

Homogenization of a nonsymmetric embedding-dimension-three numerical semigroup Seham Abdelnaby Taha and Pedro A. García-Sánchez

Homogenization of a nonsymmetric embedding-dimension-three numerical semigroup

Seham Abdelnaby Taha and Pedro A. García-Sánchez

(Communicated by Scott T. Chapman)

Let n_1, n_2, n_3 be positive integers with $gcd(n_1, n_2, n_3) = 1$. For $S = \langle n_1, n_2, n_3 \rangle$ nonsymmetric, we give an alternative description, using elementary techniques, of a minimal presentation of its homogenization $\overline{S} = \langle (1, 0), (1, n_1), (1, n_2), (1, n_3) \rangle$. As a consequence, we show that this minimal presentation is unique. We recover Bresinsky's characterization of the Cohen–Macaulay property of \overline{S} and present a procedure to compute all possible catenary degrees of the elements of \overline{S} .

Introduction

An *affine semigroup* is a finitely generated submonoid of \mathbb{N}^k for some positive integer k, where \mathbb{N} stands for the set of nonnegative integers. Every affine semigroup admits a unique minimal generating system (see Exercise 6 in [Rosales and García-Sánchez 1999, Chapter 3]). Let S be an affine semigroup and let $A = \{n_1, \ldots, n_e\}$ be its unique minimal generating system. Then the monoid morphism $\varphi \colon \mathbb{N}^e \to S$ induced by $e_i \mapsto n_i$ (e_i stands for the *i*-th row of the $e \times e$ identity matrix) is an epimorphism. Therefore S is isomorphic as a monoid to $\mathbb{N}^e / \ker \varphi$, where ker $\varphi = \{(a, b) \in \mathbb{N}^e \times \mathbb{N}^e \mid \varphi(a) = \varphi(b)\}$ is the kernel congruence of S. A generating set for ker φ is known as a presentation for S, and it is a *minimal presentation* if it is minimal with respect to set inclusion (or equivalently, if it is minimal with respect to cardinality in view of [Rosales and García-Sánchez 1999, Corollary 9.5], which is finite). The monoid S is said to be uniquely presented if it has a unique minimal presentation (see [García-Sánchez and Ojeda 2010]).

The monoid morphism φ is sometimes called the factorization morphism associated to *S*. This is because for $s \in S$, the set $Z(s) = \varphi^{-1}(s)$ corresponds with

MSC2010: 20M14, 20M25.

Keywords: numerical semigroup, catenary degree, projective monomial curve, homogeneous catenary degree.

Taha is supported by the Spanish AECID program. García-Sánchez is supported by the projects MTM2010-15595, FQM-343 and FQM-5849, and FEDER funds. The authors would like to thank Ignacio Ojeda, Aureliano M. Robles-Pérez and the referee for their comments and suggestions. This manuscript will be part of Taha's master's thesis.

the set of factorizations of s if we identify the free monoid on A with \mathbb{N}^e (the elements in A are sometimes called the atoms or irreducible elements of S). The set of factorizations of s has finitely many elements (see, for instance, [Rosales and García-Sánchez 1999, Lemma 9.1]), and corresponds to the set of nonnegative integer solutions of a system of linear Diophantine equations xB = s (where B denotes the matrix whose rows are n_1, \ldots, n_e). An element $s \in S$ is said to have *unique expression* if the cardinality of Z(s) is one. If every element has unique expression, the monoid is *factorial*; in this case, ker φ is trivial and S is isomorphic to \mathbb{N}^e .

For a factorization $x = (x_1, \ldots, x_e) \in Z(s)$, its *support* is the set

$$\operatorname{supp}(x) = \{n_i \mid x_i \neq 0\},\$$

that is, it is the set of atoms involved in the factorization x. For a given factorization $x = (x_1, \ldots, x_e) \in Z(s)$, its *length* is $|x| = x_1 + \cdots + x_e$. The *set of lengths* of s is $L(s) = \{|x| \mid x \in Z(s)\}$. When the set of lengths of all the elements have cardinality one, then the monoid is said to be *half-factorial*.

A minimal presentation of *S* can be computed as described in [Rosales and García-Sánchez 1999, Chapter 9]. We briefly explain this procedure. For $s \in S$, define the graph G_s whose vertices are

$$V(G_s) = \{a \in A \mid s - a \in S\}$$

(the atoms "dividing" s), and edges

$$E(G_s) = \{ab \mid a, b \in A \text{ and } s - (a+b) \in S\}.$$

On Z(s) define the relation \Re as follows: $x \Re y$ if there exists $x_1, \ldots, x_k \in Z(s)$ such that

- $x_1 = x, x_k = y$, and
- for every $i \in \{1, ..., k-1\}$, $x_i \cdot x_{i+1} \neq 0$ (or equivalently, $supp(x_i) \cap supp(x_{i+1})$ is not empty).

Proposition 9.7 in [Rosales and García-Sánchez 1999] states that there is a bijective map between the set of \mathcal{R} -classes of Z(s) and the set of nonconnected components of G_s : for every connected component *C* of G_s , there exists $x \in Z(s)$ whose support is contained in the vertices of *C*; the map sends *C* to the \mathcal{R} -class containing *x*. Let R_1, \ldots, R_t be the different \mathcal{R} -classes of Z(s), and take $x_i \in R_i$ for every *i*. Define $\rho_s = \{(x_1, x_2), \ldots, (x_{t-1}, x_t)\}$ (actually, one can choose any set of pairs corresponding to the edges of a spanning tree of the complete graph with vertices $\{x_1, \ldots, x_t\}$; if t = 1, then $\rho_i = \emptyset$). Then

$$\rho = \bigcup_{s \in S} \rho_s$$

is a minimal presentation of *S*. This union in fact ranges only over the elements $s \in S$ such that G_s is not connected. These elements are called *Betti elements* of *S*, and the set of Betti elements of *S* will be denoted by Betti(*S*).

Let *k* be a field. The semigroup ring associated to *S* is $k[S] = \bigoplus_{s \in S} kt^s$, where *t* is an indeterminate. Addition is performed componentwise, while the product is defined by distributivity and the rule $t^s t^{s'} = t^{s+s'}$. The monoid morphism φ has a ring analog $\bar{\varphi}$: $k[x_1, \ldots, x_e] \rightarrow k[S]$, which is the morphism induced by $x_i \mapsto t^{n_i}$, $i \in \{1, \ldots, e\}$, where x_1, \ldots, x_e are unknowns. Its kernel I_S is generated by

$$\left\{x_1^{a_1}\cdots x_e^{a_e}-x_1^{b_1}\cdots x_e^{b_e}\,\middle|\,\left((a_1,\ldots,a_e),\,(b_1,\ldots,b_e)\right)\in\ker\varphi\right\}.$$

Indeed, σ is a minimal presentation if and only if

 $\left\{x_1^{a_1}\cdots x_e^{a_e}-x_1^{b_1}\cdots x_e^{b_e} \mid ((a_1,\ldots,a_e),(b_1,\ldots,b_e)) \in \sigma\right\}$

is a minimal generating system of I_S (see [Herzog 1970]).

Let *S* be a *numerical semigroup*, that is, a submonoid of \mathbb{N} with finite complement in \mathbb{N} (or equivalently, gcd(S) = 1). It is easy to show that *S* admits a unique *minimal generating set* with finitely many elements, and thus every numerical semigroup is an affine semigroup. The cardinality of the minimal generating set of *S* is known as the *embedding dimension* of *S*. The largest integer not belonging to *S* is the *Frobenius number* of *S*, denoted F(S). The numerical semigroup *S* is *symmetric* if for every integer *z* not in *S*, $F(S) - z \in S$.

Let *S* be a numerical semigroup minimally generated by $\{n_1, n_2, n_3\}$, where $n_1 < n_2 < n_3$. Define

$$c_i = \min\{k \in \mathbb{N} \setminus \{0\} \mid kn_i \in \langle n_j, n_k \rangle\},\$$

where $\{i, j, k\} = \{1, 2, 3\}$. Thus there exists $r_{ij} \in \mathbb{N}$ such that

$$c_i n_i = r_{ij} n_j + r_{ik} n_k.$$

Also, we have Betti(S) = { c_1n_1 , c_2n_2 , c_3n_3 } [Rosales and García-Sánchez 2009, Example 8.23]. If S is not symmetric, then these r_{ij} are unique (see [Herzog 1970]) and

$$\sigma = \left\{ \left((c_1, 0, 0), (0, r_{12}, r_{13}) \right), \left((0, c_2, 0), (r_{21}, 0, r_{23}) \right), \left((0, 0, c_3), (r_{31}, r_{32}, 0) \right) \right\}$$

is essentially the unique minimal presentation of *S* (that is, if τ is any other minimal presentation and $(a, b) \in \tau$, then either $(a, b) \in \sigma$ or $(b, a) \in \sigma$). Moreover, we have

$$Z(c_1n_1) = \{(c_1, 0, 0), (0, r_{12}, r_{13})\},\$$

$$Z(c_2n_2) = \{(0, c_2, 0), (r_{21}, 0, r_{23})\},\$$

$$Z(c_3n_3) = \{(0, 0, c_3), (r_{31}, r_{32}, 0)\}.$$

We also have the following relations.

• Since $c_1n_1 = r_{12}n_2 + r_{13}n_3$, we have $c_1n_1 > r_{12}n_1 + r_{13}n_1$. Hence

$$c_1 > r_{12} + r_{13}$$

and we set $\lambda = c_1 - r_{12} - r_{13}$.

