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(Communicated by Jim Haglund)

When matching socks after doing the laundry, how many unmatched socks
can appear in the process of drawing one sock at a time from the basket? By
connecting the problem of sock matching to the Catalan numbers, we give the
probability that k unmatched socks appear. We also show that, for each fixed k,
this probability approaches 1 as the number of socks becomes large enough. The
relation between the number of socks and the k for which a given probability is
first reached is also discussed, but a complete answer is open.

1. Introduction

In any load of clothes to be washed by a college student, there are inevitably a
variety of socks tossed in with all the other garments. By the time the clothes come
out of the dryer, the socks have been thoroughly mixed in, hiding underneath shirts
or in pant legs. The game of matching then begins: does the sock you just picked
randomly out of the pile match any of the others you’ve already removed from
the pile? How big is your stack of unmatched socks going to get? This creates
a scenario in which there can be k unmatched socks out of n pairs. We wish to
determine the likelihood of obtaining a maximum of k unmatched socks while
folding a pile of laundry containing the n pairs of socks. We assume that each pair
of socks is complete and unique, and that socks are drawn randomly, one at a time.

2. Background

Catalan numbers. The Catalan numbers are a sequence named after the Belgian
mathematician Eugène Charles Catalan (1814–1894), who, in an 1838 paper, first
defined them in their modern form [Larcombe 1999]. However, he was not the
first to discover the numbers. In fact, according to J. J. Luo [1988], the Chinese
mathematician Antu Ming (c. 1692–1763) discovered the numbers before anyone
else [Koshy 2009; Larcombe 1999]. Leonard Euler (1707–1783) published a

MSC2010: primary 05A15, 05A16; secondary 03B48, 00A69.
Keywords: Catalan numbers, sock matching, Dyck paths.
This work supported, in part, by a QEP Mellon grant to the College of William & Mary.

691

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2014.7-5
http://dx.doi.org/10.2140/involve.2014.7.691


692 SARAH GILLIAND, CHARLES JOHNSON, SAM RUSH AND DEBORAH WOOD

recursive definition of the sequence in 1761 [Koshy 2009], almost eighty years
before the man after whom the sequence was eventually named. He, like Catalan,
discovered the sequence while investigating the problem of cutting polygons into
triangles with diagonals that do not cross [Koshy 2009; Larcombe 1999]. Indeed,
the Catalan numbers “have [a] delightful propensity for popping up unexpectedly,
particularly in combinatorial problems” (Martin Gardner, as quoted in [Koshy
2009, p. vii]). Besides triangles within polygons, the Catalan numbers can be
found in exponentiations, Pascal’s triangle, binary trees, diagonals in frieze patterns,
partitions, the ballot problem, folding paper, and even baseball [Conway and Guy
1996; Koshy 2009].

Definition. The Catalan numbers are defined by the sequence:

C0 = 1, Cn+1 =

n∑
i=0

Ci Cn−i .

The generating function for the Catalan numbers is
∞∑

n=0

Cnxn
=

2

1+
√

1− 4x
,

from which we can determine that Cn =
(2n

n

)
/(n+ 1).

Examples of problems in which Catalan numbers arise. One example of the Catalan
numbers is that Cn is the number of paths in an n× n grid starting from the lower
left corner and ending in the upper right corner using only moves up and to the
right without moving across the diagonal (called Dyck paths). The recursive nature
of this example arises from visits to locations along the diagonal.

Another example is the number of paths from (0, 0) to (2n, 0) on the Cartesian
plane using only moves to the northeast and southeast that do not move below the
x-axis. The recursive nature of this example arises from visits to the x-axis.

Relation to our problem. Take the situation that one has n pairs of socks to match
and none yet drawn and left unmatched. At this point, there are Cn ways in which
socks can be drawn one at a time and set aside as unmatched until they find a
match (assuming that the order in which different pairs of socks are matched is
not considered). Because of this connection to the Catalan numbers, we could use
information already known about the integer series in our investigation of the sock
matching problem.

