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Using the double-cut-and-join (DCJ) model for genome rearrangement we use
combinatorial techniques to analyze the distribution of genomes under DCJ
distance. We present an exponential generating function for the number of
genomes that are maximally distant from a given genome and provide a formula
for the number of genomes that are any given distance from an arbitrary starting
genome.

1. Introduction

Many mathematical models have been developed to aid biologists and bioinfor-
maticians in their study of the genome rearrangement problem, whose goal is
to find the optimal sequence of mutations for the transformation of one genome
into another. Using the double-cut-and-join (DCJ) model, Bergeron, Mixtacki,
and Stoye [Bergeron et al. 2006] found that the distance between two genomes is
completely determined by a bipartite graph created from the genomes. We utilize
their data structure to find the distribution of genomes that are distance d from a
given genome under DCJ. In Section 2, we introduce genome rearrangement, DCJ,
and an important result of the same authors. In Section 3, we present a generating
function for the number of maximally distant genomes from a given genome, and
in Section 4, we obtain the distribution of all genomes by distance from a given
genome.

2. Background

A brief history of genome rearrangements. Deoxyribonucleic acid (DNA) con-
tains instructions for the creation of the proteins necessary for the development and
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Figure 1. Preserved segments between mouse and human genomes
showing long stretches of conserved DNA from their common
ancestor. More than ninety percent of the mouse genome consists
of shuffled pieces of the human genome [NHGRI 2002].

survival of living organisms. The entire collection of DNA in an organism is called
the organism’s genome, and this DNA is contained within chromosomes comprised
of genes. When DNA is replicated, occasionally something goes awry and a
mutation occurs, slightly changing an organism’s genetic make-up. A sufficient
number of mutations can result in death, disease, or the development of a new
species.

In the genome rearrangement problem, the object is to find the optimal sequence
of mutations that transforms one genome into another, where both genomes are
defined on the same set of genes. The number of mutations in this most efficient
scenario is defined to be the distance between the two genomes.

In the simplest case, genomes can be modeled by permutations under the assump-
tions that all genomes share the same set of genes, there are no duplicated genes,
and only a single chromosome is considered [Fertin et al. 2009]. Most models now
use objects that are more complicated than permutations by removing some or all
of these assumptions [Yancopoulos et al. 2005]. For example, signed permutations
are utilized to better model that DNA is oriented, and ordered set partitions can be
used for multiple chromosomes.

Double cut and join. In the DCJ model, genes are numbered and oriented, as
shown in the figures on the next page. Consequently, a gene may be represented as
a numbered left or right arrow with labeled ends; for example, 7h and 7t denote the
head and tail of the seventh gene. Chromosomes are collections of arrows that have
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been joined head to head, tail to tail, or head to tail, and genomes constitute sets
of chromosomes. Alternatively, a genome may be represented as a collection of
vertices that correspond to the locations where genes meet. An internal vertex, or
adjacency, occurs where two genes are joined in one of the three fashions mentioned
above, and an external vertex, or telomere, occurs where the head or tail of a gene
is not connected to other genes. Note that there are always an even number of
telomeres in a genome, and that the number of genes in a genome is equivalent to
the sum of the adjacencies and the number of pairs of telomeres present.

DCJ is a broad model that encompasses linear and circular chromosomes and
incorporates the following mutations:

• Inversions: reverse the order of a chromosome or part of the genome

• Interchanges: switch two segments of the genome

• Translocations: swap the ends of two chromosomes

• Circularizations and linearizations: convert between linear and circular chro-
mosomes.

A DCJ operation involves making two cuts in a genome and rejoining the pieces in
one of the following ways:

i. Two internal vertices {a, b} and {c, d} can be replaced with two new internal
vertices {a, d} and {b, c} or {a, c} and {b, d}. See Figure 2.

1t 1h2t 2h

3t 3h4t 4h

1t 1h3h 3t

2h 2t4t 4h

Figure 2. An illustration of the first type of mutation allowed
under DCJ. The genome at right is obtained by replacing internal
vertices {1h, 2t} and {3h, 4t} in the leftmost genome with internal
vertices {1h, 3h} and {2t, 4t}.

