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In this paper, we study numerically the existence and stability of the steady
state solutions of the reaction-diffusion equation, ut − auxx − u + u3

= 0, and
the Klein–Gordon equation, ut t + cut − auxx − u + u3

= 0, with the boundary
conditions: u(−1)= u(1)= 0. We show that as a varies, the number of steady
state solutions and their stability change.

1. Introduction

Reaction-diffusion systems are mathematical models which describe the den-
sity/concentration of a substance, a population, etc. The typical form is

ut = a1u+ f (u), (1)

where u(x, t) is the state variable at position x and at time t . 1u is the diffusion
term with the diffusion constant a, and f (u) is the reaction term.

To motivate Equation (1), consider letting a = 0, and f (u)= ku, and we get per-
haps the simplest population growth ordinary differential equation ut = ku. Here u
represents the size of a population at time t which is growing with instantaneous
growth rate k. Now imagine taking a one-dimensional spatially distributed popula-
tion (such as fish in a long, narrow river) and sectioning it into N subpopulations
lined up along the length of the river, each obeying ut = ku. In this case, the fish
from one subpopulation cannot move to an adjacent subpopulation. When we add
the assumption that the fish can move between adjacent subpopulations and in fact
will tend to move from more dense to less dense neighboring subpopulations (as is
the case with diffusion), and taking the limit as N →∞, a one-dimensional linear
reaction-diffusion equation ut = ku + auxx is obtained. The auxx term has the
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effect of limiting growth at point x if u(x, t) is concave down as a function of x
(for fixed t) at that point (a assumed positive). Thus for example, if the neighbors
of a subpopulation have smaller population densities, that subpopulation will tend
to grow smaller due to emigration.

Thus we take the point of view that we can start with a standard dynamical system
represented by a first-order differential equation and convert it into a distributed
system represented by a partial differential equation by adding a diffusion term auxx .
The situation is similar with dynamical systems represented by second-order dif-
ferential equations. For example, the equation for a damped mass-spring equation
(with no driving force) is well known to be mut t+cut+ku = 0, where u represents
the displacement from rest of a mass attached to a fixed point by a spring and damper
as a function of time t , and m, c, and k are parameters representing the mass, the
damping constant and the spring constant, respectively. By adding a diffusion
term, we get the standard linear Klein–Gordon equation mut t + cut + ku = auxx ,
which one can imagine to be a series of (vertical) harmonic oscillators tied together
(horizontally) by more springs.

In this paper we are concerned with nonlinear systems, so in the case of the
reaction-diffusion equation, instead of starting with the linear differential equation
ut = ku we start with the nonlinear one: ut = u−u3 (which has stable fixed points at
u =±1 and an unstable fixed point at u = 0). This could be a model of a population
with two stable values (after rescaling). This is similar to the example based on the
classic spruce-budworm model studied in [Khain et al. 2010]. Converting this ODE
to a PDE with the recipe of adding a diffusion term, we get the reaction-diffusion
equation known as the Allen–Cahn equation:

ut = auxx + u− u3. (2)

For the case of the mass-spring system, we replace the linear restoring force by a
nonlinear force of the form f (u)= αu+βu3 and end up with the Duffing equation:

ut t + cut +αu+βu3
= 0, (3)

where c is damping, and α and β are chosen so as to model various physical systems.
For example, if α is negative and β is positive, the force tends to move the mass
away from u= 0 and towards u=±1 (one system with this property would be when
magnets are added above and below the mass, which is assumed to be, say, made
of iron, so that the mass is pulled from its equilibrium position either up or down,
see Figure 1). Again, adding a diffusion term we get a nonlinear Klein–Gordon
equation:

ut t + cut +αu+βu3
= auxx , u(−1)= u(1)= 0. (4)
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u

Figure 1. Damped, thin metal wire, fixed at x = ±1, placed be-
tween two magnets at u =±1.

In both equations above when the parameter a is very small, we are back to a
bunch of unconnected one-dimensional systems behaving independently. For the
fish population in a river model, this would represent the idea that the fish could
not migrate up or down the river, but can only reproduce and/or die in one location.
For the mass-spring system this would represent totally unconnected, side-by-side
oscillators with magnets. Thus we refer to a as the strength of connection parameter.