• Since $c_3n_3 = r_{31}n_1 + r_{32}n_2$, we have $c_3n_3 < r_{31}n_3 + r_{32}n_3$. Hence

 $c_3 < r_{31} + r_{32}$

and we set $v = r_{31} + r_{32} - c_3$.

• $c_i = r_{ji} + r_{ki}$ for every $\{i, j, k\} = \{1, 2, 3\}$ [Rosales and García-Sánchez 2009, Lemma 10.19].

Define $\bar{n}_i = (1, n_i), i \in \{1, 2, 3\}$ and $\bar{n}_0 = (1, 0)$. Set $\bar{S} = \langle \bar{n}_0, \bar{n}_1, \bar{n}_2, \bar{n}_3 \rangle$, which we call the homogenization of *S* since $I_{\bar{S}}$ corresponds with the homogenization of I_S (see [Cox et al. 2007, Chapter 8]; with the notation introduced there, $I_{\bar{S}} = I_S^h$). The ring $k[\bar{S}]$ is the coordinate ring of a monomial curve on \mathbb{P}^3 .

We start with an example that illustrates Bresinsky's algorithm [1984] for computing a minimal presentation (and thus the Betti elements) of \overline{S} . We are going to make use of the Apéry set associated to an element in *S*. Let $m \in S \setminus \{0\}$. The *Apéry set* of *m* in *S* is defined as

$$\operatorname{Ap}(S, m) = \{ s \in S \mid s - m \notin S \},\$$

and has exactly *m* elements, one for each congruent class modulo *m*. (See [Rosales and García-Sánchez 2009, Chapter 1]; clearly, this definition applies to any monoid. We will use it later for \overline{S} , though in the general case this set might have infinitely many elements.)

Example 1. Let S_k be the numerical semigroup minimally generated by

$$(10, 17 + 10k, 19 + 10k), k \in \mathbb{N}.$$

In this setting, $n_1 = 10$, $n_2 = 17 + 10k$, and $n_3 = 19 + 10k$. This semigroup is not symmetric since its minimal generators are pairwise coprime (see [Rosales and García-Sánchez 2009, Chapter 9]).

First, we compute the values of $c_1, c_2, c_3, \lambda, \delta, \nu$ and r_{ij} for all k. Let us denote them with the superindex k. A minimal presentation for $S = S_0$ is

 $\left\{ \left((4, 1, 0), (0, 0, 3) \right), \left((3, 0, 2), (0, 4, 0) \right), \left((7, 0, 0), (0, 3, 1) \right) \right\},\$

and thus we know these values for k = 0. Also it is easy to check that

 $Ap(S, 10) = \{0, n_2, 2n_2, 3n_2, n_3, 2n_3, n_2 + n_3, 2n_2 + n_3, n_2 + 2n_3, 2n_2 + 2n_4\}$

(one can use the package numericalsgps [Delgado et al. 2013] to do these computations).

Now let $k \ge 1$.

• $c_1^k = 7 + k4$. Observe that (7 + 4k) 10 = 3(17 + 10k) + (19 + 10k), which gives us $c_1^k \le 7 + 4k$. If x 10 = a(17 + 10k) + b(19 + 10k), with $0 \ne x, a, b \in \mathbb{N}$, then we have x 10 = a17 + b19 + (a + b)k10. We can deduce that if $x \le (a + b)k$, then a17 + b19 + (ak + bk - x)10 = 0, and this implies that a = 0, b = 0 and x = 0, and this is impossible. If x > (a + b)k, then (x - (a + b)k)10 = a17 + b19. This shows that $x - (a + b)k \ge c_1^0 = 7$. Hence $x \ge 7 + (a + b)k$, so it remains to show that $a + b \ge 4$. So assume to the contrary that $a + b \le 3$. Clearly a17 + b19 = (x - (a + b)k)10and $x - (a + b)k \ge 0$ imply that $a17 + b19 \notin Ap(S, 10)$. According to the shape of Ap(S, 10), this forces a = 0 and b = 3. However $3 \times 19 \ne (x - 3k)10$ for any k. This proves that $x \ge 7 + 4k$, and consequently $c_1^k = 7 + k4$. Since S^k is uniquely presented, we also have $r_{12}^k = 3$ and $r_{13}^k = 1$, whence $\lambda = 3 + 4k$.

• $c_2^k = 4$. Note that 4(17 + 10k) = (3 + 2k)10 + 2(19 + 10k). Assume that y(17 + 10k) = a10 + b(19 + 10k) for some $0 \neq y$, $a, b \in \mathbb{N}$. Then y17 = (a + bk - yk)10 + b19. If $a + bk - yk \ge 0$, this implies that $y \ge c_2^0 = 4$. For a + bk - yk < 0, we get b19 = y17 + (yk - a - bk)10. Thus $b \ge c_3^0 = 3$. It follows that $y > a/k + b > b \ge 3$, and thus $y \ge 4$. Hence $c_2^k = 4$. Also we obtain that $r_{21}^k = 3 + 2k$, $r_{23}^k = 2$ and $\delta = 1 + 2k$.

• $c_3^k = 3$. We already know that $c_3^k = r_{13}^k + r_{23}^k = 1 + 2 = 3$.

Hence, we have

$$(7+4k)n_1 = 3n_2 + n_3$$
, $4n_2 = (3+2k)n_1 + 2n_3$, $3n_3 = (4+2k)n_1 + n_2$.

and a minimal presentation for S^k is

 $\left\{ \left((7+4k, 0, 0), (0, 3, 1) \right), \left((0, 4, 0), (3+2k, 0, 2) \right), \left((0, 0, 3), (4+2k, 1, 0) \right) \right\}.$

If we apply Bresinsky's algorithm to these equalities, from $3n_3 = (4+2k)n_1 + n_2$ and $4n_2 = (3+2k)n_1 + 2n_3$ $(4+2k \ge 3+3k)$ we obtain $5n_3 = n_1 + 5n_2$. We now proceed with $4n_2 = (3+2k)n_1 + 2n_3$ and $5n_3 = n_1 + 5n_2$, getting

$$(5+4)n_2 = (3+2k-1)n_1 + (5+2)n_3.$$

Then we continue with $(5+4)n_2 = (3+2k-1)n_1 + (5+2)n_3$ and $5n_3 = n_1 + 5n_2$, obtaining $(2 \times 5+4)n_2 = (3+2k-2)n_1 + (2 \times 5+2)n_3$. By repeating these steps we obtain the general term $(5i+4)n_2 = (3+2k-i)n_1 + (5i+2)n_3$, and we must stop whenever $5i + 4 \ge 3 + 2k - i + 5i + 2$, or equivalently $i \ge 2k + 1$. Hence we need 2k + 1 steps to end after the initial step $5n_3 = n_1 + 5n_2$, which together with the three initial relations yield 2k + 5 relators in a minimal presentation of \bar{S}_k . Observe that each of these relations come from a different element in \bar{S}_k , and thus we also deduce that #Betti $(\bar{S}_k) = 2k + 5$ for all $k \in \mathbb{N}$.

In particular this also shows that even if the cardinality of a minimal presentation of a nonsymmetric embedding-dimension-three numerical semigroup S is always three, the cardinality of a minimal presentation of \overline{S} can be arbitrarily large.

Alternatively, we can use Theorem 4 in [Cox et al. 2007, Chapter 8] to compute a presentation of \bar{S} from a minimal presentation of S.

Example 2. Let $S = \langle 10, 17, 19 \rangle$. A minimal presentation for S is

$$\left\{\left((4, 1, 0), (0, 0, 3)\right), \left((3, 0, 2), (0, 4, 0)\right), \left((7, 0, 0), (0, 3, 1)\right)\right\}.$$

Hence, a minimal generating system of I_S is

$$\{x_1^4x_2 - x_3^3, x_1^3x_3^2 - x_2^4, x_1^7 - x_2^3x_3\}.$$

We compute a Gröbner basis of I_S with respect to the graded lexicographic ordering and obtain

$$\left\{x_1^4x_2 - x_3^3, x_1^3x_3^2 - x_2^4, x_1^7 - x_2^3x_3, x_1x_2^5 - x_3^5, x_1^2x_3^7 - x_2^9, x_2^{14} - x_1x_3^{12}\right\}.$$

Hence

$$\left\{x_1^4 x_2 - x_0^2 x_3^3, x_1^3 x_3^2 - x_0 x_2^4, x_1^7 - x_0^3 x_2^3 x_3, x_1 x_2^5 - x_0 x_3^5, x_1^2 x_3^7 - x_2^9, x_2^{14} - x_0 x_1 x_3^{12}\right\}$$

is a generating system for $I_{\bar{S}}$. By Herzog's correspondence,

$$\left\{ \left((0, 4, 1, 0), (2, 0, 0, 3) \right), \left((0, 3, 0, 2), (1, 0, 4, 0) \right), \left((0, 7, 0, 0), (3, 0, 3, 1) \right), \\ \left((0, 1, 5, 0), (1, 0, 0, 5) \right), \left((0, 2, 0, 7), (0, 0, 9, 0) \right), \left((0, 0, 14, 0), (1, 1, 0, 12) \right) \right\}$$

is a presentation of \overline{S} , though not a minimal presentation, since we saw in Example 1 that the cardinality of a minimal presentation is 5.

