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In this paper, we seek to understand the behavior of dynamical systems that are
perturbed by a parameter that changes discretely in time. If we impose certain
conditions, we can study certain embedded systems within a hybrid system as
time-homogeneous Markov processes. In particular, we prove the existence of
invariant measures for each embedded system and relate the invariant measures
for the various systems through the flow. We calculate these invariant measures
explicitly in several illustrative examples.

1. Introduction

An understanding of dynamical systems allows one to analyze the way processes
evolve through time. Usually, such systems are given by differential equations that
model real world phenomena. Unfortunately, these models are limited in that they
cannot account for random events that may occur in application. These stochastic
developments, however, may sometimes be modeled with Markov processes, and
in particular with Markov chains. We can unite the two models in order to see
how these dynamical systems behave with the perturbation induced by the Markov
processes, creating a hybrid system consisting of the two components. Complicating
matters, these hybrid systems can be described in either continuous or discrete time.

The focus of this paper is studying the way these hybrid systems behave as they
evolve. We begin by defining limit sets for a dynamical system and stochastic
processes. We next examine the limit sets of these hybrid systems and what happens
as they approach the limit sets. Concurrently, we define invariant measures and
prove their existence for hybrid systems while relating these measures to the flow.
In addition, we supply examples with visuals that provide insight to the behavior of
hybrid systems.
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2. The stochastic hybrid system

In this section, we define a hybrid system.

Definition 1. A Markov process X t is called time-homogeneous on T if, for all
t1, t2, k ∈ T and for any sets A1, A2 ∈ S,

P(X t1+k ∈ A1 | X t1 ∈ A2)= P(X t2+k ∈ A1 | X t2 ∈ A2).

Otherwise, it is called time-inhomogeneous.

Definition 2. A Markov chain Xn is a Markov process for which perturbations
occur on a discrete time set T and finite state space S.

For a Markov chain on the finite state space S with cardinality |S|, it is useful to
describe the probabilities of transitioning from one state to another with a transition
matrix

Q ≡


P1→1 . . . P1→|S|

. .

. .

. .

P|S|→1 . . . P|S|→|S|

 ,
where Pi→ j is the probability of transitioning from state si ∈ S to state s j ∈ S.

Also, for the purposes of this paper, we suppose that our Markov chain transitions
occur regularly at times t = nh for some length of time h ∈ R+ and for all n ∈ N.

Definition 3. Let {Xn}, for Xn ∈ S and n ∈N, be a sequence of states determined
by a Markov chain.

For t ∈ R+, define the Markov chain perturbation Z t = Xbt/hc, where bt/hc is
the greatest integer less than or equal to t/h.

Note that Z t , instead of being defined only on discrete time values like a Markov
chain, is instead a stepwise function defined on continuous time.

Definition 4. Given a metric space M and state space S as above, define a dynamical
system ϕ with random perturbation function Z t , as given in Definition 3, by

ϕ : R+×M × S→ M,

with

ϕ(t, x0, Z0)= ϕZ t

(
t − nh, ϕZnh (h, . . . ϕZ2h (h, ϕZh (h, ϕZ0(h, x0))))

)
,

where ϕZk represents the deterministic dynamical system ϕ evaluated in state Zk

and nh is the largest multiple of h less than t .
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For ease of notation, let

xt = ϕ(t, x0, Z0) ∈ M

represent the position of the system at time t .

Definition 5. Let

Yt =

(
xt

Z t

)
define the hybrid system at time t . In other words, the hybrid system consists of
both a position xt = ϕ(t, x0, Z0) ∈ M and a state Z t ∈ S.

The ω-limit set has the following generalization in a hybrid system.

Definition 6. The stochastic limit set C(x) for an element of our state space x ∈ M
and the hybrid system given above is the subset of M with the following three
properties:

(1) Given y ∈ M and tk→∞ such that xtk → y, P(y ∈ C(x))= 1.

(2) C(x) is closed.

(3) C(x) is minimal: if some set C ′(x) has properties 1 and 2, then C ⊆ C ′.

3. The hybrid system as a Markov process

Lemma 7. Each of the following is a Markov process:

(i) Any deterministic dynamical system ϕ(t, x0).

