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Let n1, n2, n3 be positive integers with gcd(n1, n2, n3)= 1. For S = 〈n1, n2, n3〉

nonsymmetric, we give an alternative description, using elementary techniques, of
a minimal presentation of its homogenization S̄=〈(1, 0), (1, n1), (1, n2), (1, n3)〉.
As a consequence, we show that this minimal presentation is unique. We recover
Bresinsky’s characterization of the Cohen–Macaulay property of S̄ and present a
procedure to compute all possible catenary degrees of the elements of S̄.

Introduction

An affine semigroup is a finitely generated submonoid of Nk for some positive
integer k, where N stands for the set of nonnegative integers. Every affine semigroup
admits a unique minimal generating system (see Exercise 6 in [Rosales and García-
Sánchez 1999, Chapter 3]). Let S be an affine semigroup and let A = {n1, . . . , ne}

be its unique minimal generating system. Then the monoid morphism ϕ : Ne
→ S

induced by ei 7→ ni (ei stands for the i-th row of the e × e identity matrix) is
an epimorphism. Therefore S is isomorphic as a monoid to Ne/ kerϕ, where
kerϕ={(a, b)∈Ne

×Ne
|ϕ(a)=ϕ(b)} is the kernel congruence of S. A generating

set for kerϕ is known as a presentation for S, and it is a minimal presentation if
it is minimal with respect to set inclusion (or equivalently, if it is minimal with
respect to cardinality in view of [Rosales and García-Sánchez 1999, Corollary 9.5],
which is finite). The monoid S is said to be uniquely presented if it has a unique
minimal presentation (see [García-Sánchez and Ojeda 2010]).

The monoid morphism ϕ is sometimes called the factorization morphism as-
sociated to S. This is because for s ∈ S, the set Z(s) = ϕ−1(s) corresponds with
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the set of factorizations of s if we identify the free monoid on A with Ne (the
elements in A are sometimes called the atoms or irreducible elements of S). The
set of factorizations of s has finitely many elements (see, for instance, [Rosales
and García-Sánchez 1999, Lemma 9.1]), and corresponds to the set of nonnegative
integer solutions of a system of linear Diophantine equations x B = s (where B
denotes the matrix whose rows are n1, . . . , ne). An element s ∈ S is said to have
unique expression if the cardinality of Z(s) is one. If every element has unique
expression, the monoid is factorial; in this case, kerϕ is trivial and S is isomorphic
to Ne.

For a factorization x = (x1, . . . , xe) ∈ Z(s), its support is the set

supp(x)= {ni | xi 6= 0},

that is, it is the set of atoms involved in the factorization x . For a given factorization
x = (x1, . . . , xe) ∈ Z(s), its length is |x | = x1+ · · ·+ xe. The set of lengths of s is
L(s)= {|x | | x ∈ Z(s)}. When the set of lengths of all the elements have cardinality
one, then the monoid is said to be half-factorial.

A minimal presentation of S can be computed as described in [Rosales and
García-Sánchez 1999, Chapter 9]. We briefly explain this procedure. For s ∈ S,
define the graph Gs whose vertices are

V(Gs)= {a ∈ A | s− a ∈ S}

(the atoms “dividing” s), and edges

E(Gs)= {ab | a, b ∈ A and s− (a+ b) ∈ S}.

On Z(s) define the relation R as follows: x R y if there exists x1, . . . , xk ∈ Z(s)
such that

• x1 = x , xk = y, and

• for every i ∈{1, . . . , k−1}, xi ·xi+1 6=0 (or equivalently, supp(xi )∩supp(xi+1)

is not empty).

Proposition 9.7 in [Rosales and García-Sánchez 1999] states that there is a bijective
map between the set of R-classes of Z(s) and the set of nonconnected components
of Gs : for every connected component C of Gs , there exists x ∈ Z(s) whose support
is contained in the vertices of C ; the map sends C to the R-class containing x .
Let R1, . . . , Rt be the different R-classes of Z(s), and take xi ∈ Ri for every i .
Define ρs = {(x1, x2), . . . , (xt−1, xt)} (actually, one can choose any set of pairs
corresponding to the edges of a spanning tree of the complete graph with vertices
{x1, . . . , xt }; if t = 1, then ρi =∅). Then

ρ =
⋃
s∈S

ρs
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is a minimal presentation of S. This union in fact ranges only over the elements
s ∈ S such that Gs is not connected. These elements are called Betti elements of S,
and the set of Betti elements of S will be denoted by Betti(S).

Let k be a field. The semigroup ring associated to S is k[S] =
⊕

s∈S kt s , where
t is an indeterminate. Addition is performed componentwise, while the product is
defined by distributivity and the rule t s t s′

= t s+s′ . The monoid morphism ϕ has a
ring analog ϕ̄ : k[x1, . . . , xe] → k[S], which is the morphism induced by xi 7→ tni ,
i ∈ {1, . . . , e}, where x1, . . . , xe are unknowns. Its kernel IS is generated by{

xa1
1 · · · x

ae
e − xb1

1 · · · x
be
e

∣∣ ((a1, . . . , ae), (b1, . . . , be)
)
∈ kerϕ

}
.

Indeed, σ is a minimal presentation if and only if{
xa1

1 · · · x
ae
e − xb1

1 · · · x
be
e

∣∣ ((a1, . . . , ae), (b1, . . . , be)
)
∈ σ

}
is a minimal generating system of IS (see [Herzog 1970]).

Let S be a numerical semigroup, that is, a submonoid of N with finite complement
in N (or equivalently, gcd(S)= 1). It is easy to show that S admits a unique minimal
generating set with finitely many elements, and thus every numerical semigroup is
an affine semigroup. The cardinality of the minimal generating set of S is known
as the embedding dimension of S. The largest integer not belonging to S is the
Frobenius number of S, denoted F(S). The numerical semigroup S is symmetric if
for every integer z not in S, F(S)− z ∈ S.

Let S be a numerical semigroup minimally generated by {n1, n2, n3}, where
n1 < n2 < n3. Define

ci =min
{
k ∈ N \ {0} | kni ∈ 〈n j , nk〉

}
,

where {i, j, k} = {1, 2, 3}. Thus there exists ri j ∈ N such that

ci ni = ri j n j + riknk .

Also, we have Betti(S) = {c1n1, c2n2, c3n3} [Rosales and García-Sánchez 2009,
Example 8.23]. If S is not symmetric, then these ri j are unique (see [Herzog 1970])
and

σ =
{(
(c1, 0, 0), (0, r12, r13)

)
,
(
(0, c2, 0), (r21, 0, r23)

)
,
(
(0, 0, c3), (r31, r32, 0)

)}
is essentially the unique minimal presentation of S (that is, if τ is any other minimal
presentation and (a, b) ∈ τ , then either (a, b) ∈ σ or (b, a) ∈ σ ). Moreover, we
have

Z(c1n1)= {(c1, 0, 0), (0, r12, r13)},

Z(c2n2)= {(0, c2, 0), (r21, 0, r23)},

Z(c3n3)= {(0, 0, c3), (r31, r32, 0)}.
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We also have the following relations.