If we use the graded inverse lexicographic ordering instead, we obtain

$$\{x_1^4x_2 - x_3^3, x_1^3x_3^2 - x_2^4, x_1^7 - x_2^3x_3, x_1x_2^5 - x_3^5, x_1^2x_3^7 - x_2^9\},\$$

which yields a minimal presentation for \bar{S} :

$$\left\{ \left((0, 4, 1, 0), (2, 0, 0, 3) \right), \left((0, 3, 0, 2), (1, 0, 4, 0) \right), \left((0, 7, 0, 0), (3, 0, 3, 1) \right), \\ \left((0, 1, 5, 0), (1, 0, 0, 5) \right), \left((0, 2, 0, 7), (0, 0, 9, 0) \right) \right\}.$$

The Gröbner basis computations in this example have been performed with Maxima (http://maxima.sourceforge.net).

In the first section we describe the Betti elements of \overline{S} and its unique minimal presentation. The second section recovers a test due to Bresinsky for the Cohen-Macaulay property of \overline{S} . Section 3 shows how the catenary degree of \overline{S} (and thus the homogeneous catenary degree of S) can be computed.

1. Determining the set of Betti elements

In this section we depict Betti(\bar{S}), the set of elements $\bar{n} \in \bar{S}$ such that $G_{\bar{n}}$ is not connected, or equivalently, $Z(\bar{n})$ has more than one \Re -class. Theorems 2.7 and 2.9 in [Li et al. 2012] determine Betti(\bar{S}) just by imposing that $gcd\{n_1, n_2, n_3\} = 1$ (notice that \bar{S} is isomorphic to $\langle (n_3, 0), (n_3 - n_1, n_1), (n_3 - n - 2, n_2), (0, n_3) \rangle$ [Rosales et al. 1998, Example 1.4]). Here we present an alternative description for the case $S = \langle n_1, n_2, n_3 \rangle$ is a nonsymmetric embedding-three numerical semigroup, and we obtain that in this setting \bar{S} is uniquely presented.

Lemma 3. $Z(c_1\bar{n}_1) = \{(0, c_1, 0, 0), (\lambda, 0, r_{12}, r_{13})\}$. In particular, the graph $G_{c_1\bar{n}_1}$ is not connected.

Proof. We already know that $\{(0, c_1, 0, 0), (\lambda, 0, r_{12}, r_{13})\} \subseteq Z(c_1\bar{n}_1)$. So assume that $(a_0, a_1, a_2, a_3) \in Z(c_1\bar{n}_1)$. Then

$$a_0\bar{n}_0 + a_1\bar{n}_1 + a_2\bar{n}_2 + a_3\bar{n}_3 = c_1\bar{n}_1 = \lambda\bar{n}_0 + r_{12}\bar{n}_2 + r_{13}\bar{n}_3,$$

and in particular $c_1n_1 = a_1n_1 + a_2n_2 + a_3n_3$, which means that

$$(a_1, a_2, a_3) \in Z(c_1n_1) = \{(c_1, 0, 0), (0, r_{12}, r_{13})\}.$$

It follows that if $(a_1, a_2, a_3) = (c_1, 0, 0)$, then $(a_0, a_1, a_2, a_3) = (0, c_1, 0, 0)$, and if $(a_1, a_2, a_3) = (0, r_{12}, r_{13})$, we get $(a_0, a_1, a_2, a_3) = (\lambda, 0, r_{12}, r_{13})$.

Lemma 4. Let $\bar{n} = a_0 \bar{n}_0 + a_1 \bar{n}_1 \neq c_1 \bar{n}_1$, $a_0, a_1 \in \mathbb{N}$. Then the graph $G_{\bar{n}}$ is connected.

Proof. Notice that if $a_1 = c_1$, then

$$a_0\bar{n}_0 + a_1\bar{n}_1 = a_0\bar{n}_0 + c_1\bar{n}_1 = (\lambda + a_0)\bar{n}_0 + r_{21}\bar{n}_2 + r_{13}\bar{n}_3$$

As $\bar{n} \neq c_1 \bar{n}_1$, $a_0 > 0$, and we get that $V(G_{\bar{n}}) = \{\bar{n}_0, \bar{n}_1, \bar{n}_2, \bar{n}_3\}$, and $\bar{n}_0 \bar{n}_2, \bar{n}_0 \bar{n}_3, \bar{n}_0 \bar{n}_1 \in E(G_{\bar{n}})$, and thus $G_{\bar{n}}$ is connected.

If $a_1 < c_1$, then \bar{n} has unique expression, since if

$$a_0\bar{n}_0 + a_1\bar{n}_1 = b_0\bar{n}_0 + b_1\bar{n}_1 + b_2\bar{n}_2 + b_3\bar{n}_3$$

for some $b_0, b_1, b_2, b_3 \in \mathbb{N}$, then $a_1n_1 = b_1n_1 + b_2n_2 + b_3n_3$. By the minimality of c_1 , we deduce that $b_1 \ge a_1$. But then $0 = (b_1 - a_1)n_1 + b_2n_2 + b_3n_3$, which leads to $a_1 = b_1, b_2 = b_3 = 0$. Since \bar{n} has unique expression, the graph $G_{\bar{n}}$ is connected.

Finally, if $a_1 > c_1$, then $a_0\bar{n}_0 + a_1\bar{n}_1 = (a_0 + \lambda)\bar{n}_0 + (a_1 - c_1)\bar{n}_1 + r_{21}\bar{n}_2 + r_{13}\bar{n}_3$. In this setting, the graph $G_{\bar{n}}$ is K₄, the complete graph on four vertices, whence connected.

Lemma 5. $Z(v\bar{n}_0 + c_3\bar{n}_3) = \{(r_{31}, r_{32}, 0, 0), (v, 0, 0, c_3)\}$. In particular, the graph $G_{v\bar{n}_0+c_3\bar{n}_3}$ is not connected.

Proof. The proof goes as in Lemma 3.

Lemma 6. For every positive integer k, we have $k\bar{n}_3 \notin \langle \bar{n}_0, \bar{n}_1, \bar{n}_2 \rangle$.

Proof. This is because \bar{n}_3 is not in the cone spanned by $\{\bar{n}_0, \bar{n}_1, \bar{n}_2\}$ (which is the cone spanned by $\{\bar{n}_0, \bar{n}_2\}$).

Let

$$c_2' = \min\{k \in \mathbb{N} \setminus \{0\} \mid k\bar{n}_2 \in \langle \bar{n}_0, \bar{n}_1, \bar{n}_3 \rangle\}$$

Assume that

$$c_2'\bar{n}_2 = \gamma \bar{n}_0 + r_{21}'\bar{n}_1 + r_{23}'\bar{n}_3,$$

with γ , r'_{21} , $r'_{23} \in \mathbb{N}$.

Lemma 7. $Z(c'_2\bar{n}_2) = \{(0, 0, c'_2, 0), (\gamma, r'_{21}, 0, r'_{23})\}$. In particular, $G_{c'_2\bar{n}_2}$ is not connected. Moreover,

(1)
$$r'_{23} \neq 0$$

(2) if
$$r'_{21} = 0$$
, then

$$c'_{2} = \frac{n_{3}}{\gcd\{n_{2}, n_{3}\}}$$
 and $r'_{23} = \frac{n_{2}}{\gcd\{n_{2}, n_{3}\}}$

Proof. Assume that $c'_2 \bar{n}_2 = a_0 \bar{n}_0 + a_1 \bar{n}_1 + a_2 \bar{n}_2 + a_3 \bar{n}_3$ for some $a_0, a_1, a_2, a_3 \in \mathbb{N}$. The minimality of c'_2 forces $a_2 = 0$. If $(a_0, a_1, a_3) \neq (\gamma, r'_{21}, r'_{23})$, then assume without loss of generality that $a_0 \leq \gamma$. Then $(\gamma - a_0)\bar{n}_0 + r'_{21}\bar{n}_1 + r'_{23}\bar{n}_3 = a_1\bar{n}_1 + a_3\bar{n}_3$. Notice that $(a_1, a_3) \not\leq (r'_{21}, r'_{23})$, since otherwise we would obtain

$$(\gamma - a_0)\bar{n}_0 + (r'_{21} - a_1)\bar{n}_1 + (r'_{23} - a_3)\bar{n}_3 = 0,$$

and consequently $(a_0, a_1, a_3) = (\gamma, r'_{21}, r'_{23})$, a contradiction. Hence either $a_1 \ge r'_{21}$ and $a_3 < r'_{23}$, or $a_1 < r'_{21}$ and $a_3 \ge r'_{23}$. By Lemma 6, we have $a_1 \ne r'_{21}$. This leads to $a_3 \le r'_{23}$ and $(a_1 - r'_{21})\bar{n}_1 = (\gamma - a_0)\bar{n}_0 + (r'_{23} - a_3)\bar{n}_3$. Hence $a_1 \ge c_1$, and consequently $c'_2\bar{n}_2 = (a_0 + \lambda)\bar{n}_0 + (a_1 - c_1)\bar{n}_1 + r_{12}\bar{n}_2 + (a_3 + r_{13})\bar{n}_3$. But $r_{13} \ne 0$, and we have that $r_{12} \ne 0$, and this forces $c'_2 > r_{12}$. Hence

$$(c_2' - r_{12})\bar{n}_2 = (a_0 + \lambda)\bar{n}_0 + (a_1 - c_1)\bar{n}_1 + r_{12}\bar{n}_2 + r_{13}\bar{n}_3,$$

contradicting once more the minimality of c'_2 . This shows that

$$\mathsf{Z}(c_2'\bar{n}_2) = \{(0, 0, c_2', 0), (\gamma, r_{21}', 0, r_{23}')\}.$$

Observe that $r'_{23} \neq 0$, since otherwise on the one hand $c'_2 = \gamma + r'_{21} \ge r'_{21}$, while on the other $c'_2 n_2 = r'_{21} n_1 < r'_{21} n_2$, which leads to $c'_2 < r'_{21}$, a contradiction.

