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Our main result is the proof of the recently conjectured nonexistence of cubic Le-
gendre multiplier sequences. We also give an alternative proof of the nonexistence
of linear Legendre multiplier sequences using a method that will allow for a more
methodical treatment of sequences interpolated by higher degree polynomials.

1. Introduction

Given a simple set of polynomials Q = {qk(x)}∞k=0 and a sequence of numbers
{γk}

∞

k=0, one can define the operator associated with {γk}
∞

k=0 as T [qk(x)] = γkqk(x)
for k = 0, 1, 2, . . . , and extend its action to R[x] linearly. Our work in this paper
concerns such operators when Q consists of the Legendre polynomials.

Definition 1. The Legendre polynomials Lek(x) are defined by the generating
relation

1
√

1− 2xt + t2
=

∞∑
k=0

Lek(x)tk,

where the square root denotes the branch which goes to 1 as t→ 0.

Definition 2. A sequence of real numbers {γk}
∞

k=0 is a Legendre multiplier sequence
if
∑n

k=0 akγkLek(x) has only real zeros whenever
∑n

k=0 akLek(x) has only real
zeros. We define Q-multiplier sequences for any basis Q of R[x] analogously. If
Q is the standard basis, the associated multiplier sequences are called classical
multiplier sequences (of the first kind).
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Every sequence of the form 0, 0, 0, . . . , a, b, . . . , 0, 0, 0, . . . , where a, b ∈ R,
is a Legendre multiplier sequence. The literature calls such sequences trivial. In
addition to these, there is an abundance of nontrivial Legendre multiplier sequences
(see [Blakeman et al. 2012] for examples). Thus, the problem of characterizing
polynomials which interpolate Legendre multiplier sequences is a meaningful one,
and it fits well into the landscape of current research in the theory of multiplier
sequences (see, for example, [Blakeman et al. 2012; Brändén and Ottergren 2014;
Forgács and Piotrowski 2013b; Yoshida 2013]). The present paper contributes to
this line of inquiry by settling a conjecture on the nonexistence of cubic Legendre
multiplier sequences [Blakeman et al. 2012, Open problem (1)]. In addition, we
give a new proof of the nonexistence of linear Legendre multiplier sequences, which
is more methodical than the educated hunt for test polynomials whose zeros fail to
remain real after having been acted on by a linear sequence.

The rest of the paper is organized as follows. In Section 2 we present a number
of known results which are relevant to our investigations. Section 3 exhibits a new
proof of the nonexistence of linear Legendre multiplier sequences [Blakeman et al.
2012, Proposition 2] using a theorem of Borcea and Brändén. Our method exploits
the fact that one does not need to have full knowledge of all coefficient polynomials
Tk(x) of a linear operator T =

∑
∞

k=0 Tk(x)Dk in order to decide whether or not
T is reality preserving. Section 4 contains the main result, Theorem 17, which
establishes the nonexistence of cubic Legendre multiplier sequences. We conclude
with a section on open problems.

2. Background

Central to the theory of (classical) multiplier sequences is the Laguerre–Pólya class
of real entire functions, which we denote by L-P. We recall the definition here,
along with a recent theorem characterizing this class as precisely those real entire
functions which satisfy the generalized Laguerre inequalities.

Definition 3. A real entire function ϕ(x)=
∑
∞

k=0(γk/k!)xk is said to belong to the
Laguerre–Pólya class, written ϕ ∈ L-P, if it can be written in the form

ϕ(x)= cxme−ax2
+bx

ω∏
k=1

(
1+ x

xk

)
e−x/xk ,

where b, c ∈ R, xk ∈ R \ {0}, m is a nonnegative integer, a ≥ 0, 0 ≤ ω ≤∞ and∑ω
k=1 1/x2

k <∞. If γk ≥ 0 for all k = 0, 1, 2, . . . , we say that ϕ ∈ L-P+.

Csordas and Vishnyakova recently completed the following characterization of
the class L-P.
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Theorem 4 [Csordas and Varga 1990, Theorem 2.9; Csordas and Vishnyakova
2013, Theorem 2.3]. Let ϕ(x) denote a real entire function, with ϕ(x) 6≡ 0. Then
ϕ ∈ L-P if and only if for all n ∈ N0 and for all x ∈ R,

Ln(x, ϕ) :=
2n∑
j=0

(−1) j+n

(2n)!

(2n
j

)
ϕ( j)(x)ϕ(2n− j)(x)≥ 0.

