
inv lve
a journal of mathematics

msp

Convex and subharmonic functions on graphs
Matthew J. Burke and Tony L. Perkins

2014 vol. 7, no. 2



msp
INVOLVE 7:2 (2014)

dx.doi.org/10.2140/involve.2014.7.227

Convex and subharmonic functions on graphs
Matthew J. Burke and Tony L. Perkins

(Communicated by Ronald Gould)

We explore the relationship between convex and subharmonic functions on dis-
crete sets. Our principal concern is to determine the setting in which a convex
function is necessarily subharmonic. We initially consider the primary notions
of convexity on graphs and show that more structure is needed to establish the
desired result. To that end, we consider a notion of convexity defined on lattice-
like graphs generated by normed abelian groups. For this class of graphs, we are
able to prove that all convex functions are subharmonic.

1. Introduction

Classical analysis provides several equivalent definitions of a convex function, which
have led to several nonequivalent concepts of a convex function on a graph. This is
not the case for subharmonic functions, where there appears to be a consensus on
how to define subharmonic functions on graphs. In the real variable counterpart,
all convex functions are subharmonic. It is the aim of this paper to investigate this
relationship in the discrete setting.

We show that in the setting of weighted graphs over a normed abelian group,
one can prove analogs of some classical analysis theorems relating convexity
to subharmonic functions. In particular: all convex functions are subharmonic
(Theorem 13); for a fixed point a ∈ X , the distance function d(x, a) is convex
(Lemma 15); and a set F is convex if and only if the distance function d(x, F)=
infy∈F d(x, y) is subharmonic (Propositions 14 and 17).

For a discrete set with metric, there is generally one straightforward way to
define convex sets and convex functions on them. For completeness and ease of
reference, we present these in Section 2. The definitions we give (or something
equivalent to them) can be traced back at least to d-convexity [German et al. 1973;
Soltan 1972] and d-convex functions [Soltan and Soltan 1979], and possibly much
earlier. Graphs admit a natural metric — the length of the shortest path between
two vertices — which leads to one notion of convexity on graphs studied in [Soltan
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1983; 1991]. The notion of d-convexity on graphs when d is the standard graph
metric is equivalent to the more common notion of geodesic convexity [Cáceres
et al. 2005; Farber and Jamison 1986].

Common to [Cáceres et al. 2005; Farber and Jamison 1986; Soltan 1983; 1991],
one starts with a graph and then puts a convexity theory on it by using the graph
metric. However, in Section 3 we show that convex sets and functions defined on
graphs with respect to the graph metric extend well for some, but not all, properties.

Another approach taken in Section 4 is to allow the vertices themselves to have
some underlying structure, for example, a normed abelian group, and force the
edges to be compatible with this metric. In the setting of a normed abelian group
there are many notions of a convex function (see [Kiselman 2004] and references
therein). One introduced in [Kiselman 2004] provides a natural extension of
geodesic convexity that makes use of the additional abelian group structure. In
this setting, convex and subharmonic functions are of particular interest to image
analysis, for example, [Kiselman 2004; 2005]. In this setting, we are able to prove
theorems analogous to several standard results from classical analysis.

2. Fundamental concepts

We will always assume that a graph is locally finite.

2.1. Convexity. Let X be an at most countable set with a metric d, that is,

d : X × X→ R,

with these properties:

(i) d(x, y)≥ 0 for all x, y ∈ X with d(x, y)= 0 if and only if x = y.

(ii) d(x, y)= d(y, x).

(iii) d(x, y)≤ d(x, z)+ d(z, y).

Traditionally, a set A is convex if for all points x, y ∈ A every point on the line
segment connecting them is also in A. Notice that a point z is on the line segment
connecting x, y ∈ A if and only if d(x, y)= d(x, z)+ d(z, y). Hence we take the
following definitions:

For A ⊂ X define

c1(A)=
{
z ∈ X : d(x, y)= d(x, z)+ d(z, y) for some x, y ∈ A

}
(this gives c1(A)=∅ when A=∅), and inductively set cn(A)= c1(cn−1(A)). Note
that 0= d(x, x)= d(x, x)+ d(x, x), hence A ⊆ c1(A)⊆ · · · ⊆ cn(A) for all n.
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Definition 1. Let A ⊂ X . The convex hull of A is

cvx(A)=
∞⋃

n=1

cn(A).

Naturally, the set A is said to be convex if cvx(A)= A. Clearly ∅ and X are convex.
We say that the point z is in between x and y whenever d(x, y)=d(x, z)+d(z, y)

is satisfied.