If $r'_{21} = 0$, then $c'_2n_2 = r'_{23}n_3$. Whenever $a_2n_2 = a_3n_3$ for some $a_2, a_3 \in \mathbb{N}$, we get $a_2n_2 = a_3n_3 > a_3n_2$, whence $a_2 > a_3$. So c'_2n_2 is the least multiple of n_2 that is a multiple of n_3 , and we obtain $c'_2 = n_3/\gcd\{n_2, n_3\}$.

Lemma 8. Let $a_0, a_2 \in \mathbb{N}$, with $a_2 > c'_2$. Then $G_{a_0\bar{n}_0+a_2\bar{n}_2}$ is connected.

Proof. Set $\bar{n} = a_0 \bar{n}_0 + a_2 \bar{n}_2$.

Observe that $a_0\bar{n}_0 + a_2\bar{n}_2 = (a_0 + \gamma)\bar{n}_0 + r'_{21}\bar{n}_1 + (a_2 - c'_2)\bar{n}_2 + r'_{23}\bar{n}_3$, and thus \bar{n}_0 , \bar{n}_2 and \bar{n}_3 are in the same connected component (and so is \bar{n}_1 if $r'_{21} \neq 0$).

We distinguish two cases.

- If $\bar{n}_1 \notin V(G_{\bar{n}})$, then r'_{21} must be zero and $G_{\bar{n}}$ is connected with set of vertices $\{\bar{n}_0, \bar{n}_2, \bar{n}_3\}$.
- If $\bar{n}_1 \in V(G_{\bar{n}})$, then there must exist $b_0, b_1, b_2, b_3 \in \mathbb{N}$, $b_1 \neq 0$, such that $\bar{n} = b_0\bar{n}_0 + b_1\bar{n}_1 + b_2\bar{n}_2 + b_3\bar{n}_3$. If $b_0 + b_2 + b_3 \neq 0$, then \bar{n}_1 is in the same component as \bar{n}_0, \bar{n}_2 and \bar{n}_3 , and thus $G_{\bar{n}}$ is connected. If $b_0 = b_2 = b_3 = 0$, then $b_1\bar{n}_1 = a_0\bar{n}_0 + a_2\bar{n}_2$, which is clearly different from $c_1\bar{n}_1$, and thus Lemma 4 asserts that $G_{\bar{n}}$ is connected.

Lemma 9. The only $k \in \mathbb{N}$ for which $G_{k\bar{n}_2}$ is not connected is $k = c'_2$.

Proof. If $k < c'_2$, then by the minimality of c'_2 , $k\bar{n}_2$ has unique expression, whence $G_{k\bar{n}_2}$ is connected. If $k > c'_2$, then Lemma 8 with $a_0 = 0$ and $a_2 = k$ asserts that $G_{k\bar{n}_2}$ is connected. Finally, for $k = c'_2$, Lemma 7 ensures that $G_{k\bar{n}_2}$ is not connected. \Box

For the rest of the discussion we need to distinguish between $c_2 \ge r_{21} + r_{23}$ and $c_2 < r_{21} + r_{23}$.

1.1. The case $c_2 \ge r_{21} + r_{23}$. Under the standing hypothesis, we have

$$c_1 \bar{n}_1 = \lambda \bar{n}_0 + r_{12} \bar{n}_2 + r_{13} \bar{n}_3,$$

$$c_2 \bar{n}_2 = \delta \bar{n}_0 + r_{21} \bar{n}_1 + r_{23} \bar{n}_3,$$

$$\nu \bar{n}_0 + c_3 \bar{n}_3 = r_{31} \bar{n}_1 + r_{32} \bar{n}_2,$$

and all the coefficients appearing in these equations are nonzero, except eventually δ .

Lemma 10. $Z(c_2\bar{n}_2) = \{(\delta, r_{21}, 0, r_{23}), (0, 0, c_2, 0)\}$. In particular, the graph $G_{c_2\bar{n}_2}$ is not connected.

Proof. In this setting, $c'_2 = c_2$, and the proof follows from Lemma 7.

Lemma 11. Let $a_0, a_2 \in \mathbb{N}$, and let $\bar{n} = a_0\bar{n}_0 + a_2\bar{n}_2$. Assume that $\bar{n} \neq c_2\bar{n}_2$. Then the graph $G_{\bar{n}}$ is connected.

Proof. The proof goes as in Lemma 4, except for the case $a_2 > c_2 = c'_2$, for which we use Lemma 8.

Lemma 12. Let $a_0, a_3 \in \mathbb{N}$. Assume that $a_0\bar{n}_0 + a_3\bar{n}_3 \neq v\bar{n}_0 + c_3\bar{n}_3$. Then $G_{a_0\bar{n}_0 + a_3\bar{n}_3}$ is connected.

Proof. Let $\bar{n} = a_0\bar{n}_0 + a_3\bar{n}_3$, and assume to the contrary that $G_{\bar{n}}$ is not connected. Hence \bar{n} admits at least another expression with support disjoint to the support of $a_0\bar{n}_0 + a_3\bar{n}_3$. This in particular means that $a_0 \neq 0$ by Lemma 6. Hence there exists $a_1, a_2 \in \mathbb{N}$ such that $a_0\bar{n}_0 + a_3\bar{n}_3 = a_1\bar{n}_1 + a_2\bar{n}_2$.

Since $a_0\bar{n}_0 + a_3\bar{n}_3 = a_1\bar{n}_1 + a_2\bar{n}_2$, we get $a_3n_3 = a_1n_1 + a_2n_2$. By the minimality of c_3 , we have $a_3 \ge c_3$. If $a_3 = c_3$, since $Z(c_3n_3) = \{(0, 0, c_3), (r_{31}, r_{32}, 0)\}$, we deduce $a_1 = r_{31}$ and $a_2 = r_{32}$. If follows that $a_0 = v$, contradicting $\bar{n} \ne v\bar{n}_0 + c_3\bar{n}_3$. Hence $a_3 > c_3$.

If $a_1 \ge c_1$, then $a_0\bar{n}_0 + a_3\bar{n}_3 = a_1\bar{n}_1 + a_2\bar{n}_2 = (a_1 - c_1)\bar{n}_1 + (a_2 + r_{12})\bar{n}_2 + r_{13}\bar{n}_3$. For $a_1 > c_1$ we get that $G_{\bar{n}}$ is connected. If $a_1 = c_1$, then a_2 cannot be zero, since otherwise $c_1n_1 = a_3n_3$, and c_1n_1 does not admit a factorization of the form $(0, 0, a_3)$. Again, in this setting we obtain that $G_{\bar{n}}$ is connected, a contradiction.

In the same way we obtain a contradiction if $a_2 \ge c_2$. Hence $a_1 < c_1$ and $a_2 < c_2$. As $a_3n_3 = a_1n_1 + a_2n_2$ and σ is the unique minimal presentation of *S*, it can be deduced that $(r_{31}, r_{32}) < (a_1, a_2)$ (with the usual partial order; the equality does not hold since otherwise we would obtain $c_3 = a_3$). Hence

$$a_0\bar{n}_0 + a_3\bar{n}_3 = a_1\bar{n}_1 + a_2\bar{n}_2 = \nu\bar{n}_0 + (a_1 - r_{31})\bar{n}_1 + (a_2 - r_{32})\bar{n}_2 + c_3\bar{n}_3.$$

This forces $G_{\bar{n}}$ to be connected (even if $a_0 = 0$; recall that $\{n_0\}$ is not a connected component), a contradiction.

Theorem 13. Let *S* be a nonsymmetric embedding-dimension-three numerical semigroup, with $c_2 \ge r_{21} + r_{23}$. Let $\bar{n} \in \bar{S}$. The graph $G_{\bar{n}}$ is not connected if and only if

$$\bar{n} \in \{c_1\bar{n}_1, c_2\bar{n}_2, \nu\bar{n}_0 + c_3\bar{n}_3\}.$$

Proof. The proof follows from Lemmas 3 to 12.

Notice also that this result follows as a consequence of Bresinsky's algorithm, since in this setting, as $c_2 \ge r_{21} + r_{23}$, the procedure stops in the first step, and then we only have to homogenize the relations.

Example 14. Let S = (10, 13, 19). The unique minimal presentation for S is

$$\{((2, 0, 1), (0, 3, 0)), ((7, 0, 0), (0, 1, 3)), ((5, 2, 0), (0, 0, 4))\}$$

In this example, $c_2 = 3 = r_{21} + r_{23}$. The Betti elements of *S* are 39, 70 and 76, while the Betti elements of \overline{S} are (3, 39), (7, 76) and (7, 70).