In this paper, by using spectral methods, we study the numerical existence and
the stability of the steady state solutions of reaction-diffusion equation:

ut = auxx + u− u3 (5)

and Klein–Gordon equation:

ut t + cut = auxx + u− u3. (6)

For both cases we take the boundary conditions as u(−1) = u(1) = 0. We show
that as a varies, the number of those special solutions and their stability change.

2. Spectral methods

Introduction. Because of the nonlinear terms added to our second order partial
differential equations, we chose to use a numerical method of analysis instead
of finding exact solutions. We used spectral methods of analysis (see [Trefethen
2000]) instead of more traditional methods, such as finite differences, due to the
exponential order of error convergence that the spectral methods demonstrate.

Spectral methods break the second order partial differential equation into a series
of first order differential equations. Each first order differential equation lies at
a point called a Chebyshev point, which is similar to the equally spaced points
used in finite differences. However Chebyshev points are selected by taking the
x-coordinates of equally spaced points on a half-circle Figure 2, top.

Chebyshev points are closer together towards the endpoints of the equation,
which provides a much better polynomial fit and therefore much greater accuracy
compared to equally spaced points as seen in Figure 2, bottom (reproduced from
[Trefethen 2000]).
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Figure 2. Top: Chebyshev points. Bottom: Chebyshev versus
equispaced points.

Spectral methods have an exponential order of error convergence, so the error
decreases much more rapidly than in other numerical methods. By increasing N ,
defined as the number of Chebyshev points, linearly, the error converges expo-
nentially as in Figure 3 (reproduced from [Trefethen 2000]). However with finite
differences method, the number of points are normally increased by a factor of ten
to gain just one more decimal point of accuracy.
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Figure 3. Convergence of spectral differentiation.
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Choosing N. In order to find the most accurate solution, picking the correct number
of Chebyshev points is imperative. As discussed earlier, as N is increased linearly
the error decreases exponentially but only to a certain point. Eventually the error
reaches a minimum and then begins to increase slowly due to machine error.

Claim 2.1. For the reaction diffusion equation (5), the minimum error occurs at
approximately N = 14.

Proof. In order to select the optimal number of Chebyshev points, we calculate
the error by comparing the exact solution of the linear form of (5) to the solution
calculated with spectral methods. The linear form of (5) is

ut = auxx + u, u(−1)= u(1)= 0. (7)

By using the separation of variables method, we get the general solution of (7) as

u(x, t)=
∞∑

n=1

cne(1−a/4(nπ)2)t sin(nπ(x + 1)/2). (8)

If we pick our initial data as the eigenfunction u(x, 0)= sin(π(x + 1)/2), we get
c1 = 1 and cn = 0 for n ≥ 2. So the exact solution of (7) with that initial data is

u(x, t)= e(1−a/4π2)t sin(π(x + 1)/2). (9)

The approximate solution of (7) derived from the spectral methods:

u(x, t)= u0eAt ,

where A = aD2
+ 1, u0 = sinπ(x + 1)/2 and D2 is the Chebyshev matrix derived

by spectral methods.
Now we define the error as

Error= ‖Exact solution−Approximate solution‖

=
∥∥(e(1−a/4π2)t

− e(aD2
+1)t) sin(π(x + 1)/2)

∥∥.
where ‖ · ‖ represents the Euclidean norm. In Figure 4, for various a values, we
observe that the error reaches its minimum at approximately N = 14. �

Claim 2.2. For the Klein–Gordon equation (6), the minimum error occurs at ap-
proximately N = 12.

Proof. Similar to what we did for the reaction-diffusion equation, we calculate
the error by comparing the exact solution of the linear form of (6) to the solution
calculated with spectral methods. The linear form of (6) is

ut t + cut = auxx + u, u(−1)= u(1)= 0. (10)



728 ARON, BOWERS, BYER, DECKER, DEMIRKAYA AND RYU

0 5 10 15 20 25 30 35 40 45
−15

−10

−5

N

L
o

g
 E

rr
o

r

Figure 4. Error plots for a-values from 0.02 to 0.4.