3h4t 4h3t

1t 1h4t 4h

1t 1h2h 2t

3t 3h
2t2h

1t 1h2h 2t 3h4t 4h3t

1t 1h4t 4h 2h2t 3t 3h

Figure 3. The bipartite adjacency graph constructed from two
multi-chromosomal genomes.
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ii. An internal vertex {a, b} and an external vertex {c} can be replaced with new
internal and external vertices {a, c} and {b} or {b, c} and {a}.

iii. Two external vertices {a} and {b} can be replaced by an internal vertex {a, b}.

iv. An internal vertex {a, b} can be replaced by two external vertices {a} and {b}.

Any genome can be represented by a distinct arrangement of adjacencies and
telomeres. Bergeron, Mixtacki, and Stoye found that the DCJ distance between two
genomes is completely determined by a bipartite graph whose vertices correspond
to the sets of adjacencies and telomeres of the two genomes. In this graph, two
vertices are connected with an edge for every head or tail that they share (see
Figure 3). The DCJ distance between the genomes can be determined based on the
number of cycles and odd-length paths in this graph.

Theorem 1 [Bergeron et al. 2006]. The DCJ distance between two genomes, A and
B, defined on the same set of N genes, is given by

dDC J (A, B)= N − (C + I/2),

where C is the number of cycles and I is the number of odd-length paths in the
adjacency graph of A and B.

Consider Figure 3, which depicts two genomes and their adjacency graph. Notice
that the adjacency {3h, 4t} in the first genome is connected to the adjacency {1h, 4t}
and the telomere {3h} in the second genome. Using Theorem 1, we can calculate
that the DCJ distance is 4− (0+ 2/2) = 3 because there are no cycles and two
odd-length paths in the adjacency graph. The following sequence of three DCJ
operations demonstrates one way that the first genome may be transformed into the
second genome using the fewest number of mutations.

Operation 1: Replace internal vertices {1h, 2h} and {3h, 4t} with internal vertices
{1h, 4t} and {2h, 3h}; see DCJ operation i. This is a linearization and an insertion.

Operation 2: Exchange internal vertex {2h, 3h} and external vertex {2t} for internal
vertex {2h, 2t} and external vertex {3h}; see DCJ operation ii. This constitutes a
translocation and a circularization.

Operation 3: Replace internal vertex {4h, 3t} with external vertices {4h} and {3t};
see DCJ operation iv. This models a translocation.

3. Counting maximally distant genomes

Building on the result of Theorem 1, we observed that the maximum distance
between two genomes defined on N genes is N and occurs when C+ I/2= 0. This
means that there are no cycles and no odd-length paths in the adjacency graph of
two maximally distant genomes. We established the following result by considering
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an arbitrary starting genome defined on N genes and counting the number of
distinct adjacency graphs that could be created from it, where each adjacency graph
contained only even-length paths.

Theorem 2. The number of genomes that are the maximum DCJ distance away
from a genome containing 2m telomeres and n adjacencies is given by

Gmax(m, n)= (2m− 1)!!

n∑
k=0

(m+n−1
k

)(n
k

)
k! 2k .

Proof. We count the number of distinct adjacency graphs that contain exclusively
even-length paths, where the upper genome contains m pairs of telomeres and n
adjacencies. In this proof and in subsequent proofs, we refer to upper and lower
vertices as those adjacencies and telomeres located in the upper and lower genomes,
respectively. Consider the following procedure:

1. Sum over the number of even-length paths j . The minimum number is m since
each even-length path may contain no more than one pair of upper telomeres.
The maximum number of even-length paths is m+ n since each pair of upper
telomeres and each upper adjacency may be in a path of length two. Note that
if we let k = m+ n− j , then the sum from j = m to m+ n becomes the sum
from k = 0 to n.

2. Place the 2m upper telomeres into pairs. Each pair will define the endpoints of
an even-length path. There are (2m− 1)(2m− 3) · · · 3 · 1= (2m− 1)!! ways
to accomplish this.

3. Arrange the upper adjacencies into the order that they will appear in the
even-length paths. This can be done in n! ways. The next step will involve
partitioning these adjacencies into paths.

4. The even-length paths are constructed in the following way. We begin by
partitioning the n upper adjacencies into j even-length paths. Since each path
must be nonempty, one adjacency must be placed into each of the j −m paths
without upper telomeres. The number of ways to do this is((n− j+m)+( j−1)

j−1

)
=

(m+n−1
j−1

)
.

