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We consider the difference between the definite integral
∫
∞

0 ux e−u du, where x is
a real parameter, and the approximating sum

∑
∞

k=1 kx e−k . We use properties of
Bernoulli numbers to show that this difference is unbounded and has infinitely
many zeros. We also conjecture that the sign of the difference at any positive
integer n is determined by the sign of cos

(
(n+ 1) arctan(2π)

)
.

1. Introduction

There are a variety of situations where it is necessary to examine differences of
sums and integrals. The Euler–Maclaurin summation formula is the usual tool
for estimating

∫
u≤Y g(u) du−

∑
n≤Y g(n) [Abramowitz and Stegun 1964, p. 806],

but it can also be interesting to develop exact formulas for particular choices of
g(u). For instance, the Euler–Mascheroni constant arises if we set g(u)= 1/u and
consider the limit as Y →∞ [Wells 1986, p. 12]. The purpose of this paper is to
examine the function

f (x) :=
∞∑

k=1

kx e−k
−

∫
∞

0
t x e−t dt.

The integral on the right equals 0(x + 1), where 0(x) is the gamma function, and
the infinite series converges absolutely for all values of x . We can obtain an exact
expression for f (n) when n ≥ 1 by using classical formulas for polylogarithms of
negative order [Weisstein 2013]:

f (n)=−n! +
n∑

k=0

1
(e− 1)k+1

k∑
j=0

(−1) j
(

k
j

)
(k+ 1− j)n. (1)

The main goal of this paper is to prove that f (x) has infinitely many positive real
zeros, and that the function becomes unbounded as x→∞. Further, in Conjecture 1
we hypothesize that f (n) has the same sign as cos

(
(n+ 1) arctan(2π)

)
whenever
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n is a positive integer. We prove that the conjecture is true with finitely many
exceptions, provided that arctan(2π)/π has finite irrationality measure. If we
expand cos

(
(n+ 1) arctan(2π)

)
using trigonometric identities, then we obtain the

equivalent conjecture that the following identity holds for all positive integers n:

sign
[ n+1∑

j=0

(−1) j
(

n+ 1
2 j

)
(2π)2 j

]

= sign
[
−(e− 1)n+1n! +

n∑
k=0

(e− 1)n−k
k∑

j=0

(−1) j
(

k
j

)
(k+ 1− j)n

]
. (2)

The left-hand side of (2) is a polynomial in π , while the right-hand side is a
polynomial in e. Based on numerical experiments, we conjecture that (π, e) is the
unique, nontrivial (i.e., 6= (0, 1)) tuple of real numbers which makes (2) valid for all
positive integers n. When we choose values close to π and e respectively, we notice
that (2) is false for some n in all considered cases. Surprisingly, (2) is valid for
n ≤ 128 if you insert (π+0.015, e), but only for n ≤ 2 in the case of (π, e+0.015).
So the equation seems to be a lot more sensitive to small modifications in the
argument on the right-hand side. Also, choosing various random tuples (x, y)
further away from (π, e), we always found an n such that (2) was wrong.

2. Elementary properties of f (x)

In this section we prove that f (x) is an unbounded function by showing that the
sequence { f (n)}∞n=1 is unbounded as n→∞. Our proof uses properties of Bernoulli
numbers. The n-th Bernoulli number is defined by

x
ex−1

=

∞∑
n=0

Bn
xn

n!
, (3)

and the generating series converges for |x | < 2π . It is known that Bernoulli
numbers are always rational, and that Bn = 0 if n > 1 is odd. Bernoulli numbers
have many interesting combinatorial properties [Abramowitz and Stegun 1964],
and the following asymptotic holds for large values of n:

|B2n| ∼
n2n

(πe)2n . (4)

This property will be used later. We begin by deriving a new formula for Bn . Then
in Theorem 1, we use our formula to prove that f (x) is unbounded.

Lemma 1. Bn =

∞∑
k=n

f (k)− k f (k− 1)
(k− n)!

for n ≥ 2.
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Proof. Consider the generating function of the Bernoulli numbers,

g(x) := x
ex−1

,

whose Taylor series at x =−1 is

g(x)=
e

e− 1
−

e(e− 2)
(e− 1)2

(x + 1)+
∞∑

n=2

f (n)− n f (n− 1)
n!