• Since c1n1 = r12n2+ r13n3, we have c1n1 > r12n1+ r13n1. Hence

c1 > r12+ r13,

and we set λ= c1− r12− r13.

• Since c3n3 = r31n1+ r32n2, we have c3n3 < r31n3+ r32n3. Hence

c3 < r31+ r32,

and we set ν = r31+ r32− c3.

• ci = r j i + rki for every {i, j, k} = {1, 2, 3} [Rosales and García-Sánchez 2009,
Lemma 10.19].

Define n̄i = (1, ni ), i ∈ {1, 2, 3} and n̄0 = (1, 0). Set S = 〈n̄0, n̄1, n̄2, n̄3〉, which
we call the homogenization of S since IS corresponds with the homogenization of
IS (see [Cox et al. 2007, Chapter 8]; with the notation introduced there, IS = I h

S ).
The ring k[S] is the coordinate ring of a monomial curve on P3.

We start with an example that illustrates Bresinsky’s algorithm [1984] for com-
puting a minimal presentation (and thus the Betti elements) of S. We are going
to make use of the Apéry set associated to an element in S. Let m ∈ S \ {0}. The
Apéry set of m in S is defined as

Ap(S,m)= {s ∈ S | s−m 6∈ S},

and has exactly m elements, one for each congruent class modulo m. (See [Rosales
and García-Sánchez 2009, Chapter 1]; clearly, this definition applies to any monoid.
We will use it later for S, though in the general case this set might have infinitely
many elements.)

Example 1. Let Sk be the numerical semigroup minimally generated by

〈10, 17+ 10k, 19+ 10k〉, k ∈ N.

In this setting, n1 = 10, n2 = 17+ 10k, and n3 = 19+ 10k. This semigroup is not
symmetric since its minimal generators are pairwise coprime (see [Rosales and
García-Sánchez 2009, Chapter 9]).

First, we compute the values of c1, c2, c3, λ, δ, ν and ri j for all k. Let us denote
them with the superindex k. A minimal presentation for S = S0 is{(

(4, 1, 0), (0, 0, 3)
)
,
(
(3, 0, 2), (0, 4, 0)

)
,
(
(7, 0, 0), (0, 3, 1)

)}
,

and thus we know these values for k = 0. Also it is easy to check that

Ap(S, 10)= {0, n2, 2n2, 3n2, n3, 2n3, n2+ n3, 2n2+ n3, n2+ 2n3, 2n2+ 2n4}
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(one can use the package numericalsgps [Delgado et al. 2013] to do these com-
putations).

Now let k ≥ 1.

• ck
1 = 7+ k4. Observe that (7+ 4k)10= 3(17+ 10k)+ (19+ 10k), which gives

us ck
1 ≤ 7+ 4k. If x10 = a(17+ 10k)+ b(19+ 10k), with 0 6= x, a, b ∈ N, then

we have x10= a17+ b19+ (a+ b)k10. We can deduce that if x ≤ (a+ b)k, then
a17+b19+(ak+bk−x)10=0, and this implies that a=0, b=0 and x=0, and this
is impossible. If x > (a+b)k, then (x− (a+b)k)10= a17+b19. This shows that
x− (a+b)k ≥ c0

1 = 7. Hence x ≥ 7+ (a+b)k, so it remains to show that a+b≥ 4.
So assume to the contrary that a+ b ≤ 3. Clearly a17+ b19= (x − (a+ b)k)10
and x − (a+b)k ≥ 0 imply that a17+b19 6∈Ap(S, 10). According to the shape of
Ap(S, 10), this forces a = 0 and b = 3. However 3× 19 6= (x − 3k)10 for any k.
This proves that x ≥ 7+ 4k, and consequently ck

1 = 7+ k4. Since Sk is uniquely
presented, we also have r k

12 = 3 and r k
13 = 1, whence λ= 3+ 4k.

• ck
2 = 4. Note that 4(17+ 10k)= (3+ 2k)10+ 2(19+ 10k). Assume that y(17+

10k)=a10+b(19+10k) for some 0 6= y, a, b∈N. Then y17= (a+bk−yk)10+b19.
If a + bk − yk ≥ 0, this implies that y ≥ c0

2 = 4. For a + bk − yk < 0, we get
b19= y17+(yk−a−bk)10. Thus b≥ c0

3 = 3. It follows that y> a/k+b> b≥ 3,
and thus y ≥ 4. Hence ck

2 = 4. Also we obtain that r k
21 = 3+ 2k, r k

23 = 2 and
δ = 1+ 2k.

• ck
3 = 3. We already know that ck

3 = r k
13+ r k

23 = 1+ 2= 3.

Hence, we have

(7+ 4k)n1 = 3n2+ n3, 4n2 = (3+ 2k)n1+ 2n3, 3n3 = (4+ 2k)n1+ n2,

and a minimal presentation for Sk is{(
(7+ 4k, 0, 0), (0, 3, 1)

)
,
(
(0, 4, 0), (3+ 2k, 0, 2)

)
,
(
(0, 0, 3), (4+ 2k, 1, 0)

)}
.

If we apply Bresinsky’s algorithm to these equalities, from 3n3 = (4+ 2k)n1+ n2

and 4n2 = (3+ 2k)n1+ 2n3 (4+ 2k ≥ 3+ 3k) we obtain 5n3 = n1+ 5n2. We now
proceed with 4n2 = (3+ 2k)n1+ 2n3 and 5n3 = n1+ 5n2, getting

(5+ 4)n2 = (3+ 2k− 1)n1+ (5+ 2)n3.

Then we continue with (5+4)n2 = (3+2k−1)n1+ (5+2)n3 and 5n3 = n1+5n2,
obtaining (2× 5+ 4)n2 = (3+ 2k− 2)n1+ (2× 5+ 2)n3. By repeating these steps
we obtain the general term (5i + 4)n2 = (3+ 2k− i)n1+ (5i + 2)n3, and we must
stop whenever 5i + 4 ≥ 3+ 2k − i + 5i + 2, or equivalently i ≥ 2k + 1. Hence
we need 2k+ 1 steps to end after the initial step 5n3 = n1+ 5n2, which together
with the three initial relations yield 2k+ 5 relators in a minimal presentation of Sk .
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Observe that each of these relations come from a different element in Sk , and thus
we also deduce that # Betti(Sk)= 2k+ 5 for all k ∈ N.

In particular this also shows that even if the cardinality of a minimal presentation
of a nonsymmetric embedding-dimension-three numerical semigroup S is always
three, the cardinality of a minimal presentation of S can be arbitrarily large.

Alternatively, we can use Theorem 4 in [Cox et al. 2007, Chapter 8] to compute
a presentation of S from a minimal presentation of S.