(ii) Any Markov chain perturbation Z t , as in Definition 2.

(iii) The corresponding hybrid system Yt , as in Definition 5.

Proof. (i) Any deterministic system is trivially a Markov process, since ϕ(t, x0) is
uniquely determined by ϕ(τ, x0) at any single past time τ ∈ R+.

(ii) By definition, a Markov chain is a Markov process. However, the Markov chain
perturbation Z t is not exactly a Markov chain. A Markov chain exists on a discrete
time set, in our case given by T = {t ∈ R+ | t = nh for some n ∈ N}; conversely,
the time set of Z t is R+, with transitions between states occurring on the previous
time set (that is, at t ≡ 0 mod h). Despite this difference, Z t maintains the Markov
property: we can compute P(Z t ∈ A) for any set A based solely on Zτ1 and the
values of the times t and τ1. Explicitly, the probability that Z t will be in state si at
time t is given by

P(Z t = si )= ((QT )n)i j ,

where n is the number of integer multiples of h (i.e., the number of transitions that
occur) between t and τ1. Clearly, this is independent of the states Zτi for i > 1, so
that the random perturbation is indeed a Markov process.
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(iii) Now, keeping in mind that the hybrid system Yt consists of both a location
xt ∈ M in the state space and a value Z t ∈ S of the random component, we can
combine (i) and (ii) to see that the entire system is also a Markov process. We
see from (ii) that Z t follows a Markov process. Furthermore, P(xt ∈ Ax) at time t
depends solely on the location xτ1 at any time τ1 < t and the states of the random
perturbation sequence Z between t and τ1, regardless of any past behavior of the
system. Hence, for any collection of sets Aα, α ∈ N,

P(Z t ∈ Az | Zτ1 ∈ Az1, Zτ2 ∈ Az2, . . . , Zτn ∈ Azn )= P(Z t ∈ Az | Zτ1 ∈ Az1),

P(xt ∈ Ax | xτ1 ∈ Ax1, xτ2 ∈ Ax2, . . . , xτn ∈ Axn )= P(xt ∈ Ax | xτ1 ∈ Ax1).

So,

P(Yt ∈ Ay | Yτ1 ∈ Ay1, Yτ2 ∈ Ay2, . . . , Yτn ∈ Ayn )= P(Yt ∈ Ay | Yτ1 ∈ Ay1).

Thus, the hybrid system is a Markov process. �

Unfortunately, the hybrid system is not time-homogeneous. Recall that state
transitions of Z t occur at times t = nh for n ∈ N. So, the state of the system at
time h/4 uniquely determines the system at 3h/4, since there is no transition in
this interval. However, the system at time 5h/4 is not determined uniquely by the
system at 3h/4, since a stochastic transition occurs at t = h ∈

[3
4 ,

5
4

]
. Therefore,

with t1 = h/4, t2 = 3h/4, and k = 1
2 ,

P
(
Y h

4+
1
2
∈ A | Y h

4
∈ A0

)
6= P

(
Y 3h

4 +
1
2
∈ A | Y 3h

4
∈ A0

)
,

violating Definition 1. However, in order to satisfy the hypotheses of the Krylov–
Bogolyubov theorem [Hairer 2010; 2006] found in Theorem 14, the hybrid system
must be time-homogeneous.

To create a time-homogeneous system, we restrict the time set on which our
Markov process is defined. Instead of allowing our time set

{t, τ1, τ2, τ3, . . . , τn} ⊂ R+

to be any decreasing sequence of real numbers, we create time sets t0+nh for each
t0 ∈ [0, h) and n ∈ N. In other words, we define a different time set for each value
t0 < h as

{t ∈ R+ | t = t0+ nh for some n ∈ N}.

We call the hybrid system on these multiple, restricted time sets the discrete system.

