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The Hausdorff metric measures the distance between nonempty compact sets
in Rn , the collection of which is denoted H(Rn). Betweenness in H(Rn) can be
defined in the same manner as betweenness in Euclidean geometry. But unlike
betweenness in Rn , for some elements A and B of H(Rn) there can be many
elements between A and B at a fixed distance from A. Blackburn et al. ( “A
missing prime configuration in the Hausdorff metric geometry”, J. Geom., 92:1–2
(2009), pp. 28–59) demonstrate that there are infinitely many positive integers
k such that there exist elements A and B having exactly k different elements
between A and B at each distance from A while proving the surprising result that
no such A and B exist for k = 19. In this vein, we prove that there do not exist
elements A and B with exactly a countably infinite number of elements at any
location between A and B.

1. Introduction

The Hausdorff metric provides a means to measure distance in the family H(Rn)

of nonempty compact sets in n-dimensional Euclidean space. There is a natural
embedding of Rn into H(Rn) that takes x ∈ Rn to {x} ∈ H(Rn). The notion of
betweenness in Rn extends naturally to H(Rn). However, in Euclidean space, there
is a unique point between a and b at a given distance less than d(a, b) from a,
while in H(Rn) there can be many distinct elements between elements A and B
at a given distance from A. For instance, for infinitely many numbers k we can
find A and B with exactly k elements between A and B at a given distance from A,
and we can also find A and B such that this number of elements between A and
B is infinite. Blackburn et al. [2009] proved the surprising result that there exist
no two elements A and B in H(Rn) with the property that A and B have exactly
19 elements of H(Rn) between them at a given distance from A. In this paper, we
will prove that there is another cardinality that is missing; namely, there exist no
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two elements A, B ∈H(Rn) with exactly a countably infinite number of elements
between them at any location. The argument uses a different approach than that
of [Blackburn et al. 2009]: the proof there is exhaustive, and while it is succinct
enough to prove the absence of 19, the method may be too unwieldy to show the
existence of larger conjectured missing numbers. It is our hope that the idea of too
many removable points forcing a larger cardinality of sets between A and B might
be adapted to the finite case.

2. Preliminaries

Let H(Rn) denote the collection of nonempty compact subsets of Rn . We will refer
to these compact sets as “elements” of H(Rn). For any a ∈ Rn and B ∈H(Rn), let
d(a, B) = minb∈B dE(a, b), where dE denotes the Euclidean metric on Rn . The
Hausdorff metric is then defined as follows:

Definition 2.1. Let A, B ∈ H(Rn). The Hausdorff distance between A and B is
given by

h(A, B)=max{d(A, B), d(B, A)},

where d(A, B)=maxa∈A d(a, B).

In other words, the distance from A to B is the maximum of the distances
between points in A to the set B, and the Hausdorff distance between A and B is
the maximum of the distance from A to B and the distance from B to A. Note
the maximum and minimum in the definitions above are well-defined since both
A and B are compact sets. To verify that the Hausdorff distance defines a metric
on H(Rn), see, for instance, [Edgar 1990].

Example 2.2. Let n = 2 and consider the sets shown on the left in Figure 1. Let
S1(r) denote the circle of radius r centered at the origin, so that A={(0, 0)}∪S1(4),
B = S1(2), and C = S1(1) ∪ S1(3). Then, for any a ∈ A and b ∈ B, we have
dE(a, b)≥ 2. Further, for such a there exists a point b ∈ B such that d(a, b)= 2,
which implies that d(a, B) = 2 for all a ∈ A; hence, d(A, B) = 2. Similarly, for
every b ∈ B, we have dE(b, a0)= 2 where a0 is the origin, so d(b, A)= 2 for all
b ∈ B, which shows d(B, A)= 2 as well. It follows that h(A, B)= 2. A similar
verification shows that h(A,C)= h(B,C)= 1.