In addition, once all of the upper vertices have been arranged and assigned to
paths, there are two choices for how to connect each upper adjacency with its
neighbors on its path. (For instance, if a path contains ordered upper vertices
{1t}, {1h, 2t}, {2h}, there are two possibilities for the lower adjacencies in
between: {1t, 1h}, {2t, 2h} and {1t, 2t}, {1h, 2h}.) To accomplish this, we
multiply by two for every upper adjacency except for those in paths of length
two.
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We have overcounted since the even-length paths we are creating are non-
directed and the upper adjacencies in each non-upper-telomere-containing
path can be in right-to-left or left-to right-order (except of course for paths
of length two). For the upper-telomere-containing paths, this ordering of
the upper adjacencies is significant because it determines which telomere is
adjacent to which adjacency along the path. Hence, we divide by two for every
non-upper-telomere-containing even-length path of length greater than two.
Since the number of non-upper-telomere-containing paths of length two is
equivalent to the number of upper adjacencies in even-length paths of length
two, we multiply by 2m+n− j .

We have overcounted further since the paths that do not contain upper
telomeres are not distinct. To resolve this situation, we divide by ( j −m)!.

Combining these four steps yields

Gmax(m, n)=

m+n∑
j=m

(2m− 1)!! n!
(m+n−1

j−1

) 2m+n− j

( j −m)!
. (1)

By defining k = m+ n− j, and rearranging the summation above, we obtain

Gmax(m, n)= (2m− 1)!!

n∑
k=0

(m+n−1
k

)(n
k

)
k! 2k .

Alternatively, if we define k = j −m in (1), we have

Gmax(m, n)= (2m− 1)!!

n∑
k=0

(m+n−1
n−k

)n!
k!

2n−k, (2)

which is useful in simplifying the formula of Theorem 7 below. �

Next, fix m, and consider the collection of genomes having a 2m telomeres and
a variable number of adjacencies n. For such a collection, we obtain an infinite
sequence {gn

m} over n, where each term represents the number of maximally distant
genomes from a genome having 2m telomeres and n adjacencies. For example, the
sequence associated with a genome containing two pairs of external vertices is

3, 15, 111, 1083, 13083, . . . , gn
2 , . . .

where gn
2 is given by Gmax(2, n) and represents the number of maximally distant

genomes from a starting genome with two pairs of external vertices and n internal
vertices. We now find the exponential generating function for this sequence.

Lemma 3.
(

1
1− 2x

)m+n

=

∞∑
j=0

(m+n+ j−1
j

)
(2x) j .
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Proof. We have 1
1−2x

=

∞∑
i=0

(2x)i and hence

(
1

1− 2x

)m+n

=

( ∞∑
i=0

(2x)i
)m+n

= (1+ 2x + · · ·+ (2x)i
+ · · · ) · · · (1+ 2x + · · ·+ (2x)i

+ · · · )︸ ︷︷ ︸
m+ n terms

.

Next, consider this multiplication in a combinatorial sense where the resulting
product, an infinite series, is formed term by term and where each term is the
product of m+n elements, one coming from each initial series. When adding these
terms, consider the coefficient of x j . Using a bijection to a familiar problem of
placing j balls into m+ n bins, one can count the number of terms having degree
j , and then, 2 j can be factored from each term. Thus, the coefficient of (2x) j is
simply the number of terms having degree j and is expressed by(m+n+ j−1

j

)
.

Furthermore, the sum of all x j and their coefficients is equivalent to the product of
the m+ n series. That is,

(1+ 2x + · · ·+ (2x)i
+ · · · ) · · · (1+ 2x + · · ·+ (2x)i

+ · · · )︸ ︷︷ ︸
m+ n terms

=

∞∑
j=0

(m+n+ j−1
j

)
(2x) j .

Thus, (
1

1− 2x

)m+n

=

∞∑
j=0

(m+n+ j−1
j

)
(2x) j . �

Theorem 4. The exponential generating function for the sequence
{
gn

m
}

is

gm(x)=

(
(2m− 1)!

2m−1(m− 1)!

)
e

x
1−2x

(1− 2x)m ,

where the n-th term of the sequence
{
gn

m
}
, or Gmax(m, n), is given by g(n)

m (0).