Example 2. Let S = 〈10, 17, 19〉. A minimal presentation for S is{(
(4, 1, 0), (0, 0, 3)

)
,
(
(3, 0, 2), (0, 4, 0)

)
,
(
(7, 0, 0), (0, 3, 1)

)}
.

Hence, a minimal generating system of IS is{
x4

1 x2− x3
3 , x3

1 x2
3 − x4

2 , x7
1 − x3

2 x3
}
.

We compute a Gröbner basis of IS with respect to the graded lexicographic ordering
and obtain{

x4
1 x2− x3

3 , x3
1 x2

3 − x4
2 , x7

1 − x3
2 x3, x1x5

2 − x5
3 , x2

1 x7
3 − x9

2 , x14
2 − x1x12

3
}
.

Hence{
x4

1 x2− x2
0 x3

3 , x3
1 x2

3 − x0x4
2 , x7

1 − x3
0 x3

2 x3, x1x5
2 − x0x5

3 , x2
1 x7

3 − x9
2 , x14

2 − x0x1x12
3
}

is a generating system for IS . By Herzog’s correspondence,{(
(0, 4, 1, 0), (2, 0, 0, 3)

)
,
(
(0, 3, 0, 2), (1, 0, 4, 0)

)
,
(
(0, 7, 0, 0), (3, 0, 3, 1)

)
,(

(0, 1, 5, 0), (1, 0, 0, 5)
)
,
(
(0, 2, 0, 7), (0, 0, 9, 0)

)
,
(
(0, 0, 14, 0), (1, 1, 0, 12)

)}
is a presentation of S, though not a minimal presentation, since we saw in Example 1
that the cardinality of a minimal presentation is 5.

If we use the graded inverse lexicographic ordering instead, we obtain{
x4

1 x2− x3
3 , x3

1 x2
3 − x4

2 , x7
1 − x3

2 x3, x1x5
2 − x5

3 , x2
1 x7

3 − x9
2
}
,

which yields a minimal presentation for S:{(
(0, 4, 1, 0), (2, 0, 0, 3)

)
,
(
(0, 3, 0, 2), (1, 0, 4, 0)

)
,
(
(0, 7, 0, 0), (3, 0, 3, 1)

)
,(

(0, 1, 5, 0), (1, 0, 0, 5)
)
,
(
(0, 2, 0, 7), (0, 0, 9, 0)

)}
.

The Gröbner basis computations in this example have been performed with Maxima
(http://maxima.sourceforge.net).

http://maxima.sourceforge.net
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In the first section we describe the Betti elements of S and its unique minimal
presentation. The second section recovers a test due to Bresinsky for the Cohen–
Macaulay property of S. Section 3 shows how the catenary degree of S (and thus
the homogeneous catenary degree of S) can be computed.

1. Determining the set of Betti elements

In this section we depict Betti(S), the set of elements n̄ ∈ S such that Gn̄ is not
connected, or equivalently, Z(n̄) has more than one R-class. Theorems 2.7 and
2.9 in [Li et al. 2012] determine Betti(S) just by imposing that gcd{n1, n2, n3} = 1
(notice that S is isomorphic to 〈(n3, 0), (n3 − n1, n1), (n3 − n − 2, n2), (0, n3)〉

[Rosales et al. 1998, Example 1.4]). Here we present an alternative description for
the case S = 〈n1, n2, n3〉 is a nonsymmetric embedding-three numerical semigroup,
and we obtain that in this setting S is uniquely presented.

Lemma 3. Z(c1n̄1)= {(0, c1, 0, 0), (λ, 0, r12, r13)}. In particular, the graph Gc1n̄1

is not connected.

Proof. We already know that {(0, c1, 0, 0), (λ, 0, r12, r13)} ⊆ Z(c1n̄1). So assume
that (a0, a1, a2, a3) ∈ Z(c1n̄1). Then

a0n̄0+ a1n̄1+ a2n̄2+ a3n̄3 = c1n̄1 = λn̄0+ r12n̄2+ r13n̄3,

and in particular c1n1 = a1n1+ a2n2+ a3n3, which means that

(a1, a2, a3) ∈ Z(c1n1)= {(c1, 0, 0), (0, r12, r13)}.

It follows that if (a1, a2, a3)= (c1, 0, 0), then (a0, a1, a2, a3)= (0, c1, 0, 0), and if
(a1, a2, a3)= (0, r12, r13), we get (a0, a1, a2, a3)= (λ, 0, r12, r13). �

Lemma 4. Let n̄= a0n̄0+a1n̄1 6= c1n̄1, a0, a1 ∈N. Then the graph Gn̄ is connected.

Proof. Notice that if a1 = c1, then

a0n̄0+ a1n̄1 = a0n̄0+ c1n̄1 = (λ+ a0)n̄0+ r21n̄2+ r13n̄3.

As n̄ 6= c1n̄1, a0 > 0, and we get that V(Gn̄) = {n̄0, n̄1, n̄2, n̄3}, and n̄0n̄2, n̄0n̄3,
n̄0n̄1 ∈ E(Gn̄), and thus Gn̄ is connected.

If a1 < c1, then n̄ has unique expression, since if

a0n̄0+ a1n̄1 = b0n̄0+ b1n̄1+ b2n̄2+ b3n̄3

for some b0, b1, b2, b3 ∈N, then a1n1 = b1n1+ b2n2+ b3n3. By the minimality of
c1, we deduce that b1 ≥ a1. But then 0= (b1− a1)n1+ b2n2+ b3n3, which leads
to a1 = b1, b2 = b3 = 0. Since n̄ has unique expression, the graph Gn̄ is connected.
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Finally, if a1 > c1, then a0n̄0+a1n̄1 = (a0+λ)n̄0+ (a1− c1)n̄1+ r21n̄2+ r13n̄3.
In this setting, the graph Gn̄ is K4, the complete graph on four vertices, whence
connected. �

Lemma 5. Z(νn̄0+ c3n̄3)= {(r31, r32, 0, 0), (ν, 0, 0, c3)}. In particular, the graph
Gνn̄0+c3n̄3 is not connected.

Proof. The proof goes as in Lemma 3. �

Lemma 6. For every positive integer k, we have kn̄3 6∈ 〈n̄0, n̄1, n̄2〉.

Proof. This is because n̄3 is not in the cone spanned by {n̄0, n̄1, n̄2} (which is the
cone spanned by {n̄0, n̄2}). �

Let
c′2 =min{k ∈ N \ {0} | kn̄2 ∈ 〈n̄0, n̄1, n̄3〉}.

Assume that
c′2n̄2 = γ n̄0+ r ′21n̄1+ r ′23n̄3,

with γ, r ′21, r
′

23 ∈ N.

Lemma 7. Z(c′2n̄2) = {(0, 0, c′2, 0), (γ, r ′21, 0, r ′23)}. In particular, Gc′2n̄2 is not
connected. Moreover,

(1) r ′23 6= 0,

(2) if r ′21 = 0, then

c′2 =
n3

gcd{n2, n3}
and r ′23 =

n2

gcd{n2, n3}
.