The set C ′ pictured on the right in Figure 1 is a compact subset of C . Here we
see that for every a ∈ A and c ∈ C ′, dE(a, c) ≥ 1. Additionally, for every a ∈ A,
there exists c ∈ C ′ such that dE(a, c) = 1, so d(a,C ′) = 1 for all such A and
d(A,C ′)= 1. Likewise, for all c ∈ C ′, there is some a ∈ A such that dE(c, a)= 1,
so d(C ′, A)= 1 and h(A,C ′)= 1. A similar computation shows that d(B,C ′)= 1.

In Rn we say that c is between a and b at a distance t ∈R from a (where 0< t <
dE(a, b)) if dE(a, b) = dE(a, c)+ dE(c, b) and dE(a, c) = t . If {a}, {b} ∈H(Rn)
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Figure 1. Two elements C and C ′ between sets A and B.

are single point sets, it is easy to see that dE(a, b) = h({a}, {b}). Thus, we can
naturally extend betweenness in Rn to H(Rn).

Definition 2.3. Let A, B,C ∈ H(Rn) and 0 < t < h(A, B). We say that C is
between A and B at a distance t from A if

h(A, B)= h(A,C)+ h(C, B) and h(A,C)= t.

Thus, betweenness in Rn is preserved under the natural embedding of Rn into
H(Rn). To see that there can be multiple elements at some location between compact
sets A and B, recall the previous example:

Example 2.4. As computed above, we have

h(A, B)= 2= 1+ 1= h(A,C)+ h(C, B).

However, we also have

h(A, B)= 2= 1+ 1= h(A,C ′)+ h(C ′, B)

for the same sets A and B, so C ′ and C lie between A and B one unit from A. In
fact, if C ′′ is the union of S1(3) and any nonempty compact subset of S1(1), C ′′ is
also between A and B one unit from A, so for this example there are uncountably
many elements of H(R2) between A and B at a distance one from A.

Lemma 2.5 of [Blackburn et al. 2009] says that if A, B ∈H(Rn) and there exists
some a ∈ A or b ∈ B such that d(a, B) 6= h(A, B) or d(b, A) 6= h(A, B), then there
are infinitely many elements C ∈H(Rn) between A and B at any location. We can
improve this result. Under the hypotheses, the authors find an injective map from
the open interval (0, ε) to the collection of elements in H(Rn) that lie between A
and B at a given location to conclude that there are infinitely many such elements,
but this implies further that under the assumptions of the lemma, then there are, in
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fact, uncountably many elements of H(Rn) between A and B at any location, since
(0, ε) is uncountable.

In light of this observation, we employ the following definition:

Definition 2.5 [Blackburn et al. 2009]. A configuration [A, B] is a pair of sets
A, B ∈H(Rn) with A 6= B such that

h(A, B)= d(b, A)= d(a, B) for all a ∈ A and b ∈ B.

It follows that if the pair A, B ∈H(Rn) is not a configuration, then the number
of elements at any location between A and B is uncountable. Hence, if there are
countably many elements at each location between A and B, then the pair must be
a configuration [A, B]. Note that the elements A and B described in the example
above constitute a configuration, and so being a configuration is necessary but not
sufficient for there to be countably many elements of H(Rn) at a given location
between A and B.

We adopt the notation #([A, B])t to represent the cardinality of the collection of
elements between A and B in a configuration at a distance 0< t < h(A, B) from A.
Blackburn et al. [2009] demonstrated that when A and B are finite sets, #([A, B])t
is finite and #([A, B])s = #([A, B])t for every s, t satisfying 0 < s, t < h(A, B).
In this case, #([A, B])t is simply denoted #([A, B]).

3. An alternative characterization of #([A, B])t

Let (A)t denote the dilation of A∈H(Rn) by t ; that is, (A)t ={x ∈Rn
: d(x, A)≤ t}.

In addition, for elements A, B ∈H(Rn) with t + s = h(A, B), t, s > 0, define C(t)
to be the set (A)t ∩ (B)s . Lemma 3.6 of [Bogdewicz 2000] shows that for such
A, B, t , and s, the set C(t) is between A and B at a distance t from A. In [Braun
et al. 2005] it is shown that any element C ∈ H(Rn) with h(A,C) = t satisfies
C ⊂ (A)t . It follows that if C is any element between A and B at a distance t
from A, then C ⊂ C(t). Thus, we can think of C(t) as the largest element between
A and B at a distance t from A. From this point forward, we set the convention
that for any configuration [A, B] with 0< t < h(A, B), we have s = h(A, B)− t
and C(t)= (A)t ∩ (B)s .

