
inv lve
a journal of mathematics

msp

Mathematical modeling of integrin dynamics in initial
formation of focal adhesions
Aurora Blucher, Michelle Salas,

Nicholas Williams and Hannah L. Callender

2014 vol. 7, no. 4



msp
INVOLVE 7:4 (2014)

dx.doi.org/10.2140/involve.2014.7.509

Mathematical modeling of integrin dynamics in
initial formation of focal adhesions

Aurora Blucher, Michelle Salas,
Nicholas Williams and Hannah L. Callender

(Communicated by Michael Dorff)

Cellular motility is an important function in many cellular processes. Among
the key players in cellular movement are transmembrane receptor proteins called
integrins. Through the development of a mathematical model we investigate
the dynamic relationship between integrins and other molecules known to con-
tribute to initial cellular movement such as extracellular ligands and intracellular
adhesion proteins called talin. Gillespie’s stochastic simulation algorithm was
used for numerical analysis of the model. From our stochastic simulation, we
found that most activity in our system happens within the first five seconds.
Additionally we found that while ligand-integrin-talin complexes form fairly
early in the simulation, they soon disassociate into ligand-integrin or integrin-
talin complexes, suggesting that the former tertiary complex is less stable than
the latter two complexes. We also discuss our theoretical analysis of the model
and share results from our sensitivity analysis, using standardized regression
coefficients as measures of output sensitivity to input parameters.

1. Introduction

The processes of cellular movement and migration are vital to the performance and
maintenance of an individual cell and in turn to the well-being of the larger organism.
Embryonic development, the immune system response, and tissue regeneration all
require cell motility to progress effectively. Cellular processes that are harmful
to the body, such as cancer metastasis, also rely on cell motility [Lauffenburger
and Horwitz 1996; Fletcher and Theriot 2004]. Due to the importance of cell
motility for proper function of an organism, it is necessary to develop a deeper
understanding of the mechanisms involved. One way to do so is through the use
of mathematical models, which can provide insight beyond that garnered from
traditional experimental methods and techniques.
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The process of cell motility can be broken down into four general steps. First,
the cell protrudes a thin lamellipodium, a projection of the cell’s cytoskeleton,
from its leading edge in the desired direction of motion. Next, the lamellipodium
attaches to the extracellular matrix through the use of focal adhesions, which are
macromolecule assemblies containing integrin receptor proteins, actin, and other
linking proteins. Then myosin-II, a motor protein in the cell, causes actin strands
to converge, which pulls on the focal adhesions and generates traction. Finally, the
traction causes weaker focal adhesions in the rear of the cell to detach and, through
the contraction of the actin filaments, moves the cell body forward [Wehrle-Haller
2006; Ananthakrishnan and Ehrlicher 2007].

Our focus is on the development of the focal adhesions in the second step of
the motility process. In particular, we seek to model the dynamics of integrins,
transmembrane receptor proteins that play a major role in the development of these
adhesions [Hynes 1992]. Within each focal adhesion, integrins form mechanical
linkages to extracellular signaling molecules called ligands. The number of integrins
bound to extracellular ligands as well as to intracellular adhesion proteins is a key
factor in determining the strength and duration of the linkages, thus providing a
deeper understanding of the overall motility properties of the cell.

Other approaches to modeling and investigating focal adhesions have varied.
Some models have compared the strength of a given focal adhesion with the
number of ligand-integrin bonds within the adhesion (see, for example, [Gallant
and Garcia 2007; Gov 2006; Flaherty et al. 2007]). These models have investigated
the forces required to detach the cell from its environment, given the number of
ligand-integrin bonds. Other stress-based models, such as [Gallant and Garcia
2007; Cozens-Roberts et al. 1990; Ward and Hammer 1993], show the distribution
and total stress in the focal adhesions in relation to time or strain of the integrins.
Our model differs from these as it takes into account the initial formation of focal
adhesions and the binding interactions between the primary molecules present
within a nascent adhesion. This has allowed us to investigate which molecules
contribute more and in what manner to the formation and fate of focal adhesions.