Remark 15. Notice that if $c_2 \ge r_{21} + r_{23}$, then, by using Buchberger's criterion (see, for instance, [Cox et al. 2007, Chapter 3]), it is not hard to show that

$$G = \left\{ x_1^{c_1} - x_2^{r_{12}} x_3^{r_{13}}, x_2^{c_2} - x_1^{r_{21}} x_3^{r_{23}}, x_1^{r_{31}} x_2^{r_{32}} - x_3^{c_3} \right\}$$

is a reduced Gröbner basis with respect to any total degree ordering. Hence, in view of Theorem 4 in [Cox et al. 2007, Chapter 8], the homogenization of G

$$\left\{x_1^{c_1} - x_0^{\lambda} x_2^{r_{12}} x_3^{r_{13}}, x_2^{c_2} - x_0^{\delta} x_1^{r_{21}} x_3^{r_{23}}, x_1^{r_{31}} x_2^{r_{32}} - x_0^{\nu} x_3^{c_3}\right\}$$

would contain a minimal generating set for $I_{\bar{S}}$. None of the elements in this set are redundant, since they correspond to binomials associated to factorizations of different Betti elements of \bar{S} (Lemmas 3, 10 and 5). This gives an alternative proof to Theorem 13 without using Lemmas 4, 6, 9, 8, 11 and 12.

Since all the elements in Betti(S) have two factorizations, we get the following as a consequence of [García-Sánchez and Ojeda 2010, Corollary 5].

Corollary 16. Let *S* be a nonsymmetric embedding-dimension-three numerical semigroup, with $c_2 \ge r_{21} + r_{23}$. Then

$$\left\{ \left((0, c_1, 0, 0), (\lambda, 0, r_{12}, r_{13}) \right), \left((0, 0, c_2, 0), (\delta, r_{21}, 0, r_{31}) \right), \\ \left((0, 0, 0, c_3), (\nu, r_{31}, r_{32}, 0) \right) \right\}$$

is the unique minimal presentation of \bar{S} .

1.2. The case $c_2 < r_{21} + r_{23}$. Recall that in this setting we have

$$c_1 \bar{n}_1 = \lambda \bar{n}_0 + r_{12} \bar{n}_2 + r_{13} \bar{n}_3,$$

$$\delta \bar{n}_0 + c_2 \bar{n}_2 = r_{21} \bar{n}_1 + r_{23} \bar{n}_3,$$

$$\nu \bar{n}_0 + c_3 \bar{n}_3 = r_{31} \bar{n}_1 + r_{32} \bar{n}_2.$$

Lemma 17. $Z(\delta n_0 + c_2 \bar{n}_2) = \{(0, r_{21}, 0, r_{23}), (\delta, 0, c_2, 0)\}$. In particular, the graph $G_{\delta \bar{n}_0 + c_2 \bar{n}_2}$ is not connected.

Proof. Similar to the proof of Lemma 3.

Remark 18. Observe that

$$d_2\bar{n}_2 = d_1\bar{n}_1 + d_3\bar{n}_3,$$

with $d_i = (n_j - n_k) / \gcd\{n_3 - n_2, n_2 - n_1\}, \{i, k < j\} = \{1, 2, 3\}$. Notice that the set of rational solutions of $\bar{n}_1 x_1 - \bar{n}_2 x_2 + \bar{n}_3 x_3 = 0$ is spanned by (d_1, d_2, d_3) . And since $\gcd(d_1, d_2, d_3) = 1$, every integer solution (x_1, x_2, x_2) is a multiple of (d_1, d_2, d_3) .

Observe also that

$$\frac{n_3}{\gcd\{n_2, n_3\}} n_2 = \frac{n_2}{\gcd\{n_2, n_3\}} n_3$$

and thus

$$\frac{n_3}{\gcd\{n_2, n_3\}}\bar{n}_2 = \eta\bar{n}_0 + \frac{n_2}{\gcd\{n_2, n_3\}}\bar{n}_3$$

for some positive integer η . Hence

$$c'_2 \le \min\left\{d_2, \frac{n_3}{\gcd\{n_2, n_3\}}\right\}.$$

Lemma 19. Let $a_0, a_1, a_2, a_3 \in \mathbb{N}$. Assume that

$$\bar{n} = a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 \notin \{c'_2\bar{n}_2, \delta\bar{n}_0 + c_2\bar{n}_2\}$$

yields a nonconnected graph. Then (a_1, a_2, a_3) belongs to

$$C_{2} = \left\{ (x_{1}, x_{2}, x_{3}) \in \mathbb{N}^{3} \middle| \begin{array}{l} n_{1}x_{1} - n_{2}x_{2} + n_{3}x_{3} = 0, \\ x_{2} < x_{1} + x_{3} < x_{2} + \delta, \\ 0 < x_{1} < r_{21}, \ c_{3} \le x_{3}, \\ c_{2} < x_{2} < c_{2}' \end{array} \right\}$$

Moreover,

- (1) $(a_1, a_3) \in M_2 := \text{Minimals}_{\{(x_1, x_3) \mid (x_1, x_2, x_3) \in C_2 \text{ for some } x_2 \in \mathbb{N}\},\$
- (2) $Z(\bar{n}) = \{(a_0, 0, a_2, 0), (0, a_1, 0, a_3)\}.$

Proof. If $a_0 = 0$, we know by Lemma 9 that the only nonconnected graph $G_{a_2\bar{n}_2}$ is $G_{c'_2\bar{n}_2}$. Hence $a_0 \neq 0$.

From

$$a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3,$$

we deduce

$$a_0 + a_2 = a_1 + a_3$$
 and $a_2n_2 = a_1n_1 + a_3n_3$.

The minimality of c_2 yields $a_2 \ge c_2$. If $c_2 = a_2$, then we get $\delta = a_0$, which is not possible by hypothesis. Hence (a_1, a_2, a_3) is a solution of

$$n_1 x_1 - n_2 x_2 + n_3 x_3 = 0, \quad c_2 < x_2 < x_1 + x_3.$$

If $a_1 \ge c_1$, then $a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 = (a_1 - c_1)\bar{n}_1 + r_{12}\bar{n}_2 + (a_3 + r_{13})\bar{n}_3$. If $a_1 > c_1$, we easily derive that $G_{\bar{n}}$ is connected. If $a_1 = c_1$, then a_3 cannot be zero, since otherwise $c_1n_1 = a_2n_2$, contradicting that $Z(c_1n_1) = \{(c_1, 0, 0), (r_{12}, 0, r_{13})\}$. Again, the connectedness of $G_{\bar{n}}$ follows easily. Hence $a_1 < c_1$.

If $a_1 = 0$, then $a_0 + a_2 = a_3$, and this implies that $a_2 \le a_3$. However, we have $a_2n_2 = a_3n_3 > a_3n_2$, which yields $a_2 > a_3$, a contradiction.

Assume that $a_3 < c_3$. As $a_2n_2 = a_1n_1 + a_3n_3$, and σ is a minimal presentation for *S*, we can deduce that $r_{21} \le a_1$ and $r_{23} \le a_3$. Note that both equalities cannot hold, since $a_2 \ne c_2$. Hence

$$a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 = (a_1 - r_{21})\bar{n}_1 + (a_3 - r_{23})\bar{n}_3 + \delta a_0 + c_2\bar{n}_2,$$

which leads once more to the connectedness of $G_{\bar{n}}$. This proves that $a_3 \ge c_3$. As $c_3 = r_{13} + r_{23} > r_{23}$, if $a_1 \ge r_{21}$, then we have

$$a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 = (a_1 - r_{21})\bar{n}_1 + (a_3 - r_{23})\bar{n}_3 + \delta\bar{n}_0 + c_2\bar{n}_2,$$

obtaining once more a connected graph. This shows that $a_1 < r_{21}$.

Hence for the rest of the proof we may assume that $a_0a_1a_2a_3 \neq 0$.

We now focus on (2), which will be used later. If

$$(a'_0, a'_1, a'_2, a'_3) \in \mathbb{Z}(\bar{n}) \setminus \{(a_0, 0, a_2, 0), (0, a_1, 0, a_3)\},\$$

then as $G_{\bar{n}}$ is not connected and $a_0a_1a_2a_3 \neq 0$, either $a'_0 = a'_2 = 0$ or $a'_1 = a'_3 = 0$.

- If $a'_0 = a'_2 = 0$, then $a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 = a'_1\bar{n}'_1 + a'_3\bar{n}'_3$. This in particular means that $(a_1 a'_1)\bar{n}_1 + (a_3 a'_3)\bar{n}_3 = 0$. Since \bar{n}_1 and \bar{n}_3 are linearly independent, $a_1 a'_1 = 0$ and $a_3 a'_3 = 0$, that is, $a_1 = a'_1$ and $a_3 = a'_3$, a contradiction.
- The case $a'_1 = a'_3 = 0$ follows analogously, since \bar{n}_0 and \bar{n}_2 are also linearly independent.

Now, if $a_0 \ge \delta$, as $a_2 > c_2$, we get

$$a_0\bar{n}_0 + a_2\bar{n}_2 = (a_0 - \delta)\bar{n}_0 + (a_2 - c_2)\bar{n}_2 + r_{21}\bar{n}_1 + r_{23}\bar{n}_3 = a_1\bar{n}_1 + a_3\bar{n}_3,$$

obtaining again three different factorizations of \bar{n} , a contradiction. Hence $a_0 < \delta$. This also implies that $a_1 + a_3 = a_0 + a_2 < \delta + a_2$.