We shall make use of this theorem in Section 3 when we reprove the nonexistence
of linear Legendre multiplier sequences. Since L-P is exactly the class of real
entire functions which are locally uniform limits on C of real polynomials with
only real zeros (see [Levin 1956, Chapter VIII] or [Obreschkoff 1963, Satz 3.2]), it
is closed under differentiation. Thus if ϕ ∈ L-P, then

L1(x, ϕ(k)(x))≥ 0 for all k ∈ N0.

Pólya and Schur [1914] completely characterized classical multiplier sequences.
Their seminal theorem maintains relevance in the setting of Legendre multiplier
sequences, since every Legendre multiplier sequence must also be a classical multi-
plier sequence (see [Blakeman et al. 2012, Theorem 8] together with [Piotrowski
2007, Proposition 118]). We note that if {γk}

∞

k=0 is a classical multiplier sequence,
then one of

{γk}
∞

k=0, {−γk}
∞

k=0, {(−1)kγk}
∞

k=0, {(−1)k+1γk}
∞

k=0

is a sequence of nonnegative terms [Pólya and Schur 1914, p. 90]. Since

{−1}∞k=0 and {(−1)k}∞k=0

are both classical multiplier sequences, it suffices to consider only sequences of
nonnegative terms when characterizing classical multiplier sequences.

Theorem 5 [Pólya and Schur 1914]. Let {γk}
∞

k=0 be a sequence of nonnegative real
numbers. The following are equivalent:

(1) {γk}
∞

k=0 is a classical multiplier sequence.

(2) For each n, the polynomial T [(1+ x)n] :=
n∑

k=0

(n
k

)
γk xk is in L-P+.

(3) T [ex
] :=

n∑
k=0
(γk/k!)xk is in L-P+.

Similar to the classical setting, we may consider only sequences of nonnegative
terms when investigating (linear and cubic) Legendre multiplier sequences, by
virtue of {(−1)k}∞k=0 also being a Legendre multiplier sequence [Blakeman et al.
2012, Theorem 12].

We conclude this section by a theorem of Borcea and Brändén, which character-
izes reality preserving linear operators T : R[x] → R[x] in terms of their symbol
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GT (x, y). In order to be able to state their result (see Theorem 8), we need to make
the following definitions.

Definition 6. The symbol of a linear operator T :R[x]→R[x] is the formal power
series defined by

GT (x, y) :=
∞∑

n=0

(−1)nT (xn)

n!
yn.

Definition 7. A real polynomial p∈R[x, y] is called stable if p(x, y) 6=0 whenever
Im(x) > 0 and Im(y) > 0. The Laguerre–Pólya class of real entire functions in two
variables, denoted by L-P2(R), is the set of real entire functions in two variables,
which are locally uniform limits in C2 of real stable polynomials.

Theorem 8 [Borcea and Brändén 2009]. A linear operator T : R[x] → R[x]
preserves the reality of zeros if and only if

(1) the rank of T is at most 2 and T is of the form T(P)=α(P)Q+β(P)R, where
α, β : R[x] → R are linear functionals and Q+ i R is a stable polynomial, or

(2) GT (x, y) ∈ L-P2(R), or

(3) GT (−x, y) ∈ L-P2(R).

In the remainder of this paper we follow the literature by using the notation
T = {γk}

∞

k=0 to indicate the dual interpretation of a sequence as a linear operator
and vice versa.

3. Linear Legendre sequences

We now reprove the nonexistence of linear Legendre multiplier sequences (see
[Blakeman et al. 2012, Proposition 2]). Although the result is known, our proof is
novel, and has the promise of being suitable for use when investigating Q-multiplier
sequences in larger generality. The following definition and three lemmas serve as
setup for Theorem 13.

Definition 9. We define a generalized hypergeometric function by

p Fq

[
a1, a2, . . . , ap

b1, b2, . . . , bq
; x

]
:= 1+

∞∑
n=1

∏p
i=1(ai )n∏q
j=1(b j )n

xn

n!
, (3-1)

where (α)n = α(α+ 1) · · · (α+ n− 1) denotes the rising factorial.

The convergence properties of the series on the right hand side of Equation (3-1)
are discussed in detail in [Rainville 1960, Chapter 5]. Here we mention that if p= 3
and q = 2, then the series is absolutely convergent on |x | = 1 if

<

( q∑
j=1

b j −

p∑
i=1

ai

)
> 0.
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Lemma 10. For all n ∈ N≥1, the generalized hypergeometric function

3 F2

[
−

1
2 ,−n, 1

2 + n
1
4 ,

3
4

;−x

]
converges at x =−1 and satisfies the equation

3 F2

[
−

1
2 ,−n, 1

2 + n
1
4 ,

3
4

; 1

]
= 4n+ 1.

