let D = k[x10, x12, x18, x33
] denote the subring

of the polynomial ring k[x]. Then x66
∈ D and the only irreducible divisors of x66

in D are x10, x12, x18, and x33. Moreover, x66 factors only as

x66
= (x12)(x18)3 = (x12)4(x18)= (x10)3(x18)2 = (x10)3(x12)3 = (x33)2.

Therefore, the irreducible divisor graph G D(x66), shown in Figure 3, consists of a
complete graph on three vertices (x10, x12, and x18) with 2, 3, and 2 loops on these
respective vertices, along with a single vertex (x33) having a single loop.

We now turn to several important results that can be found in [Axtell et al.
2011; Coykendall and Maney 2007]. The first result gives necessary and sufficient

2

2 3x10

x18 x33

x12

Figure 3. G(x66) in D = k[x10, x12, x18, x33
].
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conditions for an atomic domain to be a UFD. The second result gives a bound on
the elasticity of an element given by its irreducible divisor graph. We will prove
generalizations of these results in Section 3.

Theorem 2.5 [Axtell et al. 2011, Theorem 2.1]. Let D be an atomic domain. The
following statements are equivalent.

(1) D is a UFD.

(2) G(x) is complete for all x ∈ D∗ \U (D).

(3) G(x) is connected for all x ∈ D∗ \U (D).

Proposition 2.6 [Axtell et al. 2011, Proposition 4.1]. Let x be an element which is
not irreducible of a BFD D. Then ρ(x) does not exceed

1
2 max{t + l : G(x) contains a complete subgraph with t vertices and l loops}.

The proof of this result makes note of the fact that if x = am1
1 am2

2 · · · a
mn
n , where

a1, a2, . . . , an ∈ Irr(x), then G(x) contains a complete subgraph with a vertex
corresponding to each ai . In the special case that x is square-free we produce a
more accurate result.

Corollary 2.7 [Axtell et al. 2011, Corollary 4.4]. Let x be a square-free nonirre-
ducible element of a domain D. Then

ρ(x)≤ 1
2 max{t : G(x) contains a complete subgraph with t vertices}.

We note that the bounds given in Proposition 2.6 and Corollary 2.7 are, in general,
not tight. There are three reasons: First, it is often the case that not all vertices
belonging to a complete subgraph of G D(x) are involved in a single factorization
of x . Second, the minimal length of a factorization of x is often larger than 2.
Finally, when counting loops, it is impossible to know how many come from a
given factorization of x . As was done in Corollary 2.7, assuming that x is square-free
eliminates the third problem. We will consider these other two issues in Section 3.

3. Irreducible divisor simplicial complexes

We now extend the definition of irreducible divisor graphs given in Section 2 to
higher dimensions. We do this in the hopes that this extension will yield more
information about the factorization of elements in an atomic domain. After giving
a couple of examples, we generalize the results given in Section 2, but in terms of
irreducible divisor simplicial complexes.

Definition 3.1. Let D be an atomic domain and let x ∈ D∗ \U (D). The irreducible
divisor simplicial complex of x , denoted SD(x), is given by (V, F) with vertex
set V given by V = {Irr(x) : x ∈ D} and with {y1, y2, . . . , yn} ∈ F a face if and
only if y1 y2 · · · yn | x . In addition, to satisfy convention, we also put ∅ ∈ F .
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Whenever the context is clear we will drop the subscript D from SD(x) giving S(x).

Remark 3.2. Let S(x)= (V, F) be an irreducible simplicial complex. Clearly F
is a collection of subsets of V . If y ∈ V = Irr(x), then {y} ∈ F since y | x and hence
vertices are faces. Second, suppose that σ ∈ F and τ ⊆ σ . Since σ ∈ F , we know
σ = {y1, . . . , yn} where y1 · · · yn | x . Hence τ = {yi1, . . . , yi j }, some subcollection
of the yi , and clearly yi1 · · · yi j | x . Thus τ ∈ F , and hence subsets of faces are
faces. Therefore irreducible simplicial complexes are indeed simplicial complexes.

We graphically represent irreducible divisor simplicial complexes and irreducible
divisor graphs in similar ways. Points represent vertices and edges represent
faces of dimension 1. If we have some element x which factors into irreducibles as
xm1

1 · · · x
mn
n with distinct irreducible xi and mi ≥ 1 for all i , then the vertex represent-

ing xi will be drawn with mi − 1 loops. Graphically, we illustrate two-dimensional
faces by shaded triangles and three-dimensional faces by solid tetrahedra. We have
no effective way to graphically depict higher-dimensional faces, so readers are on
their own.

Example 3.3. Recall the irreducible divisor graph G(18) in Figure 1. We now
show the corresponding irreducible divisor simplicial complex S(18):

α ᾱ

2 3

β β̄

Figure 4. S(18) in Z[
√
−5].

Here we have the same general structure as G(18), but we now have two-
dimensional facets {2, β, β} and {3, α, α} which are represented graphically as
shaded faces. In this higher-dimensional structure, we avoid the difficulty in
determining factorizations as in Example 2.2. Indeed, the facets {2, 3}, {2, β, β},
and {3, α, α} correspond directly to the factorizations of 18. We will make this idea
more precise in Propositions 3.7 and 3.8.

Example 3.4. We now consider the irreducible divisor simplicial complex S(108)
in D = Z[

√
−5]. Recall that 108 factors as

108= 2233
= 2 · 32αα = 223ββ = 3α2α2

= 2ααββ.

If we investigate Figure 2, we can see the difficulty in extracting a particular
factorization by simply analyzing the graph. However, this becomes much easier
if we consider the irreducible divisor simplicial complex S(108). We have that
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β

β̄

2 3
α

ᾱ

Figure 5. S(108) in Z[
√
−5].

S(108)= (V, F), with V = {2, 3, α, α, β, β} and F = {∅}∪F0∪F1∪F2∪F3∪F4,
where Fi denotes the set of faces of S(108) with dimension i :

F0 = {{v} : v ∈ V },

F1 = {S ⊆ V : |S| = 2},

F2 = {S ⊆ V : |S| = 3}− {{3, α, β}, {3, α, β}, {3, α, β}, {3, α, β}},

F3 =
{
{2, 3, β, β}, {2, 3, α, α}, {α, α, β, β}, {2, α, β, β},

{2, α, β, β}, {2, α, α, β}, {2, α, α, β}
}
,

F4 = {2, α, α, β, β}.

The maximal faces (facets) of S(x) are

{2, α, α, β, β}, {2, 3, β, β}, {2, 3, α, α}.

Note that in Figure 5, the red-colored outline illustrates the 4-dimensional facet
{2, α, α, β, β}. Unlike in G(108), we can actually see that there are factorizations
of 108 that contain 2, α, α, β, and β, since they form a face of S(108). We can
also conclude that there is a factorization of x that only contains 2, 3, α, and α,
a fact that is not immediately apparent when examining G(108). If we consider
only G(108) and consider the set A = {2, 3, α, α}, we see no clear way of proving
that a factorization of 108 given by 2 · 3 · αα will not include β or β. After all,
there are edges connecting β or β to each element of A. In other words, the graph
G(108) does not seem to provide enough information to support the conclusion that
108= 2i 3 jαkαl for i, j, k, l ≥ 1. In contrast, S(108) contains far more information,
as we will see in the results that follow.

Example 3.5. Recall the element x66
∈ D= k[x10, x12, x18, x33

] from Example 2.4.
Since no three distinct irreducible divisors of x66 occur together in a factorization
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of x66, the irreducible divisor simplicial complex contains no faces of dimension
higher than 1 and SD(x66) = G D(x66) as shown in Figure 3. Even though these
two constructions give identical objects in this case, the simplicial complex carries
more information. In particular, only by looking at SD(x66) can we see that there
are no factorizations involving more than two distinct irreducible factors.

We now generalize and extend the results from Section 2. First we note that the
irreducible divisor simplicial complex SD(x) properly contains as a subsimplex the
irreducible divisor graph G D(x).

Proposition 3.6. For D an atomic domain and x ∈ D∗ \U (D), we have

K1(S(x))= G(x).

Proof. Let G(x) = (V, E) denote the irreducible divisor graph of x , and let
S(x)= (V ′, F) denote the irreducible divisor simplicial complex of x . By definition,

V ′ = V = Irr(x).

Furthermore, E ⊆ F since if {a, b} ∈ E , then ab | x and hence {a, b} ∈ F . Moreover,
if {a, b} is a one-dimensional face of F , then ab | x and hence {a, b} ∈ E . That is,
the one-dimensional faces of S(x) are precisely the edges of G(x). �

The following results give a means for finding factorizations of an element x by
considering SD(x).

Proposition 3.7. For D an atomic domain and x ∈ D∗\U (D), let A={a1, . . . , an}

be a facet of the irreducible divisor simplicial complex S(x). Then there exists a
factorization of x given by x = am1

1 · · · a
mn
n , where mi ≥ 1 for each i .

Proof. Since A is a face of S(x), we know that a1 · · · an | x . In fact, since
x/(a1a2 · · · an) also has a factorization, there is a factorization of x that involves
each ai . Suppose, by way of contradiction, that there exists some factorization of
x of the form am1

1 · · · a
mn
n b1 · · · bk, where each b j is irreducible and b j is not an

associate of ai for all i, j . Then by the definition of S(x), {a1, . . . , an, b1} is a face
of S(x) properly containing A, contradicting the fact that A is a facet of S(x). �

The converse to Proposition 3.7 does not hold in general as seen in Example 3.4.
Indeed, 108= 2233

= 3α2α2 and yet neither {2, 3} nor {3, α, α} is a facet since they
are properly contained in the facet {2, 3, α, α}. However, if we apply an additional
restriction we find a partial converse.

Proposition 3.8. Let D be an atomic domain and suppose x ∈ D∗\U (D) is square-
free. Then every factorization of x corresponds to a facet of S(x).
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Proof. By way of contradiction, suppose there exists a factorization x = a1a2 · · · an ,
with each ai irreducible, corresponding to the face A={a1, a2, . . . , an} of S(x) that
is not a facet. That is, A ( B for some facet B = {a1, a2, . . . , an, b1, b2, . . . , bm} of
S(x), where no bi is associate to any ai . Applying Proposition 3.7 and the fact that x
is square-free, the facet B corresponds to the factorization x=a1a2 · · · anb1b2 · · · am .
Setting these two factorizations equal, we have

x = a1a2 · · · an = a1a2 · · · anb1b2 · · · bm .

As D is an integral domain, we may repeatedly apply left-cancellation to find that
1= b1 · · · bm . This is a contradiction, since each of the bi is a nonunit irreducible
of D. Hence, A = B is a facet of S(x). �

We now produce a result analogous to Theorem 2.5 providing another necessary
and sufficient condition for an integral domain D to be a UFD. Recall that if X is a
set, then P(X) denotes the power set of X consisting of all subsets of X . We abuse
notation and write P(X) to denote the simplicial complex (X,P(X)) with vertex set
X and face set P(X). Recall that V (P(X))= X and F(P(X))=P(X). Recall from
Definition 3.1 that if the singleton {y} is a face of S(x), then y is an irreducible divi-
sor of x . In the next theorem, we may safely ignore all loops in both S(x) and G(x).

Theorem 3.9. Let D be an atomic domain. The following are equivalent.

(1) For every x ∈ D∗ \U (D), S(x)= P(A) for some A ⊆ Irr(x).

(2) D is a UFD.

Proof. Assume (1) and let x ∈ D∗ \U (D). Then S(x)=P(A) for some A⊆ Irr(x).
Since G(x) = K1(S(x)) by Proposition 3.6, and since K1(P(A)) is a complete
graph, G(x) is complete. Since this holds for all x ∈ D∗ \U (D), D is a UFD by
Theorem 2.5.

If D is a UFD, any x factors uniquely as x = am1
1 · · · a

mn
n , mi ≥ 1. Then

ai1 · · · ait | x for any subset {ai1, . . . , ait } ⊆ {a1, . . . , an}, and hence F(S(x)) =
P({ai , . . . , an}). That is, S(x)= P(Irr(x)). �

We now examine another necessary and sufficient condition for an integral
domain D to be a UFD. First, we require a definition and two lemmas. Recall that
for two simplicial complexes S = (V, F) and T = (W,G), their join S ∗ T is the
simplicial complex with vertex set V ∪W and with face set {A∪B : A ∈ F, B ∈G}.

Lemma 3.10. Let A and B be two sets. As simplicial complexes, P(A ∪ B) =
P(A) ∗P(B).

Proof. First we show that the vertex sets are equal. Suppose a ∈ V (P(A ∪ B)).
Then a ∈ A ∪ B, which by definition means a ∈ V (P(A) ∗P(B)). For the other
containment, suppose b ∈ V (P(A) ∗P(B)). By definition, b ∈ A ∪ B and hence
b ∈ V (P(A∪ B)).
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Now we show that P(A ∪ B) and P(A) ∗ P(B) have the same face set. Let
α ∈ F(P(A∪ B)), that is, α ⊆ A∪ B. Set αA := α∩ A⊆ A and αB := α \αA ⊆ B.
Clearly α=αA∪αB , and hence α∈ F(P(A)∗P(B)). To show the other containment,
select α ∈ F(P(A)∗P(B)) and write α= αA∪αB for some αA ⊆ A, αB ⊆ B. Then
α ⊆ A∪ B, and thus α ∈ F(P(A∪ B)). Since P(A∪ B) and P(A)∗P(B) have the
same vertex and face sets, they are equal as simplicial complexes. �

Lemma 3.11. Let a, b ∈ D∗ \U (D). Then V (S(b))∪V (S(a))⊆ V (S(ab)). More-
over, if D is a UFD, then equality holds.

Proof. Suppose x ∈ V (S(a))∪V (S(b)). If x ∈ V (S(a)), then x | a. If x ∈ V (S(b)),
then x | b. In either case, x | ab and hence x ∈ V (S(ab)).

Now suppose that D is a UFD and let x ∈ V (S(ab)). Then x | ab, with x
irreducible and hence prime. If x | a, then x ∈ V (S(a)). If x - a, then x | b and
hence x ∈ V (S(b)). Thus x ∈ V (S(a))∪ V (S(b)). �

Theorem 3.12. Let D be an atomic domain. The following are equivalent.

(1) S(a) ∗ S(b)= S(ab) for all a, b ∈ D∗ \U (D).

(2) D is a UFD.

Proof. Suppose D is not a UFD. Then there exists an irreducible z ∈ D that is not
prime. That is, there exists a, b ∈ D where z | ab, but z - a and z - b. Since z | ab,
we have z ∈ V (S(ab)). We now consider S(a) ∗ S(b). By definition, z 6∈ V (S(a))
and z 6∈ V (S(b)), and hence z 6∈ V (S(a))∪ V (S(b)). But then z 6∈ V (S(a) ∗ S(b)),
since V (S(a) ∗ S(b))= V (S(a))∪ V (S(b)). Therefore S(a) ∗ S(b) 6= S(ab).

Now let D be a UFD and let a, b ∈ D∗ \ U (D). We want to show that
S(a) ∗ S(b) = S(ab). Since D is a UFD, we know from Theorem 3.9 that
S(x)=P(V (S(x))) for any x ∈D∗\U (D). From Lemma 3.11, we have V (S(ab))=
V (S(a))∪ V (S(b)). Also, using Lemma 3.10, we have

S(ab)= P
(
V (S(ab))

)
= P

(
V (S(a))∪ V (S(b))

)
= P

(
V (S(a))

)
∗P

(
V (S(b))

)
= S(a) ∗ S(b).