Example 3.1. Using our previous example with t = s = 1, we can see that (A)t is
the union of the unit disk with an annulus with inner and outer radii of three and
five, while (B)s is an annulus with inner and outer radii of one and three, so that
C(t) = (A)t ∩ (B)s = S1(1)∪ S1(3) = C , where C is the set pictured on the left
side of Figure 1.

In general, one way to determine #([A, B])t is to count the number of elements
of H(Rn) at a location t from A between A and B. Alternatively, we can count the
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number of ways to remove subsets U ⊂ Rn from the largest set C(t) between A
and B to get another element C(t) \U ∈H(Rn) between A and B at a distance t
from A. We note immediately that if C(t) \U is to be compact, U must be open
in C(t).

Recall that in a configuration [A, B], we have that h(A, B)= d(a, B)= d(b, A)
for every a ∈ A and b ∈ B. Thus, by the compactness of B, for every a ∈ A there
must be at least one b ∈ B such that dE(a, b) = h(A, B), and likewise for each
b ∈ B. This relation between pairs of points in A and B proves to be especially
important, and so we make the following definition:

Definition 3.2. Let A, B ∈H(Rn). We say that a ∈ A and b ∈ B are adjacent, and
write a m b, if dE(a, b)= h(A, B). The adjacency set of a in B, [a]B , is defined
to be [a]B = {b ∈ B : a m b}.

Note that under the definition of adjacency, it is not necessary for the sets A
and B to form a configuration, but for a configuration [A, B], we have that for any
a ∈ A and b ∈ B, both [a]B and [b]A are nonempty. Referring back to our original
example, we have for the origin a0 ∈ A that [a0]B = B, since every point b ∈ B
satisfies dE(a0, b)= 2. On the other hand, for any b ∈ B, we can write b = 2eiθ ,
and [b]A consists of the origin a0 and 4eiθ .

Suppose a configuration [A, B] has largest set C(t) between A and B. Lemma 3.1
of [Blackburn et al. 2009] says that for every c ∈ C(t), there is precisely one a ∈ A
and b ∈ B such that c m a and c m b. Also, [a]C(t) and [b]C(t) are nonempty. Thus,
the functions qA : C(t)→ A and qB : C(t)→ B that map c to these unique points
a and b, respectively, are both well-defined and onto.

Now, we return to the idea of deciding which sets U we can remove from C(t) to
get some element C(t)\U between A and B at the same location. Observe that if we
remove every point in [a]C(t) for some a ∈ A, then d(a,C(t)\U ) > d(a,C(t))= t ,
and thus C(t) \U cannot be between A and B at the same location. Similarly, we
cannot remove every point in C(t) adjacent to some b ∈ B. Thus, we define a new
collection of sets ϒt , which will turn out to be the collection of removable sets
described above:

Given [A, B] and 0< t < h(A, B), define ϒt to be the collection of sets U open
in C(t) such that
• for every a ∈ qA(U ), [a]C(t)\U 6=∅, and

• for every b ∈ qB(U ), [b]C(t)\U 6=∅.

These two conditions ensure that for any U ∈ϒt , we have C(t) \U is between A
and B at a distance t from A. Note that ∅ is always an element of ϒt , and C(t) is
never such an element. We set one more convention, that if [A, B] is a configuration
and 0< t < h(A, B), then Kt is the collection of all elements of H(Rn) between A
and B at a distance t from A. More precisely, we have:
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Theorem 3.3 [Blackburn et al. 2009]. For any configuration [A, B] and any t
satisfying 0< t < h(A, B), the function f : ϒt → Kt defined by f (U )= C(t) \U
is a bijection.

From the theorem it follows that #([A, B])t = |Kt | = |ϒt |. This is the exact tool
we will need to show that no configuration [A, B] and 0 < t < h(A, B) satisfies
#([A, B])t = |Z|. In our example, with t = 1, ϒ1 is the collection of all sets
U 6= S1(1) that are open in S1(1). We observe that in this case ϒ1 is uncountable,
verifying that there are uncountably many elements of H(Rn) between A and B at
a distance one from A.