Proof. Assume that c′2n̄2 = a0n̄0+ a1n̄1+ a2n̄2+ a3n̄3 for some a0, a1, a2, a3 ∈ N.
The minimality of c′2 forces a2 = 0. If (a0, a1, a3) 6= (γ, r ′21, r

′

23), then assume
without loss of generality that a0≤γ . Then (γ−a0)n̄0+r ′21n̄1+r ′23n̄3=a1n̄1+a3n̄3.
Notice that (a1, a3) 6≤ (r ′21, r

′

23), since otherwise we would obtain

(γ − a0)n̄0+ (r ′21− a1)n̄1+ (r ′23− a3)n̄3 = 0,

and consequently (a0, a1, a3)= (γ, r ′21, r
′

23), a contradiction. Hence either a1 ≥ r ′21
and a3 < r ′23, or a1 < r ′21 and a3 ≥ r ′23. By Lemma 6, we have a1 6≤ r ′21. This
leads to a3 ≤ r ′23 and (a1−r ′21)n̄1 = (γ −a0)n̄0+ (r ′23−a3)n̄3. Hence a1 ≥ c1, and
consequently c′2n̄2 = (a0+λ)n̄0+ (a1− c1)n̄1+ r12n̄2+ (a3+ r13)n̄3. But r13 6= 0,
and we have that r12 6= 0, and this forces c′2 > r12. Hence

(c′2− r12)n̄2 = (a0+ λ)n̄0+ (a1− c1)n̄1+ r12n̄2+ r13n̄3,

contradicting once more the minimality of c′2. This shows that

Z(c′2n̄2)= {(0, 0, c′2, 0), (γ, r ′21, 0, r ′23)}.
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Observe that r ′23 6= 0, since otherwise on the one hand c′2 = γ + r ′21 ≥ r ′21, while
on the other c′2n2 = r ′21n1 < r ′21n2, which leads to c′2 < r ′21, a contradiction.

If r ′21 = 0, then c′2n2 = r ′23n3. Whenever a2n2 = a3n3 for some a2, a3 ∈ N, we
get a2n2 = a3n3 > a3n2, whence a2 > a3. So c′2n2 is the least multiple of n2 that is
a multiple of n3, and we obtain c′2 = n3/gcd{n2, n3}. �

Lemma 8. Let a0, a2 ∈ N, with a2 > c′2. Then Ga0n̄0+a2n̄2 is connected.

Proof. Set n̄ = a0n̄0+ a2n̄2.
Observe that a0n̄0+ a2n̄2 = (a0+ γ )n̄0+ r ′21n̄1+ (a2− c′2)n̄2+ r ′23n̄3, and thus

n̄0, n̄2 and n̄3 are in the same connected component (and so is n̄1 if r ′21 6= 0).
We distinguish two cases.

• If n̄1 6∈ V(Gn̄), then r ′21 must be zero and Gn̄ is connected with set of vertices
{n̄0, n̄2, n̄3}.

• If n̄1 ∈ V(Gn̄), then there must exist b0, b1, b2, b3 ∈ N, b1 6= 0, such that
n̄ = b0n̄0 + b1n̄1 + b2n̄2 + b3n̄3. If b0 + b2 + b3 6= 0, then n̄1 is in the same
component as n̄0, n̄2 and n̄3, and thus Gn̄ is connected. If b0=b2=b3=0, then
b1n̄1 = a0n̄0+ a2n̄2, which is clearly different from c1n̄1, and thus Lemma 4
asserts that Gn̄ is connected. �

Lemma 9. The only k ∈ N for which Gkn̄2 is not connected is k = c′2.

Proof. If k < c′2, then by the minimality of c′2, kn̄2 has unique expression, whence
Gkn̄2 is connected. If k > c′2, then Lemma 8 with a0= 0 and a2= k asserts that Gkn̄2

is connected. Finally, for k = c′2, Lemma 7 ensures that Gkn̄2 is not connected. �

For the rest of the discussion we need to distinguish between c2 ≥ r21+ r23 and
c2 < r21+ r23.

1.1. The case c2 ≥ r21+ r23. Under the standing hypothesis, we have

c1n̄1 = λn̄0+ r12n̄2+ r13n̄3,

c2n̄2 = δn̄0+ r21n̄1+ r23n̄3,

νn̄0+ c3n̄3 = r31n̄1+ r32n̄2,

and all the coefficients appearing in these equations are nonzero, except eventually δ.

Lemma 10. Z(c2n̄2)={(δ, r21, 0, r23), (0, 0, c2, 0)}. In particular, the graph Gc2n̄2

is not connected.

Proof. In this setting, c′2 = c2, and the proof follows from Lemma 7. �

Lemma 11. Let a0, a2 ∈ N, and let n̄ = a0n̄0+ a2n̄2. Assume that n̄ 6= c2n̄2. Then
the graph Gn̄ is connected.

Proof. The proof goes as in Lemma 4, except for the case a2 > c2 = c′2, for which
we use Lemma 8. �
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Lemma 12. Let a0, a3 ∈N. Assume that a0n̄0+a3n̄3 6= νn̄0+c3n̄3. Then Ga0n̄0+a3n̄3

is connected.

Proof. Let n̄ = a0n̄0+ a3n̄3, and assume to the contrary that Gn̄ is not connected.
Hence n̄ admits at least another expression with support disjoint to the support of
a0n̄0+ a3n̄3. This in particular means that a0 6= 0 by Lemma 6. Hence there exists
a1, a2 ∈ N such that a0n̄0+ a3n̄3 = a1n̄1+ a2n̄2.

Since a0n̄0+a3n̄3= a1n̄1+a2n̄2, we get a3n3= a1n1+a2n2. By the minimality
of c3, we have a3 ≥ c3. If a3 = c3, since Z(c3n3) = {(0, 0, c3), (r31, r32, 0)}, we
deduce a1 = r31 and a2 = r32. If follows that a0 = ν, contradicting n̄ 6= νn̄0+ c3n̄3.
Hence a3 > c3.

If a1 ≥ c1, then a0n̄0+a3n̄3 = a1n̄1+a2n̄2 = (a1−c1)n̄1+ (a2+r12)n̄2+r13n̄3.
For a1 > c1 we get that Gn̄ is connected. If a1 = c1, then a2 cannot be zero, since
otherwise c1n1=a3n3, and c1n1 does not admit a factorization of the form (0, 0, a3).
Again, in this setting we obtain that Gn̄ is connected, a contradiction.

In the same way we obtain a contradiction if a2 ≥ c2. Hence a1 < c1 and a2 < c2.
As a3n3 = a1n1+ a2n2 and σ is the unique minimal presentation of S, it can be
deduced that (r31, r32) < (a1, a2) (with the usual partial order; the equality does
not hold since otherwise we would obtain c3 = a3). Hence

a0n̄0+ a3n̄3 = a1n̄1+ a2n̄2 = νn̄0+ (a1− r31)n̄1+ (a2− r32)n̄2+ c3n̄3.