Proof. We have

e
x

1−2x

(1− 2x)m =

∞∑
n=0

( x
1−2x

)n

n! (1− 2x)m =

∞∑
n=0

xn

n!

(
1

1− 2x

)m+n

.
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Using Lemma 3, we obtain

e
x

1−2x

(1− 2x)m =

∞∑
n=0

(
xn

n!

∞∑
j=0

(m+n+ j−1
j

)
(2x) j

)
.

Expanding this series yields

e
x

1−2x

(1− 2x)m

=

(m−1
0

)
+

(m
1

)
(2x)+ · · ·+

(m+ j−1
j

)
(2x) j

+ · · ·

+

(m
0

)
x +

(m+1
1

)
(2x)x + · · ·+

(m+ j
j

)
(2x) j x + · · ·

+ · · ·

+

(m+n−1
0

) xn

n!
+

(m+n
1

)
(2x)

xn

n!
+ · · ·+

(m+n+ j−1
j

)
(2x) j xn

n!
+ · · · .

By looking at the coefficient of each power of x , the following infinite series is
created (consider a diagonal argument).

e
x

1−2x

(1− 2x)m =

∞∑
n=0

(
xn

n∑
k=0

(m+n−1
k

) 2k

(n− k)!

)

=

∞∑
n=0

(
xn n!

n!

n∑
k=0

(m+n−1
k

)k!
k!

2k

(n− k)!

)

=

∞∑
n=0

(
xn 1

n!

n∑
k=0

(m+n−1
k

) n! k! 2k

k! (n− k)!

)

=

∞∑
n=0

(
xn

n!

n∑
k=0

(m+n−1
k

)(n
k

)
k!2k

)
.

Thus,(
(2m− 1)!

2m−1(m− 1)!

)
e

x
1−2x

(1− 2x)m

=

∞∑
n=0

(
xn

n!

(
(2m− 1)!

2m−1(m− 1)!

) n∑
k=0

(m+n−1
k

)(n
k

)
k! 2k

)
. �

4. Distribution of DCJ distance

To understand the way in which distance from a given genome is distributed across
all genomes, we count the total number of genomes that are each distance away
from an arbitrary genome. Employing Theorem 1, we recognize that a destination
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genome is distance d away from a starting genome precisely when there are a total
of N − d cycles and pairs of odd-length paths in the adjacency graph between the
two genomes. Consequently, we count the number of distinct adjacency graphs we
can construct from a given starting genome that include exactly N − d cycles and
pairs of odd-length paths.

Lemma 5. The number of ways to arrange 2p upper telomeres and k upper adja-
cencies into distinct adjacency graphs that contain exclusively odd-length paths is

k!
(2p+k−1

k

)
2k .

Proof. Consider the following counting procedure.

1. We begin by arranging the k upper adjacencies according to the order that they
will appear in the odd-length paths. This can be accomplished in k! ways.

2. Next, partition the k upper adjacencies into 2p odd-length paths. Each of these
paths is distinct because it contains a distinct upper telomere. The number of
ways to do this is (2p+k−1

k

)
.

3. Once all of the upper vertices have been assigned to paths and have been
arranged, there are two choices for how to connect each upper adjacency
with its neighbors on its path. (For instance, if an odd-length path contains
ordered upper vertices {1t} and {1h, 2t}, there are two possibilities for the
lower adjacencies in between: {1t, 1h}, {2t} and {1t, 2t}, {1h}). To accomplish
this, we multiply by 2k .

Multiplying these terms yields

k!
(2p+k−1

k

)
2k . �

Lemma 6. The number of ways to arrange i upper internal vertices into distinct
adjacency graphs that contain q cycles and no even-length or odd-length paths is

s(i, q)2i−q ,

where s(a, b) are the unsigned Stirling numbers of the first kind.

Proof. The unsigned Stirling numbers of the first kind s(i, q) count the number
of permutations of i elements (the upper adjacencies) into q disjoint cycles. Note
that for this Stirling sequence, the clockwise or counterclockwise orientation of
each cycle that contains more than two upper adjacencies is distinct. If we impose
a lexicographic ordering of the upper adjacencies in each cycle, the clockwise
or counterclockwise orientation of these adjacencies can represent the two ways
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in which the adjacency with the smallest value in the lexicographic ordering can
connect with its neighbors in the cycle. (Suppose the upper adjacency {1h, 2t} has
the smallest value in its cycle with respect to the lexicographic ordering. {1h, 2t}
can connect to its left neighbor through a lower adjacency that contains the end
1h or through a lower adjacency that contains the end 2t . The end that {1h, 2t}
contributes to the lower adjacency to its right is determined by this choice.)