As our goal is to model the interactions between integrins and other molecules
in a focal adhesion, it is necessary to take into account the likelihood that integrins
bind to other molecules. Heterodimeric integrins exist in low-affinity (“inactive”)
and high-affinity (“active”) states, and a variety of molecules from both inside and
outside the cell are known to take part in the regulation of these integrin states.
Among the most important of these molecules are talin and extracellular ligands
[Small et al. 2002; Soll 1995]. Talin, which is an intracellular signaling molecule,
can bind to and activate integrins from inside the cell. This activation is known
to increase an integrin’s affinity for ligands. A ligand binding to an integrin also
activates the integrin from the outside of the cell, both providing linkage to the
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extracellular matrix and increasing the integrin’s affinity for intracellular molecules
as well as for other ligands [Cluzel et al. 2005].

This paper is organized as follows. In Section 2 (stochastic simulation), we
discuss how we use mass action kinetics and Gillespie’s algorithm to model a system
involving key molecules participating in the early formation of focal contacts. In
Section 4 (numerical results), we discuss our results from the stochastic simulation.
In Section 5 (deterministic model), we conduct theoretical analysis on an ordinary
differential equations model of our system to check the mathematical relevance
of the system. Next, in Section 7 (sensitivity analysis), we discuss parameters
which may cause more uncertainty in our model output and would therefore warrant
further investigation. We conclude with a discussion and future directions.

2. Stochastic simulation

Experiments have indicated that the primary players in early focal adhesion forma-
tion include integrins, ligands, and talin [Cluzel et al. 2005]. At present, our model
focuses on the initial dynamics between these molecules, as depicted in Figure 1.

Integrins bind with ligands to form integrin-ligand complexes, and conversely,
ligand-integrin complexes can dissociate into free ligands and free integrins (see
Equation (1)). Similarly, integrins can bind with talin to form integrin-talin com-
plexes, which can then dissociate into free ligands and free talin (Equation (2)).

Figure 1. Depiction of formation of focal contacts (term commonly used
for early focal adhesions) through lateral diffusion of integrins, binding of
integrins to talin, and binding of integrins to extracellular ligands. Modified
from Figure 12.2 of [O’Day 2012].
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Free talin and free ligands can also each bond with complexes from Equations
(1) and (2), respectively, to form integrin-ligand-talin complexes, which can then
dissociate (Equations (3) and (4)) [Wehrle-Haller 2006]. As integrins are known
to diffuse along the plasma membrane, a reaction was also included to allow for
the diffusion of integrins into and out of our system, where the diffusing integrins
come from an outside source (Equation (5)). Therefore the reactions included in
our system are the following:

L+ I
k+L
−−⇀↽−−

k−L

LI, (1)

I+T
k+T
−−⇀↽−−

k−T

IT, (2)

IT+L
k+LT
−−⇀↽−−

k−LT

LIT, (3)

LI+T
k+LIT
−−⇀↽−−

k−LIT

LIT, (4)

S
k+D
−−⇀↽−−

k−D

I. (5)

In the above reactions the following abbreviations are used: L for ligands, I
for integrins, LI for ligand-integrin complexes, T for talin, IT for integrin-talin
complexes, LIT for ligand-integrin-talin complexes, and S for an outside source of
integrins.

Using these reactions, we seek to model the change in the number of each
molecule over time. We begin by supposing that the initial number of molecules of
each reactant is known. The state vector, denoted by X (t), which changes each time
one of the above reactions takes place, is used to record the amount of each reactant
at any time t . This state vector evolves according to the propensity functions of
our original reactions. The propensity function, denoted by a j , is the likelihood
that the j-th reaction will occur and is proportional to the product of the number
of molecules of the reactants in the j-th reaction. For example, take the forward
reaction of (1), where ligands bind to integrins with forward rate constant k+L . The
propensity function for the forward reaction would be:

a1 = [L] ∗ [I] ∗ k+L ,

where [L] is the number of free ligand molecules and [I] of the number of free
integrin molecules.
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

L I IT LI LIT T

v1 −1 −1 0 1 0 0
v2 1 1 0 −1 0 0
v3 0 −1 1 0 0 −1
v4 0 1 −1 0 0 1
v5 −1 0 −1 0 1 0
v6 1 0 1 0 −1 0
v7 0 0 0 −1 1 −1
v8 0 0 0 1 −1 1


Figure 2. Stoichiometry matrix.