Proposition 8. The discrete hybrid system above is a time-homogeneous Markov
process.
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Proof. First, we must show that the discrete hybrid system is a Markov process at
all. This follows immediately from the proof that our original hybrid system is a
Markov process. Since the Markov property holds for all t, τ1, τ2, . . . , τn ∈ R+, it
must necessarily hold for the specific time set

{t ∈ R+ | there exists n ∈ N such that t = t0+ nh}

for each t0 < h.
Now, it remains to show that this system is time-homogeneous. Recall that

the time-continuous hybrid system failed to be time-homogeneous because its Z t

component was not time-homogeneous. Although transitions occurred only at
regular, discrete time values, a test interval could be of any length; an interval of
size h/2, for example, might contain either 0 or 1 transitions. However, because our
discrete system creates separate time sets, any time interval — starting and ending
within the same time set — must be of length nh for some n ∈ N, and thus will
contain precisely n potential transitions. So, taking t1, t2 ∈ R+, we know that

P(Yt1+nh ∈ A | Yt1 ∈ A0)= P(Yt2+nh ∈ A | Yt2 ∈ A0).

Note that the first component of the hybrid system, xt , is also time-homogeneous
under the discrete time system. Given Z t , it can be treated as a deterministic
system, and therefore time-homogeneous. Thus, the discrete hybrid system is
time-homogeneous. �

4. Invariant measures for the hybrid system

We now introduce several definitions that will lead to the main results of this paper.

Definition 9. Consider a hybrid system Yt and a σ -algebra 6 on the space M . A
measure µ on M is invariant if, for all sets A ∈6 and all times t ∈ R+,

µ(A)=
∫

x0∈M
P(xt ∈ A)µ(dx).

Definition 10. Let (M,T) be a topological space, and let 6 be a σ -algebra on M
that contains the topology T. Let M be a collection of probability measures defined
on 6. The collection M is called tight if, for any ε > 0, there is a compact subset
Kε of M such that, for any measure µ in M,

µ(M\Kε) < ε.

Note that since µ is a probability measure, it is equivalent to, say, µ(Kε) > 1−ε.
The following definitions are from [Hairer 2010].

Definition 11. Let (M, ρ) be a separable metric space. Let {P(M)} denote the
collection of all probability measures defined on M (with its Borel σ -algebra).
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A collection K ⊂ {P(M)} of probability measures is tight if and only if K is
sequentially compact in the space equipped with the topology of weak convergence.

Definition 12. Consider M with σ -algebra 6. Let C0(M,R) denote the set of
continuous functions from M to R. The probability measure P(t, x, ·) on6 induces
a map

Pt(x) : C0(M,R)→ R, with Pt(x)( f )=
∫

y∈M
f (y)P(t, x, dy).

Pt is called a Markov operator.

Definition 13. A Markov operator P is Feller if Pϕ is continuous for every contin-
uous bounded function ϕ : X → R. In other words, it is Feller if and only if the
map x 7→ P(x, ·) is continuous in the topology of weak convergence.

We state the Krylov–Bogolyubov theorem without proof.

Theorem 14 (Krylov–Bogolyubov). Let P be a Feller Markov operator over a
complete and separable space X. Assume that there exists x0 ∈ X such that the
sequence Pn(x0, ·) is tight. Then, there exists at least one invariant probability
measure for P.

We now show that the conditions of the theorem are satisfied by the discrete
hybrid system, yielding the existence of invariant measures as a corollary.

Lemma 15. Given t0 ∈ [0, h), the discrete hybrid system Markov operators Pn for
n ∈ N given by

Pn f (Y )≡
∫

M×S
f (Y1)P(nh, Y, dY1)

are Feller.

Proof. We begin by showing that P1 is Feller. By induction, it follows that Pn is
Feller for all n ∈ N. It is clear that there are only finitely many possible outcomes
of running the hybrid system for time h. Namely, there are at most |S| possible
outcomes, where |S| denotes the cardinality of S. Given

Y0 =

(
x0

Z0 = si

)
∈ M × S,

the only possible outcomes at time t = 1 are

Y j
1 =

(
ϕ j (t0, ϕi (h− t0, x))

s j

)
for j ∈ {1, . . . , |S|}, where ϕi , ϕ j are the flows of the dynamical systems corre-
sponding to states si and s j , respectively. The probability of the j-th outcome is
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given by Pi→ j , the probability of transitioning from state si to state s j . Therefore,

P1 f (Y )=
∫

M×S
f (Y1)P(h, Y, dY1)=

|S|∑
j=1

Pi→ j f (Y j
1 ).