Thus S(ab)= S(a) ∗ S(b) for all a, b ∈ D∗ \U (D). �

We now provide improvements to the elasticity results of Section 2.

Theorem 3.13. Let D be a BFD. For x ∈ D∗ \U (D) a non irreducible element, let
A(x) and B(x) be sets of positive integers defined as:

A(x)= {v+ l : S(x) contains a facet with v vertices and l loops} ,

B(x)= {v+ l : G(x) contains a complete subgraph with v vertices and l loops} .

Then
max L(x)≤max A(x)≤max B(x).



458 NICHOLAS R. BAETH AND JOHN J. HOBSON

Moreover,
ρ(x)≤ 1

2 max A(x)≤ 1
2 max B(x).

Note that 1
2 B(x) is precisely the bound given in Proposition 2.6.

Proof. Let {a1, . . . , av} be a facet of S(x) with a total of l loops on these vertices.
Then a1 · · · av | x , and thus {a1, . . . , av} is the vertex set of a complete subgraph
of G(x). Loops are preserved when moving from S(x) to G(x). Therefore if
n ∈ A(x), then n ∈ B(x). Thus max A(x)≤max B(x). If M =max L(x), then we
can write x = an1

1 an2
2 · · · a

nt
t , where the ai are distinct irreducibles and

∑t
i=1 ni =M .

The set {a1, a2, . . . , at } is a face in S(x) which is contained in some facet of S(x).
Also, for each i with 1≤ i ≤ t , there are ni − 1 loops drawn on the vertex ai . Thus
for any factorization of x of length M we can find a facet of S(x) that contains at
least M vertices/loops, and hence max L(x) ≤ max X (x). Finally, since x is not
irreducible, min(L(x))≥ 2 and thus ρ(x)≤ 1

2 max(A(x))≤ 1
2 max(B(x)). �

We now consider the sharpness of these bounds by looking at two examples.

Example 3.14. Consider G(108) in Figure 2. The graph G(108) is complete and
thus to find the bound on elasticity using Corollary 2.7 we count all vertices and
all loops giving us ρ(108) ≤ 1

2(6+ 5) = 11
2 . Though not explicitly mentioned in

Corollary 2.7, we also see that max L(x)≤11. Now consider S(108) in Example 3.4.
In order to maximize the total of vertices of and loops in a facet of S(108), we select
the facet {2, α, α, β, β}. By Theorem 3.13, max L(x)≤5 and ρ(108)≤ 1

2(5+3)=4.
Here we see that the bound on max L(x) achieved by Theorem 3.13 is sharp, while
the bound on max L(x) from Corollary 2.7 is not. Since Z[

√
−5] is half-factorial,

ρ(108)= 1 and neither of the bounds on elasticity are sharp.

Example 3.15. Consider x66
∈D=k[x10, x12, x18, x33

] from Examples 2.4 and 3.5.
Since we know precisely the factorizations of x66, we see that max L(x66) =

6, min L(x66) = 2, and ρ(x66) = 3. The bounds given by Corollary 2.7 are
max L(x66) ≤ 13 and ρ(x66) ≤ 13

2 . The bounds from Theorem 3.13 are much
sharper, with max L(x66)≤ 7 and ρ(x66)≤ 7

2 .

In the special case where x is square-free, we determine in Theorem 3.16 both
the minimum and maximum of L(x) as well as the elasticity precisely when using
irreducible divisor simplicial complexes, which is a vast improvement over the
bound given in Corollary 2.7.

Theorem 3.16. Let D be a BFD and let x ∈ D∗ \U (D) be square-free. Choose
facets β and α such that β has maximal cardinality and α has minimal cardinality
among the set of all facets of S(x). Then

max L(x)= dim(β)+ 1, min L(x)= dim(α)+ 1, ρ(x)=
dim(β)+ 1
dim(α)+ 1

.



IRREDUCIBLE DIVISOR SIMPLICIAL COMPLEXES 459

Proof. By Proposition 3.8, each factorization of x corresponds to a facet of S(x).
Therefore

max L(x)=max{|β| : β ∈ F(S(x))},

min L(x)=min{|α| : α ∈ F(S(x))}.

By definition,
ρ(x)=

max L(x)
min L(x)

,

and thus

ρ(x)=
dim(β)+ 1
dim(α)+ 1

. �

Example 3.17. Let k be a field and let

D = k
[
xy2w, xz, y2, z3w, x2 y2, y2z2, z2w2]

be a subring of the polynomial ring k[x, y, z, w]. Then the element x2 y4z4w2

factors in D only as

x2 y4z4w2
= (xy2w)(xz)(y2)(z3w)= (x2 y2)(y2z2)(z2w2).

Thus L(x2 y4z4w2)= {3, 4} and ρ(x2 y4z4w2)= 4
3 . The irreducible divisor graph

G D(x2 y4z4w2), shown at the top of Figure 6, consists of two disjoint components,
a 4-clique and a 3-clique, with no looped vertices. The irreducible divisor simplicial
complex, shown at the bottom of Figure 6, consists of two disjoint facets, one of
dimension 3, the other of dimension 2. Again, no vertices are looped. The bounds

z3w

xy2w

xz

yz z2w2

x2 y2

y2z2

G(x2 y4z4w2)

z3w

xy2w

xz

yz z2w2

x2 y2

y2z2

S(x2 y4z4w2)

Figure 6. G(x2 y4z4w2) (top) and S(x2 y4z4w2) (bottom) in D =
k[xy2w, xz, y2, z3w, x2 y2, y2z2, z2w2

].
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from Corollary 2.7 are

max L(x2 y4z4w2)≤ 4 and ρ(x2 y4z4w2)≤ 2.

The values from Theorem 3.13 are precise, with

max L(x2 y4z4w2)= 4, min L(x2 y4z4w2)= 3, ρ(x2 y4z4w2)= 4
3 .
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Smallest numbers beginning sequences of
14 and 15 consecutive happy numbers

Daniel E. Lyons

(Communicated by Nigel Boston)

It is well known that there exist arbitrarily long sequences of consecutive happy
numbers. In this paper we find the smallest numbers beginning sequences of
fourteen and fifteen consecutive happy numbers.

1. Introduction

Guy [1994, Problem E34] defines a happy number in the following way: “If you
iterate the process of summing the squares of the decimal digits of a number, then
it is easy to see that you either reach the cycle 4→ 16→ 37→ 58→ 89→
145→ 42→ 20→ 4 or arrive at 1. In the latter case you started from a happy
number.” Written another way, a happy number N is one for which some iteration
of the function S(N ) =

∑k
j=0 a2

j returns a value of 1, where
∑k

j=0 a j 10 j is the
decimal expansion of N . According to Guy, the problem was first brought to
the attention of the Western mathematical world when Reginald Allenby’s daugh-
ter returned with it from school in Britain. It is thought to have originated in
Russia.

The first pair of consecutive happy numbers is 31, 32. The first example
of three consecutive happy numbers is 1880, 1881, 1882. The smallest N be-
ginning a sequence of four and five consecutive happy numbers are 7839 and
44488, respectively. El-Sedy and Siksek [2000] were the first to publish a proof
that there exist arbitrarily long sequences of happy numbers, although Lenstra is
known to have had an unpublished proof before them. Styer [2010] found the
smallest examples of sequences of j consecutive happy numbers, for j from 6
to 13.

In this paper, we will use a period ( . ) to denote the concatenation operator to
group sets of digits together within a large number. For convenience and clarity,

MSC2010: 11A63.
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we will also write large strings of 9 by their quantity in parenthesis. For example,
615 · 10157

+ (10155
− 1) · 102

+ 71 will be written as 615.(155 nines).71.
Define the function S

(∑k
j=0 a j 10 j

)
=
∑k

j=0 a2
j and

N0 = 7888.(1604938271577 nines).1.(345696 nines).3.

2. Fourteen consecutive happy numbers

Theorem 1. N0 = 7888.(1604938271577 nines).1.(345696 nines).3 is the small-
est N that begins a sequence of fourteen consecutive happy numbers. Note: N0 has
1604938617279 digits.

Because the S function simply sums the squares of the digits of a number, and
because addition is commutative, the ordering of the digits has no effect on the
function’s output. In other words,

Lemma 1. For every choice of positive integers A, B, and C ,

S(A.B.C)= S(B.A.C)= S(A.C.B)= S(A)+ S(B)+ S(C).

Lemma 2. N0 begins a sequence of fourteen consecutive happy numbers.

Proof. Before the carry:

N0 = 7888.(1604938271577 nines).1.(345696 nines).3,

S(N0)= 130000027999364,

N0+ 1= 7888.(1604938271577 nines).1.(345696 nines).4,

S(N0+ 1)= 130000027999371,

N0+ 2= 7888.(1604938271577 nines).1.(345696 nines).5,

S(N0+ 2)= 130000027999380,

N0+ 3= 7888.(1604938271577 nines).1.(345696 nines).6,

S(N0+ 3)= 130000027999391,

N0+ 4= 7888.(1604938271577 nines).1.(345696 nines).7,

S(N0+ 4)= 130000027999404,

N0+ 5= 7888.(1604938271577 nines).1.(345696 nines).8,

S(N0+ 5)= 130000027999419,

N0+ 6= 7888.(1604938271577 nines).1.(345696 nines).9,

S(N0+ 6)= 130000027999436.
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After the carry:

N0+ 7= 7888.(1604938271577 nines).2.(345696 zeros).0,

S(N0+ 7)= 129999999997982,

N0+ 8= 7888.(1604938271577 nines).2.(345696 zeros).1,

S(N0+ 8)= 129999999997983,

N0+ 9= 7888.(1604938271577 nines).2.(345696 zeros).2,

S(N0+ 9)= 129999999997986,

N0+ 10= 7888.(1604938271577 nines).2.(345696 zeros).3,

S(N0+ 10)= 129999999997991,

N0+ 11= 7888.(1604938271577 nines).2.(345696 zeros).4,

S(N0+ 11)= 129999999997998,

N0+ 12= 7888.(1604938271577 nines).2.(345696 zeros).5,

S(N0+ 12)= 129999999998007,

N0+ 13= 7888.(1604938271577 nines).2.(345696 zeros).6,

S(N0+ 13)= 129999999998018.

It is not difficult to see that each of these numbers is happy. The iterations of
the S function get small rather quickly, and, after at most nine steps, reach 1. �

Lemma 3. If Na < N0 is another example of a number beginning a sequence
of fourteen consecutive happy numbers, then S(Na) < 92

· 1604938617279 =
130000027999599.

Proof. In order for Na to be smaller than N0, it must not contain more digits than N0.
N0 contains 1604938617279 digits. The largest number containing no more than
1604938617279 digits is 101604938617279

−1, or 1604938617279 digits 9, which has
an S value of 92

· 1604938617279= 130000027999599. Therefore, if there were a
number Na < N0 beginning a sequence of fourteen consecutive happy numbers, it
would necessarily have S(Na) < 130000027999599. �

We will let N1 denote any candidate less its final digit. Thus we write Na = N1.x ,
where x is the final digit. So, in our case, N0 = N1.3. Let d be the first (rightmost)
non-nine digit of N1, and let N2 be the remaining digits of N1, to the left of d . Thus
we have

N1 = N2.d.(k nines)

for an integer k ≥ 0.

Lemma 4. S(N1+ 1)≤ S(N1)+ 17.
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Proof. N1 = N2.d.(k nines),

N1+ 1= N2.(d + 1).(k zeros),

S(N1)= S(N2)+ d2
+ 92k,

S(N1+ 1)= S(N2)+ (d + 1)2,

S(N1+ 1)− S(N1)= (d + 1)2
− d2
− 81k ≤ 92

− 82
= 17. �

Lemma 5. Let M have four or more digits and let m, f , g, h be integers. Define

M = M2. f.(m nines).g.h,

where m ≥ 0, 0≤ f ≤ 8, 0≤ e, g, h ≤ 9, and M2 either is a positive integer or else
is possibly vacuous (in which case we define S(M2)= 0). Then

S(M + e2)= S(M2)+ S( f.(m nines).g.h+ e2).

Proof. Since e2
≤ 81, then g.h+ e2

≤ 180. Now g.h+ e2
= i. j or g.h+ e2

= 1.i. j
for some digits i and j . Then we have M + e2

= M2. f.(m nines).i. j or M + e2
=

M2.( f + 1).(m zeros).i. j . Now Lemma 1 completes the argument. �

Note that 130000027999599+ 17= 130000027999616.

Lemma 6. If each member of the set {M + e2
| e = 2, 3, 4, 5, 6, 7, 8, 9} is happy,

then M > 130000027999616.

Proof. Styer [2010], when dealing with fewer than fourteen consecutive happy
numbers, did an exhaustive search on all values of M up to the needed bounds for
his purposes. In order to reach a bound as high as 130000027999599, we order
the digits of M . This makes the search approximately seven million times more
efficient.

Write M = M2. f.(m nines).g.h as in Lemma 5. Assume the digits of M2 are
ordered in nondecreasing order. For each m from 0 to 12, we have a separate Maple
script that checks every possible M with the digits of M2 ordered to see if each
member of {M + e2

| e = 2, 3, 4, 5, 6, 7, 8, 9} is happy. A Maple program shows
there are none. (For the relevant Maple worksheets, see [Lyons 2012].) �

Lemma 7. The final digit x of Na satisfies x ≥ 3.

Proof. We assumed the existence of Na < N0 that begins a sequence of 14 consecu-
tive happy numbers and we have written Na = N1.x where x is a single digit. Sup-
pose x = 0, 1, or 2. Then N1.e is happy with e= 2, . . . , 9. Thus S(N1)+e2 is happy
with e = 2, . . . , 9. By the previous lemma, we have S(N1) > 13000002799916.
But S(Na) < 13000002799599 by Lemma 3. Moreover,

S(N1)= S(Na)− x2
≤ S(Na)− 4 < 13000002799595.

The upper and lower bounds we have for S(N1) contradict each other, so x ≥ 3. �
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A set of Maple calculations similar to those in Lemma 6 yields the following
lemma:

Lemma 8. If each member of the set {M + e2
| e = 0, 1, 2, 3, 4, 5, 6, 7} is happy,

then M > 130000027999616.

Lemma 9. The final digit x of Na is x = 3.

Proof. We know that x ≥ 3 by Lemma 8. Suppose x ≥ 4. Now the numbers
Na + u = N1.x + u are happy for u = 0, 1, . . . , 14. If x ≥ 4 these numbers include
(N1+1).e with e= 0, 1, . . . , 7. Therefore S(N1+1)> 13000002777616. However,
by Lemmas 3 and 4,

S(N1+ 1) < 13000002799599+ 17= 13000002799616,

giving a contradiction. Therefore x = 3. �

Lemma 10. The value M3= 129999999997982 is the only M < 130000027999616
such that every member of {M + e2

| e = 0, 1, 2, 3, 4, 5, 6} is a happy number.

Proof. Maple calculations similar to Lemma 5 give this single example with digits in
nondecreasing order. While any other permutation of the leading 11 digits (the M2

portion of M3) will also result in every member of {M + e2
| e = 0, 1, 2, 3, 4, 5, 6}

being a happy number, these permutations will give us an M value which exceeds
our bound. �

Lemma 11. The value of S(N1) must satisfy

129999999997982− 17 < S(N1) < 130000027999599.

Lemma 12. The only M with 129999999997982− 17 < M < 130000027999599
such that every member of {M + e2

| e = 3, 4, 5, 6, 7, 8, 9} is a happy number is
M = 130000027999355.

A Maple search over all the numbers within the bounds listed above returned
this single result. Call this value M1.