Next we create a stoichiometry matrix, which is used to track changes in the
state vector and allows us to follow changes in the entire system rather than in one
reactant. Figure 2 shows the entire stoichiometry matrix. Each row of the matrix
tells us which molecules to add, take away, or keep fixed depending on which
reaction occurred.

To illustrate how the stoichiometry matrix is used, take the forward reaction
of (1), where one ligand and one integrin bind to form a ligand-integrin complex.
As shown in Figure 2, the corresponding row for this reaction, ν1, has a “−1” in
both the ligand and integrin columns to indicate the loss of one of each of these
molecules and a “+1” in the ligand-integrin complex column to indicate the gain
of one complex. Since the other reactants are unaffected by this reaction, all other
entries in this row contain a zero.

In order to predict the future states of the whole system of molecules, we seek
to model P(X, t), the probability of the system being in a certain state, X (t), at
a certain point in time, t . This probability is equal to the probability of moving
to that state from a neighboring one, given by a j (X (t)− ν j ) · P(X (t)− ν j , t),
minus the probability of moving from that state to a neighboring one, given by
a j (X (t)) · P(X (t), t) multiplied by the time step 1t . In general, for a system with
M reactions, we sum all these probabilities for each of the M reactions, divide
by 1t , and take the limit as 1t approaches zero to obtain the Chemical Master
equation:

d P(X (t), t)
dt

=

M∑
j=1

(a j (X (t)− ν j ) · P(X (t)− ν j , t))− a j (X (t)) · P(X (t), t)

which is a set of ordinary differential equations for the probability of the whole
system being in a particular state X (t) at any time t .
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3. Simulation method: Gillespie’s algorithm

The chemical master equation has continuous time, but the state of the system
is updated discretely. This makes it very difficult to obtain an analytic solution.
Therefore, we approximate a solution using Gillespie’s algorithm [1977], which
can be summarized in the following steps:

(1) Initialize the time t = t0 and the state of the system x = x0.

(2) Evaluate the propensities for each reaction, a j , and the sum of the propensities,
asum.

(3) Randomly choose two numbers from a uniform distribution on [0, 1], denoted
ξ1 and ξ2.

(4) In order to obtain the next reaction that will take place, let j be the smallest
integer satisfying

∑M
j=1 a j (X (t)) > ξ1 · asum(X (t)), where asum is the sum of

the propensities.

(5) Let τ = ln(1/ξ2)/asum(X (t)). This determines the next time a reaction will
take place. For more details on the choice of τ , see [Gillespie 2007].

(6) Now that the next time step and reaction have been chosen, update the current
time, t, by changing it to t+τ . Similarly, update the current state of the system
by setting X (t+ τ)= X (t)+ν j , where ν j is the j -th row of the stoichiometry
matrix.

(7) Repeat steps (1)–(5) until the desired time course has been reached.

The interested reader may see [Higham 2008] for a more detailed description
of Gillespie’s method. In the fifth step of the algorithm, the state of the system is
updated with the stoichiometry matrix. To illustrate this step, assume the forward
reaction of step (1) has been randomly chosen to occur at time t∗. This reaction
corresponds to the first row of the stoichiometry matrix. Therefore, if the current
state of our system is X (t), then to get the new state of the system, ν1 is added to
X (t) to obtain X (t∗) as follows:

X (t)=
[ L I IT LI LIT T

15 10 0 0 0 0
]

v1 =
[
−1 −1 0 1 0 0

]
X (t∗)=

[
14 9 0 1 0 0

]
These steps of the algorithm are repeated until the desired time course is achieved.
In the next section, we describe the results obtained from simulations of our model
for durations of both five and twenty seconds. We also provide an interpretation for
the corresponding outputs in the context of our biological system.
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4. Numerical results