(x + 1)n. (5)

The Taylor coefficients at n = 0 and n = 1 are calculated directly. To obtain the
coefficients when n ≥ 2, we use

g(n)(−1)=
dn

dxn

[
−x

1− ex

]
x=−1
=

dn

dxn

[
−x

∞∑
m=0

emx
]

x=−1

=

∞∑
m=1

mne−m
− n

∞∑
m=1

mn−1e−m

=

( ∞∑
m=1

mne−m
− n!

)
− n

( ∞∑
m=1

mn−1e−m
− (n− 1)!

)
= f (n)− n f (n− 1). (6)

Since formula (3) is also valid when x lies in a neighborhood of −1, we can equate
the two results:

g(x)=
∞∑

n=0

Bn

n!
xn
=

∞∑
n=0

g(n)(−1)
n!

(x + 1)n

=

∞∑
n=0

g(n)(−1)
n!

n∑
k=0

(
n
k

)
xk
=

∞∑
n=0

[ ∞∑
k=n

g(k)(−1)
(k− n)!

]
xn

n!
.

Comparing coefficients and then applying (6), we find that for n ≥ 2,

Bn =

∞∑
k=n

g(k)(−1)
(k− n)!

=

∞∑
k=n

f (k)− k f (k− 1)
(k− n)!

. �

Theorem 1. The sequence { f (n)}∞n=1 is unbounded.

Proof. We construct a proof by contradiction. Assume that | f (n)|< C for some
C > 0 and every n ∈ N. By Lemma 1 and the triangle inequality, we have

|Bn| ≤

∞∑
k=n

| f (k)− k f (k− 1)|
(k− n)!

≤

∞∑
k=n

C(1+ k)
(k− n)!

≤ Ce(n+ 2).

This contradicts the asymptotic |B2n| ∼ n2n/(πe)2n , which holds for n sufficiently
large. �
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Remark. Despite the fact that f (n) is unbounded as n→∞, the ratio f (n)/n!
converges to zero. To prove this, we can use residue calculus to show that

f (n)
n!
=

1
2π i

∮
γ

z−n−1

1− ez−1 dz,

where γ = {z ∈ C : |z| = 2}. We then employ the triangle inequality and numerical
integration to obtain the crude upper bound | f (n)|/n! ≤ 0.82× 2−n . In fact, it is
possible to develop a much sharper upper bound using formula (12) below.

Theorem 2. The function f (x) has infinitely many zeros.

Proof. First notice that f (2)≈−0.0077 and f (3)≈ 0.0065, so by continuity f (x)
has at least one zero in the interval (2, 3). To prove that the function has infinitely
many zeros, we proceed by contradiction.

Assume that f has only finitely many zeros. Then for any sufficiently large
integer m, the elements of the set { f (m), f (m + 1), f (m + 2), . . . } all have the
same sign. Now consider the function

h(x) :=
1
x
−

1
ex − 1

,

which has the Taylor series

h(x)=
1

e− 1
+

∞∑
k=1

f (k)
k!

(x + 1)k . (7)

Differentiating m times gives

h(m)(x)=
∞∑

k=m

f (k)
(k−m)!

(x + 1)k−m . (8)

If the elements of the set { f (m), f (m + 1), . . . } are strictly positive, then (8)
becomes a sum over positive numbers whenever x ∈ (−1, 0), and it follows that
h(m)(x) is strictly positive. If we notice that

h(x)= 1
x
−

1
x

x
ex−1

=−

∞∑
n=1

Bn
n!

xn−1,

then we also have

h(m)(x)=−
∞∑

n=m+1

Bn

n!
(n− 1)!

(n−m− 1)!
xn−m−1. (9)

The key observation is that formulas (8) and (9) have overlapping domains of
convergence on the negative real axis near the origin. If x is a sufficiently small
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negative real number, then (9) implies

h(m)(x)≈−
Bm+1

m+ 1
,

but (8) guarantees

h(m)(x) > 0.