4. Orders of infinity between sets in a configuration

Recall from above that if two elements A, B do not form a configuration, then
there are uncountably many elements between A and B at every location. Thus, we
may restrict our search for pairs of sets A, B ∈H(Rn) with countably many such
elements to configurations. We use the fact that if [A, B] is a configuration with
0< t < h(A, B), then as stated above, #([A, B])t = |ϒt |.

We will need a definition and two lemmas to prove our main result.

Definition 4.1. A point w contained in a set W is a cluster point of W if for every
ε > 0, Bε(w)∩ (W \ {w}) 6=∅. If w is not a cluster point, it is isolated.

The first lemma follows directly from our definition of ϒt .

Lemma 4.2. For a configuration [A, B] with 0< t < h(A, B), let U ∈ϒt . If V ⊂U
such that V is open in Ct , then V ∈ ϒt as well.

Proof. By definition of ϒt , we have that

• for all a ∈ qA(U ) there exists c ∈ [a]C(t) such that c /∈U and

• for all b ∈ qB(U ) there exists c ∈ [b]C(t) such that c /∈U .

This means that for all a ∈ qA(V ), we must have that a ∈ qA(U ) as V ⊂U . Thus,
there exists c∈ [a]C(t) such that c /∈U , and so c /∈ V . Similarly, for every b∈ qB(V ),
there exists c ∈ [b]C(t) such that b /∈ V . It follows that V ∈ ϒt . �

In other words, if we can remove some set of points U from C(t) to get an
element of Kt , then certainly we can remove some relatively open subset V of U
from C(t) to get another element of Kt . The next lemma takes a bit more work and
lies at the core of our argument.

Lemma 4.3. For a configuration [A, B] with 0< t < h(A, B), if #([A, B])t =∞,
then there exists W ∈ ϒt such that |W | =∞.
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Proof. Suppose by way of contradiction that |U | is finite for every U ∈ ϒt . Let
U ∈ ϒt , and choose a point x ∈U . As |U | is finite, we can find some εx > 0 such
that Bεx (x)∩U = {x}. Further, since U is relatively open in C(t), we can choose
εx to be small enough so that Bεx (x)∩C ⊂ U . Hence, if Vx = Bεx (x)∩C , then
Vx = {x} and certainly Vx is open in C and Vx ⊂ U , so by Lemma 4.2, Vx ∈ ϒt .
Since |ϒt | =∞ and every element U ∈ϒt can be written as a union of sets Vx , we
must have infinitely many such singleton point sets as well.

Define
V =

⋃
x∈U

U∈ϒt

Vx .

We split the proof into two cases. Suppose first that there exists some a ∈ qA(V )
such that |[a]V | =∞. This means that a is adjacent to infinitely many points in V .
Note that if v1, v2 ∈ V satisfy v1 m a0, v2 m a0, v1 m b0, and v2 m b0 for some
a0 ∈ A and b0 ∈ B, then v1 = v2 by the uniqueness of betweenness in Euclidean
geometry. Thus, every pair of distinct points v1 and v2 in [a]V must be adjacent to
distinct points in B, or equivalently, qB is injective on [a]V . Fix a point v∗ ∈ [a]V ,
and let W = [a]V \ {v∗}.

It is clear that |W | =∞. We claim that W ∈ ϒt . First, note that W is the union
of singleton point sets, each of which is open in C(t), so W is open in C . We have
established that qA(W )= {a}, where v∗ ∈ [a]C(t) but v∗ /∈W . Now, let b ∈ qB(W ).
By the argument above, we have that b is adjacent to exactly one point w ∈ W .
Further, {w} ∈ ϒ , so there exists some c ∈ [b]C such that c /∈ {w}; that is, c 6= w.
Since b is adjacent to no other points in W , it follows that c /∈W , as desired. We
conclude that W ∈ϒ , which is a contradiction to the assumption that every set in ϒt

is finite. A similar proof holds if there exists some b ∈ qB(V ) such that |[b]V | =∞.
In the second case suppose that [a]V and [b]V are finite for every a ∈ qA(V ) and

b∈ qB(V ). Choose a point v1 ∈ V and let a1= qA(v1) and b1= qB(v1). Since [a1]V

and [b1]V are finite while V is infinite, we can choose v2 6= v1 ∈ V such that v2 is
adjacent to neither a1 nor b1. Continuing in this manner, we can construct three
infinite sequences of distinct points {ai }i , {bi }i , and {vi }i such that vm is adjacent to
am and bm but vm is not adjacent to any of the points a1, . . . , am−1, b1, . . . , bm−1.

