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We consider the second-order integrodifferential boundary value problem

+

{v(y)g(y) —Jo T k(x)g(x)dx[D(»)g' ()] = p(y) for y =0,
g'(0)=0, g(+00) =0,

arising from the kinetic theory of dusty plasmas, and we provide information

on the existence and other qualitative properties of the solution that have been

essential in the numerical investigation.

1. Introduction

In this paper we present an analytical study of a particular class of nonlinear
integrodifferential equations given by

{v(y)g(y) — [ k(x)g(x) dx[D(»)g' ()] = p(y) for y >0,
g'(0)=0, g(+00)=0,

that is, a second-order boundary value problem on the half-line where the coefficients
of the derivatives of the unknown function depend on the function itself by means
of an integral over the semiaxis. This kind of problem arises from important
applications such as kinetics of plasma, population dynamics and thermodynamical
equilibrium [Laitinen and Tiihonen 1998; Ratynskaia et al. 2007; Ricci et al. 2001;
de Angelis et al. 2006; Takeuchi et al. 2007; Cannon and Galiffa 2008; 2011;
Junghanns et al. 2014]. However, the above mentioned dependence makes it
difficult to approach both from an analytical and a numerical point of view.

The aim of the present investigation is a theoretical analysis of problem (1.1),
which provides useful information about the solution itself and represents an essen-
tial preparation for the numerical approach to the problem [Basile et al. 2012].

(1.1)
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A complete analysis of some related problems has been performed in [Cannon
and Galiffa 2008; 2011]. The problems taken into account in such papers are of the

type
1
« ( / ¢(x) dx)g”(y) — ). (12)
0

1
o (/0 g(x) dX)g”(y) +(g(y)*t =0, (1.3)

where 0 < y < 1, g(0) and g(1) are given, 7 is a nonnegative integer, and «
is a given function. Although these problems contain the same peculiarity as
problem (1.1), there are some different characteristics (for example, the function o
in (1.2) and (1.3), the nonlinearity gz’H'1 in (1.3), and the presence of g’ and the
infinite domain of integration in (1.1)). Because of these differences, the existence
and uniqueness results obtained in [Cannon and Galiffa 2008; 2011] cannot be
directly applied to our case, and a specific analysis is carried out in the following
sections. First we set

+o00
0= [ kg s
and rewrite (1.1) as

{V(y)g(y) —q[D()g' WM =p(y). y=0,
g'(0)=0, g(400)=0.

Of course the solution of (1.4) depends on ¢, and when we want to underscore this
dependence we will use the notation g(y, ¢) instead of g(y). In Section 2 we will
examine problem (1.4), taking ¢ > 0 as a fixed parameter, and report results about
existence, uniqueness, positiveness, regularity and boundedness of the solution.
This section contains an elaboration of known results (see, for example, [Granas
et al. 1978; 1986]) and will serve the investigations on the complete problem (1.1)
carried out in Section 3, where we prove the existence of a nonnegative solution
g that is uniformly bounded together with its derivatives. The properties of the
solutions of (1.1) reported in that section are helpful in the comprehension of the
problem itself and its numerical analysis.

1.4)

2. Analysis of the solution of problem (1.4)

In this section we consider ¢ fixed and positive so that our equation reduces to a
classical Sturm—Liouville boundary value problem. We report some results on the
existence and the uniqueness of the solution g(y) of problem (1.4) along with the
analysis of other useful properties such as the sign of g and the boundedness of

g2(»). g'(y) and g"(y).
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In order to make the aim of this paper clear, we want to specify that most
of the results reported here are already known in the literature (and this will be
evident throughout). However an effort has been made to fit them into the form of
problem (1.4) in order to prepare the basis for the analysis of problem (1.1), which
will be performed in the following section.

From now on we will consider boundary value problems of the kind (1.4) with
g positive and fixed, and we make the following assumptions on the involved
functions:

(1) D e CY([0,4+00)), v, p e C([0, +00)),
(2) 0 < Dint = D(p) = Dsyp, y =0,

(3) 0 <supy>q |D'(y)/D(y)| < +o0,

4) 0 < vins S V(Y) < Vsup, ¥ =0,
$)0=p(y)=P,y=0,

©) fo p(»)dy < +o0,

(7) limy— 400 p(y) =0.

Theorem 2.1. Assume (1)—(7) are satisfied. Then for any q > 0, the boundary value
problem (1.4) has a unique nonnegative solution g € C2([0, +00)).