Our stochastic simulations were run in COmplex PAthway SImulator (CoPaSi),
using Gillespie’s algorithm as described in Section 3 and the rate constants shown
in Table 1 on the next page. Rate constants were chosen to reflect values of
similar parameters from the literature [Lee et al. 2007; Calderwood et al. 2002]
and represent an initial attempt to compare the stochastic and deterministic results.
For more details on how CoPaSi implements Gillespie’s method, see [Gibson and
Bruck 2000].

Figures 3 and 4 show several examples of CoPaSi output from one simulation. The
two graphs in Figure 3 show reactant activity over twenty seconds: the upper graph
shows activity for all reactants, while the lower combines all integrin complexes into
bound integrins (BI). The two graphs in Figure 4 show the same reactant activity
over the shorter time course of five seconds.
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Figure 3. Representative output for each model variable, simulated stochas-
tically through Gillespie’s algorithm (described in Section 3) in CoPaSi.
Abbreviations are as follows: IT = integrin-talin complex; I = integrin;
LIT = ligand-integrin-talin complex; LI = integrin-ligand complex; L =
ligand; T= talin; BI = bound integrins (IT+LI+LIT).
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Reaction equation Rate value Parameter name

I+L−−→ LI 0.1 k+L
LI −−→ I+L 0.05 k−L
I+T−−→ IT 0.1 k+T
IT −−→ I+T 0.072 k−T
IT+L−−→ LIT 0.5 k+LT
LIT −−→ IT+L 0.05 k−LT
LI+T−−→ LIT 0.3 k+LIT
LIT −−→ LI+T 0.04 k−LIT
S−−→ I 0.05 k+D
I−−→ S 0.01 k−D

Table 1. Rate parameters for model reactions.
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Figure 4. Representative output for each model variable, simulated stochas-
tically through Gillespie’s algorithm (described in Section 3) in CoPaSi.
Abbreviations are as follows: IT = integrin-talin complex; I = integrin;
LIT = ligand-integrin-talin complex; LI = integrin-ligand complex; L =
ligand; T= talin; BI = bound integrins (IT+LI+LIT).
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Figure 5. The average of 100 stochastic simulations over 20 seconds us-
ing Gillespie’s algorithm in CoPaSi. Abbreviations are as follows: IT =
integrin-talin complex; I = integrin; LIT = ligand-integrin-talin complex;
LI = integrin-ligand complex; L= ligand; T= talin.

Of particular interest is the activity of talin and ligand molecules, which are
depleted very early in the simulation (just before 2 seconds have elapsed) and
remain very close to zero throughout the time course, with most activity occurring
within the first five seconds. The corresponding increases in LI and IT complexes
is expected, but the gradual increase in LI and IT and the gradual decrease in
LIT complexes indicate that the former two complexes are more stable than the
latter. This suggests that while LIT complexes form early on in focal adhesion
development, the tertiary complex is less stable and therefore possibly less vital to
continued stability of the overall focal adhesion.

While analyzing individual simulations of our stochastic model can provide
information on the random interactions of individual species, the average of multiple
simulations provides insight into overall trends in the dynamics of our system. As
shown in Figure 5, the responses of the reactants averaged over 100 simulations
are qualitatively similar to that of a sample individual simulation. Figure 5 also
supports the observation from individual simulations that most of the system activity
happens within the first five seconds.

Corresponding standard deviations were computed to examine the variability for
each reactant in our system. Figure 6 shows the average of 100 simulations and the
standard deviation for ligand-integrin-talin complexes and ligands, respectively.