Proof. Convergence at x =−1 follows from the fact that

<
( 1

4 +
3
4 −

(
−

1
2 − n+ 1

2 + n
))
= 1> 0,

together with the remark after Definition 9. The rest of the claim follows directly
from an application of Theorem 30 in [Rainville 1960], which states that for
nonnegative integers n, and a, b independent of n, we have

3 F2

[
1
2 +

1
2a− b, −n, a+ n

1+ a− b, 1
2a+ 1

2

; 1

]
=

(b)n
(1+ a− b)n

.

Setting a = 1
2 and b = 5

4 gives the required result. �

Lemma 11. Let n ∈ N≥1, and define

9n(x) :=
n∑

j=1

(n
j

)(2 j − 2)!
( j − 1)!

( 1
2 + 2 j

)
n− j(1

2

)
n

x j .

Then

3 F2

[
−

1
2 ,−n, 1

2 + n
1
4 ,

3
4

;−x

]
= 1− 29n(x).

Proof. The following identities are readily verified for 0≤ k ≤ n.

(−1)k
(−n)k

k!
=

(n
k

)
; (3-2)(1

4

)
k

(3
4

)
k
=

(1
2

)
2k

2−2k
; (3-3)

2k
(
−

1
2

)
k
=−

(2k− 2)!
2k−1(k− 1)!

; (3-4)( 1
2 + n

)
k( 1

2

)
2k

=

( 1
2 + 2k

)
n−k( 1

2

)
n

. (3-5)
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With these in hand, we may now compute directly:

3 F2

[
−

1
2 ,−n, 1

2 + n
1
4 ,

3
4

;−x

]
=

∞∑
k=0

(
−

1
2

)
k(−n)k

(
n+ 1

2

)
k( 1

4

)
k

( 3
4

)
kk!

(−x)k

= 1+
n∑

k=1

(
−1
)k
(n

k

)(n+ 1
2

)
k

(
−

1
2

)
k( 1

2

)
2k2−2k

(−x)k

= 1−
n∑

k=1

(−1)k
(n

k

)( 1
2 + 2k

)
n−k2k(2k− 2)!( 1

2

)
n2k−1(k− 1)!

(−x)k

= 1− 2
n∑

k=1

(n
k

)( 1
2 + 2k

)
n−k(2k− 2)!(1

2

)
n(k− 1)!

xk

= 1− 29n(x),

where the second equality uses equations (3-2) and (3-3), while the third equality
employs equations (3-4) and (3-5). �

Lemma 12. Let Cn :=
(2n

n

)
/(n+ 1) denote the n-th Catalan number. For n ∈N≥1

the following equality holds:

−
Cn−1

3 · 22n−2
( 5

2

)
2n−2

=
1

22n
( 1

2

)
2n

(
2n
(−1)n

( 1
2

)
n

n!
+

n−1∑
j=1

C j−1

3 · 22 j−2
( 5

2

)
2 j−2

(−1)n− j
( 1

2

)
n+ j 2

2 j

(n− j)!

)
.

Proof. Note that the statement of the lemma is equivalent to

0= 2n
(−1)n

( 1
2

)
n

n!
+

n∑
j=1

C j−1(−1)n− j
( 1

2

)
n+ j(1

2

)
2 j (n− j)!

for all n ∈ N≥1, (3-6)

or
0= 2n+9n(−1) for all n ∈ N≥1, (3-7)

where 9n(x) is as in Lemma 11. Combining the results of Lemmas 10 and 11 gives

1− 29n(−1)= 4n+ 1 for all n ∈ N≥1,

or equivalently, 9n(−1)=−2n for n ≥ 1. The proof is complete. �

We now prove the main theorem of the section.

Theorem 13. Consider the operator T : R[x] → R[x] given by

T [Lek(x)] = (k+ c)Lek(x) for k = 0, 1, 2, 3, . . . and c ∈ R.
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If we write T =
∞∑

k=0
Tk(x)Dk , then

Tk(0)=


0 if k is odd,

c if k = 0,

−
Cn−1

3 · 22n−2
( 5

2

)
2n−2

if k = 2n for n ≥ 1,
(3-8)

where Cn denotes the n-th Catalan number.