By using the separation of variables method and picking the initial data as

u(x, 0)= sin
π(x + 1)

2
(11)

and

ut(x, 0)=
(
−

c
2
+

√
c2

4
+ 1− a

4
π2

)
sin

π(x + 1)
2

(12)

and assuming c2
+ 4− aπ2 > 0, we get the exact solution of (10) as

u(x, t)= sin
(π(x + 1)

2

)
exp

((
−

c
2
+

√
c2

4
+ 1− a

4
π2

)
t
)
. (13)

The approximate solution of (10) derived from the spectral methods is found by
using ODE45 by changing the second order differential equation

ut t + cut = auxx + u = (aD2
+ 1)u

into a first order system y, defining z := ut ,[
u
z

]
t
=

[
0 I

aD2
+ I −c

] [
u
z

]
and using the same initial conditions (11) and (12). We define the error same as we
defined for the reaction-diffusion equation and use the Euclidean norm. Figure 5
shows the error for various a values and fixed c = 1 (top), an for various c values
and fixed a = 0.1 (bottom); we observe that the error reaches its minimum at
approximately N = 12. �
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Figure 5. Log error. Top: c = 1, values of a from 0.02 to 0.2.
Bottom: a = 0.1, values of c from 0.1 to 2.

3. Numerical existence of steady state solutions

Steady state solutions. For both equations, the reaction-diffusion (5) and the Klein–
Gordon equation (6), the steady state solutions u(x, t) = φ(x) satisfy the same
equation

−aφ′′−φ+φ3
= 0, φ(−1)= φ(1)= 0 (14)

since φt = 0 and φt t = 0. Figure 6 shows the steady state solutions for three different
a-values, a= 0.2, a= 0.1 and a= 0.03. Consecutively (14) has 3, 5 and 7 solutions.
The numerical computations show that as a is decreased, two new steady states of
opposite sign and increasing number of oscillations occur for each bifurcation. The
relation between a and number of steady state solutions will be analytically studied
on page 731.
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Figure 6. Steady state solutions for various values of a.

Note that zero is the trivial steady state solution for any a. For nonzero solutions,
throughout this paper, we will name the steady state solutions. For example, we will
name each convex steady state solution in Figure 6 an “n” solution — see graphs
labeled (ii); each concave solution a “u” solution — graphs labeled (iii); graphs
labeled (iv) for a = 0.1 and a = 0.03 are the “nu” solutions, and so on.

Bifurcations. The number of steady states for a given a value was verified with the
shooting method. In Figure 7 we see shooting method plots for three a values. The
number of solutions at an a value is the number of times the plot of φ(1) versus
φ′(−1) touches the φ′(−1) axis where φ(1) = 0. The bifurcation values to five
decimal places were determined by changing a until a new number of solutions
was observed. These bifurcation values are confirmed in the next subsection.
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Figure 7. Existence of steady states φ(1) vs φ′(−1), for various
values of a.

Determination of bifurcation values. In Section 3 and in the preceding subsection,
the steady state solutions to both the nonlinear reaction diffusion equation (5) and
the nonlinear Klein–Gordon equation (6) were calculated numerically, and the
number of solutions were found for three a values. In particular it was found that
for a = 0.2 there are three steady state solutions, for a = 0.1 there are five steady
state solutions and for a = 0.03 there are seven steady state solutions.

In this section we find all bifurcation values for the parameter a; at each value
two new solutions are added. We will show that these bifurcations values are at
a = (2/nπ)2 for n a positive integer. Thus the first few values are 0.4053, 0.1013,
0.0450, 0.0253; for a > 0.4503 there is only the zero solution, for 0.1013< a <
0.4503 there are three solutions, for 0.0450< 0.1013 there are five solutions, for
0.0253< a < 0.0450 there are seven solutions, and so on. This is consistent with
the numerical results.

Consider the initial value problem

x ′ = y, y′ =−λ2(x − x3), x(−1)= 0, y(−1)= y0, (15)

which is equivalent to equations (14) with 1/λ2 substituted for a.
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Figure 8. Phase portrait for x ′ = y, y′ =−λ2(x − x3) with λ= 0.5.