We now have the following relationships:

S(N1)= S(N2)+ d2
+ 81k = 1300000027999355= M1,

S(N0+ 7)= S(N2)+ (d + 1)2
= 129999999997982= M3,

M1−M3 = 81k− 2d − 1= 28001373.

We look for integers k and d that satisfy this last relationship and find the sole
solution k = 345696 and d = 1.

Now all that is left is to find the smallest N2 that will satisfy these three equations.
With d = 1, it reduces to S(N2)= 129999999997978. Using the methods elaborated
by Styer [2010], we easily find that the minimal N2 with S(N2)=129999999997978
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is N2 = 7888.(1604938271577 nines). Putting all this together we see that the
smallest N beginning a sequence of fourteen consecutive happy numbers is indeed
N0 = 7888.(1604938271577 nines).1.(345696 nines).3.

3. Fifteen consecutive happy numbers

Using the same methods as outlined above, we have confirmed Styer’s previous
conjecture that the smallest number beginning a sequence of fifteen consecutive
happy numbers is N = 77.(2222222222222220 nines).3.(97388).3.
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An orbit Cartan type decomposition of the inertia
space of SO(2m) acting on R2m

Christopher Seaton and John Wells

(Communicated by Michael Dorff)

We study the inertia space of R2m with the standard action of the special orthog-
onal group SO(2m). In particular, we indicate a decomposition of the inertia
space that induces the orbit Cartan type stratification of the inertia space recently
defined by C. Farsi, M. Pflaum, and the first author for an arbitrary smooth
G-manifold where G is a compact Lie group.

1. Introduction

Let G be a compact Lie group, let M be a smooth, left G-manifold, and let X=G\M
denote the orbit space of M . The inertia space3X is a topological space given by a
subquotient of G×M under the diagonal G-action, where G acts by conjugation on
the first factor. In [Farsi et al. 2012], an explicit Whitney stratification of the inertia
space is presented, called the orbit Cartan type stratification, giving the inertia
space the structure of a differentiable stratified space. This structure coincides
with the notion of a stratified space with smooth structure — see [Pflaum 2001] —
and simultaneously a differentiable space in the sense of [Navarro González and
Sancho de Salas 2003]. In the case that G acts locally freely, so that G\M is an
orbifold, the inertia space has played a major role in the study of the geometry of
orbifolds; see [Adem et al. 2007], for instance. In general, the inertia space has
appeared in connection with equivariant homology theories in noncommutative
geometry [Brylinski 1987].

Recall that a decomposition of a topological space X is a locally finite partition
of X into locally closed, smooth manifolds, called pieces, such that the frontier
condition is satisfied: if R∩ S 6=∅ for pieces R and S, then R ⊆ S. A stratification
of X is an equivalence class of essentially identical decompositions, defined by
assigning to each point x ∈ X the germ at x of the piece containing x in a decom-
position of a neighborhood of x . A decomposition of X induces a stratification

MSC2010: 57S15, 58A35.
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467

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2013.6-4
http://dx.doi.org/10.2140/involve.2013.6.467


468 CHRISTOPHER SEATON AND JOHN WELLS

if the germ assigned to x by the stratification coincides with the germ at x of the
piece of the decomposition containing x . See [Pflaum 2001] for background on
decomposed and stratified spaces.

In this note, we determine a decomposition of the inertia space for the standard
action of the even special orthogonal group SO(2m) on R2m that induces the
orbit Cartan type stratification. Our goal is to illustrate the computability of the
stratification and to develop a large class of examples through which to better
understand its properties.

The outline of this paper is as follows. In Section 2, we recall the definition of
the inertia space and the orbit Cartan type stratification, and discuss facts about
SO(2m) that we will need. In Section 3, we define the decomposition and prove that
it has the required properties, recalling necessary information about the centralizers
of elements of the standard maximal torus in SO(2m). We prove Theorem 3.2 by
verifying the decomposition of the inertia space as well as its relationship to the
stratification.

2. Background

In this section, we recall the orbit Cartan type stratification of the inertia space and
collect the results we will need in the sequel. We use Rθ to indicate the 2×2 matrix

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
that acts (on the left) on R2 as a rotation through the angle θ . We say a value of
θ is generic if θ is not congruent to 0 mod 2π or π mod 2π . Additionally, we
use diag(A1, . . . , A`) to indicate the matrix in block form with diagonal blocks
A1, . . . , A` and 0 elsewhere. We let In denote the n×n identity matrix, or simply I
when the dimensions are clear from the context, and we let 〈x〉 denote the span of
an element x ∈ R2m .

The inertia space of a G-manifold and its stratification. We recall the following
from [Farsi et al. 2012]. Note that SO(2m) is connected, and with respect to the
standard action of SO(2m) on R2m , the isotropy group of each point x ∈ SO(2m)
is connected. As this is our intended application, we specialize to this case for
simplicity.

Let G be a compact, connected Lie group, let M be a smooth, left G-manifold, and
let X =G\M denote the quotient space. The loop space 3M of the G-manifold M
is the set

3M := {(h, x) ∈ G×M | hx = x}.
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The loop space 3M is clearly invariant under the action of G on G×M given by

g(h, x)= (ghg−1, gx),

and the inertia space 3X is defined to be the quotient of the loop space under this
action.

Now, assume the isotropy group of each x ∈M is connected, and let (h, x)∈3M .
Let H = G(h,x) denote the isotropy group of (h, x) in G, which is given by the
centralizer ZGx (h) of h in the isotropy group Gx of x , and choose a linear slice
V(h,x) at (h, x) for the G-action on G × M . By a slice, we mean a submanifold
V(h,x) of G×M transversal to the orbit of (h, x) and satisfying these properties:
• V(h,x) is closed in its orbit GV(h,x), which is an open neighborhood of (h, x)

in G×M .

• H V(h,x) = V(h,x).

• gV(h,x) ∩ V(h,x) 6=∅ implies g ∈ H .

A linear slice is H -equivariantly diffeomorphic to an H -invariant neighborhood of
the origin in the normal space T(h,x)(G×M)/T(h,x)G(h, x) to the orbit at (h, x),
on which H acts linearly. See [Bredon 1972, II, Theorem 4.4] and [Koszul 1953].

As Gx is connected by hypothesis, we have, by [Duistermaat and Kolk 2000,
Theorem 3.3.1(i)], that h is contained in the connected component of the identity H◦

of H . Therefore, we may choose a maximal torus T(h,x) of H◦ containing h. We
define an equivalence relation ∼ on T(h,x) by declaring that t1∼ t2 for t1, t2 ∈T(h,x)
if there is an open G-invariant neighborhood U of (h, x) such that U t1 =U t2 . This
is the case if and only if (GV(h,x))t1 = (GV(h,x))t2 . We let T∗(h,x) denote the ∼ class
of h in T(h,x).

With this, the stratification of 3M is given by assigning to (h, x) the germ of
the set

G
(
V H
(h,x) ∩ (T

∗

(h,x)×M)
)
, (2-1)

and the stratification of 3X is given by assigning to the orbit G(h, x) the germ of
this G-invariant set. It is demonstrated in [Farsi et al. 2012] that 3M equipped
with this stratification has the structure of a differentiable Whitney stratified space,
and moreover that 3X inherits from this G-invariant stratification the structure of
a differentiable Whitney stratified space. In particular, the germ at (h, x) of the set
defined in (2-1) does not depend on the choice of slice nor on the choice of maximal
torus T(h,x), and the germ at G(h, x) of the corresponding stratification of 3X does
not depend on the choice of representative (h, x) from the orbit G(h, x).

Example 2.1. Consider the case G = SO(2) with its standard action on M = R2.
It is easy to see that

3R2
= {(I, x) : x ∈ R2 r {0}} ∪ {(h, 0) : h ∈ SO(2)} ⊆ SO(2)×R2,
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where I ∈ SO(2) denotes the identity matrix. That is, 3R2 is homeomorphic to
R2 with a circle attached at the origin. The SO(2)-isotropy group of points of the
form (h, 0) is SO(2), while all other points have trivial isotropy. In particular, note
that the partition of 3R2 into isotropy types is not a decomposition, as the frontier
condition fails at the point (I, 0).

Any invariant neighborhood of a point (h, 0) contains points with nonzero
R2-coordinate. Hence, the maximal torus T(h,0)= SO(2) consists of two ∼ classes:
the identity fixing each point in any SO(2)-invariant neighborhood, and SO(2)r{I },
whose elements fix points of the form (h, 0). Clearly, T(I,x) is trivial for x 6= 0. It
follows that a decomposition of 3R2 inducing the orbit Cartan type stratification
consists of three pieces:

P1 = {(I, x) : x ∈ R2 r {0}},
P2 = {(h, 0) : h ∈ SO(2)r {I }},
P3 = {(I, 0)}.

The SO(2)-action on P1 is identified with the standard action on R2 r {0}, while
the action is trivial on P2 and P3. Hence, the quotient space 3X is homeomorphic
to a ray with a circle attached to its endpoint.

The special orthogonal group SO(n). The material in this section is well-known,
and can be found in [Tapp 2005, Chapter 9]. See also [Bröcker and tom Dieck
1995, IV Section 3; Humphreys 1978, pages 64–5] for a description of the Weil
group of SO(n).

The special orthogonal group SO(n) is the group of n×n orthogonal matrices
with determinant 1. It is a compact, connected Lie group of dimension n(n− 1)/2.
For an element k ∈ SO(n), we let (k) denote the SO(n)-conjugacy class of k.

If n = 2m is even, then the standard maximal torus Tst
2m in SO(n) is an m-

dimensional torus given by the set of matrices of the form

Tst
2m := {diag(Rθ1, . . . , Rθm ) | θi ∈ [0, 2π)}.

The center of SO(2m) is {I,−I }. The Weil group NSO(2m)(T
st
2m)/T

st
2m is gener-

ated by all permutations of the angles θ1, . . . , θm as well as all transformations
multiplying two angles by −1 mod 2π .

If n = 2m+ 1 is odd, then the standard maximal torus Tst
2m+1 of SO(2m+ 1) is

m-dimensional of the form

Tst
2m+1 := {diag(1, Rθ1, . . . , Rθm ) | θi ∈ [0, 2π)},

and the center of SO(2m+1) is trivial. The Weil group of SO(2m+1) is generated
by all permutations of θ1, . . . , θm and all transformations multiplying any angle
by −1 mod 2π .
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3. The decomposition of 3R2m

Statement of the decomposition. Let k ∈ SO(2m). As every element of SO(2m) is
conjugate to an element of Tst

2m , we may choose an element h= diag(Rθ1, . . . , Rθm )

of the SO(2m)-conjugacy class of k contained in the standard maximal torus. Using
the action of the Weil group, we may choose h with the θi listed in the following
order. We first list all θi = 0, followed by all θi = π . Then, we list the remaining
θi 6= 0 in such a way that any angles that agree up to a sign mod 2π are listed
consecutively.

Given such a choice of h, define (a0(h), aπ (h), ρ(h), s(h)) as follows. Let
a0(h), with 0≤ a0(h)≤ m, denote the multiplicity of the angle 0; let aπ (h), with
0 ≤ aπ (h) ≤ m − a0(h), denote the multiplicity of π ; let ρ denote the (possibly
empty) partition of m−a0(h)−aπ (h) indicating the number of generic angles that
coincide up to a sign for each angle that occurs. Finally, if it is possible by the action
of the Weil group to list all angles that coincide up to a sign with the same sign,
we let s(h) = +; otherwise, we let s(h) = −. As elements of Tst

2m are conjugate
in SO(2m) if and only they are conjugate via an element of NSO(2m)(T

st
2m), it is

easy to see that (a0(h), aπ (h), ρ(h), s(h)) does not depend on the choice of h, and
hence is constant on the conjugacy class of k. Hence, we define

(a0(k), aπ (k), ρ(k), s(k))= (a0(h), aπ (h), ρ(h), s(h)).

We refer to T (k) = (a0(k), aπ (k), ρ(k), s(k)) as the type of k, denoted simply
T = (a0, aπ , ρ, s) when k is clear from the context.

Example 3.1. We now illustrate the types of elements of Tst
2m .

(1) The identity element I has type (m, 0,∅,+), while −I has type (0,m,∅,+).
(2) The element h = diag(Rθ , Rθ , R−θ ) ∈ SO(6) with θ generic has type

(0, 0, {3},−). Note that any permutation of angles or multiplication of an even
number of angles by −1 mod 2π will result in angles with different signs.

(3) The element h = diag(Rθ , R−θ , Rφ, Rφ, R−φ) ∈ SO(10) with θ, φ generic has
type (0, 0, {2, 3},+) because it is conjugate to diag(Rθ , Rθ , Rφ, Rφ, Rφ). On
the other hand, diag(Rθ , R−θ , Rφ, Rφ, Rφ) has type (0, 0, {2, 3},−).

(4) An element h = diag(R0, Rθ , R−θ ) ∈ SO(6) with θ generic has type
(1, 0, {2},+), because it is conjugate to diag(R0, Rθ , Rθ ) via multiplication
of the first and third angles by −1 mod 2π .

For any k of type (a0, aπ , ρ, s), we have 0 ≤ a0 ≤ m and 0 ≤ aπ ≤ m − a0. If
a0 > 0 or aπ > 0, then s = +; this follows from the fact that multiplication by
−1 mod 2π fixes angles 0 and π , as in Example 3.1(4) above. We specify a specific
partition ρ(k) by a set with multiplicity, such as {1, 1, 2}, and adapt ordinary set
operations in the obvious way: {1} ∪ {1, 2} = {1, 1, 2}.



472 CHRISTOPHER SEATON AND JOHN WELLS

Given k ∈ SO(2m) of type (a0, aπ , ρ, s) with ρ = {ρ1, . . . , ρ`} listed in non-
decreasing order, by the above observations, there is an element h ∈ (k) ∩ Tst

2m
such that

h = diag(I2a0,−I2aπ , Rθ1, . . . , Rθ1︸ ︷︷ ︸
ρ1

, . . . , Rθ`, . . . , R±θ`︸ ︷︷ ︸
ρ`

),

with each θi generic and θi 6= ±θ j for i 6= j . In other words, the order and signs
of the angles are chosen as above according to the ordering of ρ with at most one
sign change, which is required to occur in the last position. We then say that h is in
standard form. Note that h is unique if and only if ρi 6= ρi+1 for each i . We say
that h′ ∈ Tst

2m of the same type as h is in the same standard form as h if

h′ = diag(I2a0,−I2aπ , Rφ1, . . . , Rφ1︸ ︷︷ ︸
ρ1

, . . . , Rφ`, . . . , R±φ`︸ ︷︷ ︸
ρ`

),

with each φi generic and φi 6= ±φ j for i 6= j , so that the repeated angles and the
single sign discrepancy, if it occurs, occur in the same positions. Given h and h′ in
the same standard form, for any g ∈ NSO(2m)(T

st
2m), we say that ghg−1 and gh′g−1

are in the same form. That is, elements of Tst
2m are in the same form if they are of

the same type and can be put into the same standard form by the same element of
the Weil group.

With this, we are ready to state our main result, which describes a decomposition
of 3R2m that induces the orbit Cartan type stratification given by (2-1). We state
the decomposition for the loop space 3R2m , though a direct consequence is that
the quotients of the pieces of the decomposition, which are SO(2m)-invariant and
consist of points of the same isotropy type, define a decomposition of the inertia
space 3(SO(2m)\R2m) that induces the orbit Cartan type stratification.

Theorem 3.2. For each type T = (a0, aπ , ρ, s), let

PT,0 = {(h, 0) ∈ SO(2m)×R2m
: h has type T },

and let

PT,1 = {(h, x) ∈ SO(2m)× (R2m r {0}) : hx = x, h has type T }.