Let W =
⋃
vi . Then certainly |W | = ∞ and W is open in C as the union of

open singleton sets. We claim that W ∈ ϒt . For any a ∈ qA(W ), we know that
a = am for some integer m. Now am m vm , and since {vm} ∈ ϒt , we know that
there exists some c ∈ [a]C such that c 6= vm . But by definition of the sequence {vi }i ,
c 6= vi for any i 6= m, and thus c /∈ W . A similar argument shows that for every
b ∈ qB(W ), there exists c ∈ [b]C such that c /∈W . We conclude that W ∈ϒt , which
is a contradiction, completing the proof. �

Finally, we are in a position to prove our main theorem.
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Theorem 4.4. There exist no two sets A and B that have a countably infinite
number of elements at any given location between A and B.

Proof. Suppose by way of contradiction there exists a configuration [A, B] and
some t , 0< t < h(A, B), such that #([A, B])t = |ϒt | = |Z|. Thus, by Lemma 4.3
there exists some element W ∈ ϒt such that |W | = ∞. We will find an infinite
family of nonempty disjoint open subsets of C contained in W . There are two cases
to consider. Suppose first that W contains infinitely many points which are isolated
in W , and call a countably infinite subset of these points {wi }i . By definition
wm ∈W is isolated if there exists a ball Bεm (wm) such that Bεm (wm)∩W = {wm},

and by choosing ε small enough, we can guarantee that Bεm (wm) ∩ C(t) ⊂ W.
Thus, if Wm = Bεm (wm)∩C = {wm}, then {Wi }i is a family of infinite disjoint open
subsets of C(t) contained in W .

In the second case, suppose that W contains finitely many isolated points, so
that W contains infinitely many cluster points. Choose some cluster point w1 ∈W .
Since there are finitely many isolated points in W , we can choose ε1 > 0 such that
Bε1(w1)∩W contains only cluster points. Since w1 is itself a cluster point in W ,
we know |Bε1(w1) ∩W | must be infinite, and so if we shrink ε1 further we can
find a cluster point w2 ∈W such that w2 /∈ Bε1(w1). Now, we choose ε2 such that
Bε2(w2)∩W consists of infinitely many cluster points and Bε2(w2)∩ Bε1(w1)=∅.
Shrinking ε2 slightly yields a cluster pointw3 ∈W such thatw3 is in neither Bε1(w1)

nor Bε2(w2). Continuing in this fashion, we can find an infinite sequence {wi }i

in W with corresponding radii {εi }i . Let Wm = Bεm (wm) ∩W . Then {Wi }i is a
family of infinite disjoint open subsets of C contained in W .

In either case, we find a family {Wi }i of infinite pairwise disjoint open subsets
of C contained in W . Let 2Z be the power set of Z and define a map g : 2Z

→ϒt by

g(S)=
⋃
i∈S

Wi .

First, we note that for any S ⊂ Z, we have g(S) ∈ϒ by Lemma 4.2, using the fact
that each Wi is an open subset of W ∈ ϒ , so

⋃
i∈S Wi is also an open subset of W .

Next, we claim that g is injective. But this is clear from the fact that the sets in
{Wi }i are disjoint: if S 6= S′, then without loss of generality there is some m ∈ S
such that n /∈ S′, so Wm ⊂ g(S) whereas Wm ∩g(S′)=∅, and thus g(S) 6= g(S′). It
follows directly that |ϒ | ≥ |2Z

| = |R|. We conclude that #([A, B])t ≥ |R|, proving
the theorem. �
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