Clearly this system has saddle points at (±1, 0). Due to the symmetry of the
vector field for this system, the fixed point at (0, 0) is a center. Solution curves
closer to the origin than the stable manifolds of (±1, 0) form closed loops. Thus the
solution curves to (15) circle the origin in the clockwise direction for y0 sufficiently
small. See Figure 8.

Let (x(y0, t), y(y0, t)) represent the solution to (15) and let θ(y0, t) represent the
angle that the line segment connecting (x(y0, t), y(y0, t)) with (0, 0) makes with
the positive x-axis. Thus θ(y0, t) is the angle in the polar coordinate representation
of (x(y0, t), y(y0, t)), and hence tan θ(y0, t) = y(y0, t)/x(y0, t). Assume that θ
starts at π/2, corresponding to the initial condition given in (15), and continues
to decrease as the solution curve moves clockwise around the origin. Thus after
one loop of the solution curve around the origin θ is −3π/2, after two loops θ is
−7π/2, and so on.

Theorem 3.1. θ(y0, t) is an increasing function of y0 > 0 for fixed t.

Proof. For convenience we suppress the y0 argument and write θ(y0, t) as θ(t).
Differentiating tan θ(t)= y(t)/x(t) with respect to t we get(

1+ tan2 θ(t)
)
θ ′(t)=

y′(t)x(t)− y(t)x ′(t)
x2(t)

.

Solving for θ ′(t) and using tan2 θ(t)= y(t)2/x(t)2 results in

θ ′(t)=
y′(t)x(t)− y(t)x ′(t)

x2(t)+ y2(t)
.
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Then using the DE system x ′ = y, y′ =−λ2(x − x3) we get

θ ′(t)=
−λ2x2(t)+ λ2x4(t)− y2(t)

x2(t)+ y2(t)
.

Switching to polar coordinates (x = r cos θ , y = r sin θ , r2
= x2
+ y2) on the

right side yields

θ ′(t)=
−λ2r2(t) cos2 θ(t)+ λ2r4(t) cos4 θ(t)− r2(t) sin2 θ

r2(t)

=−λ2 cos2 θ(t)+ λ2r2(t) cos4 θ(t)− sin2 θ(t).

Rearranging a bit we get

θ ′(t)= λ2 cos2 θ(t)
(
−1+ r2(t) cos2 θ(t)

)
− sin2 θ(t). (16)

Using x = r cos θ we could also write (16) as

θ ′(t)= λ2 cos2 θ(t)(−1+ x2(t))− sin2 θ(t), (17)

which shows that θ ′ < 0 for −1< x < 1. This is to be expected as we know that
solution curves inside the unstable manifold of the fixed points circle the origin
clockwise.

It is clear from (16) that θ ′ increases as a function of r for fixed θ . Since θ ′ is
negative this means that for a given θ , the solution curves farther from the origin
are circling the origin at a slower angular rate (smaller absolute value) than those
that are closer. See Figure 9.

This implies that for y0 chosen so that the solution curve forms a closed loop,
smaller y0 means that the solution curve has wrapped further around the origin
in the clockwise direction, and hence θ(y0, t) is smaller (for fixed t). This means
θ(y0, t) is an increasing function of y0 as claimed.

Let λ > 0 be fixed. Let x1(y0, t) represent the solution to

x ′ = y, y′ =−λ2x, x(−1)= 0, y(−1)= y0. (18)

x

y

Figure 9. Solution curves closer to the origin move faster.
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This is just (15) without the x3 term. It is easy to show that

x1(y0, t)= y0 sin(λ(t + 1))/λ and y1(y0, t)= y0 cos(λ(t + 1)).

As before, let (r1, θ1) be the polar representation of (x1, y1), so that θ1(y0, t) is the
polar angle for the point (x1(y0, t), y1(y0, t)). Since

tan θ1(y0, t)=
y1(y0, t)
x1(y0, t)

=
y0 cos(λ(t + 1))

y0 sin(λ(t + 1))/λ
= λ cot(λ(t + 1)),

we know that θ1(y0, t) is in fact independent of y0. Thus instead of θ1(y0, t) we
will write θ1(t). �

Theorem 3.2. Fix t and λ. As y0→ 0, θ(y0, t)→ θ1(t) monotonically.