If $a_2 \ge c'_2$, then

$$a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 = (\gamma + a_0)\bar{n}_0 + r'_{21}\bar{n}_1 + (a_2 - c'_2)\bar{n}_2 + r'_{23}\bar{n}_3,$$

which yields three factorizations of \bar{n} , in contradiction with (2).

To prove (1), assume there exists $(b_1, b_2, b_3) \in C_2$ such that $(b_1, b_3) \lneq (a_1, a_2)$. Then $a_0\bar{n}_0 + a_2\bar{n}_2 = a_1\bar{n}_1 + a_3\bar{n}_3 = (a_1 - b_1)\bar{n}_1 + (a_3 - b_3)\bar{n}_3 + a_0\bar{n}_0 + a_2\bar{n}_2$. Thus we get three different expressions of \bar{n} , a contradiction.

Lemma 20. Let $(a_1, a_3) \in M_2$, and let $\bar{n} = a_1\bar{n}_1 + a_3\bar{n}_3$. Then $G_{\bar{n}}$ is not connected.

Proof. As $(a_1, a_3) \in M_2$, there exists positive integers a_0 and a_2 such that $\bar{n} = a_0\bar{n}_0 + a_2\bar{n}_2$, $a_0 < \delta$ and $c_2 < a_2 < c'_2$. Assume to the contrary that $G_{\bar{n}}$ is connected. Then there exists $(b_0, b_1, b_2, b_3) \in Z(\bar{n}) \setminus \{(a_0, 0, a_2, 0), (0, a_1, 0, a_3)\}$.

From $a_0\bar{n}_0 + a_2\bar{n}_2 = b_0\bar{n}_0 + b_1\bar{n}_1 + b_2\bar{n}_2 + b_3\bar{n}_3$ we deduce the following.

- As $a_2 < c'_2$, we have $b_0 < a_0$, and consequently $b_0 < \delta$.
- Since $a_0 \neq 0$, we have $b_2 < a_2$. We obtain $b_2 < c'_2$.

Now, from $a_1\bar{n}_1 + a_3\bar{n}_3 = b_0\bar{n}_0 + b_1\bar{n}_1 + b_2\bar{n}_2 + b_3\bar{n}_3$ and Lemma 6, we deduce that $a_1 > b_1$. If $a_3 \ge b_3$, then $(a_1 - b_1)\bar{n}_1 + (a_3 - b_3)\bar{n}_3 = b_0\bar{n}_0 + b_2\bar{n}_2$. Notice that

 $0 < a_1 - b_1 \le a_1 < r_{21}$, and that $b_2 \ge c_2$ because $b_2n_2 = (a_1 - b_1)n_1 + (a_3 - b_3)n_3$, and if $b_2 = c_2$ this forces $a_1 - b_1 = r_{21}$, which is impossible. Hence $c_2 < b_2 < c'_2$. Arguing as in the proof of Lemma 19 we get that $c_3 \le a_2 - b_3$. This means that $(a_1 - b_1, b_2, a_3 - b_3) \in C_2$, but this contradicts $(a_1, b_1) \in M_2$.

Thus $a_3 > b_3$ and $(a_1 - b_1)\bar{n}_1 = b_0\bar{n}_0 + b_2\bar{n}_2 + (b_3 - a_3)\bar{n}_3$. But this contradicts the minimality of c_1 , because

$$a_1 - b_1 \le a_1 < r_{21} < c_1$$
 and $(a_1 - b_1)n_1 = b_2n_2 + (b_3 - a_3)n_3$.

Lemma 21. Let $a_0, a_1, a_2, a_3 \in \mathbb{N}$. Assume that

$$\bar{n} = a_0\bar{n}_0 + a_3\bar{n}_3 = a_1\bar{n}_1 + a_2\bar{n}_2 \notin \{c'_2\bar{n}_2, \nu\bar{n}_0 + c_3\bar{n}_3\}$$

yields a nonconnected graph. Then (a_1, a_2, a_3) belongs to

$$C_{3} = \left\{ (x_{1}, x_{2}, x_{3}) \in \mathbb{N}^{3} \middle| \begin{array}{l} n_{1}x_{1} + n_{2}x_{2} - n_{3}x_{3} = 0, \\ x_{3} < x_{1} + x_{2} < x_{3} + \nu, \\ 0 < x_{1} < r_{31}, \ c_{3} < x_{3}, \\ c_{2} \le x_{2} < c_{2}' \end{array} \right\}$$

Moreover,

(1)
$$(a_1, a_2) \in M_3 := \text{Minimals}_{\{(x_1, x_2) \mid (x_1, x_2, x_3) \in C_3 \text{ for some } x_3 \in \mathbb{N}\},\$$

(2) $Z(\bar{n}) = \{(a_0, 0, 0, a_3), (0, a_1, a_2, 0)\}.$

Proof. From Lemma 6, we know that $a_0 \neq 0$. Assume that $a_1 = 0$. Then $a_2\bar{n}_2$ is a nonconnected graph, which according to Lemma 9 means that $a_2 = c'_2$, which is excluded in the hypothesis. Hence a_1 is also not zero. The rest of the proof goes as in Lemma 19.

Lemma 22. Let $(a_1, a_2) \in M_3$, and let $\bar{n} = a_1\bar{n}_2 + a_2\bar{n}_2$. Then $G_{\bar{n}}$ is not connected. *Proof.* According to Lemma 21, there exists positive integers a_0 and a_3 such that $\bar{n} = a_0\bar{n}_0 + a_3\bar{n}_3$, $a_0 < v$ and $c_3 < a_3$. We argue as in Lemma 20. Assume that there exists an expression $b_0\bar{n}_0 + b_1\bar{n}_1 + b_2\bar{n}_2 + b_3\bar{n}_3$ other than $a_0\bar{n}_0 + a_3\bar{n}_3$ and $a_1\bar{n}_1 + a_2\bar{n}_2$. Then $a_1\bar{n}_1 + a_2\bar{n}_2 = b_0\bar{n}_0 + b_1\bar{n}_1 + b_2\bar{n}_2 + b_3\bar{n}_3$. From $a_1 < c_1$, we deduce that $a_2 > b_2$, and from $a_2 < c'_2$ that $a_1 > b_1$. Thus

$$0 \neq (a_1 - b_1)\bar{n}_1 + (a_2 - b_2)\bar{n}_2 = b_0\bar{n}_0 + b_3\bar{n}_3.$$

Hence $b_3n_3 = (a_1 - b_1)n_1 + (a_2 - b_2)n_2$, which implies that $b_3 \ge c_3$, and if $c_3 = b_3$ we would get $a_1 - b_1 = r_{31}$, contradicting that $a_1 < r_{31}$. Therefore $b_3 > c_3$. Also $a_1 - b_1 < r_{31}$, and from this it is not difficult to deduce that $a_2 - b_2$ must be greater than or equal to c_2 , since otherwise there will be no way by using the relations in σ to get from $(a_1 - b_1, a_2 - b_2, 0)$ to $(0, 0, b_3)$. Gathering all this information, we obtain that $(a_1 - b_1, a_2 - b_2, b_3) \in C_3$ and $(a_1 - b_1, a_2 - b_2) < (a_1, a_2)$, contradicting $(a_1, a_2) \in M_3$. **Example 23.** Let $S = \langle 11, 18, 21 \rangle$. A minimal presentation for S is

 $\left\{ \left((3, 0, 1), (0, 3, 0) \right), \left((6, 1, 0), (0, 0, 4) \right), \left((9, 0, 0), (0, 2, 3) \right) \right\}.$

The Betti elements of S are $\{54, 84, 99\}$, while those of \overline{S} are

$$\{(4, 54), (7, 84), (9, 99), (7, 126), (7, 105)\}.$$

In this example C_2 is empty, and $C_3 = \{(3, 4, 5), (3, 8, 7), (3, 25, 23)\}$. The minimality condition imposed to the first two coordinates reduces this set to $\{(3, 4, 5)\}$.

A minimal presentation for \bar{S} is

$$\{ ((0, 3, 0, 1), (1, 0, 3, 0)), ((0, 6, 1, 0), (3, 0, 0, 4)), ((0, 9, 0, 0), (4, 0, 2, 3)), \\ ((1, 0, 0, 6), (0, 0, 7, 0)), ((0, 3, 4, 0), (2, 0, 0, 5)) \}.$$

Notice that this semigroup is no longer generic (in all relations all atoms occur), but it is uniquely presented. The set of integers belonging to C_2 and C_3 can be computed by using [Wolfram Alpha 2013] by simply typing in the search field "find integer solutions to" and then the set of inequalities separated by "and."

Theorem 24. Let *S* be a nonsymmetric embedding-dimension-three numerical semigroup, with $c_2 < r_{21} + r_{23}$. Then

Betti(S) = {
$$c_1\bar{n}_1, \delta\bar{n}_0 + c_2\bar{n}_2, c'_2\bar{n}_2, \nu\bar{n}_0 + c_3\bar{n}_3$$
}
 \cup { $a_1\bar{n}_1 + a_3\bar{n}_3|(a_1, a_3) \in M_2$ } \cup { $a_1\bar{n}_1 + a_2\bar{n}_2|(a_1, a_2) \in M_3$ }.

Moreover, \overline{S} is uniquely presented.