This forces Gn̄ to be connected (even if a0 = 0; recall that {n0} is not a connected
component), a contradiction. �

Theorem 13. Let S be a nonsymmetric embedding-dimension-three numerical
semigroup, with c2 ≥ r21+ r23. Let n̄ ∈ S. The graph Gn̄ is not connected if and
only if

n̄ ∈ {c1n̄1, c2n̄2, νn̄0+ c3n̄3}.

Proof. The proof follows from Lemmas 3 to 12. �

Notice also that this result follows as a consequence of Bresinsky’s algorithm,
since in this setting, as c2 ≥ r21+ r23, the procedure stops in the first step, and then
we only have to homogenize the relations.

Example 14. Let S = 〈10, 13, 19〉. The unique minimal presentation for S is{(
(2, 0, 1), (0, 3, 0)

)
,
(
(7, 0, 0), (0, 1, 3)

)
,
(
(5, 2, 0), (0, 0, 4)

)}
.

In this example, c2 = 3 = r21 + r23. The Betti elements of S are 39, 70 and 76,
while the Betti elements of S are (3, 39), (7, 76) and (7, 70).

Remark 15. Notice that if c2 ≥ r21 + r23, then, by using Buchberger’s criterion
(see, for instance, [Cox et al. 2007, Chapter 3]), it is not hard to show that

G =
{

xc1
1 − xr12

2 xr13
3 , xc2

2 − xr21
1 xr23

3 , xr31
1 xr32

2 − xc3
3

}



HOMOGENIZATION OF A NONSYMMETRIC NUMERICAL SEMIGROUP 87

is a reduced Gröbner basis with respect to any total degree ordering. Hence, in view
of Theorem 4 in [Cox et al. 2007, Chapter 8], the homogenization of G{

xc1
1 − xλ0 xr12

2 xr13
3 , xc2

2 − xδ0 xr21
1 xr23

3 , xr31
1 xr32

2 − xν0 xc3
3

}
would contain a minimal generating set for IS . None of the elements in this set
are redundant, since they correspond to binomials associated to factorizations of
different Betti elements of S (Lemmas 3, 10 and 5). This gives an alternative proof
to Theorem 13 without using Lemmas 4, 6, 9, 8, 11 and 12.

Since all the elements in Betti(S) have two factorizations, we get the following
as a consequence of [García-Sánchez and Ojeda 2010, Corollary 5].

Corollary 16. Let S be a nonsymmetric embedding-dimension-three numerical
semigroup, with c2 ≥ r21+ r23. Then{(
(0, c1, 0, 0), (λ, 0, r12, r13)

)
,
(
(0, 0, c2, 0), (δ, r21, 0, r31)

)
,(

(0, 0, 0, c3), (ν, r31, r32, 0)
)}

is the unique minimal presentation of S.

1.2. The case c2 < r21+ r23. Recall that in this setting we have

c1n̄1 = λn̄0+ r12n̄2+ r13n̄3,

δn̄0+ c2n̄2 = r21n̄1+ r23n̄3,

νn̄0+ c3n̄3 = r31n̄1+ r32n̄2.

Lemma 17. Z(δn0+c2n̄2)={(0, r21, 0, r23), (δ, 0, c2, 0)}. In particular, the graph
Gδn̄0+c2n̄2 is not connected.

Proof. Similar to the proof of Lemma 3. �

Remark 18. Observe that

d2n̄2 = d1n̄1+ d3n̄3,

with di = (n j−nk)/ gcd{n3−n2, n2−n1}, {i, k < j} = {1, 2, 3}. Notice that the set
of rational solutions of n̄1x1− n̄2x2+ n̄3x3= 0 is spanned by (d1, d2, d3). And since
gcd(d1, d2, d3)= 1, every integer solution (x1, x2, x2) is a multiple of (d1, d2, d3).

Observe also that
n3

gcd{n2, n3}
n2 =

n2
gcd{n2, n3}

n3,

and thus
n3

gcd{n2, n3}
n̄2 = ηn̄0+

n2
gcd{n2, n3}

n̄3
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for some positive integer η. Hence

c′2 ≤min
{

d2,
n3

gcd{n2, n3}

}
.

Lemma 19. Let a0, a1, a2, a3 ∈ N. Assume that

n̄ = a0n̄0+ a2n̄2 = a1n̄1+ a3n̄3 6∈ {c′2n̄2, δn̄0+ c2n̄2}

yields a nonconnected graph. Then (a1, a2, a3) belongs to

C2 =

(x1, x2, x3) ∈ N3

∣∣∣∣∣∣∣∣
n1x1− n2x2+ n3x3 = 0,
x2 < x1+ x3 < x2+ δ,

0< x1 < r21, c3 ≤ x3,

c2 < x2 < c′2

 .
Moreover,

(1) (a1, a3) ∈ M2 :=Minimals≤{(x1, x3) | (x1, x2, x3) ∈ C2 for some x2 ∈ N},

(2) Z(n̄)= {(a0, 0, a2, 0), (0, a1, 0, a3)}.

Proof. If a0 = 0, we know by Lemma 9 that the only nonconnected graph Ga2n̄2 is
Gc′2n̄2 . Hence a0 6= 0.

From
a0n̄0+ a2n̄2 = a1n̄1+ a3n̄3,

we deduce
a0+ a2 = a1+ a3 and a2n2 = a1n1+ a3n3.

The minimality of c2 yields a2 ≥ c2. If c2 = a2, then we get δ = a0, which is not
possible by hypothesis. Hence (a1, a2, a3) is a solution of

n1x1− n2x2+ n3x3 = 0, c2 < x2 < x1+ x3.

If a1 ≥ c1, then a0n̄0+a2n̄2 = a1n̄1+a3n̄3 = (a1−c1)n̄1+r12n̄2+ (a3+r13)n̄3.
If a1 > c1, we easily derive that Gn̄ is connected. If a1 = c1, then a3 cannot be zero,
since otherwise c1n1 = a2n2, contradicting that Z(c1n1)= {(c1, 0, 0), (r12, 0, r13)}.
Again, the connectedness of Gn̄ follows easily. Hence a1 < c1.

If a1 = 0, then a0+ a2 = a3, and this implies that a2 ≤ a3. However, we have
a2n2 = a3n3 > a3n2, which yields a2 > a3, a contradiction.