3. Initial observations

Every time a sock is drawn from the laundry pile, there are two possible outcomes:
it could either match a sock that has already been drawn, or it is temporarily a lone
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Figure 1. Left: k = 1; right: k = n− 1.

sock whose match has not yet been encountered. It is this aspect of the problem
that allows us to use the grid visualization (Dyck paths) of the Catalan numbers as
a model.

Every time a move is added to a path on the grid, there are also two options: it
either moves one unit up or one unit to the right. Therefore, a move up can be taken
to represent drawing a sock that has no match as of yet. And a move to the right
represents drawing a match to some sock that has already been obtained from the
laundry pile.

For example, Figure 1 (left) would result from an instance in which you con-
tinually pick a sock, and then pick its match. And Figure 1 (right) is the grid that
shows the scenario in which you pick n− 1 socks without a single match, get a
match, pick the last nonmatch, and then necessarily match the rest.

As can be seen from these grids, all of the paths that apply to this problem will
begin at the origin (where no socks have yet been drawn). Because we are assuming
that every sock has a match, all of the paths will also terminate at (n, n), because
for every move up on the grid, there is guaranteed to be a corresponding move to
the right. Whenever the path hits the line y = x , we can see that all socks that have
been drawn thus far have a match. None of the possible paths will ever cross below
the line y = x , because this would indicate that there have been more matches than
there have been previous unmatched socks, which is impossible. Also, a grid makes
it easy to examine different values of k, because whenever the path hits or crosses
the line y = x + k, we know that at least k unmatched socks have been attained.

As opposed to using a grid, we could instead use a graph to model the paths
created by drawing and matching the socks. Every time a sock without a match
is pulled out, the path would move diagonally up and to the right one unit. Every
time a match is obtained, it would move diagonally down and to the right. So,
every return to the x-axis indicates an instance in which all socks that have been
drawn have also been matched, and any time it hits or passes above the line y = k
indicates an instance in which at least k unmatched socks have been reached. Any
path would still begin at the origin, but must terminate at the point (2n, 0).

Expected value for maximum k. Drawing randomly from n pairs of unmatched
socks, how many socks may one expect to find drawn but unmatched at any point in
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the pairing process? Mathematically, this question asks for the average maximum
value k may reach, and in terms of Dyck paths of order n, this is the average distance
from the diagonal to the path.

Here, the expected value equals the number of ways in which n socks can be
matched weighted by the maximum k reached on that path divided by Cn . That is,

E(n)=

∑n
i=1(# of ways to match socks such that at most i are unmatched at any time× i)

Cn
.

The numerator is the sum of heights of all Dyck paths of order n, sequence
A136439 in the Online Encyclopedia of Integer Sequences (OEIS) [Finch 2008],
and it must only be divided by Cn , the number of all those paths, in order to find
the average. From OEIS, as well as Bruijn, Knuth and Rice [de Bruijn et al. 1972],
we have as an equation E(n) for the expected maximum number of socks to be left
unmatched while matching n pairs of socks:

E(n)=(n+1)

[ n+1∑
j=1

(∑
i | j

i0
)

n!
(n+a+ j)!( j−a)!

−2
n∑

j=1

(∑
i | j

i0
)

n!
(n+a+ j)!( j−a)!

+

n−1∑
j=1

(∑
i | j

i0
)

n!
(n+a+ j)!( j−a)!

]
−1.

Recurrence formula. In this section, we focus upon the grid model for our problem.
We define Bn,k as the number of ways to get from (0, 0) to (n, n) without crossing
the diagonal but reaching the line y = x + k. This can be thought of as the total
number of ways to get at least k unmatched socks at least once during the matching
process.

To do this, we must hit at least one point on the diagonal y = x after (0, 0), since
at the very least we must hit (n, n). Let us consider the point (i, i), which is the first
point on the line y = x that the path visits after (0, 0). For analysis, we consider
three possibilities: the line hits y = x + k before (i, i), the line hits y = x + k after
(i, i), and the line hits y = x+k both before and after (i, i) (which is counted twice
so we want to subtract case 3 from the other two).