5. Deterministic model

For a more thorough investigation of our model, we also looked at the reactions
using ordinary differential equations. These equations are based on assumptions
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Figure 6. The average (in solid lines) of 100 stochastic simulations with one
standard deviation from the mean (in dotted lines) for ligand-integrin-talin
complexes (top) and free ligands (bottom).

of mass-action kinetics which states that the rate of a chemical reaction is directly
proportional to the molecular concentrations or number of molecules of the reacting
substances. Take, for example, the forward reaction of (1), where ligands bind
with integrins to form ligand-integrin complexes with forward rate constant k+L .
Similarly, ligand-integrin complexes dissociate to form free ligands and integrins,
with backwards rate constant k−L . However, this is only one of the reactions affecting
the amount of free ligands at any time t . Taking into consideration the other reactions
affecting the amount of free ligands, we form the following ordinary differential
equation for the change in ligands:

d[L]
dt
=−k+L [L] · [I] + k−L [LI] − k+LT[L] · [IT] + k−LT[LIT].
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Note that k+L follows a negative sign since that is the rate at which we lose ligands
and integrins, and k−L follows a positive sign because that is the rate at which we
lose ligand-integrin complexes and thus gain ligands. We proceed in a similar
manner for the rest of the reactions and form our system of ordinary differential
equations:

d[L]
dt
=−k+L [L] · [I] + k−L [LI] − k+LT[L] · [IT] + k−LT[LIT], (6)

d[I]
dt
=−k+L [L] · [I] + k−L [LI] + k+D[S] − k−D[I] − k+T [T] · [I] + k−T [IT], (7)

d[LI]
dt
= k+L [L] · [I] − k−L [LI] − k+LIT[T] · [LI] + k−LIT[LIT], (8)

d[IT]
dt
= k+T [T] · [I] − k−T [IT] − k+LT[L] · [IT] + k−LT[LIT], (9)

d[LIT]
dt

= k+LT[L] · [IT] − k−LT[LIT] + k+LIT[T] · [LI] − k−LIT[LIT], (10)

d[S]
dt
= k−D[I] − k+D[S], (11)

d[T]
dt
=−k+T [T] · [I] + k−T [IT] − k+LIT[T] · [LI] + k−LIT[LIT]. (12)

Numerical solutions to this system of equations were obtained using the Matlab
differential equation solver ode15s. The initial conditions were as follows: L= 15,
I= 25, IT= 0, LI= 0, LIT= 0, T= 15, and S= 30. The results of the deterministic
simulation (Figure 7) are very similar to the average of the results of 100 stochastic
simulations (Figure 5). Both graphs show similar behavior for the amounts of all

Figure 7. Results of deterministic simulation over 20 seconds.
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reactants. Additionally, for both the stochastic and the deterministic simulation, the
most dynamic behavior occurs within the first five seconds.

6. Qualitative analysis

While some systems of equations can be solved analytically, there are many systems
for which this cannot be done. Often this is the case for systems of nonlinear
equations representing real-world problems, such as complex biological systems.
Rather than solving for an analytic solution, or approximating a solution numerically,
certain aspects of the solution can be investigated to learn more about the overall
qualitative behavior of the system. Among these qualities are existence, uniqueness,
boundedness of solutions, and stability of steady state solutions. Due to the wide
array of tools available for analysis of deterministic systems, the analysis we have
used here is for a deterministic model, rather than a stochastic one.

The first aspect of our solution that we will check is existence. Existence of a
solution to our system is important because it enables further model analysis. After
verifying existence, we can check our solution for uniqueness. Since we are using
deterministic analysis, we should find that our solution is unique, which means
that there is exactly one solution for a given set of initial conditions. Biologically,
this means that given the same initial amounts of reactants, our system will always
behave in the same manner.

In order to show existence of a solution, we use the well-known theorem (stated
below) that says that if the right-hand side and the partials of a system of the form
ẋ = f (t, x) are continuous in some finite region B, and also bounded in region B,
then the approximations given in (14) that satisfy the given initial condition in (13)
converge uniformly on a given interval of time to a solution of the system.

