

a journal of mathematics

An unexpected discovery
Erika L. C. King

An unexpected discovery

Erika L. C. King

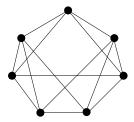
(Communicated by Darren A. Narayan)

One summer, I chose two undergraduate students to work with me on a research project. Our goal was specifically to find a new approach to proving a theorem I had already proved several years before. We were looking for a new approach because the proof I had written is too long for publication, but the result itself is interesting. As is common in mathematics, our work led us to an unexpected discovery. This article leads the reader through our journey.

In 2010, I enlisted two students, Trevor J. Gionet Jr. and Yixiao Sha, to work with me for eight weeks in the summer on a research project funded through our provost's office. What follows is the story of our research journey. Our project was in the field of graph theory. I will use terminology from graph theory, though it is not necessary for you to know it to follow our adventure.

At the start of the project, Trevor had just completed a first graph theory course with me. Yixiao had never had graph theory, but had read through portions of the textbook [Chartrand and Zhang 2005] that had been used for Trevor's graph theory course. Our goal was to take a long proof I had written about ten years previously and make it shorter. The proof I had was over 350 pages long and therefore virtually unpublishable. However, some graph theorists thought the result it proved was interesting enough that they encouraged me to rework the proof and get it published. I hoped that if some students worked with me, they could offer some fresh ideas to help create a lemma or two (or five!) that would shorten the proof.

The result in question classifies a set of graphs with certain properties. I gave Trevor and Yixiao the statement of the theorem.

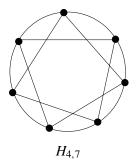

Theorem 1. There are precisely seven connected, 4-regular, claw-free, well-dominated graphs.

However, I did not give them the list of those seven graphs. In order to gain an understanding of what graphs with these properties look like, I wanted them to experiment and try to find the seven graphs on their own. So their first assignment was to find as many graphs as they could with these four properties.

MSC2010: primary 01-02; secondary 05C69.

Keywords: undergraduate research, well-dominated graphs, well-covered graphs, claw-free, regular.

At our next meeting I asked them what they had found and whether they could justify that their graphs had the properties we were looking for. Yixiao and Trevor both had graphs to share. For one of his examples, Trevor drew this graph on the board:


I asked him to be more and more specific about why this graph fit into our class of graphs. We went on to discuss other graphs and ideas. After a while, we finished our meeting. They left to do more exploring. I stared at my board. I had not told them, but this graph was not on my list of seven. As you can see, it is a small graph, so checking the properties was not difficult, but I did it several times before I sat down to write Michael Plummer and Bert Hartnell.

Trevor's graph is not just connected, it is 4-connected. My long proof had attacked this classification by breaking the possibilities into cases by connectivity. Since the graphs are 4-regular (meaning each vertex has a degree of four) and connected (meaning there exists a path between every pair of vertices in the graph), we know they are at least 1-connected and no more than 4-connected (we need to delete at least one vertex, but no more than four vertices, to disconnect the graph). This approach had given me four cases. More importantly, there was already a result published in *Discrete Applied Mathematics* by Hartnell and Plummer [1996] classifying 4-connected, 4-regular, claw-free, well-covered graphs. This was helpful since Finbow, Hartnell and Nowakowski [Finbow et al. 1988] showed that welldominated graphs are a subclass of well-covered graphs. This meant that for one of my cases (the 4-connected one) I needed only to determine which well-covered graphs in Hartnell and Plummer's classification were also well-dominated. But since Trevor's graph was 4-connected, it not only should have appeared in my result, it should have appeared in Hartnell and Plummer's well-covered result as well. It did not. Hence, my impulse to write graph theorists Michael Plummer and Bert Hartnell.

Both Hartnell and Plummer responded quickly that we were correct and the graph should have been in their characterization. Furthermore, Plummer realized that the error was actually in an even earlier paper he had written on classes of claw-free graphs [Plummer 1995]. In the earlier paper, Plummer characterized 4-regular, 4-connected, claw-free graphs. He and Hartnell then used that characterization to

determine the well-covered ones. However, Plummer had neglected to consider a case which included some graphs with an odd number of vertices. This was somewhat understandable given the topic of his paper primarily concerned graphs with an even number of vertices. However there were now two results based on his incomplete characterization and those results together with his characterization needed revising.

I shared the news with the students and their surprise and excitement were palpable. The goal of our summer project shifted to working on trying to complete Plummer's original characterization of the 4-regular, 4-connected, claw-free graphs, and to revising the Hartnell and Plummer result on well-covered graphs that followed. The students worked hard and we discovered that Plummer's characterization actually omitted an *infinite number* of graphs of odd order! However, Plummer's proof was still quite good and we needed only to rework a small portion of it to incorporate the missing graphs. In the process, Trevor realized that all the graphs in the characterization, including the original graphs and the new ones, were in a class of graphs we had read about in our textbook [Chartrand and Zhang 2005]. The textbook authors, Chartrand and Zhang, called this class Harary graphs. These graphs are very symmetric. Here is a redrawing of Trevor's graph, which is called $H_{4,7}$ in the class of Harary graphs, that makes the connection to Chartrand and Zhang's construction clearer.