Proof. If $\bar{n} \in \text{Betti}(\bar{S})$, then at least $Z(\bar{n})$ has two \Re -classes. Thus in one of them there are at most two atoms of \bar{S} , and neither \bar{n}_0 nor \bar{n}_3 (Lemma 6) are alone. So we have that the set of atoms involved in one of the \Re -classes is any of these sets: $\{n_0, n_1\}, \{n_0, n_2\}, \{n_0, n_3\}, \{n_1\}$ and $\{n_2\}$. Lemmas 3 to 9, 17, 19, 20, 21 and 22 cover all possibilities. Moreover, in all cases $\#Z(\bar{n}) = 2$, and thus according to [García-Sánchez and Ojeda 2010, Corollary 5], \bar{S} is uniquely presented.

Example 25. Recall that a minimal presentation for $S = \langle 10, 17, 19 \rangle$ is

 $\{((4, 1, 0), (0, 0, 3)), ((3, 0, 2), (0, 4, 0)), ((7, 0, 0), (0, 3, 1))\}$

(Example 2). Moreover, $C_2 = \emptyset$ and $C_3 = \{(1, 5, 5)\}$. Thus the set of Betti elements of \overline{S} is

$$\{7\bar{n}_1 = (7, 70), \bar{n}_0 + 4\bar{n}_2 = (5, 68), 2\bar{n}_0 + 3\bar{n}_3 = (5, 57), 9\bar{n}_2 = (9, 153), \bar{n}_0 + 5\bar{n}_3 = (6, 95) \}.$$

Example 26. Let $S = \langle 10, 27, 29 \rangle$. In view of Example 1 with k = 1, a minimal presentation for *S* is

$$\{((6, 1, 0), (0, 0, 3)), ((5, 0, 2), (0, 4, 0)), ((11, 0, 0), (0, 3, 1))\}.$$

Here, $C_2 = \{(3, 14, 12), (4, 9, 7)\}$ and $C_3 = \{(1, 5, 5)\}$. Thus

Betti
$$(\bar{S}) = \{11\bar{n}_1 = (11, 110), 3\bar{n}_0 + 4\bar{n}_2 = (7, 108), 4\bar{n}_0 + 3\bar{n}_3 = (7, 87), 19\bar{n}_2 = (19, 513), \bar{n}_0 + 14\bar{n}_2 = (15, 378), 2\bar{n}_0 + 9\bar{n}_2 = (11, 243)\}.$$

Remark 27. The uniqueness of the minimal presentation can be derived in a different way. As a consequence of Bresinsky's algorithm the cardinality of Betti(\overline{S}) equals the cardinality of a minimal presentation for \overline{S} (this is also stated in [Li et al. 2012, Lemma 2.2] without using Bresinsky's procedure; there are no two relations in a minimal presentation corresponding to the same element in \overline{S}). Thus for every $b \in Betti(\overline{S})$, Z(b) has two \mathcal{R} -classes. This does not show that the minimal presentation is unique, because some of these \mathcal{R} -classes could have more than one element (see, for instance, [Li et al. 2012, Example 2.5]). However it can be shown that in our setting $\pm (b - b') \notin \overline{S}$ for every $b, b' \in Betti(\overline{S})$, that is to say, all Betti elements of \overline{S} are Betti-minimal. Hence in view of [García-Sánchez and Ojeda 2010, Proposition 3] every \mathcal{R} -class of Z(b) for every $b \in Betti(S)$ is a singleton (see also [Charalambous et al. 2007, Theorem 3.4]).

2. The Cohen–Macaulay property

We say that an affine semigroup is Cohen–Macaulay if the semigroup ring k[S] is Cohen–Macaulay. The corollary on page 127 of [Bresinsky 1984] gives a characterization of the Cohen–Macaulay property. Also Remark 2.17 in [Li et al. 2012] offers another characterization of the Cohen–Macaulay property. We will use the test proposed in [Rosales et al. 1998] for affine subsemigroups of \mathbb{N}^2 to give an alternative proof of Bresinsky's characterization in our scope (*S* is not symmetric).

Observe that the (rational) cone spanned by $\{\bar{n}_0, \bar{n}_3\}$ equals the cone spanned by \bar{S} . Thus a_1 in [Rosales et al. 1998, Section 1] is n_3 . Also μ in [Rosales et al. 1998, Lemma 1.1.3] corresponds with $\mu(s) = \min L(s)$ for every $s \in S$.

Let G be a reduced Gröbner basis of I_S with respect to any total degree ordering and $(a_1, a_2, a_3) \in Z(s)$ (observe that G consists also of binomial ideals). For a polynomial $f \in k[x_1, x_2, x_3]$, denote by NF_G(f) the remainder of the division of f by G. It follows that for $s \in S$ and $(a_1, a_2, a_3) \in Z(s)$, NF_G $(x_1^{a_1} x_2^{a_2} x_3^{a_3})$ is a monomial, and if

$$NF_G(x_1^{a_1}x_2^{a_2}x_3^{a_3}) = x_1^{b_1}x_2^{b_2}x_3^{b_3},$$

then $\mu(s) = b_1 + b_2 + b_3$, the total degree of NF_G($x_1^{a_1} x_2^{a_2} x_3^{a_3}$).

Proposition 28. Let *S* be a nonsymmetric embedding-dimension-three numerical semigroup. Then \overline{S} is Cohen–Macaulay if and only if $c_2 \ge r_{21} + r_{23}$.

Proof. Notice that if $c_2 \ge r_{21} + r_{23}$, then by Remark 15,

$$G = \left\{ x_1^{c_1} - x_2^{r_{12}} x_3^{r_{13}}, x_2^{x_2} - x_1^{r_{21}} x_3^{r_{23}}, x_1^{r_{31}} x_2^{r_{32}} - x_3^{c_3} \right\}$$

is a reduced Gröbner basis with respect to any total degree ordering. Let $B = Ap(\bar{S}, \bar{n}_0) \cap Ap(\bar{S}, \bar{n}_3)$. We are going to show that $B = \{(\mu(s), s) \mid s \in Ap(S, n_3)\}$ and thus by [Rosales et al. 1998, Theorem 1.2], \bar{S} is Cohen–Macaulay (in particular the cardinality of *B* is n_3 and the Cohen–Macaulayness of \bar{S} also follows from [Li et al. 2012, Theorem 1.2]). It is easy to see that if $(n, s) \in Ap(\bar{S}, \bar{n}_0)$, then $n = \mu(s)$, and thus the inclusion $\{(\mu(s), s) \mid s \in Ap(S, n_3)\} \subseteq B$ is clear. Now assume that there exists $(\mu(s), s) \in B$ with $s \notin Ap(S, n_3)$. Then $s = n_3 + t$ for some $t \in S$ and $(\mu(s) - 1, t) \notin \bar{S}$. It is easy to see that this can only occur if and only if $\mu(t) > \mu(s) - 1$. Let $(b_1, b_2, b_3) \in Z(t)$ be such that $NF_G(x_1^{b_1}x_2^{b_2}x_3^{b_3}) = x_1^{b_1}x_2^{b_2}x_3^{b_3}$. Hence

$$\mu(t) = b_1 + b_2 + b_3$$
 and $(b_1, b_2, b_3 + 1) \in Z(s)$.

As $\mu(t) = b_1 + b_2 + b_3 > \mu(s) - 1$, this means that $\mu(s) < b_1 + b_2 + b_3 + 1$, and consequently

$$NF_G(x_1^{b_1}x_2^{b_2}x_3^{b_3+1}) \neq x_1^{b_1}x_2^{b_2}x_3^{b_3+1}.$$

This implies that either $x_1^{c_1}$ or $x_2^{c_2}$ or $x_1^{r_{31}}x_2^{r_{32}}$ divide $x_1^{b_1}x_2^{b_2}x_3^{b_3+1}$. As x_3 does not occur in $\{x_1^{c_1}, x_2^{c_2}, x_1^{r_{31}}x_2^{r_{32}}\}$, this means that either $x_1^{c_1}$ or $x_2^{c_2}$ or $x_1^{r_{31}}x_2^{r_{32}}$ divide $x_1^{b_1}x_2^{b_2}x_3^{b_3}$, yielding NF_G $(x_1^{b_1}x_2^{b_2}x_3^{b_3}) \neq x_1^{b_1}x_2^{b_2}x_3^{b_3}$, a contradiction.

If $c_2 < r_{21}+r_{23}$, then $\mu(c_2n_2) = c_2$ (recall that $Z(c_2n_2) = \{(0, c_2, 0), (r_{21}, 0, r_{23})\}$). Notice that $r_{21}n_1$ has unique expression, and consequently $r_{21}n_1 \in Ap(S, n_3)$. Hence

$$c_2 = \mu(c_2n_2) = \mu(r_{21}n_1 + r_{23}n_3)$$
 and $\mu(r_{21}n_1) + r_{23}\mu(n_3) = r_{21} + r_{23}n_3$

Since $c_2 \neq r_{21} + r_{23}$, Proposition 1.6 in [Rosales et al. 1998] states that \overline{S} cannot be Cohen–Macaulay.

Corollary 29. Let *S* be a nonsymmetric embedding-dimension-three numerical semigroup. Then \overline{S} is Cohen–Macaulay if and only if the cardinality of the minimal presentation of *S* coincides with the cardinality of the minimal presentation of \overline{S} .