Each ϕi is continuous under the assumption that each flow is continuous with
respect to its initial conditions. The map from si to s j is continuous since S is
finite, so every set is open and hence the inverse image of any open set is open. The
function f is continuous by hypothesis, and any finite sum of continuous functions
is also continuous. Therefore P1 f is also continuous, and hence P1 is Feller. �

We see now that the conditions of Theorem 14 (Krylov–Bogolyubov) hold.
Namely, because M and S are compact (the former by assumption, the latter since
it is finite), M × S is compact. Thus, any collection of measures is automatically
tight, since we can take Kε = X . It is well known that any compact metric space
is also complete and separable. Applying Theorem 14, then, gives the following
corollary, which is one of the primary results of the paper.

Corollary 16. The discrete hybrid system has an invariant measure for each t0 ∈
[0, h).

So, rather than speaking of an invariant measure for the time-continuous hybrid
system, we can instead imagine a periodic invariant measure cycling continuously
through h. That is, for each time t0 ∈ [0, h), there exists a measure µt0 such that
for t ≡ 0 (mod h),

µt0(A)=
∫

Y∈M×S
P(t, Y, A) dµt0 .

The measure µt0 above is a measure on the product space M× S, since this is where
the hybrid system lives. However, what we are really after is an invariant measure
on just M , the space where the dynamical system part of the hybrid system lives.
Fortunately, we can define a measure on M by the following construction.

Proposition 17. Given µt , an invariant probability measure on M× S, the function

µ̃t(A)≡ µt(A, S),

where A ⊆ M is an invariant probability measure on M.

Proof. The fact that µ̃t is a probability measure follows almost immediately from the
fact that µt is a probability measure. The probability that xt ∈∅ is 0, so µ̃t(∅)= 0.
The probability that xt ∈ M is 1, so µ̃t(M)= 1. Countable additivity of µ̃t follows
from countable additivity of µt . Therefore, µ̃t is a probability measure on M . �
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Thus far, we have proven the existence of a measure µt0 for t0 ∈ [0, h) such that
for t ≡ 0 (mod h),

µt0(A)=
∫

x0∈M,s∈S
P(ϕ(t, x0, s) ∈ A) dµt0 .

The following theorem relates the collection of invariant measures {µ̃t0} using the
flow ϕ. This is the main result of the paper.

Theorem 18. Given invariant measure µ0, the measure µt defined by

µt(A)=
∑
s∈S

∫
x0∈M

P(ϕ(t, x0, s) ∈ A) dµ0

is also invariant in the sense that µt = µt+nh for n ∈ N.

Proof. We will show that µt = µt+h . By induction, this implies that µt = µt+nh

for all n ∈ N. We have

µt+h(A)=
∑
s∈S

∫
x0∈M

P(ϕ(t + h, x0, s) ∈ A) dµ0.

Applying the definition of conditional probability,∑
s∈S

∫
x0∈M

P(ϕ(t + h, x0, s) ∈ A) dµ0

=

∑
r∈S

∫
y∈M

[
P(ϕ(t, y, r) ∈ A)

∑
s∈S

∫
x0∈M

P(ϕ(h, x0, s) ∈ dy×{r}) dµ0

]
.

Loosely speaking, the probability that a trajectory beginning at (x, s) will end in a
set A after a time t + h is the product of the probability that a trajectory beginning
at (y, r) will end in A after a time t multiplied by the probability that a trajectory
beginning at (x, s) will end at (y, r) after a time h, integrating over all possible
pairs (y, r). Here, we have implicitly used the fact that the hybrid system is a
Markov process to ensure that the state of the system at time t + h given the state
at time h is independent of the initial state, and we have avoided the problem of
time-inhomogeneity by considering trajectories that only begin at times congruent
to 0 (mod h).

Furthermore, we have

µh(dy×{r})=
∑
s∈S

∫
x0∈M

P(ϕ(h, x0, s) ∈ dy×{r}) dµ0

and
µh(dy×{r})= dµh(y, r);
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so,

µt+h(A)=
∑
r∈S

∫
y∈M

P(ϕ(t, y, r) ∈ A) dµh .