Then a decomposition of 3R2m inducing the orbit Cartan type stratification de-
scribed by (2-1) is given by the following pieces:

I. PT,0 for each type T = (a0, aπ , ρ, s) such that a0 > 0, aπ > 1, s = −, or
aπ = 0 and 1 6∈ ρ,

II. P(0,1,ρ,+),0 ∪ P(0,0,{1}∪ρ,+),0 for each partition ρ of m− 1,

III. PT,1 for each type T = (a0, aπ , ρ,+) such that a0 > 0.
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Note that an element h fixes a nonzero element of R2m if and only if a0(h) > 0,
and recall that s(h)=+ whenever a0(h) > 0 or aπ (h) > 0.

Centralizers in SO(2m). Let h ∈ Tst
2m ≤ SO(2m) be in standard form. Then the

centralizer of h in SO(2m) is determined by the form of h. Specifically, let

h = diag(I2a0,−I2aπ , Rθ1, . . . , Rθ1︸ ︷︷ ︸
ρ1

, . . . , Rθ`, . . . , R±θ`︸ ︷︷ ︸
ρ`

),

with each θi generic and θi 6= ±θ j for i 6= j , where we may have a0 = 0 or aπ = 0.
The centralizer of h in SO(2m) is a set of matrices in blocks given by

diag(A, B,C1, . . . ,C`),

where A ∈ O(2a0), B ∈ O(2aπ ), and each Ci ∈ O(2ρi ). Note that in general,
ZSO(2m)(h) contains Tst

2m . We first discuss the matrices Ci .
By direct computation, it is easy to see that the only 2×2 matrices that commute

with Rθ for θ generic are given by [
c1 −c2

c2 c1

]
,

i.e., a scalar multiple of a rotation matrix. The only 2ρi×2ρi matrices Ci that
commute with diag(Rθ , . . . , Rθ ), where θ is generic and Rθ occurs ρi times, are
matrices whose 2×2 blocks are scalar multiples of rotation matrices as above.
Similarly, the only 2ρi×2ρi matrices that commute with diag(Rθ , . . . , Rθ , R−θ ),
where θ is generic and Rθ occurs ρi − 1 times, are matrices whose 2×2 block are
as above except for the blocks in the last two rows and columns, excluding the
lower-right 2×2 block, which are given by[

c1 c2

c2 −c1

]
.

In particular, as these computations require only that θ is generic, all elements of
the same form have the same centralizer.

If aπ = 0, then the set of elements of the same form as h is an open, dense subset
of a torus of SO(2m) of dimension `, and ZSO(2m)(h) coincides with the centralizer
of this torus. In particular, ZSO(2m)(h) is connected by [Duistermaat and Kolk 2000,
Theorem 3.3.1]. Then as the determinant of each block is a continuous function
from ZSO(2m)(h) to {±1}, it must be that each Ci has determinant 1. It follows that
A must have determinant 1, and hence A can be any element of SO(2a0). Note that
we may also conclude for arbitrary h that each Ci ∈ SO(2ρi ).

If aπ 6= 0 and a0 6= 0, then A ∈O(2a0) and B ∈O(2aπ ) can be any elements with
the same determinant ±1, and the centralizer of h has two connected components.
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If aπ 6= 0 and a0 = 0, then as the determinant of each Ci is 1, B must also have
determinant 1 and can be any element of SO(2aπ ).

The reader is cautioned that it is possible for elements of different types to have
identical centralizers. For instance, for θ1 and θ2 generic, θ1 6= ±θ2, the centralizers
of the elements diag(R0, Rθ2), diag(Rπ , Rθ2), and diag(Rθ1, Rθ2) coincide and are
equal to the standard maximal torus SO(2)×SO(2)≤SO(4), though these elements
are in standard from of type (1, 0, {1},+), (0, 1, {1},+), and (0, 0, {1, 1},+), re-
spectively. More generally, if ρ is any partition of m − 1, then elements of type
(1, 0, ρ,+), (0, 1, ρ,+), and (0, 0, {1} ∪ ρ,+) in standard form have the same
centralizer, as in either case, the first 2×2-block is forced to be an element of SO(2).
If h is in standard form and of either of these types, then any element with the same
centralizer as h is also in standard form.

However, if a0(h)= a0(h′)> 0 for elements h, h′ ∈Tst
2m such that h is in standard

form and both h and h′ have centralizer H , then h and h′ are in the same standard
form. In particular, if H is connected, then aπ (h) = aπ (h′) = 0, and if H is not
connected, then the size of the second block in elements of H determines that
aπ (h) = aπ (h′) > 0. The size and structure of the later blocks in elements of H
determine the values of ρ and s = + for both h and h′ as well as their form.
Similarly, if a0(h) = a0(h′) = 0 and aπ (h) > 1 with h in standard form, then the
size and structure of the blocks in the centralizer again determine the form of h and
hence h′.

Finally, suppose a0(h)= aπ (h)= 0 with h in standard form. If 1 6∈ ρ(h), then
the size and structure of the blocks of H determine the form of h and hence h′ so
that h′ is in the same standard form as h. Otherwise, h has type (0, 0, {1} ∪ ρ, s)
for a partition ρ of m− 1 and is in standard form

h = diag(Rθ1, Rθ2, . . . , Rθ2︸ ︷︷ ︸
ρ1

, . . . , Rθ`, . . . , R±θ`︸ ︷︷ ︸
ρ`−1

)

so that θ1, . . . , θ` are generic. If a0(h′)= 0, then either h′ is in the same standard
form as h or

h′ = diag(Rπ , Rφ1, . . . , Rφ1︸ ︷︷ ︸
ρ1

, . . . , Rφ`, . . . , R±φ`︸ ︷︷ ︸
ρ`−1

),

which has type (0, 1, ρ,+) and is not in standard form if s(h)=−.
We now summarize these observations.

Proposition 3.3. Elements of Tst
2m in the same standard form have the same cen-

tralizer, and elements of SO(2m) of the same type have conjugate centralizers. Con-
versely, if h, h′ ∈ Tst

2m with h in standard form and ZSO(2m)(h)= ZSO(2m)(h′), then:

• If a0(h)= a0(h′) > 0, then h and h′ are in the same standard form.
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• If a0(h)= a0(h′)= 0 and aπ (h) > 1, then h and h′ are in the same standard
form.

• If a0(h) = aπ (h) = 0 and 1 /∈ ρ(h), then h and h′ are in the same standard
form.

• If a0(h)= a0(h′)= 0 and h has type (0, 1, ρ,+) or (0, 0, {1} ∪ ρ,+), then h′

is in standard form and has type (0, 1, ρ,+) or (0, 0, {1} ∪ ρ,+).

• If a0(h) = a0(h′) = 0 and h has type (0, 0, {1} ∪ ρ,−), then either h′ is in
standard form of type (0, 0, {1} ∪ ρ,−) or h′ is of type (0, 1, ρ,+) and is not
in standard form.

Note that Proposition 3.3 does not exhaust all cases but considers those that we
will need below.

Proof of Theorem 3.2. In this section, we demonstrate that the partition defined in
Theorem 3.2 is indeed a decomposition that induces the orbit Cartan type stratifica-
tion. First, we establish the following.

Lemma 3.4. Let h ∈ Tst
2m be in standard form. Then there is a neighborhood U

of h in Tst
2m small enough so that every h′ ∈U of the same type as h is in the same

standard form as h. If h has type (0, 0, {1} ∪ ρ,−), then we may choose U so that
it contains no elements h′ such that aπ (h′) > 0.

Proof. Let h = diag(Rθ1, . . . , Rθm ), where angles need not be distinct or generic.
Choose ε >0 such that (θi−ε, θi+ε) contains 0 (respectively π ) if and only if θi =0
(respectively π ), and, for i 6= j , the intersection (θi−ε, θi+ε)∩(±θ j−ε,±θ j+ε)

is nonempty if and only if θi =±θ j . Then for any h′ = diag(φi , . . . , φm) such that
|φi − θi |< ε for each i , h′ is of the same type as h if and only if it is in the same
standard form. Moreover, if h has type (0, 0, {1}∪ρ,−), then as θi 6= π for each i ,
U contains no elements of type (0, aπ , σ,+) for aπ > 0 and any partition σ . �

Lemma 3.5. Let h ∈ Tst
2m be an element of the maximal torus of SO(2m).

(i) A linear slice V(h,0) for the diagonal SO(2m)-action on SO(2m)×R2m at (h, 0)
can be chosen such that V(h,0) contains Uh ×U0, where Uh is a neighborhood
of h in Tst

2m and U0 is a neighborhood of 0 in R2m .

(ii) If 0 6= x ∈ R2m such that hx = x , then a linear slice V(h,x) for the diagonal
SO(2m)-action on SO(2m)× R2m at (h, x) can be chosen such that V(h,x)
contains Uh×Ux where Uh is a neighborhood of h in Tst

2m and Ux is a connected
neighborhood of x in the span 〈x〉 of x in R2m .

Proof. Fix the standard (SO(2m)-invariant) Riemannian metric on R2m , choose a
bi-invariant metric on SO(2m), and let SO(2m)×R2m carry the product metric.
Recall that (h) denotes the SO(2m)-conjugacy class of h. By [Duistermaat and Kolk
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2000, Proposition 3.1.1], the only slice at h for the SO(2m)-action on SO(2m)
by conjugation is given by a neighborhood Sh of h in the centralizer ZSO(2m)(h),
where the linear structure is inherited from the Lie algebra zh of ZSO(2m)(h) via
a logarithmic chart. Because the orthogonal complement of Th(h) in ThSO(2m)
with respect to the metric is mapped to a slice by the exponential map (see [Duis-
termaat and Kolk 2000, Theorem 2.3.3]), it follows that Th Sh = Th ZSO(2m)(h) is
the orthogonal complement of Th(h) in ThSO(2m).

As SO(2m)(h, 0)= (h)×{0} ⊂ SO(2m)×R2m , using the isometry

T(h,0)(SO(2m)×R2m)→ ThSO(2m)⊕ T0R2m,

we have that

T(h,0)(ZSO(2m)(h)×R2m)∼= Th ZSO(2m)(h)⊕ T0R2m

∼=
(
T(h,0)SO(2m)(h, 0)

)⊥
.

Hence, a slice for the SO(2m)-action on SO(2m)×R2m may be chosen to be a suit-
ably small neighborhood of (h, 0) in ZSO(2m)(h)×R2m . Clearly Tst

2m ≤ ZSO(2m)(h),
proving (i).

To prove (ii), note that the orbit SO(2m)x of x is given by the sphere of radius ‖x‖,
so that in Tx R2m , (Tx SO(2m)x)⊥ = Tx 〈x〉. Then as

T(h,x)SO(2m)(h, x)⊆ Th(h)⊕ Tx SO(2m)x,

we have

Th ZSO(2m)(h)⊕ Tx 〈x〉 = (Th(h))⊥⊕ (Tx SO(2m)x)⊥

⊆ (Th(h)× Tx SO(2m)x)⊥

⊆ (T(h,x)SO(2m)(h, x))⊥.

It follows that we may choose a slice V(h,x) at (h, x) such that

T(h,x)V(h,x) = (T(h,x)SO(2m)(h, x))⊥,

and hence an open neighborhood of (h, x) in ZSO(2m)(h)× 〈x〉 is contained in
V(h,x). �

Proof of Theorem 3.2. Given an arbitrary element (k, x) ∈3R2m , as k is conjugate
to an element of Tst

2m , the type of k is defined. Moreover, as the type is conjugation
invariant, it is well defined, so that the pieces defined in I, II, and III clearly form a
partition of 3R2m . Moreover, as the number of types is finite, the partition is finite
and hence trivially locally finite.

For each element (k, y) of a piece P , we now demonstrate that for some
(h, x) in the orbit of (k, y) and appropriate choices of slice and maximal torus,
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there is an open, SO(2m)-invariant neighborhood of (h, x) within which the set
P ∩ SO(2m)V(h,x) coincides with the set defined in (2-1). This implies that the
decomposition induces the orbit Cartan type stratification. Moreover, as the germs
defining the stratification are germs of locally closed, smooth manifolds, it follows
that each piece P is a locally closed, smooth submanifold of SO(2m)×R2m . With
this, we will need only show that the pieces satisfy the frontier condition.

I. Suppose (k, 0) is of type T = (a0, aπ , ρ, s) with a0 > 0, aπ > 1, s = −, or
aπ = 0 and 1 6∈ ρ. Choose an element h ∈ (k) ∩ Tst

2m in standard form and a
slice V(h,0) at (h, 0) for the SO(2m)-action on SO(2m)×R2m with Uh×U0⊆ V(h,0)
as in Lemma 3.5. Applying Lemma 3.4 and shrinking V(h,0) if necessary, we
assume that if (h′, x) ∈ V(h,0) with h′ ∈ Tst

2m of the same type as h, then h′ is
in the same standard form as h. Moreover, if h has type (0, 0, {1} ∪ ρ,−), we
assume that V(h,0) contains no elements of the form (h′, x) such that aπ (h′) > 0.
Let H = SO(2m)(h,0) = ZSO(2m)(h), and define the set

Q(h,0) := V H
(h,0) ∩

(
(Tst

2m)
∗

(h,0)×R2m).
That is, the SO(2m)-saturation SO(2m)Q(h,0) is the set that defines the germ of
the stratum containing (h, 0) in (2-1). Note that as H contains Tst

2m , which only
fixes the origin in R2m , any element of V H

(h,0) is of the form (h′, 0) for h′ ∈ SO(2m).
Moreover, as h ∈ H , it must be that for any (h′, 0)∈ V H

(h,0), the element h′ commutes
with h.

Let (h′, 0) ∈ Q(h,0) be arbitrary. Then h′ ∈ (Tst
2m)
∗

(h,0), implying that the h and h′

fix the same subset of SO(2m)V(h,0). In particular, as {h} × U0 ⊆ V(h,0), with
U0 a neighborhood of the origin in R2m , and as h′ commutes with h, it follows
that (R2m)h = (R2m)h

′

, so a0(h)= a0(h′). Additionally, by the definition of slice,
every point in V(h,0) has isotropy group contained in H , so V H

(h,0) consists only of
points with isotropy group equal to H . Hence ZSO(2m)(h) = ZSO(2m)(h′), so by
Proposition 3.3 and the choice of slice, h and h′ are in the same standard form.
It follows that the orbit of any element of Q(h,0) is contained in PT,0 and hence
SO(2m)Q(h,0) ⊆ PT,0.

Conversely, if (k ′, 0)∈ PT,0∩SO(2m)V(h,0) so that k ′ is of the same type as h, then
by the choice of V(h,0), there is an (h′, 0)∈V(h,0)∩SO(2m)(k ′, 0) such that h′ is in the
same standard form as h. Then h and h′ have the same centralizer by Proposition 3.3
so that (h′, 0) ∈ V H

(h,0). Moreover, because ZSO(2m)(h) = ZSO(2m)(h′) and the
angle 0 occurs in the same positions in both, h and h′ fix the same elements
of SO(2m) × R2m so that clearly (SO(2m)V(h,0))h = (SO(2m)V(h,0))h

′

. Hence
(h′, 0) ∈ Q(h,0). Therefore, we have that SO(2m)Q(h,0) = PT,0 ∩SO(2m)V(h,0), so
that SO(2m)Q(h,0) and PT,0 define the same germ at (h, 0).
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II. The argument in this case is similar to I above. Choosing a representative
(h, 0) of the orbit of an arbitrary point with h ∈ Tst

2m in standard form, for any
h′ ∈ (Tst

2m)
∗

(h,0), as h and h′ have the same fixed point set in R2m , a0(h)= 0 implies
a0(h′)= 0. In this case, however, while elements h, h′ ∈ Tst

2m of the same type have
the same centralizer, the centralizers do not distinguish between group elements
in standard form of type (0, 1, ρ,+) and (0, 0, {1} ∪ ρ,+) by Proposition 3.3.
Moreover, any neighborhood of an element in standard form of type (0, 1, ρ,+)
clearly contains elements in standard form of type (0, 0, {1} ∪ ρ,+). As the fixed-
point sets of such elements in SO(2m)×R2m coincide, the argument is identical to
that of I combining these two types.