Lemma 2. A set A ⊂ X is convex if and only if A = c1(A).

Proof. If A = c1(A) then c2(A) = c1(c1(A)) = c1(A) = A. Hence by induction
cn(A)= A and so A =

⋃
cn(A)= cvx(A). Thus A is convex.

Suppose that A is convex. Then A = cvx(A) =
⋃

cn(A) ⊃ c1(A) ⊃ A. Thus
A = c1(A). �

Proposition 3. For all sets A, B ⊂ X ,

A ⊂ cvx(A), (1)

A ⊂ B⇒ cvx(A)⊂ cvx(B), (2)

cvx(A)= cvx(cvx(A)). (3)

Proof. (1) We’ve already shown that A ⊂ c1(A) ⊂ · · · ⊂ cn(A) for all n and so
A ⊂

⋃
cn(A)= cvx(A).

(2) For any sets X and Y , if X ⊂ Y then c1(X)⊂ c1(Y ). Indeed for any z ∈ c1(X)
there exists by definition x1, x2 ∈ X so that d(x1, x2)= d(x1, z)+ d(z, x2), but as
x1, x2 ∈ X ⊂ Y this shows that z ∈ c1(Y ). Then as A ⊂ B, we have c1(A)⊂ c1(B).
Then by induction, cn(A)⊂ cn(B). Therefore cvx(A)⊂ cvx(B).

(3) The claim cvx(A)= cvx(cvx(A)) amounts to saying that cvx(A) is convex. We
will use Lemma 2 to show this. Consider any z ∈ c1(cvx(A)). This means there
exists x, y ∈ cvx(A) =

⋃
cn(A) so that d(x, y) = d(x, z)+ d(z, y). However, as

A⊂ c1(A)⊂ c2(A)⊂ · · · ⊂ cn(A)⊂ · · · we know x, y ∈ cn(A) for some n, and so
z ∈ c1(cn(A))= cn+1(A)⊂ cvx(A). Hence c1(cvx(A))= cvx(A). �

The following proposition shows that our definition of convex hull is equivalent
to the usual one, that is, the convex hull of A is the intersection of all convex sets
that contain A.

Proposition 4. For any A ⊂ X , the set cvx(A) is the intersection of all convex sets
that contain A.

Proof. Let B⊂ X be a convex set containing A. As noted previously, A⊂ B implies
cvx(A)⊂ cvx(B). However, cvx(B)= B by hypothesis. Hence, cvx(A)⊂ B for
all convex B containing A. Therefore

cvx(A)⊂
⋂
{B : A ⊂ B and B convex}.
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As cvx(A) is convex and A ⊂ cvx(A), it must be included in the intersection
above. Thus ⋂

{B : A ⊂ B and B convex} ⊂ cvx(A). �

Proposition 5. If A and B are convex, then A∩ B is convex.

Proof. Let A and B be convex. Then by Lemma 2, A = c1(A) and B = c1(B).
We will show that c1(A∩ B)= c1(A)∩ c1(B)= A∩ B. We’ve already noted that
A∩ B ⊂ c1(A∩ B).

Suppose that z ∈ c1(A∩ B). Then there exists x, y ∈ A∩ B such that d(x, y)=
d(x, z)+ d(z, y). Hence z ∈ c1(A) and z ∈ c1(B), that is, z ∈ c1(A)∩ c1(B). As
A = c1(A) and B = c1(B), we now have z ∈ c1(A)∩ c1(B) = A ∩ B. Therefore
c1(A∩ B)⊂ A∩ B. Thus A∩ B = c1(A∩ B), and so A∩ B is convex. �

Proposition 6. Let I be an ordered set and take {Aα}, α ∈ I to be a collection of
convex sets in X where Aα ⊂ Aβ whenever α < β and α, β ∈ I . The set formed by
taking the union of Aα for α ∈ I is convex.

Proof. We must show that
⋃

Aα is convex. Consider the set c1
(⋃

Aα
)
. For

any z ∈ c1
(⋃

Aα
)
, we can find x, y ∈

⋃
Aα so that d(x, y) = d(x, z)+ d(z, y).