Since µ0 is invariant by assumption, µ0 = µh . Therefore,

µt+h(A)=
∑
r∈S

∫
y∈M

P(ϕ(t, y, r) ∈ A) dµ0 = µt(A). �

5. Examples

Some examples of hybrid systems can be found in [Ayers 2010; Baldwin 2007].
Here, we will examine two simple cases to illustrate the theory developed above.

5.1. A one-dimensional hybrid system. We begin with a one-dimensional linear
dynamical system with a stochastic perturbation:

ẋ =−x + Z t ,

where Z t ∈ {−1, 1}. Both components of this system have a single, attractive
equilibrium point: for Z t = 1, this is x = 1, and for Z t =−1, x =−1. At timesteps
of length h = 1, Z t is perturbed by a Markov chain given by the transition matrix
Q. Q is therefore a 2× 2 matrix of nonnegative entries,

Q =
(

P1→1 P1→−1

P−1→1 P−1→−1

)
,

where Pi→ j gives the probability of the equilibrium point transitioning from i to j
at each integer timestep. Since the total probability measure must equal 1,∑

j∈{1,−1}

Pi→ j = 1, i ∈ {1,−1}.

Furthermore, to avoid the deterministic case, we take Pi→ j 6= 0 for all i, j .

Proposition 19. The stochastic limit set C(x0)= [−1, 1] for all x0 ∈ R.

Proof. We begin by showing that C(x) ⊂ [−1, 1]: that is, that every possible
trajectory in our system will eventually enter and never leave [−1, 1], meaning
that no it is only possible to have t∗→∞ such that x∗ = y for y ∈ [−1, 1]. First,
consider x0 ∈ [−1, 1]. If we are in state Z t = 1, then the trajectory is attracted
upwards and bounded above by x = 1; in state Z t =−1, the trajectory is attracted
downwards and bounded below by x = −1. In both cases, the trajectory cannot
move above 1 or below −1, and so will remain in [−1, 1] for all time.

Now, consider x0 /∈ [−1, 1]. If the trajectory ever enters [−1, 1], by similar
argument as above, it will remain in that region for all time. So, it remains to
show that ϕ(t, x0, Z0) ∈ [−1, 1] for some t ∈ R. First, take x0 > 1. In either state,
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the trajectory will be attracted downward, and will eventually enter [1, 2] at time
t2. Once there, at the first timestep in which Z t = −1 it will cross x = 1 and
enter [−1, 1]. And since we have taken all entries of the transition probability
matrix Q to be nonzero, there almost surely exists a time t3 > t2 for which the
state is Z t =−1; then, the trajectory will enter [−1, 1] and never leave. By similar
argument, any trajectory starting at x0 < −1 will enter and never leave [−1, 1].
Thus, C(x)⊂ [−1, 1].

Now, we must show that [−1, 1] ∈ C(x): that is, that for every trajectory
ϕ(t, x0, Z0) and every point y∈[−1, 1] there is t∗→∞ such that ϕ(t∗, x0, Z0)→ y.
To do this, we really only need to show that given any point x0 ∈ [−1, 1] and any
transition matrix Q, there almost surely exists some time t∗ with ϕ(t∗, x0, Z0)= x∗.
If one such time t∗ is guaranteed to exist, then we can iterate the process for a
solution beginning at (t∗, x∗) to produce an infinite sequence of times. To show
that t∗ exists, we calculate a lower bound on the probability that ϕ(tn, x0, Z0)= x∗.

Without loss of generality, suppose that x0 > x∗. We have already shown that
any solution will enter [−1, 1], so take sup(x0)= 1. From here, we can calculate
the minimum number of necessary consecutive periods, k, for which Zn =−1 in
order for a solution with x0 = 1 to decay to x∗. The probability of this sequence of
k consecutive periods occurring is given by

P1(k)= (P1→−1)(P−1→−1)
k−1

if Z0 = 1 and

P−1(k)= (P−1→−1)
k

if Z0 =−1. Thus, for some t∗ ∈ [0, k],

P(ϕ(t∗, x0, Z0)= x∗)≥min(P1(k), P−1(k)) > 0,

since Pi→ j > 0. So,

P(t∗ /∈ [0, k])≤ 1− P(x∗) < 1 and P(t∗ /∈ [0,mk])≤ (1− P(x∗))m .