This is a contradiction, because Bernoulli numbers assume both positive and negative
values as m increases. We can deal with the case where { f (m), f (m+ 1), . . . } are
strictly negative in a similar manner. �

In Theorem 2 we proved that f (x) has infinitely many real zeros. In fact, we
can be much more precise about the locations of the zeros. If x j denotes the j-th
positive real zero of f (x) such that f (x j )= 0, then we expect that

x j ≈−1+
π(2 j + 1)

2 arctan(2π)
. (10)

The first approximation gives x1 ≈ 2.335. . . , and this is reasonably close to the
true value x1 = 2.306. . . . We have observed numerically that the approximations
become more accurate for large values of j . To derive (10), consider an identity
which is valid for Re(x) > 0 and Re(µ) > 0:

1
0(x + 1)

∞∑
k=1

kx e−µk
=

∞∑
k=−∞

1
(µ+ 2π ik)x+1 . (11)

Formula (11) is a special case of an identity due to Lipschitz [Rademacher 1973,
p. 77], and follows from the Poisson summation formula. Set µ= 1 and take the
real part of both sides to obtain

f (x)
0(x + 1)

= 2
∞∑

k=1

cos
(
(x + 1) arctan(2πk)

)
(1+ 4π2k2)(x+1)/2 . (12)

Equation (12) converges rapidly, and we can approximate f (x) by truncating the
series. The first term gives

f (x)
0(x + 1)

≈ 2
cos
(
(x + 1) arctan(2π)

)
(1+ 4π2)(x+1)/2 , (13)

and we immediately recover (10). It is somewhat subtle to determine how often
(13) actually provides a good approximation of f (x), and we touch on this point in
the next section.
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3. A conjecture on the sign of f (n)

A second observation from (13) is that the sign of f (n) should always equal the
sign of cos

(
(n+ 1) arctan(2π)

)
. We have verified this numerically for n ≤ 5000 in

Maple, and as a result we have the following conjecture:

Conjecture 1. For all positive integers n,

sign f (n)= sign cos
(
(n+ 1) arctan(2π)

)
. (14)

Equivalently, for every positive integer n,

sign
[ n+1∑

j=0

(−1) j
(

n+ 1
2 j

)
(2π)2 j

]

= sign
[
−(e− 1)n+1n! +

n∑
k=0

(e− 1)n−k
k∑

j=0

(−1) j
(

k
j

)
(k+ 1− j)n

]
. (15)

Conjecture 1 is easy to check numerically. The main difficulty in actually proving
the conjecture is to determine how often (13) leads to a good approximation of
f (n). The reason that (14) might fail is because (n+1) arctan(2π) is unreasonably
close to a half-integer multiple of π . This would cause the first term of the infinite
series in (12) to nearly vanish, in which case higher-order terms would dominate
and the estimate in (13) would fail. Thus we need to rule out the possibility that
(n + 1) arctan(2π) is unreasonably close to a half-integer multiple of π . This is
equivalent to ruling out the possibility that arctan(2π)/π is unreasonably well
approximated by rational numbers. Before proceeding, we note that arctan(2π)/π
is trivially irrational, because otherwise we would have an identity of the form
2π = tan(pπ/q) for some (p, q) ∈ Z2, contradicting the transcendence of π .

Lemma 2. Equation (14) is true for any positive integer n which satisfies∣∣cos
(
(n+ 1) arctan(2π)

)∣∣> 2.6
1.98n+1 . (16)

Proof. First, rewrite (12) as

f (n)
n!
= 2

cos
(
(n+ 1) arctan(2π)

)
(1+ 4π2)(n+1)/2 + 2

∞∑
k=2

cos
(
(n+ 1) arctan(2πk)

)
(1+ 4π2k2)(n+1)/2 .