Assume that a3 < c3. As a2n2 = a1n1+ a3n3, and σ is a minimal presentation
for S, we can deduce that r21 ≤ a1 and r23 ≤ a3. Note that both equalities cannot
hold, since a2 6= c2. Hence

a0n̄0+ a2n̄2 = a1n̄1+ a3n̄3 = (a1− r21)n̄1+ (a3− r23)n̄3+ δa0+ c2n̄2,
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which leads once more to the connectedness of Gn̄ . This proves that a3 ≥ c3. As
c3 = r13+ r23 > r23, if a1 ≥ r21, then we have

a0n̄0+ a2n̄2 = a1n̄1+ a3n̄3 = (a1− r21)n̄1+ (a3− r23)n̄3+ δn̄0+ c2n̄2,

obtaining once more a connected graph. This shows that a1 < r21.
Hence for the rest of the proof we may assume that a0a1a2a3 6= 0.
We now focus on (2), which will be used later. If

(a′0, a′1, a′2, a′3) ∈ Z(n̄) \ {(a0, 0, a2, 0), (0, a1, 0, a3)},

then as Gn̄ is not connected and a0a1a2a3 6= 0, either a′0 = a′2 = 0 or a′1 = a′3 = 0.

• If a′0 = a′2 = 0, then a0n̄0 + a2n̄2 = a1n̄1 + a3n̄3 = a′1n̄′1 + a′3n̄′3. This in
particular means that (a1 − a′1)n̄1 + (a3 − a′3)n̄3 = 0. Since n̄1 and n̄3 are
linearly independent, a1−a′1 = 0 and a3−a′3 = 0, that is, a1 = a′1 and a3 = a′3,
a contradiction.

• The case a′1 = a′3 = 0 follows analogously, since n̄0 and n̄2 are also linearly
independent.

Now, if a0 ≥ δ, as a2 > c2, we get

a0n̄0+ a2n̄2 = (a0− δ)n̄0+ (a2− c2)n̄2+ r21n̄1+ r23n̄3 = a1n̄1+ a3n̄3,

obtaining again three different factorizations of n̄, a contradiction. Hence a0 < δ.
This also implies that a1+ a3 = a0+ a2 < δ+ a2.

If a2 ≥ c′2, then

a0n̄0+ a2n̄2 = a1n̄1+ a3n̄3 = (γ + a0)n̄0+ r ′21n̄1+ (a2− c′2)n̄2+ r ′23n̄3,

which yields three factorizations of n̄, in contradiction with (2).
To prove (1), assume there exists (b1, b2, b3) ∈ C2 such that (b1, b3)� (a1, a2).

Then a0n̄0+a2n̄2 = a1n̄1+a3n̄3 = (a1−b1)n̄1+ (a3−b3)n̄3+a0n̄0+a2n̄2. Thus
we get three different expressions of n̄, a contradiction. �

Lemma 20. Let (a1, a3)∈M2, and let n̄= a1n̄1+a3n̄3. Then Gn̄ is not connected.

Proof. As (a1, a3) ∈ M2, there exists positive integers a0 and a2 such that n̄ =
a0n̄0+a2n̄2, a0 < δ and c2 < a2 < c′2. Assume to the contrary that Gn̄ is connected.
Then there exists (b0, b1, b2, b3) ∈ Z(n̄) \ {(a0, 0, a2, 0), (0, a1, 0, a3)}.

From a0n̄0+ a2n̄2 = b0n̄0+ b1n̄1+ b2n̄2+ b3n̄3 we deduce the following.

• As a2 < c′2, we have b0 < a0, and consequently b0 < δ.

• Since a0 6= 0, we have b2 < a2. We obtain b2 < c′2.

Now, from a1n̄1+ a3n̄3 = b0n̄0+ b1n̄1+ b2n̄2+ b3n̄3 and Lemma 6, we deduce
that a1 > b1. If a3 ≥ b3, then (a1−b1)n̄1+ (a3−b3)n̄3 = b0n̄0+b2n̄2. Notice that
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0< a1−b1 ≤ a1 < r21, and that b2 ≥ c2 because b2n2 = (a1−b1)n1+ (a3−b3)n3,
and if b2 = c2 this forces a1− b1 = r21, which is impossible. Hence c2 < b2 < c′2.
Arguing as in the proof of Lemma 19 we get that c3 ≤ a2− b3. This means that
(a1− b1, b2, a3− b3) ∈ C2, but this contradicts (a1, b1) ∈ M2.

Thus a3 > b3 and (a1− b1)n̄1 = b0n̄0+ b2n̄2+ (b3− a3)n̄3. But this contradicts
the minimality of c1, because

a1− b1 ≤ a1 < r21 < c1 and (a1− b1)n1 = b2n2+ (b3− a3)n3. �

Lemma 21. Let a0, a1, a2, a3 ∈ N. Assume that

n̄ = a0n̄0+ a3n̄3 = a1n̄1+ a2n̄2 6∈ {c′2n̄2, νn̄0+ c3n̄3}

yields a nonconnected graph. Then (a1, a2, a3) belongs to

C3 =

(x1, x2, x3) ∈ N3

∣∣∣∣∣∣∣∣
n1x1+ n2x2− n3x3 = 0,
x3 < x1+ x2 < x3+ ν,

0< x1 < r31, c3 < x3,

c2 ≤ x2 < c′2

 .
Moreover,

(1) (a1, a2) ∈ M3 :=Minimals≤{(x1, x2) | (x1, x2, x3) ∈ C3 for some x3 ∈ N},

(2) Z(n̄)= {(a0, 0, 0, a3), (0, a1, a2, 0)}.

Proof. From Lemma 6, we know that a0 6= 0. Assume that a1 = 0. Then a2n̄2 is a
nonconnected graph, which according to Lemma 9 means that a2 = c′2, which is
excluded in the hypothesis. Hence a1 is also not zero. The rest of the proof goes as
in Lemma 19. �

Lemma 22. Let (a1, a2) ∈ M3, and let n̄ = a1n̄2+ a2n̄2. Then Gn̄ is not connected.

Proof. According to Lemma 21, there exists positive integers a0 and a3 such that
n̄ = a0n̄0 + a3n̄3, a0 < ν and c3 < a3. We argue as in Lemma 20. Assume that
there exists an expression b0n̄0 + b1n̄1+̄b2n̄2 + b3n̄3 other than a0n̄0 + a3n̄3 and
a1n̄1+ a2n̄2. Then a1n̄1+ a2n̄2 = b0n̄0+ b1n̄1+ b2n̄2+ b3n̄3. From a1 < c1, we
deduce that a2 > b2, and from a2 < c′2 that a1 > b1. Thus

0 6= (a1− b1)n̄1+ (a2− b2)n̄2 = b0n̄0+ b3n̄3.

Hence b3n3 = (a1−b1)n1+ (a2−b2)n2, which implies that b3 ≥ c3, and if c3 = b3

we would get a1− b1 = r31, contradicting that a1 < r31. Therefore b3 > c3. Also
a1−b1 < r31, and from this it is not difficult to deduce that a2−b2 must be greater
than or equal to c2, since otherwise there will be no way by using the relations in
σ to get from (a1− b1, a2− b2, 0) to (0, 0, b3). Gathering all this information, we
obtain that (a1−b1, a2−b2, b3)∈C3 and (a1−b1, a2−b2)< (a1, a2), contradicting
(a1, a2) ∈ M3. �
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Example 23. Let S = 〈11, 18, 21〉. A minimal presentation for S is{(
(3, 0, 1), (0, 3, 0)

)
,
(
(6, 1, 0), (0, 0, 4)

)
,
(
(9, 0, 0), (0, 2, 3)

)}
.