However, x, y ∈
⋃

Aα implies that x ∈ Aα and y ∈ Aβ for some α, β ∈ I . Without
loss of generality, we assume that α<β. By hypothesis, Aα⊂ Aβ . Hence x, y ∈ Aβ .
Since z satisfies d(x, y) = d(x, z)+ d(z, y) for x, y ∈ Aβ with Aβ convex, we
see that z ∈ c1(Aβ) = Aβ . As z was arbitrarily chosen from c1

(⋃
Aα
)
, we have

c1
(⋃

Aα
)
⊂
⋃

Aα.
By construction the reverse inclusion

⋃
Aα ⊂ c1

(⋃
Aα
)

is immediate. Hence
c1
(⋃

Aα
)
=
⋃

Aα. Recall from Lemma 2 that a set A is convex if and only if
A = c1(A). Therefore

⋃
Aα is convex. �

Definition 7. Let A be a convex set. A function f : A→ R is convex at the point
z ∈ A if

f (z)≤ d(y, z)
d(x, y)

f (x)+ d(x, z)
d(x, y)

f (y)

whenever z is in between x, y ∈ A, that is, d(x, y)= d(x, z)+ d(z, y). A function
is said to be convex on A if it is convex at every point in A. Furthermore, a function
is simply called convex when it is convex on the entire set X .

The vertices of a graph admit a natural metric defined as the length of the shortest
path between them. With this, the notions of convex and convex functions extend
naturally to all graphs; see [Cáceres et al. 2005; Farber and Jamison 1986; Soltan
1983; 1991].
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2.2. Subharmonic functions on a graph. Introductions to various aspects of the
theory can be found in [Bıyıkoğlu et al. 2007; Kiselman 2005; Soardi 1994; Woess
1994].

Consider a graph G. The vertices of this graph will be denoted X (to stay
consistent with above), which shall be the domain of our (sub)harmonic functions.
A function f : X→ R is said to be harmonic at x ∈ X if

f (x)= 1
deg(x)

∑
y∼x

f (y),

and subharmonic at x ∈ X if

f (x)≤ 1
deg(x)

∑
y∼x

f (y),

where deg(x) denotes the degree of x and y ∼ x means that y is adjacent to x . A
function is (sub)harmonic if it is (sub)harmonic at every point x ∈ X . Observe that
constant functions are always harmonic (thereby subharmonic too), and so these
classes of functions are never empty.

Lemma 8. If the graph X is connected, regular of degree two and triangle free,
then a subharmonicity is the same as convexity.

Proof. Each vertex z has only two neighbors x, y. As the graph is triangle free, we
have d(x, y)= 2. Hence

1
deg(z)

∑
ζ∼z

f (ζ )= 1
2

(
f (x)+ f (y)

)
=

d(y, z)
d(x, y)

f (x)+ d(x, z)
d(x, y)

f (y).

By definition f is subharmonic at z if f (z) is less than or equal to the left side
of the equation above, and f is convex at z if f (z) is less than or equal to the right
side of the equation above. Therefore subharmonicity and convexity are equivalent
when these conditions are met. �

We will also use a standard modification of the definition of subharmonic func-
tions on graphs to allow for positive edge weights. Namely, a function f : X→ R

is subharmonic at x if

0≤
∑
y∼x

e(x, y)[ f (y)− f (x)],

which with some arithmetic becomes

f (x)≤
1

Mx

∑
y∼x

e(x, y) f (y),

where e(x, y) = e(y, x) ≥ 0 is the edge weight and Mx =
∑

y∼x e(x, y). If the
edge weights are all taken to be one, then this definition is identical to the first.
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3. The distance is given by the graph metric

In this section we provide two simple theorems which show that for a large class of
graphs, convex functions are indeed subharmonic.

Theorem 9. Let z be a point in X. Suppose that deg(z) > 1 and that z is not part
of any triangle. If f is convex at z, then f is subharmonic at z. Consequently, if the
graph has no triangles or vertices of degree less than 2, then every convex function
is subharmonic.

Proof. Let B = {y ∈ X : y ∼ z} be all the vertices adjacent to z. By hypothesis, we
have deg(z) = |B| > 1, and so there are at least two vertices y1, y2 ∈ B. As z is
adjacent to both y1 and y2 and as z is assumed to not be a part of a triangle, y1 is not
adjacent to y2. Hence z is in between y1 and y2, that is, on a geodesic connecting
y1 and y2. In fact 2= d(y1, y2)= d(y1, z)+d(z, y2), with d(y1, z)= d(z, y2)= 1.
Hence, for all y1, y2 ∈ B, we have

2 f (z)≤ f (y1)+ f (y2) (4)

by convexity.
Now we sum the inequality (4) over all unordered pairs of points y1, y2 ∈ B.