If the first term on the right dominates, then it follows easily that

sign
f (n)
n!
= sign

2 cos
(
(n+ 1) arctan(2π)

)
(1+ 4π2)(n+1)/2 ,
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and this is equivalent to Conjecture 1. Thus we need to prove∣∣∣∣2 cos
(
(n+ 1) arctan(2π)

)
(1+ 4π2)(n+1)/2

∣∣∣∣> ∣∣∣∣2 ∞∑
k=2

cos
(
(n+ 1) arctan(2πk)

)
(1+ 4π2k2)(n+1)/2

∣∣∣∣. (17)

Equation (16) easily implies that∣∣∣∣2 cos
(
(n+ 1) arctan(2π)

)
(1+ 4π2)(n+1)/2

∣∣∣∣> 5.2
1.98n+1(1+ 4π2)(n+1)/2 >

5.2
12.59n+1 . (18)

On the other hand, by the triangle inequality∣∣∣∣2 ∞∑
k=2

cos
(
(n+ 1) arctan(2πk)

)
(1+ 4π2k2)(n+1)/2

∣∣∣∣≤ 2
∞∑

k=2

1
(1+ 4π2k2)(n+1)/2

<
2

(1+ 16π2)(n−1)/2

∞∑
k=2

1
1+ 4π2k2

<
5.2

(1+ 16π2)(n+1)/2 <
5.2

12.6n+1 . (19)

Thus combining (19) and (18) shows that∣∣∣∣2 cos
(
(n+ 1) arctan(2π)

)
(1+ 4π2)(n+1)/2

∣∣∣∣− ∣∣∣∣2 ∞∑
k=2

cos
(
(n+ 1) arctan(2πk)

)
(1+ 4π2k2)(n+1)/2

∣∣∣∣
>

5.2
12.59n+1 −

5.2
12.6n+1 > 0,

and (17) follows immediately. Therefore Conjecture 1 is true whenever n is a
positive integer for which (16) holds. �

It is typically very tricky to determine how well a particular number θ can be
approximated by rational numbers. We say that θ has irrationality measure µ if µ
is the smallest real number such that∣∣∣∣θ − p

q

∣∣∣∣> 1
qµ

for all but finitely many pairs (p, q)∈Z2 with q>0. The Thue–Roth–Siegel theorem
guarantees that µ= 2 whenever θ is algebraic and irrational [Roth 1955]. An easy
consequence of this theorem is that θ can never be algebraic and have irrationality
measure greater than 2. The typical method for proving that particular numbers
are transcendental is to construct infinite sequences of rational numbers which
approximate them too well. Liouville gave the first examples of transcendental
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numbers in 1851 [Niven 1956, p. 93]. He proved that numbers like

θ0 =

∞∑
n=1

1
10n!

are always transcendental. Notice that if we set pN =
∑N

n=1 10N !−n! and qN = 10N !,
then it is easy to show that ∣∣∣∣θ0−

pN

qN

∣∣∣∣≤ 2

q N+1
N

.

Given any k> 0, this allows us to construct infinite sequences of rational numbers so
that |θ0− p/q|< 1/qk . Numbers with this property are called Liouville numbers and
are said to have infinite irrationality measure. While a simple counting argument
shows that almost all numbers are irrational, the set of Liouville numbers has
measure zero inside the irrational numbers. Irrational numbers typically have
finite irrationality measures; it is known that π has irrationality measure at most
7.6063 [Salikhov 2008], and log 2 has irrationality measure at most 3.57455391
[Marcovecchio 2009].

Theorem 3. Assume that arctan(2π)/π has finite irrationality measure. Then
Conjecture 1 is true for n sufficiently large.

Proof. Assume that (16) fails for some integer n. Then we have

2.6
1.98n+1 ≥

∣∣cos
(
(n+ 1) arctan(2π)

)∣∣= ∣∣sin
(
(n+ 1) arctan(2π)− π

2 −π j
)∣∣

for any integer j . Select j so that z ∈ [−π/2, π/2], where z is the argument of the
sine function. Elementary estimates show that |sin z| ≥ 2|z|/π . Thus

2.6
1.98n+1 ≥

2
π

∣∣∣∣(n+ 1) arctan(2π)− π
2
−π j

∣∣∣∣,
and rearranging gives

1.3
(n+ 1)1.98n+1 ≥

∣∣∣∣arctan(2π)
π

−
2 j + 1

2(n+ 1)

∣∣∣∣. (20)

If arctan(2π)/π has finite irrationality measure, then (20) can only hold for finitely
many values of n. We conclude that (16) holds for n sufficiently large, which
implies that Conjecture 1 is also true for n sufficiently large. �
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