The Betti elements of S are {54, 84, 99}, while those of S are{
(4, 54), (7, 84), (9, 99), (7, 126), (7, 105)

}
.

In this example C2 is empty, and C3 = {(3, 4, 5), (3, 8, 7), (3, 25, 23)}. The mini-
mality condition imposed to the first two coordinates reduces this set to {(3, 4, 5)}.

A minimal presentation for S is{(
(0, 3, 0, 1), (1, 0, 3, 0)

)
,
(
(0, 6, 1, 0), (3, 0, 0, 4)

)
,
(
(0, 9, 0, 0), (4, 0, 2, 3)

)
,(

(1, 0, 0, 6), (0, 0, 7, 0)
)
,
(
(0, 3, 4, 0), (2, 0, 0, 5)

)}
.

Notice that this semigroup is no longer generic (in all relations all atoms occur),
but it is uniquely presented. The set of integers belonging to C2 and C3 can be
computed by using [Wolfram Alpha 2013] by simply typing in the search field “find
integer solutions to” and then the set of inequalities separated by “and.”

Theorem 24. Let S be a nonsymmetric embedding-dimension-three numerical
semigroup, with c2 < r21+ r23. Then

Betti(S)= {c1n̄1, δn̄0+ c2n̄2, c′2n̄2, νn̄0+ c3n̄3}

∪ {a1n̄1+ a3n̄3|(a1, a3) ∈ M2} ∪ {a1n̄1+ a2n̄2|(a1, a2) ∈ M3}.

Moreover, S is uniquely presented.

Proof. If n̄ ∈ Betti(S), then at least Z(n̄) has two R-classes. Thus in one of them
there are at most two atoms of S̄, and neither n̄0 nor n̄3 (Lemma 6) are alone. So
we have that the set of atoms involved in one of the R-classes is any of these sets:
{n0, n1}, {n0, n2}, {n0, n3}, {n1} and {n2}. Lemmas 3 to 9, 17, 19, 20, 21 and 22
cover all possibilities. Moreover, in all cases #Z(n̄) = 2, and thus according to
[García-Sánchez and Ojeda 2010, Corollary 5], S is uniquely presented. �

Example 25. Recall that a minimal presentation for S = 〈10, 17, 19〉 is{(
(4, 1, 0), (0, 0, 3)

)
,
(
(3, 0, 2), (0, 4, 0)

)
,
(
(7, 0, 0), (0, 3, 1)

)}
(Example 2). Moreover, C2=∅ and C3={(1, 5, 5)}. Thus the set of Betti elements
of S is{
7n̄1 = (7, 70), n̄0+ 4n̄2 = (5, 68), 2n̄0+ 3n̄3 = (5, 57),

9n̄2 = (9, 153), n̄0+ 5n̄3 = (6, 95)
}
.
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Example 26. Let S = 〈10, 27, 29〉. In view of Example 1 with k = 1, a minimal
presentation for S is{(

(6, 1, 0), (0, 0, 3)
)
,
(
(5, 0, 2), (0, 4, 0)

)
,
(
(11, 0, 0), (0, 3, 1)

)}
.

Here, C2 = {(3, 14, 12), (4, 9, 7)} and C3 = {(1, 5, 5)}. Thus

Betti(S)=
{
11n̄1 = (11, 110), 3n̄0+ 4n̄2 = (7, 108),

4n̄0+ 3n̄3 = (7, 87), 19n̄2 = (19, 513),

n̄0+ 14n̄2 = (15, 378), 2n̄0+ 9n̄2 = (11, 243)
}
.

Remark 27. The uniqueness of the minimal presentation can be derived in a
different way. As a consequence of Bresinsky’s algorithm the cardinality of Betti(S̄)
equals the cardinality of a minimal presentation for S (this is also stated in [Li
et al. 2012, Lemma 2.2] without using Bresinsky’s procedure; there are no two
relations in a minimal presentation corresponding to the same element in S). Thus
for every b ∈Betti(S), Z(b) has two R-classes. This does not show that the minimal
presentation is unique, because some of these R-classes could have more than one
element (see, for instance, [Li et al. 2012, Example 2.5]). However it can be shown
that in our setting ±(b− b′) 6∈ S for every b, b′ ∈ Betti(S), that is to say, all Betti
elements of S are Betti-minimal. Hence in view of [García-Sánchez and Ojeda
2010, Proposition 3] every R-class of Z(b) for every b ∈ Betti(S) is a singleton
(see also [Charalambous et al. 2007, Theorem 3.4]).

2. The Cohen–Macaulay property

We say that an affine semigroup is Cohen–Macaulay if the semigroup ring k[S] is
Cohen–Macaulay. The corollary on page 127 of [Bresinsky 1984] gives a charac-
terization of the Cohen–Macaulay property. Also Remark 2.17 in [Li et al. 2012]
offers another characterization of the Cohen–Macaulay property. We will use the
test proposed in [Rosales et al. 1998] for affine subsemigroups of N2 to give an
alternative proof of Bresinsky’s characterization in our scope (S is not symmetric).

Observe that the (rational) cone spanned by {n̄0, n̄3} equals the cone spanned
by S. Thus a1 in [Rosales et al. 1998, Section 1] is n3. Also µ in [Rosales et al.
1998, Lemma 1.1.3] corresponds with µ(s)=min L(s) for every s ∈ S.

Let G be a reduced Gröbner basis of IS with respect to any total degree ordering
and (a1, a2, a3) ∈ Z(s) (observe that G consists also of binomial ideals). For a
polynomial f ∈ k[x1, x2, x3], denote by NFG( f ) the remainder of the division of
f by G. It follows that for s ∈ S and (a1, a2, a3) ∈ Z(s), NFG(x

a1
1 xa2

2 xa3
3 ) is a

monomial, and if
NFG(x

a1
1 xa2

2 xa3
3 )= xb1

1 xb2
2 xb3

3 ,
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then µ(s)= b1+ b2+ b3, the total degree of NFG(x
a1
1 xa2

2 xa3
3 ).

Proposition 28. Let S be a nonsymmetric embedding-dimension-three numerical
semigroup. Then S is Cohen–Macaulay if and only if c2 ≥ r21+ r23.