III. Let (k, x) ∈3R2m and let T be the type of k. As the SO(2m)-action on R2m

is transitive on spheres about the origin, we may assume that x has coordinates
(‖x‖, 0, . . . , 0), and hence SO(2m)x ={diag(1, A) : A∈SO(2m−1)}∼=SO(2m−1).
As any element of SO(2m)x is conjugate to an element of the standard maximal
torus Tst

2m−1 via an element of SO(2m)x , we may choose an element (h, x) in the
orbit SO(2m)x(k, x) such that h ∈Tst

2m−1 is in standard form. Note that as h fixes x ,
we have a0(h) > 0.

Choose a slice V(h,x) at (h, x) that contains Uh×Ux as in Lemma 3.5, and shrink
V(h,x) if necessary so that V(h,x) ∩ (SO(2m)×−Ux) = ∅. We again assume by
Lemma 3.4 and shrinking V(h,x) that for any (h′, y) ∈ V(h,x) such that h′ ∈ Tst

2m has
the same type as h, h′ must also have the same form.

It will be convenient to restrict to a smaller open neighborhood of (h, x) in
SO(2m)×R2m . To do so, recall that the Weil group NSO(2m)(T

st
2m)/T

st
2m is finite.

Hence, by [tom Dieck 1987, Proposition 3.23], we may shrink Uh to assume that
for g ∈ NSO(2m)(T

st
2m), we have gUh = Uh if g ∈ ZSO(2m)(h) and Uh ∩ gUh = ∅

otherwise. Moreover, letting SO(2m)∗ denote the set of conjugacy classes in
SO(2m) equipped with its natural quotient topology, we may assume that the
quotient of Uh by NSO(2m)(T

st
2m)/ZSO(2m)(h) is homeomorphic to an open subset of

SO(2m)∗ containing (h). In particular, as the quotient map SO(2m)→ SO(2m)∗ is
continuous, SO(2m)Uh is open in SO(2m). Let W = (SO(2m)Uh)× (SO(2m)Ux),
and then as SO(2m)Ux ={z ∈R2m

: ε1<‖z‖<ε2} for some 0<ε1<ε2, SO(2m)Ux

is open in R2m . Hence W is an open, SO(2m)-invariant neighborhood of (h, x) in
SO(2m)×R2m . Finally, we further shrink V(h,x) if necessary to assume that it does
not intersect gUh ×R2m for any of the finite translates of Uh by g ∈ NSO(2m)(T

st
2m)

such that g /∈ ZSO(2m)(h). We will show that the piece PT,1 coincides with the set
given in (2-1) when intersected with W .

Let H = SO(2m)(h,x) = ZSO(2m−1)(h) so that H consists of those elements of
ZSO(2m)(h) whose first row and column are that of the identity. Define the set

Q(h,x) := V H
(h,x) ∩

(
(Tst

2m−1)
∗

(h,x)×R2m)
∩W.
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Fix (h′, y) ∈ Q(h,x) so that h′ ∈ (Tst
2m−1)

∗

(h,x). Therefore, as any neighborhood
of (h, x) contains points (h, y′) where any coordinate of y′ except the first may
be chosen to be zero or nonzero, and as h ∈ H so that h and h′ commute, we
have that h and h′ must have 0 occur as an angle with the same multiplicity in
the same positions. Therefore, a0(h′) = a0(h) > 0. Note that (h′, y) ∈ V H

(h,x) so
that SO(2m)(h′,y) = ZSO(2m)y (h

′) = H . In particular, as (h′, y) ∈ W ∩ V(h,x) and
h′ ∈ Tst

2m−1 ≤ Tst
2m , we may conclude h′ is in Uh . We consider two cases:

If a0(h) > 1 or aπ (h) > 0, then H contains Tst
2m−1 as well as the element

g = diag(1,−1,−1, 1, I2m−4). The fixed point set in R2m of the group generated
by g and Tst

2m−1 is 〈x〉, so that y ∈ 〈x〉. Then as a0(h′) = a0(h), connectedness
of H determines whether aπ (h), and hence aπ (h′), vanish. If not, the second block
of elements of H indicates that aπ (h′)= aπ (h), and the following blocks further
indicate that h and h′ have the same type. Therefore, (h′, y) ∈ PT,1.

If a0(h)= 1 and aπ (h)= 0, then every element of H , and in particular h′, is given
by diag(I2, D) for a (2m−2)×(2m−2)matrix D. As H contains Tst

2m−1 which then
must fix y, it follows that y = (a, b, 0, . . . , 0) for some a, b ∈ R. Then there is a
ḡ= diag(Rθ , I2m−2) such that ḡy= (‖y‖, 0, . . . , 0). Moreover, as h′= diag(I2, D)
for some D, we have ḡh′ḡ−1

= h′, and ḡ(h′, y)= (h′, (‖y‖, 0, . . . , 0)). However,
as y ∈SO(2m)Ux , and ḡy ∈ 〈x〉 has positive first coordinate, it follows that ḡy ∈Ux .
Moreover, as h′ ∈Uh , we have ḡ(h′, y)∈Uh×Ux ⊆V(h,x), so that as (h′, y)∈V(h,x),
it follows from the definition of slice that ḡ ∈ H . Then as elements of H fix y, we
have that y = (‖y‖, 0, . . . , 0) to begin with.

With this, the element g = diag(1,−1,−1, 1, I2m−4) fixes y and hence, as it
is not an element of H , cannot commute with h′. It follows that aπ (h′)= 0, and
then the structure of blocks of elements of H imply that h and h′ have the same
type. We again have (h′, y) ∈ PT,1, and hence SO(2m)Q(h,x) ⊆ PT,1, since PT,1 is
SO(2m)-invariant.

Conversely, if (k, y) ∈ P(T,1) ∩ SO(2m)V(h,x) ∩ W , then (k, y) is in the or-
bit of an element (h′, y′) ∈ V(h,x). Then as h′ has the same type as h, it must
have the same standard form as h. This implies that h′ and h have the same
centralizer, and moreover that a0(h′) = a0(h) > 0. Noting that h′ fixes y′, and
hence that y′ has nonzero coordinates only in the first 2a0(h) positions, there is an
element ḡ = diag(D, I2(m−a0(h))) ≤ SO(2m) for some D ∈ SO(2a0(h)) such that
ḡy′ = (‖y′‖, 0, . . . , 0). As (h′, y′) ∈ W ∩ V(h,x) and h′ ∈ Tst

2m , h′ ∈Uh . Hence, as
ḡ commutes with h′, ḡ(h′, y′) = (h′, (‖y′‖, 0, . . . , 0)) ∈ Uh ×Ux ⊆ V(h,x). That
h and h′ have the same centralizer and ḡy′ ∈ 〈x〉 implies ḡ(h′, y′) ∈ V H

(h,x). In
addition, that h and h′ have the same type implies h′ ∈ (Tst

2m−1)
∗

(h,x). It follows that
ḡ(h′, y′) ∈ Q(h,x) ∩W so that (k, y) ∈ SO(2m)Q(h,x) ∩W , completing the proof
that SO(2m)Q(h,x) ∩W = P(T,1) ∩SO(2m)V(h,x) ∩W .
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The frontier condition. To show that the pieces defined in Theorem 3.2 satisfy the
frontier condition, we first claim that k ∈ SO(2m) is in the closure in SO(2m) of
the set of elements of type T if and only if some conjugate gkg−1 of k is in the
closure in Tst

2m of the set of elements of type T in standard form. Note that gkg−1

itself need not be in standard form.
Let {ki }i∈N be a convergent sequence of elements of SO(2m) that are all of the

same type T = (a0, aπ , ρ, s), and let k = limi→∞ ki ∈ SO(2m). Then for each i ,
there is a gi such that gi ki g−1

i ∈ Tst
2m is of standard form. By compactness of

SO(2m), we may assume by passing to a subsequence that the gi converge to some
g ∈ SO(2m). Then by continuity of the action by conjugation and as Tst

2m is closed,
we have

gkg−1
= lim

i→∞
gi ki g−1

i ∈ Tst
2m .

Conversely, if k is conjugate to some gkg−1
∈ Tst

2m , where gkg−1 is the limit of
a sequence {hi }i∈N of elements in Tst

2m of the same type T in standard form, then
g−1hi g is a sequence of elements of type T that converges to k.

Now, for a type T = {a0, aπ , ρ, s} with ρ = {ρ1, . . . , ρ`}, let Tst
2m(T ) denote

the set of elements in Tst
2m in standard form of type T . Suppose h ∈ Tst

2m(T ) so
that there is a sequence {hi }i∈N ⊆ Tst

2m(T ) such that hi → h. Recall that if s =−,
then the sign discrepancy in the angles of the hi is taken to be in the final position,
corresponding to ρ`. As each hi has I and −I in the first a0 and aπ positions,
respectively, it follows that h must as well. Similarly, letting θ j,i denote the angle
in the ρ j position of hi for j = 1, . . . , `, we have that limi→∞ θ j,i exists and is
given by θ j , the angle in the corresponding position of h, which can have any value.
Let J = { j ∈ {1, . . . , `} : θ j = 0}, and let J ′ = { j ∈ {1, . . . , `} : θ j = π}. As it
may be the case that the θ j are not distinct, let σ denote the partition formed from
ρr {ρ j : j ∈ I ∪ J } by summing elements ρ j and ρ j ′ when θ j = θ j ′ . Then if s =+
or θ` is generic, h has type(

a0+
∑
j∈J

ρ j , aπ +
∑
j∈J ′

ρ j , σ, s
)
,

while if s =− and θ` ∈ {0, π}, h has type(
a0+

∑
j∈I

ρ j , aπ +
∑
j∈J

ρ j , σ, +

)
.

Given an arbitrary element h′ of Tst
2m of the same form as h, it is easy to see that

one can define a sequence {h′i }i∈N of elements of type T such that h′i → h′ simply
by redefining the angles in the hi corresponding to j /∈ J ∪ J ′ to converge to those
of h′, choosing distinct sequences when θ j = θ j ′ for j 6= j ′ as above. It follows that
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if h ∈ Tst
2m(T ), then every element of Tst

2m of the same form of h is contained in
Tst

2m(T ). However, by applying the Weil group to this sequence, it then follows that
every element of Tst

2m of the same type as h is contained in the closure of elements
of type T in Tst

2m . This claim extends by conjugation to all of SO(2m) as above, so
we conclude that the partition of SO(2m) into types satisfies the frontier condition.

Finally, note that this partition still satisfies frontier if we combine types of the
form (0, 1, ρ, s) and (0, 0, {1} ∪ ρ, s). If the set of elements of type T contains
points of type (0, 1, σ, s) in its closure, then T must itself be of the form either
(0, 1, ρ, s) or (0, 0, {1} ∪ ρ, s), where σ is formed from ρ or {1} ∪ ρ by summing
elements as above. As these types are also combined, the resulting set must contain
all elements of type (0, 1, σ, s) and (0, 0, {1} ∪ σ, s) in its closure.

With this, we need only note that as the closure of R2m r {0} is clearly R2m , by
inspection, the pieces of type I, II, and III satisfy the frontier condition. Hence, by
SO(2m)-invariance of these pieces, frontier is satisfied in the quotient as well. �

It is of interest to note that the sets of type III form a decomposition of the loop
space of the SO(2m)-space R2m r {0}. Because each point in 3(R2m r {0}) is
contained in an SO(2m)-invariant neighborhood in 3R2m that does not intersect
SO(2m)× {0}, it follows that this decomposition induces the orbit Cartan type
stratification of the inertia space 3(SO(2m)\(R2m r {0})).

The loop space3(R2mr{0}) is the loop space of a SO(2m)-manifold with a single
isotropy type and hence is a smooth manifold by [Farsi et al. 2012, Proposition 4.4].
Given an element (h, x) ∈3(R2m r {0}), where we may assume up to conjugation
that x = (‖x‖, 0, . . . , 0) and h ∈Tst

2m−1 is in standard form as above, it must be that
a0(h) > 0. Hence, as the types of such elements are determined by their centralizers
by Proposition 3.3, the decomposition of 3(R2m r {0}), and hence the associated
inertia space, corresponds to the decomposition into isotropy types, demonstrating
that the orbit Cartan type stratification of this SO(2m)-manifold coincides with
its stratification by isotropy types. This is not generally true for the odd case, as
it fails in the case of SO(3) acting on R3 r {0} described in [Farsi et al. 2012,
Section 4.2.6].
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Optional unrelated-question randomized
response models

Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe

(Communicated by Kenneth S. Berenhaut)

We propose a generalization of Greenberg’s unrelated-question randomized re-
sponse model allowing subjects the option of giving a correct response if they
find the survey question nonsensitive, and to give a scrambled response if they
find the question sensitive. Models are provided for both the binary response
and the quantitative response situations. Mathematical properties of the proposed
models are examined and validated with computer simulations.

1. Introduction

Obtaining accurate information is essential in all surveys, particularly in public
health research where respondents often face sensitive and personal questions.
Examples include surveys of sexual behavior, drug use, or illegal activities. De-
spite assurances of anonymity, subjects often give untruthful responses leading to
problematic response bias.

One method of reducing this bias is the randomized response technique (RRT),
originally introduced in [Warner 1965], and subsequently developed and generalized
by many researchers [Greenberg et al. 1969; Gupta et al. 2002; 2010; Mehta et al.
2012; Sousa et al. 2010]. We will focus on the unrelated-question RRT method,
developed in [Greenberg et al. 1969]. Compared to direct questioning methods, all
RRT methods lead to more accurate estimates of sensitive behaviors, because of
increased anonymity of the subject’s response. In the unrelated-question model,
a predetermined proportion of subjects are randomized to answer an innocuous
unrelated question with known prevalence level. The researcher is unaware of which
question (actual or innocuous) any particular respondent answered, although the
mean of the research question can be estimated at the aggregate level. Unrelated-
question RRT has been used extensively over the past fifty years to estimate
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prevalence of behaviors ranging from induced abortion [Chow et al. 1979] to
software piracy [Kwan et al. 2010] and livestock disease prevalence [Cross et al.
2010]. This technique avoids the ethical issues associated with the bogus pipeline
technique [Jones and Sigall 1971] and is not as lengthy as the Marlowe–Crowne
social desirability scale method [Crowne and Marlowe 1960]. Here the increase in
anonymity offered by the technique lessens respondent anxiety during the survey,
resulting in more truthful responses [Stem and Bozman 1988].

The original unrelated-question RRT model makes no differentiation as to whether
an individual actually considers the topic sensitive; every subject is assumed to find
the research question sensitive, so all subjects utilize the randomization device to
produce a scrambled response. However, a topic or question may be sensitive for one
person, but not sensitive for another. Optional RRT models, introduced in [Gupta
et al. 2002], take this into account by allowing subjects who do not find the question
sensitive to answer it without utilizing the randomization step. Subjects who find
the research question sensitive still use the randomization device prior to providing
a response. In this optional model, the researcher remains unaware as to whether
or not the subject used the scrambling device or provided a truthful response.