Theorem 1 [Brauer and Nohel 1969]. Let f and ∂ f/∂x j ( j = 1, . . . , n) be contin-
uous on the box B = {(t, x) : |t − t0| ≤ a, |x − η| ≤ b}, where a and b are positive
numbers, and satisfying the bounds

| f (t, x)| ≤ N ,
∣∣∣∣∂ f (t, x)
∂x j

∣∣∣∣≤ K ( j = 1, . . . , n),

for (t, x) in B. Let α be the smaller of the numbers a and b/N and define the
successive approximations

φ0(t)= η, (13)

φn(t)= η+
∫ t

t0
f (s, φn−1(s)) ds. (14)

Then the sequence φ j of successive approximations converges (uniformly) on the
interval |t− t0| ≤α to a solution φ(t) of the system that satisfies the initial condition
φ(t0)= η.
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We first note that our system is in the form ẋ = f (t, x), where f (t, x) is a
vector-valued function equal to the right-hand side of our system in (6)–(12). To
check that our system satisfies the continuity requirements of the theorem, we check
that the right-hand sides of (6)–(12) and all of their partials are continuous. For
example, in (6) the right-hand side is composed of positive rate constants multiplied
by variables, so it is continuous.

Next we check that the partial derivatives from this equation are continuous. The
partial derivative with respect to L is

∂ f
∂[L]
= −k+L [I] − k+LT[IT].

The partial derivative does not contain any terms that could be discontinuous at
any point. It can be shown that the partial derivatives with respect to the remaining
variables in (6), as well as all partials for the remaining six equations of the system
are continuous everywhere. Additionally, it can be seen that both the right-hand
side and partial derivatives with respect to each variable in equations (6)–(12) are
bounded in finite time. Therefore, the continuity and boundedness requirements
have been met for Theorem 1.

The following well-known theorem can now be used to show uniqueness:

Theorem 2 [Brauer and Nohel 1969]. Suppose f and ∂ f/∂x j ( j = 1, . . . , n) are
continuous on the box B = {(t, x) : |t − t0| ≤ a, |x − η| ≤ b}. Then there exists at
most one solution of the system satisfying the initial condition φ(t0)= η.

We have previously shown that our system meets both of these requirements, so
we now know that our solution exists and is unique on a finite interval of time. In
the final section we will discuss our ongoing qualitative analysis efforts.

7. Sensitivity analysis

Sensitivity analysis allows us to examine the strength of the relationship between
the input parameters and output of our model. This can provide insight into which
parameters of our system more strongly effect the model output and are therefore
more of a priority when researching experimental values.

For our model, we used the sensitivity analysis method of standardized regression
coefficients (SRCs) to determine which parameters have the greatest effect on the
output. In this method, a model is represented as a linear model of the following
form, shown here for ligands:

L i (t)= b0(t)+
∑

j

b j (t)mi j + εi (t),

where L i is the linear fit for the i-th sample for ligands, each mi j is a value of the
sample matrix as described below, each b j is a standardized regression coefficient,
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and εi (t) is the error. Here, i is the index for the number of samples taken, and j is
the index for the number of parameters. The larger the absolute value of the b j , the
more sensitive the model is to the corresponding parameter.

To create our sample matrix, we used the sampling method of Latin Hypercube
Sampling. For each parameter in our model, we create an interval containing the
nominal value of the parameter, where the right endpoint is 10% higher than the
nominal value and the left endpoint is 10% lower. We then divide the interval
into subintervals of equal width and randomly choose a subinterval. From within
this subinterval a value is randomly chosen and entered into the sample matrix.
After this process has been repeated once for each parameter, the first row of the
sample matrix has been created. Note that the sample matrix entry denoted by
mi j represents the value of the j-th parameter for the i-th sample. For the next
sample, we exclude subintervals from which values have previously been chosen.
We continue sampling until only one subinterval remains for each parameter, from
which we pick the value for our final sample. The end result is an i by j matrix
where each row is used to create a linear, time-dependent function for each variable
being modeled. This method of sampling ensures that an accurate sampling of
the entire interval is obtained, while also allowing for all parameters to change
simultaneously through each run.