Proof. The following facts about Legendre polynomials are known explicitly, or
follow easily from basic properties (see [Rainville 1960, pp. 157–158]):

(i) Len(x)=
2n
( 1

2

)
nxn

n!
+πn−2 (n ≥ 0),

where πn−2 is a polynomial of degree n− 2 in x .

(ii) Le2n+1(0)= 0, for n ≥ 0.

(iii) Le2n(0)=
(−1)n

( 1
2

)
n

n!
(n ≥ 0).

(iv) For 0≤ j ≤ n,

D2 jLe2n(x)
∣∣
x=0 =

(−1)n− j
( 1

2

)
n+ j 2

2 j

(n− j)!
,

while

D2 jLe2n+1(x)
∣∣
x=0 = 0 for all j, n ≥ 0,

because Legendre polynomials with odd index are odd.

Mutatis mutandis, the proof of Proposition 29 in [Piotrowski 2007] demonstrates
that the coefficient polynomials Tk(x) of the linear operator given in Theorem 13
can be computed recursively as

T0(x)= T [1],

Tk(x)=
1

2k
( 1

2

)
k

(
T [Lek(x)] −

k−1∑
j=0

T j (x)D j
[Lek(x)]

)
for k = 1, 2, 3, . . . .

It is now easy to verify that T0(x)= c, T1(x)= x and T2(x)=−1
3 , and the proposed

values of Tk(0) follow readily for k = 0, 1, 2. Proceeding by induction we assume
that T j (0) is given by Equation (3-8) for 0≤ j ≤ k− 1 for some k ≥ 1. If k is odd,
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the second part of fact (iv) above yields

Tk(0)=
1

2k
( 1

2

)
k

[
(k+ c)Lek(0)−

k−1∑
j=0

T j (x)D j
[Lek(x)]

∣∣∣
x=0

]

=
1

2k
( 1

2

)
k

[
−

(k−1)/2∑
j=0

T2 j (x)D2 j
[Lek(x)]

∣∣∣
x=0

]
= 0.

On the other hand, if k is even, writing k = 2n and using the first part of fact (iv)
gives

Tk(0)=
1

22n
( 1

2

)
2n

[
(2n+ c)

(−1)n
( 1

2

)
n

n!
−

k−1∑
j=0

T j (x)D j
[Lek(x)]

∣∣∣
x=0

]

=
1

22n
( 1

2

)
2n

[
2n
(−1)n

(1
2

)
n

n!
−

k−1∑
j=1

T j (x)D j
[Lek(x)]

∣∣∣
x=0

]

=
1

22n
( 1

2

)
2n

[
2n
(−1)n

(1
2

)
n

n!
−

(k−2)/2∑
j=1

T2 j (x)D2 j
[Lek(x)]

∣∣∣
x=0

]

=
1

22n
( 1

2

)
2n

[
2n
(−1)n

(1
2

)
n

n!
+

n−1∑
j=1

C j−1

3 · 22 j−2
( 5

2

)
2 j−2

(−1)n− j
( 1

2

)
n+ j 2

2 j

(n− j)!

]

=−
Cn−1

3 · 22n−2
( 5

2

)
2n−2

,

where the last equality is the result of Lemma 12. �

Let T be the operator corresponding to the Legendre sequence {k+c}∞k=0. Recall
that the symbol of T is given by

GT (−x, y)=
∞∑

k=0

(−1)k T [xk
]yk

k!
,

and that T is reality preserving (that is, {k+c}∞k=0 is a Legendre multiplier sequence)
if and only if either GT (−x, y) or GT (x, y) belongs to L-P2(R), since the sequence
under consideration is nontrivial. Following [Brändén and Ottergren 2014], we
expand GT (−x, y) and GT (x, y) as a series in powers of x . By Theorem 13 the
constant term in both of these expansions is

f (y) := c−
∞∑

k=1

Ck−1 y2k

3 · 22k−2
( 5

2

)
2k−2

.
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Thus f (y) ∈ L-P if either GT (−x, y) or GT (x, y) were in L-P2(R), since we
obtain f (y) from either GT (−x, y) or GT (x, y) by applying the nonnegative mul-
tiplier sequence 1, 0, 0, 0, . . . acting on x , which preserves the class L-P2(R) (see
[Borcea and Brändén 2010; Brändén 2014]). We shall now demonstrate that f (y)
is an entire function which does not belong to the Laguerre–Pólya class, and hence
{k+ c}∞k=0 is not a Legendre multiplier sequence for any c ∈ R.