Once all of the upper adjacencies have been arranged into cycles, there are two
choices for how to connect each upper adjacency with its neighbors on its path.
(If a path contains ordered upper adjacencies {1h, 2t}, {2h, 1t}, {3t, 3h}, there are
eight possibilities for the lower adjacencies in between. These include {2t, 2h},
{1t, 3t}, {3h, 1h} and {2t, 1t}, {2h, 3t}, {3h, 1h} for example.) We have already
connected one upper adjacency to its neighbors in each cycle that has more than
two upper adjacencies. To connect the others in these cycles, we multiply by
two for each additional upper adjacency. For cycles containing exactly one upper
adjacency, there is only one way to create the lower adjacency in the cycle. For
cycles containing exactly two upper adjacencies, there are two ways to form the
two lower adjacencies. (For {1h, 3t} and {2t, 2h} the lower adjacencies could be
{1h, 2t}, {3t, 2h} or {1h, 2h}, {3t, 2t}.)

Hence, we multiply by two for every upper adjacency in a cycle beyond the first
upper adjacency in that cycle. Since there are q cycles, we multiply by 2i−q .

Collecting everything together yields s(i, q)2i−q . �

Combining Lemmas 6 and 5 and Theorem 2, we establish the following result
that classifies all genomes according to their distance from a given genome.

Theorem 7. The number of genomes that are a distance d away from a starting
genome having 2m telomeres and n adjacencies is

G(m, n, d)

=

min{n,m+n−d}∑
c=max{0,n−d}

n∑
i=c

n−i∑
j=0

n−i− j∑
k=0

s(i, c)n! (2(d + c− n)− 1)!!

i ! k! 2c+k−n

( 2m
2(d+c−n)

)
×

(2(m+n−d−c)+ j−1
j

)(d+c−i− j−1
n−i− j−k

)
,

where s(a, b) are the unsigned Stirling numbers of the first kind.

Proof. We count the number of distinct adjacency graphs from a genome with
2m telomeres and n adjacencies, where each graph contains a total of N − d
cycles and pairs of odd-length paths (the remaining paths are of even length). Let
i and j represent the number of upper adjacencies in cycles and in odd-length
paths, respectively, and define c to be the number of cycles in the adjacency graph.
Consider the following counting procedure.
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1. We begin by summing over the number of cycles c in the adjacency graph.
The minimum number is max{0, n− d} because the number of cycles must
be nonnegative, and we are restricted by the maximum number of odd-length
paths that can be formed (recall that the adjacency graph must have N − d
cycles and pairs of odd-length paths). Since each odd-length path must contain
an upper telomere, the number of odd-length paths that can be formed is at
most 2m. Recall that N − d = I/2+ c, where I is the number of odd-length
paths in the adjacency graph (Theorem 1). It follows that 2m is the maximum
value for I , and in this case, N − d = m + c. Substituting m + n for N and
simplifying yields c = n− d .

The maximum number of cycles that can be in the adjacency graph is
min{n, m + n− d}. We are restricted by the number of upper adjacencies n
since each cycle contains exclusively adjacencies. We are also restricted by
N − d since the total number of cycles and pairs of odd-length paths must not
exceed N − d = m+ n− d .

2. Next, we sum over i , the number of upper adjacencies that are in cycles. This
is at least c and at most n.

3. We then sum over j , the number of upper adjacencies that are in odd-length
paths. j can be 0, but it must not exceed n− i since n− i is the number of
upper adjacencies that remain after the first two steps.

4. Now, we choose 2(m+ n− d − c) upper telomeres to be in odd-length paths.
Notice that after we have decided on the number of cycles c, we know from
Theorem 1 that there are N − d− c = m+ n− d− c pairs of odd-length paths
in the adjacency graph. Thus, we multiply by( 2m

2(m+n−d−c)

)
=

( 2m
2(d+c−m)

)
.

5. Next, we pick the upper adjacencies that are in cycles and those that are in
odd-length paths. This can be done in(n

i

)(n−i
j

)
ways.