Proof. Notice that if c2 ≥ r21+ r23, then by Remark 15,

G =
{

xc1
1 − xr12

2 xr13
3 , x x2

2 − xr21
1 xr23

3 , xr31
1 xr32

2 − xc3
3

}
is a reduced Gröbner basis with respect to any total degree ordering. Let B =
Ap(S, n̄0)∩Ap(S, n̄3). We are going to show that B = {(µ(s), s) | s ∈ Ap(S, n3)}

and thus by [Rosales et al. 1998, Theorem 1.2], S is Cohen–Macaulay (in particular
the cardinality of B is n3 and the Cohen–Macaulayness of S also follows from
[Li et al. 2012, Theorem 1.2]). It is easy to see that if (n, s) ∈ Ap(S, n̄0), then
n = µ(s), and thus the inclusion {(µ(s), s) | s ∈ Ap(S, n3)} ⊆ B is clear. Now
assume that there exists (µ(s), s)∈ B with s 6∈Ap(S, n3). Then s = n3+ t for some
t ∈ S and (µ(s)− 1, t) 6∈ S. It is easy to see that this can only occur if and only if
µ(t) > µ(s)− 1. Let (b1, b2, b3) ∈ Z(t) be such that NFG(x

b1
1 xb2

2 xb3
3 )= xb1

1 xb2
2 xb3

3 .
Hence

µ(t)= b1+ b2+ b3 and (b1, b2, b3+ 1) ∈ Z(s).

As µ(t)= b1+ b2+ b3 > µ(s)− 1, this means that µ(s) < b1+ b2+ b3+ 1, and
consequently

NFG(x
b1
1 xb2

2 xb3+1
3 ) 6= xb1

1 xb2
2 xb3+1

3 .

This implies that either xc1
1 or xc2

2 or xr31
1 xr32

2 divide xb1
1 xb2

2 xb3+1
3 . As x3 does not

occur in {xc1
1 , xc2

2 , xr31
1 xr32

2 }, this means that either xc1
1 or xc2

2 or xr31
1 xr32

2 divide
xb1

1 xb2
2 xb3

3 , yielding NFG(x
b1
1 xb2

2 xb3
3 ) 6= xb1

1 xb2
2 xb3

3 , a contradiction.
If c2<r21+r23, thenµ(c2n2)=c2 (recall that Z(c2n2)={(0, c2, 0), (r21, 0, r23)}).

Notice that r21n1 has unique expression, and consequently r21n1∈Ap(S, n3). Hence

c2 = µ(c2n2)= µ(r21n1+ r23n3) and µ(r21n1)+ r23µ(n3)= r21+ r23.

Since c2 6= r21+ r23, Proposition 1.6 in [Rosales et al. 1998] states that S cannot be
Cohen–Macaulay. �

Corollary 29. Let S be a nonsymmetric embedding-dimension-three numerical
semigroup. Then S is Cohen–Macaulay if and only if the cardinality of the minimal
presentation of S coincides with the cardinality of the minimal presentation of S.

3. The catenary degree of S

Let S ⊂ Nk be an affine semigroup. Let s ∈ S, and let

a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Z(s).
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The distance between a and b is d(a, b)=max{|a− (a∧ b)|, |b− (a∧ b)|}, where
a ∧ b = (min(a1, b1), . . . ,min(ak, bk)), the common part to the factorizations a
and b. For N ∈ N, an N-chain of factorizations joining a and b is a sequence
a1, . . . , at ∈ Z(s) such that d(ai , ai+1)≤ N for all i ∈ {1, . . . , t − 1}. The catenary
degree of s, c(s), is the minimum N such for any a, b∈Z(s), there exists an N -chain
of factorizations joining a and b. The catenary degree of S is defined as

c(S)= sups∈Sc(s).

As a consequence of [Chapman et al. 2006, Section 3], this supremum is a maximum
and indeed

c(S)=maxs∈Betti(S) c(s).

If S is a numerical semigroup, as S is half-factorial, [García-Sánchez et al. 2013,
Theorem 2.3] states that for every s∈ S, there exists b∈Betti(S) such that c(s)=c(b).
Hence in our setting we get the following corollary.

Corollary 30. Let S be a nonsymmetric embedding-dimension-three numerical
semigroup and let s ∈ S.

• If c2 ≥ r21+ r23, then c(s) ∈ {c1, c2, ν+ c3}.

• If c2 < r21+ r23, then

c(s) ∈ {c1, c2+ δ, c′2, ν+ c3} ∪ {(x + y) | (x, y) ∈ M2 ∪M3}.

The catenary degree of S corresponds with the homogeneous catenary degree
of S ([García-Sánchez et al. 2013, Proposition 3.5]; the concept of homogeneous
catenary degree is introduced in that paper). Hence this result gives a description
also of the homogeneous catenary degree of S. Also, the homogeneous catenary
degree is a lower bound for the monotone catenary degree [García-Sánchez et al.
2013, Proposition 3.9].

Example 31. We apply the above corollary to the semigroups in Example 1. Recall
that Sk

= 〈10, 17+ 10k, 19+ 10k〉 and that the minimal presentation for S is{(
(7+ 4k, 0, 0), (0, 3, 1)

)
,
(
(0, 4, 0), (3+ 2k, 0, 2)

)
,
(
(0, 0, 3), (4+ 2k, 1, 0)

)}
.

Hence the catenary degree of S is c(S)= 7+4k (the catenary degree of an element
with two factorizations with disjoint support is just the maximum of the lengths of
these factorizations). The minimal presentation of S is{(
(0, 7+ 4k, 0, 0), (3+ 4k, 0, 3, 1)

)
,
(
(1+ 2k, 0, 4, 0), (0, 3+ 2k, 0, 2)

)
,(

(0, 1, 5, 0), (1, 0, 0, 5)
)}

∪
{(
(2k+ 1− i, 0, 5i + 4, 0), (0, 3+ 2k− i, 0, 5i + 2)

)
| i ∈ {0, . . . , 2k+ 1}

}
.

Hence c(S)= 9+ 10k.
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4. The nonsymmetric case

If S is not symmetric, then we know (see, for instance, [Rosales and García-Sánchez
2009, Example 8.23]) that some of the following cases can occur (these also include
the possibility that {n1, n2, n3} is not a minimal generating system, that is, some of
the ci are equal to one):

(1) c1n1 = c2n2 = c3n3,

(2) c1n1 = r12n2+ r13n3 6= c2n2 = c3n3 (r12r13 6= 0),

(3) c1n1 = c2n2 6= c3n3 = r31n1+ r32n2 (r31r32 6= 0),

(4) c1n1 = c3n3 6= c2n2 = r21n1+ r23n3 (r21r23 6= 0) and c2 ≥ r21+ r23,

(5) c1n1 = c3n3 6= c2n2 = r21n1+ r23n3 (r21r23 6= 0) and c2 < r21+ r23.

For the cases (1), (2) and (4), Bresinsky’s algorithm stops in the first step, and thus
both S and S have a minimal presentation with two elements.

For (3) and (5), the discussion follows as in the similar case in the nonsymmetric
setting.

Observe that the uniqueness of a minimal presentation for S is not ensured since
S might have more than two minimal presentations.
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