Proof. The monotonic part follows from the previous theorem. To prove the limit
part, the basic idea is that x3 is negligible compared to x for small x , and so the
linear and nonlinear vector fields, given in Equations (15) and (18), respectively,
are indistinguishable for small x . We now flesh out the details of this argument.

For the IVP, x ′′+ λ2(x − x3) = 0, x(−1) = 0, x ′(−1) = y0, which is just (15)
written in second-order form, we can multiply the DE by x ′ to get

x ′x ′′+ λ2(x − x3)x ′ = 0.

We can integrate both sides now to get

1
2(x
′)2+ λ2( 1

2 x2
−

1
4 x4)
= C.

Then using x(−1)= 0 and x ′(−1)= y0 we get C = y2
0/2. We now have

(x ′)2+ λ2(x2
−

1
2 x4)
= y2

0 (19)

after substituting and multiplying by 2. Plotting (19) in the phase plane (x on the
horizontal axis and x ′ on the vertical) for various y0 we are back to the closed
curves in Figure 8, which shows clearly that x(t) can be “trapped” in an arbitrarily
small region −ε < x(t) < ε if y0 is taken to be sufficiently small. �

In order to finish the proof of the theorem we need to invoke a version of the
Gronwall inequality:

Lemma 3.3 (Gronwall’s inequality: see for example [Howard 1998, Theorem 2.1]).
Let X be a Banach space and U ⊂ X an open set in X. Let f, g : [a, b]×U → X
be continuous functions and let y, z : [a, b] →U satisfy the initial value problems

y′(t)= f (t, y(t)), y(a)= y0

z′(t)= g(t, z(t)), z(a)= z0. (20)
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Also assume there is a constant C ≥ 0 so that

‖g(t, x2)− g(t, x1)‖ ≤ C ‖x2− x1‖ (21)

and a continuous function φ : [a, b] → [0,∞) so that

‖ f (t, y(t))− g(t, y(t))‖ ≤ φ(t). (22)

Then for t ∈ [a, b]

‖y(t)− z(t)‖ ≤ eC |t−a|
‖y0− z0‖+ eC |t−a|

∫ t

a
e−C |s−a|φ(s) ds.

For our purposes the Banach space X is just the real numbers, so that the norm
is the absolute value.

For convenience we suppress the y0 and write θ(t) instead of θ(y0, t). We can
rewrite (17) as

θ ′(t)= f (t, θ(t)),

where

f (t, θ)=−λ2 cos2 θ − sin2 θ + λ2x2(t) cos2 θ

and where x(t) comes from the solution to the full system in (15). Similarly, θ1

satisfies

θ ′1(t)= g(t, θ1(t)),

where

g(t, θ)=−λ2 cos2 θ − sin2 θ.

We now apply the Gronwall inequality using the above choices for f and g,
where the interval [a, b] is [−1, 1] and where we choose the same initial condition
π/2 for the DEs, that is, θ(−1) = π/2 and θ1(−1) = π/2 (which corresponds
to x(0) = 0 and y(0) = y0 in rectangular coordinates). Equation (21) is called a
Lipschitz condition and is satisfied by g(t, θ) for some C because it is continuously
differentiable as a function of θ . Finally since∣∣ f (t, θ(t))− g(t, θ(t))

∣∣= ∣∣λ2x2(t) cos2 θ(t)
∣∣≤ λ2x2(t),

we see that (22) is satisfied with φ(t)= λ2x2(t). The conclusion of the Gronwall
inequality follows, which means that for fixed t ∈ [−1, 1] and λ

|θ(t)− θ1(t)| ≤ eC |t+1|
∫ t

−1
e−C |s+1|λ2x2(s) ds
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since the initial conditions are the same. If we assume that |x(t)|< ε then

eC |t+1|
∫ t

−1
e−C |s+1|λ2x2(s) ds < eC |t+1|

∫ t

−1
e−C |s+1|λ2ε2 ds

=
1
C
λ2ε2 (eC |t+1|

− 1
)
.

Following the above inequalities we have shown that

|θ(y0, t)− θ1(t)|<
1
C
λ2ε2 (eC |t+1|

− 1
)
.