We propose a generalization of the unrelated-question RRT, which takes this
difference into account by allowing the randomization step to be optional for the sub-
jects. We deal with both the binary response and the quantitative response situations
and estimate the prevalence (π) of the sensitive behavior and the mean response
(µ) of the quantitative sensitive question. In addition, the model also estimates the
sensitivity level (W ) of the underlying question, which is the proportion of subjects
who consider the question to be sensitive, and hence choose to provide a scrambled
response. We provide the theoretical framework for the two models and examine
their mathematical properties, which are also validated by computer simulations.

2. Proposed quantitative response model

We begin first with the quantitative response case, where the researcher is interested
in estimating population mean. A randomization device provided to the respondent
by the researcher determines whether the subject receives the sensitive research
question or the innocuous, unrelated question.

Let X be the true sensitive variable of interest with unknown mean µX and
unknown variance σ 2

X , and Y be a nonsensitive variable with known mean µY

and known variance σ 2
Y . Let p represent the probability of receiving the sensitive

question from the randomization device.
The reported response Z is given by

Z =
{

X with probability p,
Y with probability 1− p.
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Let W be the sensitivity level of the question. That is, a proportion W of the
respondents considers the question sensitive and will choose to provide a scrambled
response. Others will provide a direct response with probability 1−W . Then

Z =
{

X with probability (1−W )+W p,
Y with probability W (1− p),

with

E(Z)= (1−W )E(X)+W (pE(X)+ (1− p)E(Y )),

Var(Z)= [(1−W )+W p]E(X2)+W (1− p)E(Y 2)− [E(Z)]2.

(2-1)

Here, both µX and W are unknown parameters. To solve the above equation for
two unknowns, we use a split-sample approach where the total sample size may be
split into two subsamples, each receiving a randomization device with a different
probability (pi , i = 1, 2) of receiving the sensitive question. The expected response
in the i-th (i = 1, 2) subsample then is given by

E(Zi )= (1−W )E(X)+W (pi E(X)+ (1− pi )E(Y )), where i = 1, 2. (2-2)

2.1. Estimation of population mean. Solving the system of two equations (2-2)
for the parameters of interest, we get

E(Z1)− E(X)
E(Z2)− E(X)

=
1− p1

1− p2
.

Solving for E(X), we get

E(X)=
E(Z1)− λE(Z2)

1− λ
, where λ=

1− p1

1− p2
.

This suggests estimating µX by

µ̂X =
Z1− λZ2

1− λ
, (2-3)

where Z i is the sample mean of reported responses in the i-th subsample. The
variance of this estimator is given by

Var(µ̂X )=
Var(Z1)+ λ

2 Var(Z2)

(1− λ)2
, (2-4)

where

Var(Z1)=
[(1−W )+W p1]E(X2)+W (1− p1)E(Y 2)− [E(Z1)]

2

n1
,

Var(Z2)=
[(1−W )+W p2]E(X2)+W (1− p2)E(Y 2)− [E(Z2)]

2

n2
.



486 SAT GUPTA, ANNA TUCK, TRACY SPEARS GILL AND MARY CROWE

It is easy to see that E(µ̂X ) = µX , so the estimator µ̂X is unbiased. Also, µ̂X is
a linear combination of independent sample means; hence it has an asymptotic
normal distribution. More formally, we have the following asymptotic result:

Theorem 1. The estimator µ̂X is distributed as AN (µX , V ), where

V =
Var(Z1)+ λ

2 Var(Z2)

(1− λ)2

with

Var(Z i )=
[(1−W )+W pi ]E(X2)+W (1− pi )E(Y 2)− [E(Z2)]

2

ni
, i = 1, 2

and
E(Zi )= (1−W )E(X)+W (pi E(X)+ (1− pi )E(Y )).

2.2. Optimal allocation of sample size. For the optimal sample split (n1, n2), we
look at the first derivative of Var(µ̂X ) from (2-3), given by

∂Var(µ̂X )

∂n1
=

1
(1− λ)2

{
−σ 2

1

n2
1
+ λ2 σ 2

2

(n− n1)2

}
.

Setting this equal to zero, we get

0=
1

(1− λ)2

(
−σ 2

1

n2
1
+ λ2

(
σ2

n− n1

)2 )
,

σ 2
1

n2
1
= λ2 σ 2

2

(n− n1)2
,

n− n1

n1
=

√
λ2σ

2
2

σ 2
1
=

∣∣∣∣λσ2

σ1

∣∣∣∣.
Therefore,

n2

n1
= λ

σ2

σ1
(2-5)

gives the optimal ratio of subjects split in the two subsamples. This will result in
the minimum variance of the estimator µ̂X since the second derivative of Var (µ̂X )

is positive. Equation (2-5) assumes rough preliminary estimates of σ1 and σ2 are
available. These may be obtained through a pilot study.

2.3. Estimation of sensitivity level. In addition to estimating the mean (µ̂X ), the
proportion of subjects who scramble their response (W ) is also estimated. We can
easily solve (2-2) for W , which will lead to the possible estimator

Ŵ =
Z1− Z2

(p2− p1)(µY − µ̂X )
. (2-6)
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This representation of Ŵ as a ratio of two random variables presents difficulties
in deriving its properties. We can, however, rewrite Ŵ in terms of Z1 and Z2 to get

Ŵ =
Z1− Z2

µY (p2− p1)+ (1− p2)Z1− (1− p1)Z2
. (2-7)

Using the first-order bivariate Taylor approximation, with A = E(Z1) and B =
E(Z2), we get

Ŵ ≈ Ŵ (A, B)+
∂Ŵ (Z1, Z2)

∂Z1

∣∣∣∣
A,B
(Z1− A)+

∂Ŵ (Z1, Z2)

∂Z2

∣∣∣∣
A,B
(Z2− B)

=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B

+
(p2− p1)(µY − B)(Z1− A)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2

+
(p2− p1)(A−µY )(Z2− B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2
=: Ŵ1.

Taking the expected value, we get (Z1−µγ )→ (3−µγ ):

E(Ŵ1)=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B

+
(p2− p1)(µY − B)(E(Z1)− A)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2

+
(p2− p1)(Z1−µY )(E(Z2)− B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2

=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B
=W.

Thus Ŵ1, the first-order approximation of Ŵ , is an unbiased estimator of W with
variance given by

Var(Ŵ1)=

(
(p2− p1)(µY − B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
1

n1

+

(
(p2− p1)(µY − B)(A−µY )

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
2

n2
, (2-8)

where

σ 2
i = [1−W +W pi ]E(X2)+W (1− pi )E(Y 2)− [E(Zi )]

2, i = 1, 2.
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Also, Ŵ1 is asymptotically normal since it is a linear combination of independent
sample means Z1 and Z2. This property is later confirmed by simulation. This
result is summarized in the following theorem.

Theorem 2. Ŵ1 ∼ AN (W, Vw), where

Var(Ŵ1)=

(
(p2− p1)(µY − B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
1

n1

+

(
(p2− p1)(A−µY )

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
2

n2
,

σ 2
i = [1−W +W pi ]E(X2)+W (1− pi )E(Y 2)− [E(Zi )]

2, i = 1, 2.

3. Proposed binary response model

The estimator proposed in the preceding section is used when an estimate of the
population mean is needed. In many cases the main research interest is in the
prevalence of a particular sensitive behavior or characteristic. In this case the
research question demands a binary response, such as “yes” or “no”. We modify
the preceding estimator to be used in these cases.

3.1. Proposed model. Let X be a sensitive binary variable of interest with unknown
mean πX , and Y be a nonsensitive binary variable with known mean πY . Let p
represent probability of receiving the sensitive question from the randomization
device. Here the probability of a “yes” response (PY ) is given by

PY = (1−W )πX +W [pπX + (1− p)πY ].

Again, the sample is split into two subsamples to solve for both πX and W . The
probability of a “yes” response in the i-th (i = 1, 2) subsample is given by

PYi = (1−W )πX +W [piπX + (1− pi )πY ], i = 1, 2.

Solving this system of two equations for πX gives

πX =
PY1 − λPY2

1− λ
, where λ=

1− p1

1− p2
. (3-1)

3.2. Estimation of population proportion. Using (3-1), we obtain the estimate for
the population proportion (πX ) of the sensitive characteristic as

π̂X =
P̂Y1 − λP̂Y2

1− λ
, (3-2)

with variance given by

Var(π̂X )=
Var(P̂Y1)+ λ

2 Var(P̂Y2)

(1− λ)2
, (3-3)
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where

Var(P̂Y1)=
PY1(1− PY1)

n1
and Var(P̂Y2)=

PY2(1− PY2)

n2
.

Again, it can easily be seen that E(π̂X ) = πX , so the estimator π̂X is unbiased.
Also π̂X is a linear combination of independent sample means, and hence has an
asymptotic normal distribution.

3.3. Optimal allocation of sample size. Just as in the quantitative response case,
the optimal sample split is given by

n2

n1
= λ

√
PY2(1− PY2)

PY1(1− PY1)
. (3-4)

3.4. Estimation of sensitivity level. From (3-1), an estimator for the sensitivity
level (W ) in the binary case can be represented as

Ŵπ =
P̂Y1 − P̂Y2

(p2− p1)(πY − π̂X )
=

P̂Y1 − P̂Y2

πY (p2− p1)+ (1− p2)P̂Y1 − (1− p1)P̂Y2

. (3-5)

Applying the first-order Taylor approximation expansion for a bivariate function,
and assuming A = PY1 , B = PY2 , this can be approximated by

Ŵπ ≈
A− B

πY (p2− p1)+ (1− p2)A− (1− p1)B

+
(p2− p1)(πY − B)(P̂Y1 − A)

[πY (p2− p1)+ (1− p2)A− (1− p1)B]2

+
(p2− p1)(A−πY )(P̂Y2 − B)

[πY (p2− p1)+ (1− p2)A− (1− p1)B]2
=: Ŵπ1 .

It can be verified that

E(Ŵπ1)=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B
=Wπ .

Thus, Ŵπ1 is an unbiased estimator of W with variance given by

Var(Ŵπ1)=

(
(p2− p1)(πY − B)

[πY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
1

n1

+

(
(p2− p1)(A−µY )

[πY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
2

n2
, (3-6)

where

σ 2
1 =

PY1(1− PY1)

n1
and σ 2

2 =
PY2(1− PY2)

n2
.
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W n1 µ̂X Var(µ̂X ) V̂ar(µ̂X ) Ŵ1 Var(Ŵ1) V̂ar(Ŵ1)

0.0 698 1.9988 0.0058 0.0058 −0.0001 0.0065 0.0067
0.1 674 2.0012 0.0066 0.0065 0.0982 0.0069 0.0069
0.2 680 2.0013 0.0068 0.0068 0.1982 0.0073 0.0073
0.3 690 2.0008 0.0072 0.0072 0.2984 0.0077 0.0077
0.4 699 2.0004 0.0075 0.0075 0.3989 0.0080 0.0080
0.5 710 2.0005 0.0079 0.0079 0.4991 0.0082 0.0082
0.6 722 2.0006 0.0081 0.0082 0.5996 0.0083 0.0084
0.7 737 1.9998 0.0084 0.0084 0.7004 0.0085 0.0085
0.8 753 1.9996 0.0086 0.0088 0.8005 0.0087 0.0087
0.9 774 1.9999 0.0089 0.0090 0.9002 0.0090 0.0090
1.0 800 1.9991 0.0091 0.0092 1.0001 0.0095 0.0097

Table 1. Estimates of µX and W with optimized subsamples. X
and Y have Poisson distributions with µX = 2.0, µY = 4.0. Total
sample size is 1000, p1 = 0.8, p2 =−0.2.

Also, Ŵπ1 clearly has an asymptotic normal distribution being a linear combina-
tion of independent sample means.

4. Simulation study

The preceding theoretical formulas are tested empirically through computer sim-
ulations. Poisson distribution is assumed for both X and Y . The subsample split
(n1, n2) is obtained by the optimal split method described above. Table 1 and
Table 2 present simulation results obtained with SAS.

The simulation results provide strong support for the theoretical results that µ̂X

and π̂X are unbiased. The theoretical and simulated variances of µ̂X and π̂X can
also be seen to be very close. The simulations also support that Ŵ1 and Ŵπ1 are
good estimators of W for the quantitative case and the binary case, respectively.

We also note that Ŵ1 and Ŵπ1 may occasionally give estimates that are outside
of the normal range [0, 1]. This happens when the true value of W is close to zero
or 1. As in [Warner 1965], this is because our estimators are unconstrained. In such
cases we recommend using an estimate of zero if Ŵ1 < 0, and 1 if Ŵ1 > 1.

The Kolmogorov–Smirnov normality test is used in SAS to check the sampling
distributions of µ̂X , π̂X , Ŵ1, and Ŵπ1 against the normal distribution. The p-values
for µ̂X , π̂X , Ŵ1, and Ŵπ1 are all greater than 0.15, indicating that their distributions
are not significantly different from the normal distribution.
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W n1 π̂X Var(π̂X ) V̂ar(π̂X ) Ŵπ1 Var(Ŵπ1) V̂ar(Ŵπ1)

0.0 800 0.1508 0.0003 0.0003 −0.0037 0.0045 0.0047
0.1 786 0.1500 0.0004 0.0004 0.1005 0.0050 0.0050
0.2 777 0.1500 0.0004 0.0004 0.2007 0.0053 0.0052
0.3 772 0.1499 0.0005 0.0005 0.3008 0.0054 0.0055
0.4 770 0.1498 0.0005 0.0005 0.4009 0.0054 0.0055
0.5 770 0.1501 0.0005 0.0005 0.5008 0.0053 0.0055
0.6 772 0.1502 0.0005 0.0005 0.6005 0.0052 0.0052
0.7 776 0.1502 0.0006 0.0006 0.7007 0.0049 0.0050
0.8 782 0.1501 0.0006 0.0006 0.8006 0.0046 0.0046
0.9 790 0.1500 0.0006 0.0006 0.9008 0.0042 0.0042
1.0 800 0.1500 0.0006 0.0006 0.9996 0.0038 0.0038

Table 2. Estimates of πX and W with optimized subsamples. The
true values are πX = 0.15, πY = 0.85. Total sample size is 1000,
p1 = 0.8, p2 =−0.2.

5. Concluding remarks

The optional unrelated-question RRT proposed above provides models for simul-
taneously estimating both the mean and sensitivity level of a sensitive behavior. This
is distinct from previous unrelated-question RRT models, which estimate only the
mean. Estimators are derived for both the quantitative and binary response cases. In
both cases, estimators of the mean (µ̂X , π̂X ) and first-order Taylor approximations of
the sensitivity level (Ŵ1, Ŵπ1) are shown to be asymptotically normal and unbiased.

Of note in Table 1, the variances of both µ̂X and Ŵ1 increase as W increases
(when more subjects choose to provide scrambled responses). In Table 2 the
variance of π̂X increases slightly as W increases. When optionality is incorporated
into this model, when even a small proportion of subjects do not find the question
sensitive (and thus answer directly) the variance of the estimator is smaller than in a
comparable model where all subjects must provide a scrambled response (W = 1.0).
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On the difference between an integer
and the sum of its proper divisors

Nichole Davis, Dominic Klyve and Nicole Kraght

(Communicated by Kenneth S. Berenhaut)

Let �.n/ be the sum of the divisors of n. Although much attention has been paid
to the possible values of �.n/� n (the sum of proper divisors), comparatively
little work has been done on the possible values of e.n/ WD �.n/� 2n. Here we
present some theoretical and computational results on these values. In particular,
we exhibit some infinite and possibly infinite families of integers that appear in
the image of e.n/. We also find computationally all values of n< 1020 for which
e.n/ is odd, and we present some data from our computations. At the end of this
paper, we present some conjectures suggested by our computational work.