By the end of the summer, we were able to complete Plummer's characterization of 4-regular, 4-connected, claw-free graphs, and revise Hartnell and Plummer's result about which of those are well-covered. Interestingly, even though there were an infinite number of odd graphs omitted from Plummer's characterization, *only two* of those graphs are well-covered ($H_{4,7}$ and $H_{4,11}$)! Both of the new well-covered graphs are also well-dominated, so now the theorem I first handed the students has been revised as follows:

Theorem 2. There are precisely nine connected, 4-regular, claw-free, well-dominated graphs.

We published a paper with our results, including the two revised results and a theorem classifying 4-connected, 4-regular, claw-free, well-dominated graphs, in *Discrete Applied Mathematics* [Gionet et al. 2011]. It was an exciting adventure and taught the students that although we start working on one problem, our research may lead us down a different path. Now back to figuring out how to shorten this 350 page proof!

References

[Chartrand and Zhang 2005] G. Chartrand and P. Zhang, *Introduction to Graph Theory*, McGraw Hill, New York, 2005.

[Finbow et al. 1988] A. Finbow, B. Hartnell, and R. Nowakowski, "Well-dominated graphs: a collection of well-covered ones", *Ars Combin.* **25**:A (1988), 5–10. MR 90e:05049

[Gionet et al. 2011] T. J. Gionet, Jr., E. L. C. King, and Y. Sha, "A revision and extension of results on 4-regular, 4-connected, claw-free graphs", *Discrete Appl. Math.* **159**:12 (2011), 1225–1230. MR 2012e:05311 Zbl 1223.05139

[Hartnell and Plummer 1996] B. Hartnell and M. D. Plummer, "On 4-connected claw-free well-covered graphs", *Discrete Appl. Math.* **64**:1 (1996), 57–65. MR 97h:05166 Zbl 0859.05051

[Plummer 1995] M. D. Plummer, "2-extendability in two classes of claw-free graphs", pp. 905–922 in *Graph theory, combinatorics, and algorithms, II* (Kalamazoo, MI, 1992)), edited by Y. Alavi and A. Schwenk, Wiley, New York, 1995. MR 97d:05228 Zbl 0866.05049

Received: 2013-02-26 Revised: 2013-03-15 Accepted: 2013-04-26

eking@hws.edu Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, NY 14456, United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD	OF.	EDITORS
-------	-----	---------

	BOARD O	F EDITORS	
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel @luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		MC 1 1E 7	TT 1 14 CARC 11 TICA

PRODUCTION

Michael E. Zieve

University of Michigan, USA zieve@umich.edu

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US \$120/year for the electronic version, and \$165/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

nonprofit scientific publishing

http://msp.org/

Preface	245
Darren A. Narayan	
Undergraduate research in mathematics with deaf and hard-of-hearing students: four perspectives	247
HENRY ADLER, BONNIE JACOB, KIM KURZ AND RAJA KUSHALNAGAR	
Challenges in promoting undergraduate research in the mathematical sciences	265
FERYAL ALAYONT, YULIYA BABENKO, CRAIG JACKSON AND ZSUZSANNA SZANISZLO	
Undergraduate research as a capstone requirement	273
HANNAH L. CALLENDER, JAMES P. SOLAZZO AND ELIZABETH WILCOX	
A decade of undergraduate research for all East Tennessee State University mathematics majors	281
ARIEL CINTRÓN-ARIAS AND ANANT GODBOLE	
The MAA undergraduate poster session 1991–2013	295
JOYATI DEBNATH AND JOSEPH A. GALLIAN	
Nonacademic careers, internships, and undergraduate research	303
MICHAEL DORFF	
REU design: broadening participation and promoting success	315
REBECCA GARCIA AND CINDY WYELS	
Papers, posters, and presentations as outlets for undergraduate research	327
Aparna Higgins, Lewis Ludwig and Brigitte Servatius	
ISU REU: diverse, research-intense, team-based	335
LESLIE HOGBEN	
AIM's Research Experiences for Undergraduate Faculty program	343
LESLIE HOGBEN AND ULRICA WILSON	
Institutional support for undergraduate research	355
KATHY HOKE, ALESSANDRA PANTANO, MAZEN ZARROUK AND AKLILU ZELEKE	
Experiences of working with undergraduate students on research during an academic year	363
Jobby Jacob	
The role of graduate students in research experience for undergraduates programs	369
MICHAEL A. KARLS, DAVID MCCUNE, LARA PUDWELL AND AZADEH RAFIZADEH	
An unexpected discovery	373
Erika L. C. King	
Alternative resources for funding and supporting undergraduate research	377
ZACHARY KUDLAK, ZEYNEP TEYMUROGLU AND CARL YERGER	
Academic year undergraduate research: the CURM model	383
TOR A. KWEMBE, KATHRYN LEONARD AND ANGEL R. PINEDA	
Information for faculty new to undergraduate research	395
CAYLA MCBEE AND VIOLETA VASILEVSKA	
Promoting REU participation from students in underrepresented groups	403
HEATHER M. RUSSELL AND HEATHER A. DYE	
The Center for Industrial Mathematics and Statistics at Worcester Polytechnic Institute	413
SUZANNE L. WEEKES	
Nontraditional undergraduate research problems from sports analytics and related fields	423
Carl R. Yerger	