The theorem follows by recalling that |x(t)| can be made arbitrarily small for y0

sufficiently small.

Theorem 3.4. The eigenvalues of the linear BVP

x ′′+ λ2x = 0, x(−1)= 0, x(1)= 0 (23)

are the bifurcation points for the nonlinear BVP

x ′′+ λ2(x − x3)= 0, x(−1)= 0, x(1)= 0. (24)

Specifically the eigenvalues of the linear problem are λn = nπ/2, and there is one
solution to the nonlinear problem (the zero solution) for 0≤ λ≤ λ1, three solutions
to the nonlinear problem for λ1 < λ≤ λ2, five solutions to the nonlinear problem
for λ2 < λ≤ λ3, and so on.

Proof. If λn is an eigenvalue for the BVP in (23) it is easy to show that λn = nπ/2
for n = 1, 2, . . . and that the corresponding eigenfunctions are any multiple of
sin(λn(t + 1)). Note that the system of differential equations in (18) is equivalent
to the differential equation in (23). Thus if λ= λn for some n ≥ 1, then a solution
to (18) automatically satisfies x(1)= 0 and so is a solution to (23) for any y0. This
explains the relationship between the IVP in (18) and the BVP in (23).

The relationship between the nonlinear IVP in (15) and the nonlinear BVP in
(24) is similar in that the differential equations are equivalent. However, because
of the nonlinearity, (24) can be solved for any λ by solving the IVP in (15) and
varying y0 until x(1)= 0 is obtained (sometimes called the “shooting method” for
solving a BVP). Note that x(1)= 0 in the phase plane means that the angle θ(y0, 1)
is any of −π/2,−3π/2,−5π/2, . . . .

Now fix λ and start with y0 chosen so that the solution to the IVP in (15) is
the stable manifold of (1, 0). As y0 decreases towards zero, θ(y0, 1) will wrap
clockwise around the origin until it reaches θ1(1) in the limit, as shown in the
previous theorem. Every time θ(y0, 1) passes −nπ/2 for n odd we get a solution to
the nonlinear BVP in (24). If λ<λ1 this never happens (because θ1(1) >−π/2), so
the only solution is the zero solution. If λ1<λ<λ2 then−3π/2<θ1(y0, 1)<−π/2
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and so θ(y0, 1) will pass just −π/2, in which case we have the zero solution as
well as one more solution. By symmetry, a third solution occurs for y0 negative. If
λ2 < λ< λ3, then θ(y0, 1) will pass −π/2 and −3π/2 yielding two solutions, plus
the zero solution, plus the symmetric solutions for y0 negative, for a total of five.
Proceeding in this manner, the theorem is proved. �

As stated earlier in this section, we have substituted 1/λ2 for the parameter
a in the nonlinear reaction-diffusion and Klein–Gordon equations, and thus the
bifurcation values in terms of a are a = (2/nπ)2.

4. Stability analysis

In order to determine the stability of a steady state solution, we look at the solution
in the vicinity of the steady state and observe its behavior over time.

We assume that u(x, t) is the solution such that u0 = u(x, 0) is in the vicinity
of the steady state solution. The difference between the solution and steady state
solution is known as the perturbation and is denoted as v(x, t) and, satisfies

v(x, t)= u(x, t)−φ(x). (25)

Stability analysis will require us to study the long time behavior of the perturbation.
If the solution diverges from the steady state (limt→∞ ‖v‖→∞), then the steady
state is unstable. If the solution does not diverge and the perturbation remains small,
the steady state is stable.

Stability of reaction-diffusion equation. By substituting (25) into (5), we get

(φ+ v)t − a(φ+ v)xx − (φ+ v)+ (φ+ v)
3
= 0.

Since −aφ′′−φ+φ3
= 0 and φt = 0, we get

vt − avxx − v+ 3φ2v+ 3φv2
+ v3
= 0.

By stability manifold theorem, we can say that the stability of the above equation
will be similar to its linearized equation which is as follows:

vt − avxx − v+ 3φ2v = 0,

which can be rewritten as

vt = (aD2
+ 1− 3φ2)v = 0.