Naturally, there are
(deg(z)

2

)
such pairs and each vertex y ∈ B will appear precisely

deg(z)− 1 times. (Recall B = {y : y ∼ z} and so |B| = deg(z).) Hence(
deg(z)

2

)
2 f (z)≤ (deg(z)− 1)

∑
y∼z

f (y),

which simplifies to

f (z)≤
1

deg(z)

∑
y∼z

f (y).

Thus f is subharmonic at z. �

Theorem 10. Let z be a point in X. If the neighbors of z can be partitioned into
pairs such that the vertices in each pair are nonadjacent, then a function being
convex at z implies that it is also subharmonic at z.

Proof. For any vertices y1, y2 in a pairing of the partition of the neighbors of z that
are nonadjacent, the vertex z must be between them, and hence,

2 f (z)≤ f (y1)+ f (y2)

for any function f subharmonic at z. Consequently, if we sum this inequality over
all deg(z)/2 pairings, we have

2 deg(z)
2

f (z)≤
∑
y∼z

f (y).
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Therefore f is subharmonic at z. �

Notice that for the standard square lattice, both theorems imply that a convex
function is subharmonic. If z was connected to an odd number of nonadjacent
points, then only the first theorem implies that a function convex at z is subharmonic
at z. Similarly, when the graph is the standard triangular tiling of the plane, only
the second theorem would show that every convex function is subharmonic.

Theorem 11. Let F be any subset of X. If the distance function

d( · , F) := inf{d( · , f ) : f ∈ F}

is convex, then F is convex.

Proof. Consider any point z ∈ X that lies between x, y ∈ F . If the distance function
is convex, we have

0≤ d(z, F)≤
d(y, z)
d(x, y)

d(x, F)+
d(x, z)
d(x, y)

d(y, F),

but d(x, F)= d(y, F)= 0 as x, y ∈ F . Therefore d(z, F)= 0, and so z must also
be a point in F . �

Example 12. Consider a cycle on four vertices, that is, X = {a, x, y, z} with a ∼ x ,
x ∼ y, y ∼ z, z ∼ a. One would easily believe that F = {a} is convex. Hence
d(x, F)= d(z, F)= 1, and y is in between x and z. However

2= d(y, a) 6≤ 1
2 d(x, a)+ 1

2 d(z, a)= 1.

Hence d( · , a) is not convex and certainly not subharmonic.
Observe also the set {x, y, z} is not convex. We believe this reveals part of the

problem with this definition of convexity. Namely, a geodesic line segment need
not be convex. It seems that few graphs have convex geodesics. (However X = Z,
with x ∼ y when |x − y| = 1, and the standard triangular tiling of the plane are two
such graphs.)

It would seem that more structure is needed to have a workable theory.

4. Graphs over a normed abelian group

For the remainder of this paper, we consider weighted graphs where the vertex set
X is a normed abelian group and the graph is compatible with the norm. We will
denote the norm ‖ · ‖. We say that the graph structure is compatible with the norm
if there is a constant r > 0 such that x ∼ y if and only if ‖x − y‖ ≤ r and the edge
weights are given by the norm e(x, y)= ‖x − y‖ ≤ r .

In particular, graphs of this type include all lattice graphs. By rescaling X by r
we can always assume without loss of generality that r = 1.
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Graphs of this type pick up a number of traits from analysis. One such trait is
a local similarity property. When one does analysis in a domain D ⊂ Rn (or on a
manifold) every point z ∈ D has a neighborhood which is locally like a ball in Rn .
We see the same property here.

This can also be viewed as a translation invariance property; we could translate
any point x0 to the origin by taking X 7→ X − x0 and nothing would change. More
explicitly, we denote Br (x0) := {y ∈ X : y ∼ x0}, and for every x0 in X there is a
simple one-to-one correspondence between Br (x0) and Br (0). If y ∈ Br (x0), then
z = y− x0 ∈ Br (0), and if z ∈ Br (0), then x0+ z ∈ Br (x0).

Furthermore, if ζ ∈ Br (0), then −ζ ∈ Br (0). Hence

{y ∈ X : y ∼ x} := Br (x)= {x + ζ : ζ ∈ Br (0)} = {x − ζ : ζ ∈ Br (0)}. (5)

We maintain the same notion of a convex function, namely

‖x − y‖ f (z)≤ ‖y− z‖ f (x)+‖x − z‖ f (y),

whenever ‖x − y‖ = ‖x − z‖+‖z− y‖. However in this context we can work with
midpoints.