6. We now arrange into odd-length paths the n+m−d−c pairs of upper telomeres
and j upper adjacencies that we have selected to be in odd-length paths. From
Lemma 5, the number of ways to do this is

j !
(2(n+m−d−c)+ j−1

j

)
2 j .
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7. We proceed by arranging into c cycles, the i upper adjacencies that we have
selected for this purpose. Lemma 6 establishes that there are

s(i, c)2i−c

ways to accomplish this, where s(a, b) are the unsigned Stirling numbers of
the first kind.

8. The remaining 2(d + c− n) upper telomeres and n− i − j upper adjacencies
are placed into paths of even length. There are

(2(d + c− n)− 1)!!

n−i− j∑
k=0

((d+c−n)+(n−i− j)−1
n−i− j−k

)(n− i − j)!
k!

2n−i− j−k

ways to do this by (see Equation (2) in the proof of Theorem 2).

We now combine these eight steps and place the sums together, using the abbre-
viation ∑′

=

min{n,m+n−d}∑
c=max{0,n−d}

n∑
i=c

n−i∑
j=0

n−i− j∑
k=0

for simplicity. We obtain

G(m, n, d)

=

∑′
( 2m

2(d+c−m)

)(n
i

)(n−i
j

)
× j !

(2(n+m−d−c)+ j−1
j

)
2 j s(i, c)2i−c

× (2(d + c− n)− 1)!!
(d+c−i− j−1

n−i− j−k

)(n− i − j)!
k!

2n−i− j−k

=

∑′ s(i, c) (2(d + c− n)− 1)!! j ! (n− i − j)!
k! 2c+k−n

(n
i

)(n−i
j

)
×

( 2m
2(d+c−n)

)(2(m+n−d−c)+ j−1
j

)(d+c−i− j−1
n−i− j−k

)
=

∑′ s(i, c) (2(d + c− n)− 1)!! j ! (n− i − j)! n! (n− i)!
k! 2c+k−ni ! (n− i)! (n− i − j)! j !

×

( 2m
2(d+c−n)

)(2(m+n−d−c)+ j−1
j

)(d+c−i− j−1
n−i− j−k

)
=

∑′ s(i, c)n! (2(d + c− n)− 1)!!

i ! k! 2c+k−n

( 2m
2(d+c−n)

)
×

(2(m+n−d−c)+ j−1
j

)(d+c−i− j−1
n−i− j−k

)
. �
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Remark. Let G(m, n, d) be the number of genomes that are a distance d away
from a starting genome having 2m telomeres and n adjacencies, and let Gmax(m, n)

be the number of genomes that are the maximum DCJ distance away from the same
genome. Then Gmax(m, n)= G(m, n, m+ n).

In the case where d = m+ n the inner two sums in G(m, n, m+ n) collapse with
c = i = 0, and we have,

G(m, n, m+ n)=

n∑
j=0

n− j∑
k=0

s(0, 0)n! (2m− 1)!!

0! k! 2k−n

(2m
2m

)( j−1
j

)(m+n− j−1
n− j−k

)
.

Since
( j−1

j
)
= 0 unless j = 0, the outer sum collapses, and we obtain

G(m, n, m+ n)=

n∑
k=0

n! (2m− 1)!!

k!
2n−k

(m+n−1
n−k

)
= (2m− 1)!!

n∑
k=0

(m+n−1
n−k

)n!
k!

2n−k

= Gmax(m, n).

Theorem 8. Let G(m, n, d) be the number of genomes that are a distance d away
from a starting genome having 2m telomeres and n adjacencies. Then, G(m, 0, d)=

G(m− 1, 1, d).

Proof. From Theorem 7 we have

G(m, 0, d)

=

0∑
c=0

0∑
i=0

0∑
j=0

0∑
k=0

s(0, 0)0! (2(d+0)−1)!!

0! 0! 20

( 2m
2(d+0)

)(2(m+0)+0−1
0

)(d+0−1
0

)
= (2d−1)!!

(2m
2d

)
,

G(m−1, 1, d)

=

min{1,m+1−d}∑
c=max{0,1−d}

1∑
i=c

1−i∑
j=0

1−i− j∑
k=0

s(i, c)1! (2(d+c−1)−1)!!

i ! k! 2c+k−1

( 2(m−1)

2(d+c−1)

)
×

(2(m−d−c)+ j−1
j

)(d+c−i− j−1
1−i− j−k

)
.