As m → ∞, (1 − P(x∗))m → 0. So, with probability 1, there exists t∗ with
ϕ(t∗, x0, Z0)= x∗.

By similar argument, for x0 < x∗ and all x∗ ∈ (−1, 1), we can find a time
sequence {tn} such that ϕ(tn, x0, Z0)= x∗. So, we know that for all x∗ ∈ (−1, 1),
x∗ ∈ C(x).

So, we have proven that [−1, 1] ⊆ C(x) and (−1, 1)⊆ C(x). Since C(x) must
by definition be closed, C(x)= [−1, 1]. �
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We can study the behavior of this system numerically. Figure 1 (left) depicts a
solution calculated for the transition matrix

Q1 =

(
0.4 0.6
0.5 0.5

)
,

with initial values x0 = 2, Z0 = 1.
As expected, the trajectory enters the interval (−1, 1) and stays there for all time,

oscillating between x =−1 and x = 1. Intuitively, it seems that the trajectory will
cross any x∗ in this interval repeatedly, so that indeed C(x)= [−1, 1]. This is not
quite so clear for the transition matrix

Q2 =

(
0.1 0.9
0.1 0.9

)
,

which yields the trajectory shown in Figure 1 (right) for x0 = 2, Z0 = 1.
It may appear that some set of points near x = 1 might be crossed by our path

only a finite number of times. But, as proven above, any point in (−1, 1) will
almost surely be reached infinitely many times as t→∞, so C(x)= [−1, 1].

Now, we consider the eigenvalues and eigenvectors of the transition matrices.
The eigenvector of QT

1 with eigenvalue 1 is

Ev =

(
5
11
6
11

)
,

and the eigenvector of QT
2 with eigenvalue 1 is

Ev ′ =

(
9

10
1

10

)
.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2
Trajectory Calculated

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2
Trajectory Calculated

Figure 1. A sample trajectory for a hybrid system with transition
matrix Q1 (left) and Q2 (right).
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These eigenvectors give the invariant measures on the state space S. We know
from Proposition 17 that there also exists an invariant measure on M . Here, since
any trajectory in M will almost surely enter C(x) = [−1, 1], the support of the
invariant measure must be contained in C(x). It is not difficult to see that this
invariant measure cannot be constant for all t ∈ R+. Given any point x0 ∈ [−1, 1],
we know that at t = 1, one of two things will have happened to the trajectory:

(i) it will have decayed exponentially toward x = 1, if Z1 = 1, or

(ii) it will have decayed exponentially toward x =−1, if Z1 =−1.

In case (i), if a solution begins at x0 =−1 for t = 0, the solution will have decayed
to a value of 1− 2e−1

≈ 0.264 by t = 1. In case (ii) a solution beginning at x0 = 1
for t = 0 will decay to a value of −1+ 2e−1

≈−0.264. Thus, if we are in case (i),
all trajectories in [−1, 1] at t = n will be located in [0.264, 1] at t = n+ 1. If we
are in case (ii), all will be in [−1,−0.264]. It is not possible for any trajectory to be
located in [−0.264, 0.264] at an integer time value. But, clearly, some solutions will
cross into this region, as depicted in Figure 2. Therefore, no probability distribution
will remain constant for all t in the time set R+.

However, as Figure 2 suggests, there is some distribution that is invariant under
t → t + n for n ∈ N. Approximations of the invariant measures at t ∈ [0, 1] for
transition matrix Q1 are shown in Figure 3.

5.2. A two-dimensional hybrid system. Our second example is a two-dimensional
system used to model the kinetics of chemical reactors. The general system
f (x1, x2) is given by

ẋ1 =−λx1−β(x1− xc)+ B Da f (x1, x2),

ẋ2 =−λx2+ Da f (x1, x2),

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x

Figure 2. A spider plot showing all possible trajectories starting
at x0 = 0.
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Figure 3. The invariant measure µ̃0 for a hybrid system with
transition matrix Q1.

where λ, β, xc, Da, and B are physical parameters (see [Poore 1973]). Here, we
use a simplified application of the system:

ẋ1 =−x1− 0.15(x1− 1)+ 0.35(1− x2)ex1 + Z t(1− x1),

ẋ2 =−x2+ 0.05(1− x2)ex1 .