1. Introduction and background

Let s.n/ be the sum of the proper divisors of n, so that s.n/D �.n/�n, where �.n/
represents the standard sum-of-divisors function. We shall refer to the value by
which the sum of the proper divisors of an integer n exceeds n as the excedent of n,
which we denote by e.n/, so that e.n/ WD s.n/�n, or e.n/ WD �.n/�2n. In a sense,
values of e.n/ have been studied since antiquity. The Pythagoreans, for example,
were especially interested in finding those n for which e.n/ D 0. These are the
perfect numbers. Today we also use the ancient Greek descriptors deficient and
abundant to refer to those integers n for which e.n/ < 0 and e.n/ > 0, respectively.

More recently, some particular values of the excedent of n have been studied in
the literature. Most noteworthy is the case where e.n/D 1. An integer for which
e.n/ D 1 is said to be quasiperfect. Quasiperfect numbers were first studied by
Cattaneo [1951], who referred to e.n/ as the eccedenza of n, partly inspiring our
choice of the English word excedent. Cattaneo showed that a quasiperfect number
must be an odd square, and that if it is relatively prime to 3, it must have at least
seven distinct prime factors. These results have since been improved. We now
know, for example, that if n is a quasiperfect number:
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(1) nD k2, where k is odd [Cattaneo 1951];

(2) if m is a proper divisor of n, then �.m/ < 2n [Cattaneo 1951];

(3) if r j�.n/ then r � 1 or 3 .mod 8/ [Cattaneo 1951];

(4) n has at least seven prime factors [Hagis and Cohen 1982];

(5) n> 1035 [Hagis and Cohen 1982].

Despite this impressive list, however, the biggest question concerning quasiperfect
numbers, namely, do quasiperfect numbers exist?, remains unanswered. In the
language of this paper, we could say that we still don’t know whether there are
integers n for which e.n/D 1.

There seems to have been only one attempt to pursue more general questions of
this sort. In his Ph.D. thesis (see [Cohen 1982] for a summary), Cohen considered a
generalization of quasiperfect numbers. According to his definition, a k-quasiperfect
number is an integer n for which s.n/� nD k2 for a positive integer k relatively
prime to n. He proved, among other things, that if such numbers exist, they must
be larger than 1020 and have at least four distinct prime factors.

In this work, we wish to broaden Cohen’s definition of a k-quasiperfect number
to allow for any integer value of k. Then a 0-quasiperfect number is just a perfect
number, a 1-quasiperfect number is the integer normally defined as a quasiperfect
number, and we could denote the integers which Cohen considered simply as
k-quasiperfect numbers for square k.

Our primary goal is to classify those integers m that are in the image of the
excedent function. We call these integers excedents. Integers not in the image
of e.n/ we call nonexcedents. The general problem of how to determine whether
a given integer is an excedent seems very hard, however, and we are far from a
complete classification. We do, however, give a few results concerning infinite and
two potentially infinite families of excedents. We also give a conjecture, based on
extensive computational evidence, about which small values of m are excedents,
and which are nonexcedents.

2. Related work

It is worth noting that although references to values of s.n/� n in the literature are
fairly rare, some work has been done on values of �.n/� n. Erdős [1973] showed
that there are infinitely many numbers m for which �.n/� nDm has no solution,
and furthermore that these m have positive lower density. Chen and Zhao [2011]
have recently improved this to show that the density of these m is at least 0:06.
Pomerance [1975] has considered a more general case, considering the set

S.a/D fn W �.n/� a .mod n/g:
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He showed that for all a, the set S.a/ has at least two elements.
More recently, there has been an increase in interest in topics related to the values

of s.n/�n. Anavi, Pollack and Pomerance [Anavi et al. 2013] show that the number
of elements not greater than x in S.a/ (not counting those in a certain “obvious”
set involving multiples of perfect and multiply perfect numbers) is bounded by
x1=2Co.1/ for each jaj � x1=4. Since �.n/� e.n/ .mod n/, this immediately gives
an upper bound on the number of n up to x for which e.n/� a .mod n/ as well.
One conclusion is that there can be no more than x1=2Co.1/ k-quasiperfect integers
up to x (outside of the obvious set) for any k � x1=4.

is studied in [Pollack and Shevelev 2012]. These are integers whose excedent
is equal to one of the divisors. Finally, it is shown in [Pollack and Pomerance
2013] that for odd k, the number of k-quasiperfect numbers that are � x is at most
x1=4Co.1/ as x!1.

Somewhat disappointingly, a close study of the references in this paper, including
several suggested by the referee, show that the first three theorems in this paper have
already appeared in some form in the literature. We shall still give our statements
(and in one case, our proof) of these theorems in the hope that they may offer two
things. First, we present and prove our theorems in an elementary manner. Second,
our independent discovery of these results play an important role in our story, and
help to motivate much of the computational work in the latter parts of the paper.

3. Computational experiments

Most computations for this work were conducted using PARI/GP. Initially, we
computed e.n/ for all n in the range Œ1; 1010�. We then recorded the number of
times an integer m occurred as a value of e.n/ in this range. Let Nm.x/ be the
number of integers n� x for which e.n/Dm. Values for some small m from our
computation are given in Table 1. It is worth noting that there are several methods
which can speed up the computation of many values of e.n/. We worked primarily
by isolating the values in which we were especially interested. A clever method for
finding all numbers not in the image of s.n/ up to a given bound has recently been
described in [Pomerance and Yang 2012].

In looking at this data, a few things immediately stand out. The most obvious is
that there are many integers whose excedent is 12. Slightly less obvious, perhaps,
is what seems to be a bias toward even values of the excedent function. These
observations would guide our initial work.

It is clear that 12 is in the image of e.n/ quite often, leading us to ask immediately
if there are other values which appear very often. Extending our search, we found
a few other values of m for which there are a large number of integers n with
e.n/D m, namely mD 56 and mD 992. A bit of consideration reveals that the
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m Nm.1010/ m Nm.1010/

1 0 �1 32
2 9 �2 4
3 1 �3 0
4 10 �4 14
5 0 �5 1
6 3 �6 8
7 1 �7 1
8 25 �8 15
9 0 �9 0

10 3 �10 9
11 0 �11 1
12 78505339 �12 7
13 0 �13 0
14 6 �14 4
15 0 �15 0
16 20 �16 35
17 1 �17 0
18 10 �18 5
19 1 �19 2
20 20 �20 15

Table 1. Number of integers n� 1010 for which e.n/Dm for small m.

numbers 12; 56; 992 are precisely double the first three perfect numbers, 6; 28; 496,
leading us to suspect that integers that are exactly double perfect numbers may
come up unusually often. We proved that each of these numbers in fact occurs
infinitely often (see Theorem 2), and we note that these numbers are a special case
of the set described in [Anavi et al. 2013]. The “obvious” set mentioned above
contains multiples of both perfect and multiply perfect numbers — it’s clear that
these values of the excedent function behave quite differently than do other values.
Anavi et al. [2013] refer to these as regular solutions of �.n/ � a .mod n/, as
opposed to the other, sporadic solutions.

Similarly, the observation that odd numbers occur in the image of e.n/ infre-
quently led us to seek a classification for those n with e.n/ odd. We succeeded in
completely classifying these values; see Theorem 1.

A final observation we made was that, among the odd values of s.n/, many
integers that are one less than a power of 2 seemed to appear. An inquiry into these
numbers led us to the discovery that every Mersenne prime is the excedent of at
least one positive integer. This is proven in Theorem 3.
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rank of rank of
m apparition m apparition

of m of m

�2 3 2 20
�4 5 4 12
�6 7 6 8925
�8 22 8 56
�10 11 10 40
�12 13 12 24
�14 27 14 272
�16 17 16 550
�18 19 18 208
�20 46 20 176

Table 2. The smallest n for which e.n/Dm for small even m.

4. Ranks of apparition

If we wish to decide whether an integer is an excedent, it would be helpful to know
how far we ought to search via brute force before believing that an integer which
has not yet appeared as an excedent will never appear. We ask then, for a given
excedent m, what is the smallest integer n for which e.n/Dm? We shall refer to
this n as the rank of apparition of m. If all m that are excedents have small rank of
apparition, we may trust that for all m, either m is the excedent of a small integer,
or it is never the excedent of any.

Table 2 gives the rank of apparition of all even integers m with jmj � 20. It
suggest that if m is an even excedent of any integer, it is likely the excedent of
a rather small integer. Indeed the rank of apparition of all even m in the range
�20�m� 20 is under 10,000.

For odd excedents, the situation is quite different. Recall that for some odd
values m (including 1), we do not know whether m is ever an excedent. Table 3
lists every small odd integer which is the excedent of some n< 1020, together with
its rank of apparition.

The fact that some values, say mD�11, don’t appear until over 200,000 makes us
hesitate to claim that values which don’t come up early will never appear. In fact, the
situation is even worse than this. The smallest integer we found (in absolute value)
whose rank of apparition is more than 106 is 127, for which g.127/ D 1032256.
Similarly, g.1529/ D 66324736 is the smallest known m for which the rank of
apparition is greater than 107. If we want any hope of putting together a list of
excedents and nonexcedents, then, we shall clearly have to extend our search beyond
these small values.
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rank of rank of
m apparition m apparition

of m of m

�1 1 3 18
�5 9 7 196
�7 50 17 100
�11 244036 19 36
�19 25 31 15376
�25 98 39 162
�47 484

Table 3. The smallest n for which e.n/Dm for small odd m.

5. Results

As described above, most of our results were motivated by a careful observation of a
large amount of data. We here state and prove the three theorems briefly mentioned
above, which constitute the primary theoretical results of our research.

Before proceeding, we wish to remind the reader of some basic facts about the
function �.n/. There are two properties of �.n/ which we shall need. First, for a
prime power pk , we have

�.pk/D
pkC1� 1

p� 1
:

Second, �.n/ is multiplicative. That is, if a and b are relatively prime, then
�.ab/D �.a/�.b/. It seems likely that this property, which is so useful in a large
number of applications, is the primary reason that so much more attention has been
paid to �.n/ than to s.n/. From these two facts, it is fairly straightforward to show
the following theorem.

Theorem 1. The excedent of n, e.n/, is odd if and only if nD k2 or nD 2k2 for
some integer k.

This theorem is enormously useful. Since we have already determined (com-
putationally) that odd excedents are rare, we wish to extend our search for these
numbers. Thanks to Theorem 1, if we wish to look for odd excedents, we now
know that we need to consider only squares and numbers that are double a square.
We will use this to great effect for our computations in Section 7. While Theorem 1
is crucial in our work below, it is not original. It is similar to one often encountered
in number theory courses; see [Burton 1976, Chapter 6, Exercise 7], for example.

Our second theorem concerns one family of numbers (probably infinite), all of
which appear in the image of the excedent function. Although this theorem was
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new to us, we have learned that this is not the first time it has appeared in the
literature. The referee pointed out that this theorem appears in more general form in
[Pomerance 1975], from which we learned that the first appearance of Theorem 2
was in a note by Mąkowski [1960].

Theorem 2. If N is a perfect number, then 2N will be the excedent of infinitely
many integers m. In particular, if p is a prime not dividing 2N , then 2N is the
excedent of 2pN .

Although the proof of this theorem can be found with a literature search, the reader
is encouraged to try to prove it herself. It takes only straightforward calculation.
Indeed, this result also can now be found in some elementary number theory texts;
Theorem 2 appears, for example, as Exercise 21 of [Robbins 2006].

Somewhat disappointingly, despite the fact that our third theorem was new when
we proved it, a proof appeared in a paper by Pollack and Shevelev [2012] after our
work was submitted to Involve. We discovered this work while reading references
recommended by the referee during revisions.

Theorem 3. Let Mp D 2p � 1 be a Mersenne prime. Then 2p � 1 will be in the
image of the excedent function. In particular,

e.2p�1M 2
p /DMp:

Proof. Let Mp D 2p � 1 be a Mersenne prime, and let nD 2p�1M 2
p . We wish to

show that e.n/D �.n/� 2nDMp. Because n is already written as a power of 2

multiplied by an odd prime, we can use the multiplicativity of �.n/ to write

�.2p�1M 2
p /D �.2

p�1/�.M 2
p /

D .2p
� 1/.M 2

p CMpC 1/

D .2p
� 1/.M 2

p C 2p/

D 2pM 2
p C 22p

�M 2
p � 2p

D 2pM 2
p C 2pMp �M 2

p

D 2pM 2
p CMp.2

p
�Mp/

D 2pM 2
p CMp:

Then, since nD 2p�1M 2
p and �.n/D 2pM 2

p CMp , we have that the excedent of
n, �.n/� 2n, is

e.n/D .2pM 2
p CMp/� 2.2p�1M 2

p /DMp;

as desired. �
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6. Arithmetic progressions

As we noted above, the set of Mersenne primes is a (probably) infinite family of
values of the excedent function. We might then ask: are there any provably infinite
families of excedents? A bit of thought reveals the answer to be in the affirmative.
For example, e.p/D�.p�1/ for any prime p, so any integer of the form �.p�1/

is certainly an excedent. Indeed, we could find several other infinite families of
excedents in terms of their prime factorization as well. Rather than pursue this
avenue of study, however, we would like to turn our attention to one more idea —
looking for excedents in arithmetic progressions.

To this end, we present one more theorem, and the result of one intriguing
computation. The demonstration of the following theorem relies on the Goldbach
conjecture. The Goldbach conjecture, as it is usually stated, is that every even
integer greater than 2 is the sum of two primes. Although the problem remains
open, van der Corput [1936; 1938], Estermann [1938] and Chudakov [1937] each
proved independently that almost every even number is the sum of two primes —
that is, every even number is the sum of two primes, except possibly for a set of
density zero.

We should note that this implies a related fact which will prove useful to us.
Since the density of integers of the form 2p for prime p has density zero, we can
also say that almost every even number is the sum of two distinct primes. This fact
will allow us to prove the following.

Theorem 4. Every integer n� 12 .mod 24/ is contained in the image of the exce-
dent function, except perhaps for a set of density 0.

Proof. Let nD pq, with p and q both prime. Then s.n/D pCqC1. Since, by the
discussion above, we know that almost all even integers can be written in the form
pC q for distinct p and q, it follows that almost odd integers can be written in the
form pCqC1. Thus, we have that almost all odd integers are in the image of s.n/.

Now let m be any integer relatively prime to 6, so that m� 1 or 5 .mod 6/. For
such an m, e.12m/ has an interesting form. We see this by writing

e.6m/D �.6m/� 2.6m/D �.6/�.m/� 12m

D 12.mC s.m//� 12mD 12s.m/:

Since numbers relatively prime to 6 are odd, they can almost all be written as s.m/

for some m, and therefore almost all numbers of the form 12.2k C 1/ lie in the
image of e.n/, from which the theorem follows. �

Finding this arithmetic progression of excedents raises the obvious question of
whether there are other arithmetic progressions that are (almost) all contained in the
image of the excedent function. Preliminary computations show that this may be a
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m residue class k .mod m/

8 4
12 4, 8
16 4, 8, 12
18 6
20 4, 8, 12, 16
24 4, 8, 12, 16, 20
26 2
28 4, 8, 12, 14, 16, 20, 24
30 12, 14, 18, 26
32 4, 8, 12, 16, 20, 24, 28
34 2, 10, 12, 22, 26
36 4, 6, 8, 12, 16, 18, 20, 24, 28, 32
38 8, 12, 20, 22, 30
40 4, 8, 12, 16, 20, 24, 28, 32, 34, 36
42 2, 6, 12, 14, 18, 24, 28, 32, 34, 36, 38
44 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
46 2, 10, 14, 18, 22, 26, 30, 40
48 4, 8, 12, 14, 16, 20, 24, 28, 30, 32, 36, 40, 42, 44
50 4, 6, 12, 16, 20, 22, 24, 32, 38, 46
52 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48
54 2, 6, 8, 12, 14, 18, 20, 24, 32, 36, 42, 52
56 4, 8, 10, 12, 14, 16, 20, 24, 28, 32, 34, 36, 40 42, 44, 48, 52, 54
58 26, 34, 38, 40, 42, 44, 46, 50, 52, 54
60 4, 8, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 36, 40, 42, 44, 48, 52

Table 4. Every integer up to 10;000 lying in one of the residue
classes listed here is contained in the image of the excedent function.

promising line of inquiry. We searched for arithmetic progressions all of whose
members up to 10;000 are contained in the excedents we have found. They are
listed in Table 4.