In this last equation, suppose m− d 6= 0 and d 6= 0. Then, we have
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G(m− 1, 1, d)=

1∑
c=0

1∑
i=c

1−i∑
j=0

1−i− j∑
k=0

s(i, c) (2(d + c− 1)− 1)!!

i ! k! 2c+k−1

( 2(m−1)

2(d+c−1)

)
×

(2(m−d−c)+ j−1
j

)(d+c−i− j−1
1−i− j−k

)
.

This sum becomes

G(m− 1, 1, d)

= (2d − 1)!!
(2m−2

2d

)
+ 0+ 2(2d − 3)!!

(2m−2
2d−d

)
2(m− d)

+ (2d − 3)!!
(2m−2

2d−2

)
+ 2(2d − 3)!!

(2m−2
2d−2

)
(d − 1)

= (2d − 1)!!
(2m

2d

)(2m− 2d)(2m− 2d − 1)

(2m)(2m− 1)

+ (2d − 3)!!
(2m

2d

) (2d)(2d − 1)

(2m)(2m− 1)
(4(m− d)+ 1+ 2(d − 1))

= (2d − 1)!!
(2m

2d

)((2m− 2d)(2m− 2d − 1)

(2m)(2m− 1)
+

2d(4m− 4d + 1+ 2d − 2)

(2m)(2m− 1)

)
.

Obtaining a common denominator and simplifying yields

G(m− 1, 1, d)= (2d − 1)!!
(2m

2d

)(4m2
− 2m

4m2− 2m

)
= (2d − 1)!!

(2m
2d

)
.

Hence, G(m, 0, d)=G(m−1, 1, d) when m−d 6= 0 and d 6= 0. A similar argument
shows that G(m, 0, d) = G(m − 1, 1, d) when m = d. Now, if d = 0, we have
G(m, 0, 0) = G(m − 1, 1, 0), since there is only one genome that is a distance 0
away from a starting genome regardless of the starting genome. Thus, in all cases,
we have established that

G(m, 0, d)= G(m− 1, 1, d)= (2d − 1)!!
(2m

2d

)
. �

Definition 9. Consider all DCJ genomes defined the same set of N genes. Observe
that for each of these genomes, N =m+n, where 2m is the number of telomeres and
n is the number of adjacencies in the genome. We define the distance distribution
on N genes with respect to n to be the distribution of genomes according to their
distance from a given genome containing n adjacencies and 2(N − n) telomeres.

Figure 4 depicts the distance distribution on five and on ten genes for all pos-
siblities of n adjacencies. These results contribute to the understanding of how
DCJ distance is distributed over all genomes. The figure displays one property that
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we have observed for every distance distribution we have considered thusfar. The
following conjecture summarizes this feature.

Conjecture 1. The distance distribution on N genes with respect to n is unimodal
for n = 0, 1, . . . , N − 1.
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Figure 4. The distance distribution on n genes with respect to
0, 1, . . . , n adjacencies, for n= 5 (top), n= 10 (middle) and n= 20
(bottom).
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Although we have yet to prove this claim, it has been verified for all distance
distributions on N genes where 1≤ N ≤ 10, and for the cases where N = 16 and
N = 20.

5. Concluding remarks

We would like to extend our results to an unsigned version of the DCJ model.
Using a computer program that we created to simulate DCJ operations on unsigned
genomes, we collected information about maximally distant genomes. For small
values of N , we counted the total number of genomes that can be defined on a fixed
number of genes.

In addition to examining maximally distant genomes, we investigated properties
of the maximum distance graph M , whose vertices constitute all possible genomes
of length N and whose edges link two vertices a and b whenever genome a is
maximally distant from genome b. In Figure 5, we show such a graph for all
genomes on three genes.
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Figure 5. Maximum distance graph M for all genomes on 3 genes,
with genomes labeled in lex order. It is a tripartite graph with
maximally independent subsets of sizes 4, 7, and 11.

Ultimately, we would like to develop a formula for the distance between unsigned
genomes and one that counts all of the possible unsigned genomes defined on a
fixed set of genes. We could then extend our results from Sections 3 and 4 to the
unsigned DCJ model.
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