Proof. Following a standard procedure (see, for example, the proof of Theorem 2.2
in [Granas et al. 1986]), starting from the solutions g, of

{V(y)gn(y) —q[D(g, (Y] = p(y) for0<y<nneN,
£,(0)=0, gu(n)=0
and applying inductively the Ascoli—-Arzela theorem we get the existence of a

solution g € C2([0, +00)) of (1.4) satisfying only the first boundary condition.
Then using hypotheses (2) and (4), we set

m := (¢ Dintvint) /2,

and consider the function [Agarwal and O’Regan 2001]

1 _m f)’ ds +oo _m f‘f ds ¥ mff ds
w(y) = z—e a7/0 D / p(r)e” a0 D dt +[ p(r)ea o Dl dr
2m 0 0

+ 1 mede(s)/«Jroo (1) —mfor‘Dd(S)d
—e 4 s p‘[e q s T.
2m y

Hence, proceeding as in the proof of Theorem 1.8.3 in [Agarwal and O’Regan
2001], it can be proved that

0<g(»)=w(y) and lim w(y)=0,
y—>+o00
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which ensures that the second boundary condition in (1.4) is satisfied too. Finally,
the uniqueness of the solution of problem (1.4) can be proved by standard arguments
showing that the homogeneous problem has only the trivial solution. O

In order to show the boundedness of g(») and its first and second derivatives,
we note that hypotheses (2)—(5) allow us to define the constants

D’ D’
D llo D

vl M i3 g Pl IR

) ‘qDooV

where, as usual, || f(lco = supy>g |/ (»)|. Moreover, we set

ro := ‘EH , (2.6)
. -E 2Aro _ 1/2

=[S 1)] , 2.7)
_|D v

n=|plon ol 1 Bl .8

Theorem 2.2. Under the assumptions (1)—(7), for any fixed q¢ > 0, the unique
solution g(y) of (1.4) satisfies the bounds

g(y)<ro fory=0, (2.9)
g’ <r fory=0, (2.10)
"D <ry fory=>0. (2.11)

Proof. The boundedness of g follows by observing that g(+o00) = 0 and that g
cannot have a local maximum point y > 0 such that g(y) > rg (see, for example,
[Agarwal and O’Regan 2001, page 18]). The remaining part of the proof is based
on an idea developed in [Granas et al. 1978, page 71]. Therefore, we give here only
a brief sketch of it. From (1.4) and hypothesis (2), we have

D’(y)g/(y) v(») 0y )_ ()
D(y) ¢D(»)*® D(y)

Then we deduce the Bernstein growth condition

g'(y)=- for y > 0. (2.12)

g" ()| = Ag” () + B fory =0,
which, multiplying both sides by 24|g’(y)|, gives

242" (»)g" (y)
Ag’*(y)+ B

with A and B defined in (2.5).

<24|g'(y)| fory=0, (2.13)
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Observe that any y > 0 such that g’(y) # 0 belongs to an interval [a, b] where
g’ does not change sign and g’(a) = 0. Hence, (2.10) follows by integrating (2.13)
from a to y and by recalling that 0 < g(y) < ro forall y > 0.

Finally, from (2.9), (2.10), (2.12) and the hypotheses (2)—(5), we easily obtain
(2.11). d

Remark. The positiveness of the solution g arises from the positiveness of the
right side p in (1.4). However, if no information on the sign of p is given, we can
still say that a unique solution g(y) of the problem (1.4) exists, and (2.9) becomes

g <ro fory=0. (2.14)
Corollary 2.3. Assume (1)—(7) hold. Then limy,_ 4o g'(y) = 0.

Proof. From Theorem 2.2 we know that g” is bounded for any fixed value of
the parameter ¢; hence, g’ is uniformly continuous for all y > 0. From here and
Barbalat’s lemma [Sun 2009], we have limj_ 4 5 g'(y)=0. O

We now prove other useful properties of g. Denote by BC() [0, +00) the space of
functions f(x) with f)(x), j =0, 1,...,r, bounded and continuous on [0, +0c0).
Then observe that if g(3) is a solution of (1.4) it satisfies (2.12); hence, the proof
of the following theorem is straightforward.

Theorem 2.4. Let r € N. In addition to (1)—~(7), assume p,v € BC"[0, +00)
and D € BC" 10, 4+00). Then, for any fixed q > 0, the solution g of (1.4) is in
BC” T2[0, +00). Moreover, for any ¢ > 0, the derivatives g (y), j =0,....r,
are uniformly bounded with respect to q € [q, +00).

All these properties together with the uniform continuity of g as function of ¢,
that we are going to prove in the following section represent the basic material to
deal with the difficult task of proving the existence of the solution of the original
problem (1.1).

3. Existence of the solution of problem (1.1)

In this section, the focus of our attention will be the model (1.1), whose analysis
requires all the results already described for (1.4). Whereas the results in Section 2
for problem (1.4) with fixed ¢ > 0 are mainly obtained by elaborations of existing
studies, the investigations we start in this section represent new contributions.

In Section 2, we showed that for any ¢ fixed and positive there exists a unique
solution g(y, ¢) of (1.4). Thus, the function

400
F(g):=¢q —/ k(x)g(x,q)dx forg >0 (3.15)
0

is well defined, where the kernel k is assumed to satisfy



72 MARIATERESA BASILE, WOULA THEMISTOCLAKIS AND ANTONIA VECCHIO

(®) k € C2([0, +00)),

) f0+°° k(x)dx < 400,
(10) k(x) = 0 for x € [0, +00).
To prove the existence of a solution of (1.1), we show that there exists a solution of
the equation F(g) = 0. Specifically, if F is continuous and there exist two positive
values a and b such that F(a)F(b) < 0, then by the intermediate value theorem,

equation F(¢) = 0 has at least one solution ¢* and the corresponding function
g(y,q?*) is the solution of (1.1).