Of all the residue classes in Table 4, we have succeeded in explaining only the
class 12 .mod 24/. We encourage others to use the ideas above to see if more of
these classes can be proven to lie entirely (or almost entirely) in the image of e.n/.

7. Computational results (redux)

By Theorem 1, we know that all odd excedents are the image under e.n/ of an
integer of the form k2 or 2k2. Therefore, if we wish to search just for odd excedents,
we need only look at numbers of this specialized form. We therefore revised our
earlier search to consider only squares and double squares, and were able to extend
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Bound e.n/ even e.n/ odd Total
on n 0< e.n/ e.n/ < 0 0< e.n/ e.n/ < 0 �104 � e.n/� 104

104 0.6126 0.2202 0.0166 0.0134 0.2157
105 0.9378 0.5888 0.0320 0.0240 0.3956
106 0.9722 0.6922 0.0370 0.0310 0.4330
107 0.9832 0.7618 0.0400 0.0328 0.4544
108 0.9894 0.8390 0.0408 0.0334 0.4756
109 0.9894 0.8390 0.0408 0.0334 0.4756
1010 0.9894 0.8390 0.0408 0.0334 0.4756

Table 5. The proportion of integers m with je.m/j�104 in various
classes that are excedents of a number less than the given bound.

our preliminary computation by several orders of magnitude.
In the end, we computed the value of e.n/ for nD k2 and nD 2k2 for all n up

to 1020. Despite searching to this large value, we find that of the fifty odd values of
m with �50<m< 50, thirty-two of them are never in the image of the excedent
function. The values that never occur are

�49;�45;�43;�39;�35;�33;�31;�29;�27;�23;�21;�17;�15;�13;�9;�3;

1; 5; 9; 11; 13; 15; 21; 23; 25; 27; 29; 33; 35; 37; 43; 45: (1)

Among the positive nonexcedents are those studied by Cohen — all the odd squares
appear on the list. There are, however, many other odd values that never appear.
We cannot explain these values or find any way to classify them, nor do they appear
in Sloane’s Online encyclopedia of integer sequences.

We can, however, use our data to speculate about the density of integers that
are excedents. We recorded all excedents of integers up to 1010 with absolute
value less than 10;000, and we shall use these to get an idea about the density of
integers that are excedents. In the table below, we give the proportion of integers
that are excedents. Because even excedents behave differently than odd excedents,
and because the sign of an integer also seems to affect its probability of being an
excedent, we first break integers into four groups (by parity and sign) and consider
these proportions separately.

Based on this (admittedly limited) data, it seems reasonable to conjecture that
most positive integers are excedents.

8. Conjectures and future work

The theorems above represent observations we made based on our data, and which
we have been able to prove. We have also made other observations which we have
been unable to prove. Among these are:

http://oeis.org
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Conjecture 5. Every even number is the excedent of at least one positive integer.

Up to 108, our computational data show that every even integer n satisfying

�480< n< 130

is the excedent of some integer, and we see no reason to expect that any even
number will not appear on the list of excedents at some point. We saw in Table 2
that it seems to be the case that if m is an even excedent of any integer, it is likely
the excedent of a rather small integer, but when we extend to m beyond the range
of Table 2, we actually do find some even numbers k appear in the image of e.n/

only for fairly large n. For example, the smallest n such that e.n/ D �384 is
nD 99413968.

Conjecture 6. The values given in (1), giving integers that are not in the image of
the excedent function for any n� 1020, are in fact nonexcedents, and will never be
in the image of this function.

This conjecture seems less certain. Since we know that there are some k which
appear in the image of e.n/ only for large n, it is certainly possible that one (or
more!) of the values in (1) may yet appear. However, we find no new excedents
with absolute value less than 100 appear for any integers greater than 109 — we
believe that these exceptional values are unlikely to appear after 1020.

There are several other open questions. Can one find an infinite family of integers
all of which are nonexcedents? Possibly easier: do the excedents have a density
in the integers? If so, what is it? It is striking that more than 2500 years after the
concept was first considered by the Pythagoreans, questions about the excedent of
an integer continue to beguile and challenge us. It is our hope that these preliminary
investigations may serve as a catalyst for further research on the excedent function.
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[Mąkowski 1960] A. Mąkowski, “Remarques sur les fonctions �.n/; '.n/ et �.n/”, Mathesis 69
(1960), 302–303. MR 23 #A834

[Pollack and Pomerance 2013] P. Pollack and C. Pomerance, “On the distribution of some integers
related to perfect and amicable numbers”, Colloq. Math. 130:2 (2013), 169–182. MR 3049062
Zbl 06156689

[Pollack and Shevelev 2012] P. Pollack and V. Shevelev, “On perfect and near-perfect numbers”, J.
Number Theory 132:12 (2012), 3037–3046. MR 2965207 Zbl 06097278

[Pomerance 1975] C. Pomerance, “On the congruences �.n/� a .mod n/ and n� a .mod '.n//”,
Acta Arith. 26:3 (1975), 265–272. MR 52 #5535 Zbl 0266.10005

[Pomerance and Yang 2012] C. Pomerance and H.-S. Yang, “Variant of a theorem of Erdős on the
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A Pexider difference associated
to a Pexider quartic functional equation

in topological vector spaces
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Let (G,+) be an Abelian group and X be a sequentially complete Hausdorff
topological vector space over the field Q of rational numbers. We deal with a
Pexider difference

2 f (2x + y)+ 2 f (2x − y)− 2g(x + y)− 2g(x − y)− 12g(x)+ 3g(y),

where f and g are mappings defined on G and taking values in X . We investigate
the Hyers–Ulam stability of the Pexiderized quartic functional equation

2 f (2x + y)+ 2 f (2x − y)= 2g(x + y)+ 2g(x − y)+ 12g(x)− 3g(y)

in topological vector spaces.

1. Introduction and preliminaries

The stability problem concerning the stability of group homomorphisms originated
from a question of Ulam [1964] and was answered affirmatively by Hyers [1941] for
Banach spaces. This result was generalized by Aoki [1950] for additive mappings
and by Rassias [1978] for linear mappings by considering an unbounded Cauchy
difference. The question of stability can be raised not only concerning the Cauchy
functional equation but also in connection with other functional equations. For
more concerning the stability results of functional equations, see [Czerwik 2002;
2003; Hyers et al. 1998; Jung 2001; Forti 1995; Hyers and Rassias 1992]. The
stability of the quartic functional equation has been investigated in [Cădariu and
Radu 2004; Chung and Sahoo 2003; Lee et al. 2005; Najati 2008].

Adam and Czerwik [2007] investigated the problem of the Hyers–Ulam stability
of a generalized quadratic functional equation in linear topological spaces. In this
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paper, we prove that the Pexiderized quartic functional equation

2 f (2x + y)+ 2 f (2x − y)= 2g(x + y)+ 2g(x − y)+ 12g(x)− 3g(y)

is stable for functions f, g defined on an Abelian group and taking values in a
topological vector space.

Let G be an Abelian group and throughout this paper let X be a sequentially
complete Hausdorff topological vector space over the field Q of rational numbers.
A mapping f : G→ X is quartic if it satisfies the functional equation

f (2x + y)+ f (2x − y)= 4 f (x + y)+ 4 f (x − y)+ 24 f (x)− 6 f (y)

for all x, y ∈G. This equation is called the quartic functional equation. For a given
f : G→ X , we will use the notation

D f (x, y) := f (2x+ y)+ f (2x− y)−4 f (x+ y)−4 f (x− y)−24 f (x)+6 f (y).

For given sets A, B⊆ X and a number k∈R, we define the well-known operations

A+ B := {a+ b : a ∈ A, b ∈ B}, k A := {ka : a ∈ A}.

We denote the convex hull of a set U ⊆ X by conv(U ) and the sequential closure
of U by U . Moreover it is well-known that:

(i) If A, B ⊆ X are bounded sets, then A+ B conv(A) and A are bounded subsets
of X .

(ii) If A, B ⊆ X and α, β ∈ R, then α conv(A)+β conv(B)= conv(αA+βB).

(iii) Let X1 and X2 be linear spaces over R. If f : X1→ X2 is a quartic function,
then f (r x)= r4 f (x) for all x ∈ X1 and all r ∈Q.

2. Main results

We start with the following lemma.

Lemma 2.1. Let G be an Abelian group and B ⊆ X be a nonempty set. If the even
functions f, g : G→ X satisfy

f (2x + y)+ f (2x − y)− g(x + y)− g(x − y)− 6g(x)+ 3
2 g(y) ∈ B (2-1)

for all x, y ∈ G, then

D f (x, y)+ 24 f (0) ∈ 16 conv(B− B), (2-2)

Dg(x, y)+ 24g(0) ∈ 4 conv(B− B) (2-3)

for all x, y ∈ G.
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Proof. Putting x = 0 in (2-1), we get

4 f (y)− g(y)− 12g(0) ∈ 2B (2-4)

for all y ∈ G. If we put x = y = 0 in (2-1), then we have

4 f (0)− 13g(0) ∈ 2B. (2-5)

It follows from (2-4) and (2-5) that, for all x, y ∈ G,

D f (x, y)+ 24 f (0)

= [ f (2x + y)+ f (2x − y)− g(x + y)− g(x − y)− 6g(x)+ 3
2 g(y)]

− [4 f (x + y)− g(x + y)− 12g(0)] − [4 f (x − y)− g(x − y)− 12g(0)]

−[24 f (x)−6g(x)−72g(0)]+[6 f (y)− 3
2 g(y)−18g(0)]+[24 f (0)−78g(0)],

which lies in 12 conv(B)+ 12 conv(−B) = 16 conv(B − B). This proves (2-2).
Moreover, we have, for all x, y ∈ G,

Dg(x, y)+ 24g(0)

= [4 f (2x + y)+ 4 f (2x − y)− 4g(x + y)− 4g(x − y)− 24g(x)+ 6g(y)]

− [4 f (2x + y)− g(2x + y)− 12g(0)] − [4 f (2x − y)− g(2x − y)− 12g(0)]

which lies in 4 conv(B)+ 4 conv(−B)= 4 conv(B− B). Hence we get (2-3). �

Theorem 2.2. Let G be an Abelian group and B ⊆ X be a nonempty bounded set.
Suppose that the even functions f, g : G→ X satisfy (2-1) for all x, y ∈ G. Then
there exists exactly one quartic function Q : G→ X such that

Q(x)− f (x)+ f (0) ∈ 8
15 conv(B− B),

4Q(x)− g(x)+ g(0) ∈ 2
15 conv(B− B)

for all x ∈ G. Moreover, the function Q is given by

Q(x)= lim
n→∞

1
24n f (2nx)=

1
4

lim
n→∞

1
24n g(2nx) for x ∈ G,

and the convergence of the sequences are uniform on G.

Proof. By Lemma 2.1, we have

D f (x, y) ∈ −24 f (0)+ 16 conv(B− B) (2-6)

for all x, y ∈ G. Setting y = 0 in (2-6), we get

2 f (2x)− 32 f (x) ∈ −30 f (0)+ 16 conv(B− B)

for all x ∈ G. Therefore
1
24 f (2x)− f (x) ∈ 1

24 B̃ (2-7)
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for all x ∈ G, where B̃ := −15 f (0)+ 8 conv(B− B). It is clear that B̃ is convex.
Replacing x by 2nx in (2-7), we infer that

1
24(n+1) f (2n+1x)− 1

24n f (2nx) ∈ 1
24(n+1) B̃

for all x ∈ G and all integers n > 0. Therefore

1
24n f (2nx)− 1

24m f (2m x)=
n−1∑
k=m

[ 1
24(k+1) f (2k+1x)− 1

24k f (2k x)
]

∈

n−1∑
k=m

1
24(k+1) B̃ ⊆

1
15× 24m B̃ (2-8)

for all x ∈ G and all integers n > m > 0. Since B is bounded, we conclude that B̃
is bounded. It follows from (2-8) and boundedness of the set B̃ that the sequence
{(1/24n) f (2nx)} is (uniformly) Cauchy in X for all x ∈ G. Since X is a sequential
complete topological vector space, the sequence {(1/24n) f (2nx)} is convergent for
all x ∈ G, and the convergence is uniform on G. Define

Q1 : G→ X, Q1(x) := lim
n→∞

1
24n f (2nx).

Since −24 f (0)+ 16 conv(B− B) is bounded, it follows from (2-6) that

DQ1(x, y)= lim
n→∞

1
24n D f

(
2nx, 2n y

)
= 0

for all x, y ∈ G. So Q1 is quartic. Letting m = 0 and n→∞ in (2-8), we get

Q1(x)− f (x)+ f (0) ∈ 8
15 conv(B− B) (2-9)

for all x ∈ G. Applying (2-3) as before, we have

1
24n g(2nx)−

1
24m g(2m x) ∈

n−1∑
k=m

1
24(k+1) C̃ ⊆

1
15× 24m C̃ (2-10)

for all x ∈ G, where C̃ := −15g(0)+ 2 conv(B − B). Then {(1/24n)g(2nx)} is a
(uniformly) Cauchy sequence in X for all x ∈ G. Define

Q2 : G→ X, Q2(x) := lim
n→∞

1
24n g(2nx).

As before, we can check that Q2 is a quartic function satisfying

Q2(x)− g(x)+ g(0) ∈ 2
15 conv(B− B) (2-11)

for all x ∈ G. To prove the equality 4Q1 = Q2, we have

4Q1(x)−Q2(x)= [4Q1(x)− 4 f (x)] − [Q2(x)− g(x)] + [4 f (x)− g(x)]
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for all x ∈ G. Applying (2-4), (2-5), (2-9) and (2-11) in the above equation, we get

4Q1(x)−Q2(x) ∈ M := 2 conv(B− B)+ 2(B− B) (2-12)

for all x ∈ G. Replacing x by 2nx in (2-12), we get

4Q1(2nx)−Q2(2nx) ∈ M

for all x ∈ G and all integers n. Since Q1 and Q2 are quartic, we obtain

4Q1(x)−Q2(x) ∈
1

24n M (2-13)

for all x ∈ G. Since M is bounded, letting n→∞ in (2-13) we obtain 4Q1 = Q2.
Assuming Q := Q1, we can see that the conditions of theorem are satisfied.

To prove uniqueness, suppose that there exists another quartic function Q′ :G→ X
satisfying

Q′(x)− f (x)+ f (0) ∈ 8
15 conv(B− B)

for all x ∈ G. Then we have

Q′(x)−Q(x)= [Q′(x)− f (x)+ f (0)] − [Q(x)− f (x)+ f (0)] ∈ 16
15 conv(B− B)

for all x ∈ G. Applying the same method as before, we get Q′ = Q. This completes
the proof. �
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