Proposition 14. Let c ∈ R. Then

f (y)= c−
∞∑

k=1

Ck−1 y2k

3 · 22k−2
( 5

2

)
2k−2

is an entire function which does not belong to L-P.

Proof. Consider the change of variables x = y2 and the function

f̃ (x)= c− 4
3

∞∑
k=1

Ck−1xk

22k
( 5

2

)
2k−2

= c− 4
3

∞∑
k=1

ak xk .

Since

(?) lim
k→∞

ak+1

ak
= lim

k→∞

2(2k− 1)
k+ 1

1
(5+ 2(2k− 2))(5+ 2(2k− 1))

= 0,

f̃ (x) is entire. The existence of the limit in (?) implies that limk→∞ k
√

ak = 0 as
well, and hence f (y) is also entire.

It remains to show that f (y) /∈ L-P. To this end, we first demonstrate that
f̃ (x) /∈ L-P. Writing dk = k! ak we can express f̃ (x) as

f̃ (x)= c− 4
3

∞∑
k=1

dk

k!
xk .

By Theorem 4 and the comments thereafter, if f̃ (x) were to belong to L-P, we
would have L1(x, f̃ (k)) ≥ 0 for all k = 0, 1, 2, . . . and x ∈ R. In particular,
L1(0, f̃ ′)= 16

9 (d
2
2 − d3d1)≥ 0 would hold. A quick calculation reveals that

d2
2 − d3d1 =−

1
80850 < 0,

establishing that f̃ (x) /∈ L-P. Suppose now that f (y) ∈ L-P. By virtue of being
an even function, f (y) has the factorization

f (y)= ce−ay2
ω∏

k=1

(
1−

y2

x2
k

)
,
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where a ≥ 0, xk ∈R\ {0}, 0≤ ω≤∞, and
∑

1/x2
k <∞. Replacing y2 by x would

yield f̃ (x) ∈L-P, a contradiction. We conclude that f (y) /∈L-P, and our proof is
complete. �

4. Cubic Legendre multiplier sequences

In this section we establish the nonexistence of cubic Legendre multiplier sequences.
Without loss of generality we may consider sequences interpolated by monic poly-
nomials. Since every such cubic polynomial can be written as (k2

+αk+β)(k+ c)
for some real triple (α, β, c), one may wish to proceed based on whether or not the
quadratic factor in the product is itself a Legendre multiplier sequence. It turns out
that such case analysis is more than one needs: we can handle all cubic sequences
at once. We begin with two preparatory results.

Lemma 15. Suppose T = {k3
+ ak2

+ bk + c}∞k=0 is a sequence of nonnegative
terms. If T is a classical multiplier sequence, then a ≥−3, a+ b ≥−1 and c ≥ 0.

Proof. By Theorem 5, T is a classical multiplier sequence if and only if T [ex
] ∈

L-P+. We have

T [ex
] =

∞∑
k=0

(k3
+ ak2

+ bk+ c)
xk

k!

= ex(x3
+ (a+ 3)x2

+ (a+ b+ 1)x + c
)
.

Thus the coefficients of the polynomial

x3
+ (a+ 3)x2

+ (a+ b+ 1)x + c

must all be nonnegative. The claim follows. �

Lemma 16 [Levin 1956, Lemma 3, p. 337]. If all zeros of the real polynomial

h(x)= c0+ c1x + · · ·+ cnxn (cn 6= 0)

are real, c0 6= 0 and cp = 0 for some 0< p < n, then cp−1cp+1 < 0.

We are now ready to state and prove the main theorem of the section.

Theorem 17. The sequence {k3
+ ak2

+ bk + c}∞k=0 is not a Legendre multiplier
sequence for any real triple (a, b, c).

Proof. Denote by Ta,b,c the operator associated to the Legendre sequence

{k3
+ ak2

+ bk+ c}∞k=0.

By Lemma 15, in order for {k3
+ ak2

+ bk + c}∞k=0 to be a classical multiplier
sequence we must have a ≥−3, a+ b ≥−1 and c ≥ 0. Consider now the action
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of Tα,β,c on the two polynomials

p1(x)= x5Le3(x)

=
64

1287Le8(x)+ 152
693Le6(x)+ 372

1001Le4(x)+ 205
693Le2(x)+ 4

63 ,

p2(x)= x5Le5(x)

=
2016

46189Le10(x)+ 4816
24453Le8(x)+ 4078

11781Le6(x)

+
291

1001Le4(x)+ 1000
9009Le2(x)+ 8

693 .