Theorem 3.1. Assume that hypotheses (1)—(10) hold. Then F(q) is uniformly
continuous on [§, +00), for all ¢ > 0.

Proof. Let us prove that g(y, ¢) is uniformly continuous with respect to ¢ > ¢ and
y > 0; that is, for all € > 0 there exists § > 0 such that

lg(y.91) —g(y.92)| <€ Vqi.q2 such that |g; —g>| <8 and Vy > 0. (3.16)

Let g1, g> > ¢ be arbitrarily fixed. Then the functions g(y, ¢1) and g(y, ¢») satisty,
respectively,

{v(y)g(y, q1) = qi[D) g (y,q1)] + p(y) for y >0, 3.17)
g'(0,41) =0, g(400,q1) =0,
{v(y)g(y,qz) = 2[D()g' (7. 42)] + p(y) for y >0, s
g'(0,42) =0, g(+00,492) =0,

Subtracting both sides of (3.17) and (3.18), we see that

e(y)=2g(r.q1)—g(.q2)

is a solution of

v(»)e(y) = qi[D(y)e’ W] + (g1 —g)[D(¥)g'(y.q2)] for y >0,
e’(0) =0, e(+00) =0,

Hence, thanks to (2.14) the inequality

D(1 ' (. q2)]"
0] < lg1 — ] sup L 2DIE o))

3.19
y>0 v(y) G-19)

holds, where, by using hypotheses (2) and (4) and Theorem 2.4, it comes out that

DS (. q2)] |
p
y>0 v(y)

< M, (3.20)
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with M, independent of the parameters g1, g, > ¢. Thus, we conclude that for all
€ > 0, there exists 6c = €/ M > 0 such that (3.16) holds. The desired result on F'
is achieved by noting that from (2.9) and hypotheses (9) and (10), the improper
integral |, 0+°° k(x)g(x,q) dx is uniformly convergent with respect to ¢ and we are
allowed to take the limit under the integral. O

In the following theorem, we find an interval [a, b] where the function F changes
its sign. In order to provide the explicit values for & and b, the additional hypotheses
(11)—(14) are required.

Theorem 3.2. Let F(q) be the function defined in (3.15), assume that hypotheses
(1)-(10) hold, and that

(11) v e C?([0, +00)),
(12) W' ()| <c¢ forall y >0,

(13) |K'(y)| <ky forall y>0,

/ /
(14) fo+°°‘[(%) D(y)] ’dy =Cr <00, [ () dy =0y < 0.
Then there exist a, b € (0, +00) such that F(a)F(b) < 0.

Proof. By (1.4) we have
+o00
Fgy=q- [ k@etrgdx

_ T2 () ) / T ke (x)
—q(l—/o K0 (D(oyg'x.0) dx)—/o K0 vy a

Integrating twice by parts, by (11), (13) and Corollary 2.3 we get
+o0
k(x) / /
——2(D(x X, dx
| 5 b o)

’ +oo / !
~[%zopo+ [(5) o | etr.gra.
Thus
F(q) < q[1+ro(Co + C1)] - Ca, (3.21)

where rg and C;, C, are defined, respectively, in (2.6) and (14), and

_|[kY
Co= ‘[;] (0)‘D(0).
By (3.21), F(q) < 0 for any ¢ < a with

1 4re(Co+Cy)’

(3.22)
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Finally observe that from (2.9) and hypothesis (10) we have

+o00 +o00
F(g) :q—/o k(x)g(x,q)dx Zq—rofo k(x)dx, (3.23)
which gives F(g) > 0 for any ¢ > b with
+o00
b:=rg / k(x)dx, (3.24)
0
completing the proof. O

From Theorem 3.2, by using the intermediate value theorem, we get our main
result.

Theorem 3.3. Assume that (1)—(14) hold. Then there exists at least one solution g
of problem (1.1) such that

+o0
a< / k(x)g(x)dx <b,
0

where a and b are defined in (3.22) and (3.24).

Observe that this theorem requires only the continuity of F, and it gives the
existence but does not assure the uniqueness of the solution of (1.1). By exploiting
the uniform continuity of F the following uniqueness result can be proved.

Theorem 3.4. Assume that (1)—(10) and
(15) Mollk]ly =1
hold, where My is given in (3.20). Then problem (1.1) has a unique solution.

Proof. The statement follows easily from (3.19), (15) and the Banach fixed point
theorem. O

Since a solution of (1.1) is a solution of (1.4), it satisfies all the properties reported
in Section 2. In particular, under the hypotheses of Theorem 3.2 and from (2.6), we
define

_ /2
D' |~ 21D/ Dllsoro 1
ra={[1+ (|25 ] o+ 15115 e DI
|2 v A
r2a= |5 et | a5l 1 5

Thus we have for y > 0

0<g(y)<ro, lgWI=rla, |g"W)I=r2a.

Compared to (2.6)—(2.8) these bounds are independent of ¢ and they turn to be
useful in the numerical analysis of the problem that we carried out in [Basile et al.
2012].
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