3. The catenary degree of \bar{S}

Let $S \subset \mathbb{N}^k$ be an affine semigroup. Let $s \in S$, and let

$$a = (a_1, \ldots, a_k), b = (b_1, \ldots, b_k) \in Z(s).$$

The *distance* between *a* and *b* is $d(a, b) = \max\{|a - (a \land b)|, |b - (a \land b)|\}$, where $a \land b = (\min(a_1, b_1), \dots, \min(a_k, b_k))$, the common part to the factorizations *a* and *b*. For $N \in \mathbb{N}$, an *N*-chain of factorizations joining *a* and *b* is a sequence $a_1, \dots, a_t \in Z(s)$ such that $d(a_i, a_{i+1}) \leq N$ for all $i \in \{1, \dots, t-1\}$. The catenary degree of *s*, c(s), is the minimum *N* such for any $a, b \in Z(s)$, there exists an *N*-chain of factorizations joining *a* and *b*.

$$\mathsf{c}(S) = \sup_{s \in S} \mathsf{c}(s).$$

As a consequence of [Chapman et al. 2006, Section 3], this supremum is a maximum and indeed

$$\mathsf{c}(S) = \max_{s \in \operatorname{Betti}(S)} \mathsf{c}(s).$$

If *S* is a numerical semigroup, as \overline{S} is half-factorial, [García-Sánchez et al. 2013, Theorem 2.3] states that for every $s \in \overline{S}$, there exists $b \in \text{Betti}(\overline{S})$ such that c(s) = c(b). Hence in our setting we get the following corollary.

Corollary 30. Let *S* be a nonsymmetric embedding-dimension-three numerical semigroup and let $s \in \overline{S}$.

- If $c_2 \ge r_{21} + r_{23}$, then $c(s) \in \{c_1, c_2, \nu + c_3\}$.
- If $c_2 < r_{21} + r_{23}$, then

$$c(s) \in \{c_1, c_2 + \delta, c'_2, \nu + c_3\} \cup \{(x + y) \mid (x, y) \in M_2 \cup M_3\}.$$

The catenary degree of \overline{S} corresponds with the homogeneous catenary degree of *S* ([García-Sánchez et al. 2013, Proposition 3.5]; the concept of homogeneous catenary degree is introduced in that paper). Hence this result gives a description also of the homogeneous catenary degree of *S*. Also, the homogeneous catenary degree is a lower bound for the monotone catenary degree [García-Sánchez et al. 2013, Proposition 3.9].

Example 31. We apply the above corollary to the semigroups in Example 1. Recall that $S^k = \langle 10, 17 + 10k, 19 + 10k \rangle$ and that the minimal presentation for *S* is

$$\left\{\left((7+4k,0,0),(0,3,1)\right),\left((0,4,0),(3+2k,0,2)\right),\left((0,0,3),(4+2k,1,0)\right)\right\}.$$

Hence the catenary degree of *S* is c(S) = 7 + 4k (the catenary degree of an element with two factorizations with disjoint support is just the maximum of the lengths of these factorizations). The minimal presentation of \overline{S} is

$$\left\{ \left((0, 7+4k, 0, 0), (3+4k, 0, 3, 1) \right), \left((1+2k, 0, 4, 0), (0, 3+2k, 0, 2) \right), \\ \left((0, 1, 5, 0), (1, 0, 0, 5) \right) \right\} \\ \cup \left\{ \left((2k+1-i, 0, 5i+4, 0), (0, 3+2k-i, 0, 5i+2) \right) \mid i \in \{0, \dots, 2k+1\} \right\}.$$

Hence $c(\bar{S}) = 9 + 10k.$

4. The nonsymmetric case

If *S* is not symmetric, then we know (see, for instance, [Rosales and García-Sánchez 2009, Example 8.23]) that some of the following cases can occur (these also include the possibility that $\{n_1, n_2, n_3\}$ is not a minimal generating system, that is, some of the c_i are equal to one):

(1)
$$c_1n_1 = c_2n_2 = c_3n_3$$
,

- (2) $c_1n_1 = r_{12}n_2 + r_{13}n_3 \neq c_2n_2 = c_3n_3 \ (r_{12}r_{13} \neq 0),$
- (3) $c_1n_1 = c_2n_2 \neq c_3n_3 = r_{31}n_1 + r_{32}n_2 \ (r_{31}r_{32} \neq 0),$
- (4) $c_1n_1 = c_3n_3 \neq c_2n_2 = r_{21}n_1 + r_{23}n_3$ ($r_{21}r_{23} \neq 0$) and $c_2 \ge r_{21} + r_{23}$,
- (5) $c_1n_1 = c_3n_3 \neq c_2n_2 = r_{21}n_1 + r_{23}n_3$ ($r_{21}r_{23} \neq 0$) and $c_2 < r_{21} + r_{23}$.

For the cases (1), (2) and (4), Bresinsky's algorithm stops in the first step, and thus both \overline{S} and S have a minimal presentation with two elements.

For (3) and (5), the discussion follows as in the similar case in the nonsymmetric setting.

Observe that the uniqueness of a minimal presentation for \bar{S} is not ensured since S might have more than two minimal presentations.

References

- [Bresinsky 1984] H. Bresinsky, "Minimal free resolutions of monomial curves in \mathbf{P}_k^3 ", *Linear Algebra Appl.* **59** (1984), 121–129. MR 85d:14042 Zbl 0542.14022
- [Chapman et al. 2006] S. T. Chapman, P. A. García-Sánchez, D. Llena, V. Ponomarenko, and J. C. Rosales, "The catenary and tame degree in finitely generated commutative cancellative monoids", *Manuscripta Math.* **120**:3 (2006), 253–264. MR 2007d:20106 Zbl 1117.20045
- [Charalambous et al. 2007] H. Charalambous, A. Katsabekis, and A. Thoma, "Minimal systems of binomial generators and the indispensable complex of a toric ideal", *Proc. Amer. Math. Soc.* 135:11 (2007), 3443–3451. MR 2009a:13033 Zbl 1127.13018
- [Cox et al. 2007] D. Cox, J. Little, and D. O'Shea, *Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra*, 3rd ed., Springer, New York, 2007. MR 2007h:13036

[Delgado et al. 2013] M. Delgado, P. García-Sánchez, and J. Morais, "Numericalsgps: a gap package on numerical semigroups", website, 2013, http://tinyurl.com/numericalsgps.

- [García-Sánchez and Ojeda 2010] P. A. García-Sánchez and I. Ojeda, "Uniquely presented finitely generated commutative monoids", *Pacific J. Math.* **248**:1 (2010), 91–105. MR 2011j:20139 Zbl 1208.20052
- [García-Sánchez et al. 2013] P. A. García-Sánchez, I. Ojeda, and A. Sánchez-R.-Navarro, "Factorization invariants in half-factorial affine semigroups", *Internat. J. Algebra Comput.* 23:1 (2013), 111–122. MR 3040805 Zbl 06156066
- [Herzog 1970] J. Herzog, "Generators and relations of abelian semigroups and semigroup rings", *Manuscripta Math.* **3** (1970), 175–193. MR 42 #4657 Zbl 0211.33801

[Li et al. 2012] P. Li, D. P. Patil, and L. G. Roberts, "Bases and ideal generators for projective monomial curves", *Comm. Algebra* 40:1 (2012), 173–191. MR 2876297 Zbl 1238.14020

[Rosales and García-Sánchez 1999] J. C. Rosales and P. A. García-Sánchez, *Finitely generated commutative monoids*, Nova Science Publishers, Commack, NY, 1999. MR 2000d:20074 Zbl 0966.20028

[Rosales and García-Sánchez 2009] J. C. Rosales and P. A. García-Sánchez, *Numerical semigroups*, Developments in Mathematics **20**, Springer, New York, 2009. MR 2010j:20091 Zbl 1220.20047

[Rosales et al. 1998] J. C. Rosales, P. A. García-Sánchez, and J. M. Urbano-Blanco, "On Cohen-Macaulay subsemigroups of \mathbb{N}^2 ", *Comm. Algebra* **26**:8 (1998), 2543–2558. MR 99g:13032 Zbl 0910.20042

[Wolfram Alpha 2013] Wolfram Alpha, website, 2013, http://www.wolframalpha.com.

Received: 2013-02-25	Revised: 2013-05-02 Accepted: 2013-06-01
yumna2009@yahoo.com	Departamento de Álgebra, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain
pedro@ugr.es	Departamento de Álgebra, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain

mathematical sciences publishers

involve

msp.org/involve

EDITORS

MANAGING EDITOR Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

	BUARD O	F EDITORS	
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US \$120/year for the electronic version, and \$165/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2014 Mathematical Sciences Publishers

2014 vol. 7 no. 1

CRISTA ARANGALA, J. TODD LEE AND CHERYL BORDEN	1
A simple agent-based model of malaria transmission investigating intervention methods and acquired immunity KAREN A. YOKLEY, J. TODD LEE, AMANDA K. BROWN, MARY C. MINOR AND GREGORY C. MADER	15
Slide-and-swap permutation groups ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER	41
Comparing a series to an integral LEON SIEGEL	57
Some investigations on a class of nonlinear integrodifferential equations on the half-line MARIATERESA BASILE, WOULA THEMISTOCLAKIS AND ANTONIA VECCHIO	67
Homogenization of a nonsymmetric embedding-dimension-three numerical semigroup SEHAM ABDELNABY TAHA AND PEDRO A. GARCÍA-SÁNCHEZ	77
Effective resistance on graphs and the epidemic quasimetric JOSH ERICSON, PIETRO POGGI-CORRADINI AND HAINAN ZHANG	97