Kiselman [1996] defines a function f on an abelian group X to be midpoint
convex if

f (x)≤ 1
2 f (x + z)+ 1

2 f (x − z)

for all x and z in X . (Actually he uses the notion of upper addition for functions
defined on the extended real line, that is, R∪ {±∞}, but we will not be needing
such subtleties here.) Trivially a convex function is always midpoint convex.

We will now see that this notion of midpoint convexity allows us to achieve our
goals.

Theorem 13. Consider a weighted graph where the vertex set X is a normed
abelian group and the graph is compatible with the norm. Every midpoint convex
function is subharmonic.

Proof. Pick any x ∈ X . Observe that by (5)∑
y∼x

e(x, y) f (y)= 1
2

∑
z∈Br (0)

e(x, x + z) f (x + z)+ 1
2

∑
z∈Br (0)

e(x, x − z) f (x − z)

=

∑
z∈Br (0)

e(x, x + z)
( 1

2 f (x + z)+ 1
2 f (x − z)

)
.

Hence, by (midpoint) convexity

f (x)Mx = f (x)
∑

z∈Br (0)

e(x, x + z)≤
∑
y∼x

e(x, y) f (y),

which shows that f is subharmonic at x . �



CONVEX AND SUBHARMONIC FUNCTIONS ON GRAPHS 235

A set A ⊂ X is called convex if the function

IA(x)=
{

0 for x ∈ A,
+∞ for x ∈ X \ A

is convex, or, equivalently, if z ∈ A whenever there exists x, y ∈ A such that
‖x − y‖ = ‖x − z‖+‖z− y‖. This again easily implies midpoint convexity, that is,
if z ∈ A whenever there is an x ∈ X such that both z+ x and z− x are in A.

Proposition 14. Let F be any subset of X. If the distance function

d(x, F)= inf{‖x − y‖: y ∈ F}

is convex, then the set F is convex.

Proof. Let x ∈ X so that there is some z ∈ X with x ± z ∈ F . Then by midpoint
convexity

0≤ d(x, F)≤ 1
2 d(x + z, F)+ 1

2 d(x − z, F)= 0.

Therefore d(x, F)= 0 and so x ∈ F . �

Notice that for the simple case F = {a} we get the converse of the previous result.

Lemma 15. For any fixed a ∈ X , the function f (z)= ‖z− a‖ is midpoint convex.

Proof. This follows immediately from the triangle inequality on the norm. Indeed,
for any x, y, z ∈ X with ‖x − y‖ = ‖x − z‖+‖z− y‖ we have

2 f (x)= 2‖x − a‖ = ‖2(x − a)‖ = ‖(x − a)− z+ (x − a)+ z‖

≤ ‖(x − a)− z‖+‖(x − a)+ z‖ = f (x − z)+ f (x + z). �

The minimum of two convex functions is in general not a convex function, which
is one reason why the following result is interesting.

However, in general the classical proofs rely heavily upon the fact that for any
point x and convex set F there is always a unique nearest neighbor y ∈ F to x .

Definition 16. We say that a set F has the nearest neighbor property if for all
y1, y2 ∈ F and z ∈ X there exists a y ∈ F (possibly y1 or y2) such that

2‖y− z‖ ≤ ‖y1+ y2− 2z‖.

Proposition 17. If F is a convex subset of X with the nearest neighbor property,
then the distance function d( · , F) is midpoint convex (and hence subharmonic).

Proof. Pick any z ∈ X \ F . We will show that d( · , F) is midpoint convex at z. By
replacing F with F − z we may assume without loss of generality that z = 0.

Clearly it is possible for there to be an x ∈ Br (0) such that d(x, F) ≤ d(0, F).
However, by switching to normed abelian groups we’ve a strong property to use.
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Namely, if x ∈ Br (0) then −x ∈ Br (0). We will show for convex sets with the
nearest neighbor property that

2d(0, F)≤ d(x, F)+ d(−x, F),

that is, d( · , F) is midpoint convex (and hence subharmonic).
We can find y1, y2∈ F such that d(x, F)=‖x−y1‖ and d(−x, F)=‖(−x)−y2‖.

Let y be a point in F such that 2‖y‖ ≤ ‖y1+ y2‖. Then

2d(0, F)≤ 2‖y‖ ≤ ‖y1+ y2‖ = ‖y1+ y2+ x − x‖ = ‖(y1− x)+ (y2+ x)‖

≤ ‖y1− x‖+‖y2+ x‖ = d(x, F)+ d(−x, F). �
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