So the eigenvalues of the linearized RD operatoraD2
+ 1− 3φ2 will tell us if v

blows up in time, decreases to 0, or stays bounded.
Our numerical results show that the largest eigenvalues of the linearized RD

operator about the “u” and “n” solutions are negative. This implies that these
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Figure 10. Largest eigenvalue of the linearized RD operator for
the unstable steady states.

solutions are stable. All other solutions are unstable because the linearized RD
operator has at least one positive eigenvalue. Figure 10 shows the largest eigenvalue
of the linearized RD operator about each unstable steady state as the number of
solutions from a given a-value increases (as the a-value decreases).

Stability of Klein–Gordon equation. By substituting (25) into (6), we get

(φ+ v)t t + c(φ+ v)t − a(φ+ v)xx − (φ+ v)+ (φ+ v)
3
= 0.

Since −aφ′′−φ+φ3
= 0, and φt = 0 and φt t = 0, we get

vt t − avxx − v+ 3φ2v+ 3φv2
+ v3
= 0.

By the stable manifold theorem, we can say that the stability of the above equation
will be similar to its linearized equation, which is as follows:

vt t + cvt − avxx − v+ 3φ2v = 0.

Let’s write it as a first order system by defining vt = w. We get[
v

w

]
t
=

[
0 I

aD2
+I−3φ2

−c

] [
v

w

]
.

So we need to find the eigenvalues of the operator matrix in this equation in order
to find the long time behavior of

[
v
w

]
.

Because all of the new steady states that occur after three solutions are unstable,
we then look at how unstable they are. One metric for instability is the magnitude
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Figure 11. Largest eigenvalue of the linearized KG operator for
the unstable steady states.

of the largest positive eigenvalue. The larger this eigenvalue is, the more unstable
the steady state. Figure 11 shows the magnitude of the largest positive eigenvalue
for various solutions as the number of solutions from a given a-value increases (as
the a-value decreases). Note how the solution becomes more stable at first, and
then becomes less stable as a decreases. Also note that the zero solution becomes
more unstable quickly but then approaches a level of instability asymptotically.

In Figure 12, steady states are indicated stable or unstable and are organized by
the bifurcation range that they occur in (number of solutions for a range of values

unstable unstable unstable unstable unstable unstable unstable

unstable unstable unstable unstable unstable unstable

unstable unstable unstable unstable unstable unstable

unstable unstable unstable unstable unstable

unstable unstable unstable unstable unstable

unstable unstable unstable unstable

unstable unstable unstable unstable

unstable unstable unstable

unstable unstable unstable

unstable unstable

unstable unstable

unstable

unstable

Number of Solutions

1 3 5 7 9 11 13 15

0

Figure 12. The stability of different types of solutions as the value
of a decreases.
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Figure 13. Side-view plots. Top: a = 0.03, c = 0.5. Bottom:
a = 0.02, c = 0.5.

of a) and the look of the solution. For a values with only one steady state, the only
steady state is the zero solution and it is stable. For all other bifurcation ranges, the
zero solution is unstable. The solutions depicted in the second and third row of
Figure 12 are stable. All other steady states are unstable.

In Figure 13 we compare two side-view plots to verify that the increase in stability
of unstable steady states as observed in Figure 11 actually happens. As expected,
the side plot with a = 0.02 (9-solution range) took longer to move to a stable
solution than the plot with a = 0.03 (7-solution range) because it was less unstable
(the positive eigenvalues were closer to being negative).
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5. Simulations

Figure 14 depicts simulations of the Klein–Gordon equation for the comparison
made in the previous section between a = 0.03 and a = 0.02 with c = 0.5. The
simulation with a = 0.02 takes longer than the simulation with a = 0.03 to reach a
stable steady state solution. These images agree with the side-view plots in Figure 13
and the plot in Figure 11. The simulations can be seen at youtu.be/dlNbTOUUMX8
(a = 0.02) and youtu.be/ccdF6tU2Vcw (a = 0.03).
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Figure 14. Results of the simulations for a = 0.03 and a = 0.02.

http://youtu.be/dlNbTOUUMX8
http://youtu.be/ccdF6tU2Vcw
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