Case 1: The number of ways to hit y = x + k between (0, 0) and (i, i) is just Bi,k .
The number of ways to get from (i, i) to (n, n) without hitting y = x is the same as
the number of ways to pass from (i, i +1) to (n−1, n) without crossing y = x+1,
which is Cn−i−1. Therefore the number of paths for this case is Bi,kCn−i−1.

Case 2: The number of ways to get from (0, 0) to (i, i) without crossing y = x is
Ci . Then, the number of ways to get from (i, i) to (n, n) hitting y = x + k but not
y = x is the same as the number of ways to get from (i, i + 1) to (n− 1, n) hitting
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y=ky = k

(1k, 0) (2k, 0) (3k, 0) (4k, 0)

Figure 2. limn→∞ Pn,k .

y = x + k but not crossing y = x + 1, which is Bn−i−1,k−1. Therefore the number
of paths in this case is Ci Bn−i−1,k−1.

Case 3: In this case, we want to count trajectories that hit y = x + k before and
after. This is a combination of our previous cases, Bi,k Bn−i−1,k−1. Now, we just
need to add up the total paths for all of our total cases, so our final recurrence is:

Bn,k =

n∑
i=1

(
Bi,kCn−i−1+Ci Bn−i−1,k−1− Bi,k Bn−i−1,k−1

)
. (1)

We refer to the above as the Sock Matching Theorem.

4. Asymptotic behavior

The question that arises from the recurrence formula is whether or not the basic
patterns we see for small values of n and k hold true for all values of n and k.

Large n. In particular, we first ask if the probability of reaching a given, fixed k
approaches 1 as n approaches infinity. In this section we show that it does.

Let us define Pn,k as the probability that we reach k unmatched socks at least
once in a draw of n pairs. Notice that Pn,k = Bn,k/Cn . We must prove that
limn→∞ Pn,k = 1. To do this, we return to the graph model.

First, split up the graph into sections of length k as shown in Figure 2. Call the
probability that the path reaches y = k in the first section p1. Since moving up at
every step reaches y = k in k steps, p1 is positive. The probability that the path
reaches y = k in any subsequent section is dependent on where the path terminated
in the prior section. However, the probability of reaching y = k in any section is at
least p1 no matter what happened in prior sections. That is, pi ≥ p1 for section i ,
or 1− pi ≤ 1− p1. This allows us to say that the probability we never reach y = k,
which is 1− Pn,k , is at most

∏2n/k
i=1 (1− p1). Therefore,

lim
n→∞

1− Pn,k = lim
n→∞

2n/k∏
i=1

(1− p1)= lim
n→∞

(1− p1)
2n/k
= 0.

Therefore, limn→∞ Pn,k = 1− limn→∞(1− Pn,k)= 1− 0= 1.
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k Pn,k ≥ 0.99 Pn,k ≥ 0.999 Pn,k ≥ 0.9999

1 1 1 1
2 6 8 10
3 12 16 20
4 20 27 33
5 30 39 49
6 41 54 67
7 55 72 88
8 70 91 >93
9 86 >93 >93

Table 1. First value of n at which Pn,k has reached a certain thresh-
old, for various values of k.

A quadratic relationship? In the previous section, we considered the asymptotic
behavior of the model as n approaches infinity given a fixed k. For our next step,
we instead fixed the probability, Pn,k in order to discover the behavior of k as n
again approaches infinity. We started by setting the probability at 0.99, and from
the tables of data generated by a computer program we acquired the necessary data
to speculate.

This investigation proved intriguing but unsatisfying. For 1 < k < 6 when
Pn,k = 0.99, the relationship between k and the first n for which the probability of
reaching k is greater than or equal to Pn,k can be described by the quadratic equation
n = k2

+ k. This, however, fails for all other values of k and all other probabilities.
When the constant probability is 0.999, n increases more rapidly as k increases,
and for the constant probability 0.9999, the rate of increase for n rises even more.
Our data, moreover, end at k = 8 for 0.999 and at k = 7 for 0.9999. Although
the patterns in the Table 1 suggest a quadratic relationship exists in this context, a
specific equation is not sustained by high values of k or the given probability.
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