8. Sensitivity analysis results

Standardized regression coefficient values above zero indicate a positive relationship
between a particular rate parameter and the amount of a given reactant, where an
increase in the rate parameter results in an increase in the amount of the reactant.
SRC values below zero indicate a negative relationship, where an increasing value
of the rate parameter results in a decrease in the amount of the reactant. The R2

value is the correlation coefficient associated with using standardized regression
coefficients to determine which parameters have a stronger effect on the output of
our model. For all seven of our reactants, the R2 values for the SRCs were well
above 0.95 for the time-course of interest and thus the results obtained from our
sensitivity analysis are statistically valid. Table 2 provides an overview of the most
influential parameters for each model reactant, while the discussion that follows
provides an in-depth analysis of the sensitivity results for each reactant in the model.

SRCs for ligands. For ligands, all rate parameters have a greater effect for the first
five seconds of the simulation, after which the value for each rate parameter levels
off. This would seem to indicate that the amount of ligands in our system depends
on the early activity of the simulation. In particular, the rate constant k+L , which
is the rate at which ligands and integrins bind to form ligand-integrin complexes,
has the largest negative effect in the first five seconds on the number of ligands. As
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k+L increases, it becomes more likely that ligands will bind with integrins to form
ligand-integrin complexes, and therefore the number of free ligands will decrease.

SRCs for integrins. Two rate parameters in particular have an increasing effect on
the amount of integrins: k+D , the rate at which integrins diffuse into the system, and
k−D, the rate at which integrins diffuse out of the system. It is interesting to note
that these parameters have more of an effect as the simulation continues, which
suggests that once all the initial integrins are bound, diffusion into and out of the
system will be a greater source for additional free integrins than other complexes
disassociating to give free integrins. In the future, we would like to examine a more
biologically relevant representation of a diffusing integrin source.

SRCs for ligand-integrin complexes. For ligand-integrin complexes, two param-
eters, k+L and k+LIT have a greater effect at the beginning of the simulation before
leveling off, while the rest of the parameters have a growing effect on the system.
In particular, k+L , the rate at which ligands and integrins bind, most likely has a
greater effect on the number of ligand-integrin complexes because such complexes
are formed from the free ligands and integrins available at the beginning of the
simulation. As other reactions occur, however, there are additional ways to form
ligand-integrin complexes (such as a ligand-integrin-talin complex disassociating
to produce one ligand-integrin complex and one free talin molecule). Thus, the
number of ligand-integrin complexes would depend less on k+L as the simulation
progresses.

SRCs for integrin-talin complexes. The rate parameter k+T has a greater positive
effect than any other parameter on integrin-talin complexes at the very beginning
of the simulation (until approximately two seconds) but then decreases and levels

Reactant Positive effect Negative effect

L k−LT, k−L k+L , k+T
I k+D, k−L k−D, k−LIT

LI k−LIT, k−LT k−L , k−T
IT k−LIT, k−LT k−L , k−T
LIT k−L , k−T k−LIT, k−LT

T k−LIT, k−T k+T , k+L
S k−D k+D

Table 2. Summary of sensitivity analysis results. For each reactant, the
two parameters with the strongest positive and negative effects are listed, as
determined by standardized regression coefficient values.
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off. However, after about five seconds into the simulation, k−L has the greatest
negative effect and k−LIT has the greatest positive effect on the number of integrin-
talin complexes. This suggests that as k−L increases, the number of ligand-integrin
complexes decreases, which in turn results in a decrease in the number of ligand-
integrin-talin complexes. With fewer LIT complexes to disassociate into free ligands
and integrin-talin complexes, there will be a decrease in the number integrin-talin
complexes. This illustrates how the rate parameter k−L actually has an indirectly
negative effect on the number of integrin-talin complexes.