This system is used to describe a continuous stirred tank reactor (CSTR). This type
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Figure 4. Phase plane of the deterministic system, Zn = 0.

of reactor is used to control chemical reactions that require a continuous flow of
reactants and products and are easy to control the temperature with. They are also
useful for reactions that require working with two phases of chemicals.

To understand the behavior of this system mathematically, we set our stochastic
variable Z t = 0 and treat it as a deterministic system. This system has three fixed
points, approximately at (0.67, 0.09), (2.64, 0.41), and (5.90, 0.95); the former and
latter are attractor points, while the middle is a saddle point, as shown in Figure 4.
The saddle point (2.64, 0.41) creates a separatrix, a repelling equilibrium line
between the two attracting fixed points. These points, (0.67, 0.09) and (5.90, 0.95),
comprise the ω-limit set of our state space.

With this information, we proceed to analyze the stochastic system. As discussed
above, the random variable here is Z t , which in applications can take values between
−0.15 and 0.15. To understand the full variability of this system, we take

Z t ∈ {−0.15, 0, 0.15}

with the transition matrix 0.3 0.3 0.4
0.3 0.3 0.4
0.3 0.3 0.4

 ,
yielding the phase plane in Figure 5.

We see that, for x0 away from the separatrices, ϕ(t, x0, Z0) behaves similarly to
ϕ(t, x0). Although state changes create some variability in a given trajectory, these
paths move toward the groups of associated attracting fixed points, which define the
stochastic limit sets for this system. However, ϕ(t, x0, Z0) for x0 between the red
and green separatrices is unpredictable; depending on the sequence of state changes
for a given trajectory, it might move either to the right or the left of the region
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Figure 5. Phase plane with randomness, showing fixed points,
separatrices, and portions of trajectories. Red, blue and green
indicate states 1 (Z t =−0.15), 2 (Z t = 0) and 3 (Z t = 0.15).

defined by the separatrices. This area is the bistable region, because a trajectory
beginning within it has two separate stochastic limit sets.

For example, we have in Figure 6 a spider plot beginning in the bistable region
at (3.5, 0.75). A spider plot shows all possible trajectories starting from a single
point in a hybrid system by, at each timestep, taking every possible state.

Thus, we see that the introduction of a stochastic element to a deterministic
system can grossly affect the outcome of the system, as a trajectory can now cross
any of the separatrices by being in a different state.

The stochastic element also affects the behavior of the hybrid system around the
invariant region. In Figure 7, we show the path of a single trajectory in the invariant
region defined by the fixed points near (0.67, 0.9). Plotting this trajectory for a
long period of time approximates the invariant region that would appear if we ran a
spider plot from the same point, but much more clearly.
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Figure 6. Spider plot. Color scheme as in Figure 5.
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Figure 7. Random trajectory.

As we saw in the one-dimensional system, considering the counts taken at specific
times in the interval between two state changes, h = 1 (since our state transitions
occur on N), yields a periodic set of invariant measures. Similarly to Figure 3,
Figure 8 shows the positions of our random trajectory in the invariant region at
time t , mod h.
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Figure 8. Count of trajectory paths within one timestep.
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Figure 8. Count of trajectory paths within one timestep (continued).
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A denser series of count images would show more clearly that the invariant
measure at t mod h cycles continuously.

6. Conclusion

We have studied hybrid systems consisting of a finite set S of dynamical systems
over a compact space M with a Markov chain on S acting at discrete time intervals.
Such a hybrid system is a Markov process, which can be made time-homogeneous
by discretizing the system. Then, there exists a family of invariant measures on the
product space M × S, which can be projected onto a family of measures on M . We
have demonstrated a relation between the members of this family.

We have studied both a one-dimensional and a two-dimensional example of a
hybrid system. These examples provide insight into the stochastic equivalent of
ω-limit sets and yield graphical representations of the invariant measures on these
sets.
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