SRCs for ligand-integrin-talin complexes. For ligand-integrin-talin complexes,
the rate parameter that has the greatest effect is k−LIT, which is the rate at which
ligand-integrin-talin complexes disassociate to produce talin molecules and ligand-
integrin complexes (Figure 8). Uniquely, the parameter k+T , or the rate at which
integrin and talin molecules bind to form integrin-talin complexes, has a positive
effect until about two seconds into the simulation, at which point it assumes a
negative effect. This could be explained by the fact that while many free talin
molecules still exist in the beginning of the simulation, k+T will positively contribute
to the number of integrin-talin complexes, which in turn will positively effect the
number of ligand-integrin-talin complexes. After all the initial free talin molecules
are gone, however, an increase in k+T will mean that any later free talin molecules
will be more likely to bind with integrins than other reactants. This will leave
very few free talin to bind with ligand-integrin complexes, resulting in an overall
decrease in the number of ligand-integrin-talin complexes. Thus, after the point
in the simulation where the initial free talin molecules are gone, k+T will indirectly
negatively effect the number of ligand-integrin-talin complexes.

SRCs for talin. Most rate parameters have a stronger effect on the amount of talin
within the first five seconds of the simulation, after which they level off (Figure 8).
The rate parameter k+T , which is the rate at which integrins and talin molecules bind,
has the greatest negative effect during the first five seconds. It is interesting to note
here that we might expect the parameter k+LIT, or the rate at which ligand-integrin
complexes and talin molecules bind to form ligand-integrin-talin complexes, to
have a greater effect on the number of talin molecules. However, while k+LIT does
have a reasonable negative effect, it is overshadowed by the negative effect of k+T .
This reflects the earlier inference that as k+T is increased, there is a decrease in the
amount of ligand-integrin-talin complexes.

SRCs for diffusing integrins. For the amount of diffusing integrins, the only rate
parameters that have an effect are k+D and k−D . This is reasonable given that the only
reaction these integrins are involved in is either diffusion into the system or diffusion
out of the system. Thus, the number of integrins in the pool outside of the system is
entirely dependent on the rate at which integrins both leave and return to the pool.
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Figure 8. Standardized regression coefficients for ligand-integrin-talin com-
plexes (top) and free talin molecules (bottom) in the system over a time
period of 20 seconds.

9. Conclusion and future work

The averaged results of our stochastic simulations are similar to the results from
our deterministic simulation, with both simulation types indicating that initial
focal adhesion formation occurs rapidly. This makes sense biologically because
a motile cell receiving outside signaling would likely be required to react quickly
in response. However, the speed of focal adhesion formation still needs to be
determined experimentally, and our model only offers a possible outcome of such
experiments.

The first step for future qualitative analysis for our system will be to demon-
strate boundedness of our solutions. Boundedness of solutions is an important
aspect to check given the context of our model. For instance, it would not make
sense if we discovered that a solution approached infinity in finite time or attained
negative values, since our system is modeling finite numbers of molecules over
time. Additionally, the steady-state solutions to the system can be solved for, and



526 A. BLUCHER, M. SALAS, N. WILLIAMS AND H. CALLENDER

investigation can be conducted as to local and global stability of these steady-state
solutions.

While the sensitivity analysis is a good start in analyzing how sensitive the
model is to different parameters, a more accurate assessment could be accomplished
with additional rate values from the literature. Additional methods of sensitivity
analysis could shed more light on how the rate parameters affect the simulation
output. These methods include factors prioritization, which would pinpoint the
most influential factors in our system, and the Method of Morris, which would
identify factors with negligible effects and allow us to narrow our focus. While the
sensitivity analysis conducted thus far is only for the deterministic model, methods
for sensitivity analysis of stochastic models are currently being investigated and are
an area for future work.

In the future, we would like to find more accurate values from the literature for
the rate parameters in our model, beginning with the parameters to which our model
output is most sensitive, as indicated by our sensitivity analysis. We would also
like to include additional molecules involved in focal adhesion formation, such as
PIP2, which increases the affinity of talin for integrins. We could then see if we
retain a longer period of dynamic behavior in our stochastic results compared to
our deterministic results. Additionally, we would like to allow for the diffusion of
molecules other than integrins in and out of our system. This could result in more
activity within our system as molecules are replenished.
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