Computing 18018Ta,b,c[p1(x)] =
∑4

k=0 q2k(a, b, c)x2k, we find that

q0(a, b, c)= 16(−121+ 46a− 46b),

q4(a, b, c)= 630(15724+ 1226a+ 61b),

with the restrictions on a, b and c implying directly that q4(a, b, c) > 0 for all real
triples (a, b, c) under consideration. If q2(a, b, c)= 0, then reversing coefficients,
and taking four derivatives of Ta,b,c[p1(x)] (both of which operations preserve the
reality of zeros) results in a polynomial with nonreal zeros. If q2(a, b, c) 6= 0, then
in light of Lemma 16, a necessary condition for Ta,b,c[p1(x)] to have only real
zeros is that

(†) q0(a, b, c)= 16(−121+ 46a− 46b)≥ 0.

We now turn our attention to Ta,b,c[p2(x)]. If we write 23279256Ta,b,c[p2(x)] =∑5
k=0w2k(a, b, c)x2k, then

w0(a, b, c)= 16(−641+ 806a− 806b),

w4(a, b, c)=−630(38840980+ 2015774a+ 62731b),

with Lemma 15 implying that w4(a, b, c) < 0 for all admissible triples (a, b, c).
Considerations identical to those above imply that either Ta,b,c[p2(x)] has nonreal
zeros, or the inequality

(‡) w0(a, b, c)= 16(−641+ 806a− 806b)≤ 0

must hold. Combining inequalities (†) and (‡) we obtain

−
121
46 + a ≥ b ≥− 641

806 + a,

a clear impossibility. We conclude that Ta,b,c cannot simultaneously preserve the
reality of the zeros of x5Le3(x) and x5Le5(x). Whence {k3

+ ak2
+ bk+ c}∞k=0 is

not a Legendre multiplier sequence for any real triple (a, b, c). �

Remark 18. Theorem 17 yields yet another proof of the nonexistence of linear Le-
gendre multiplier sequences by the following considerations. If T1, T2 are Legendre
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multiplier sequences, then so is T1T2. Since {k2
+ k+β} is a Legendre multiplier

sequence whenever β ∈ [0, 1], the existence of linear Legendre multiplier sequences
would immediately imply the existence of cubic Legendre multiplier sequences,
contradicting Theorem 17.

5. Open problems

The following is a list of open problems motivated by the preceding results.
These questions are not only related to the classification of Legendre multiplier
sequences but also to some general properties of reality preserving linear opera-
tors T =

∑
∞

k=0 Tk(x)Dk on R[x], properties which are captured in the coefficient
polynomials Tk(x).

5.1. Higher order Legendre sequences. The characterization of polynomials with
degree four or higher which interpolate Legendre multiplier sequences remains
open. Using computational techniques as in Section 4 quickly turns intractable with
the increasing number of parameters. In addition, one has to judiciously select “test
polynomials” in order for this method to succeed succinctly. The polynomials

p(n, k)= xkLen(x)

mimic properties of the test polynomials (1+x)n for classical multiplier sequences in
that they have zeros of high multiplicity away from the zeros of the basis polynomials.
As such, we were able to use just a couple test polynomials to demonstrate the
nonexistence of cubic Legendre multiplier sequences. On the downside, the degrees
of these polynomials are high and we believe that the degrees of the test polynomials
would have to increase if one would want to eliminate sequences interpolated by
higher order polynomials.

5.2. Monotone operators. We call an operator T =
∑
∞

k=0 Tk(x)Dk monotone if
deg Tk(x)≥ deg Tk−1(x) for all k = 1, 2, . . . . The operator corresponding to the
linear Legendre sequence {k+ c}∞k=0 is given by

T = c+ x D− 1
3

D2
+

2
15

x D3
+

∞∑
k=4

Tk(x)Dk,

whereas the operator corresponding to the Legendre sequence {k2
+ αk + β}∞k=0,

α 6= 1, is given by

T = β + (1+α)x D−
2+α− 3x2

3
D2
+

2
15
(α− 1)x D3

−
(α− 1)(1+ 4x2)

105
D4
+ (α− 1)

∞∑
k=5

Tk(x)Dk .
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Neither sequence is a Legendre multiplier sequence, and neither operator is mono-
tone. We believe these facts to be related, and give the following

Conjecture 19. Suppose T =
∑
∞

k=0 Tk(x)Dk is an infinite order differential oper-
ator. If T is not monotone, then T is not reality preserving.

Should this conjecture be true, one could then try to prove that if

{γk}
∞

k=0 = {p(k)}
∞

k=0,

where deg p is odd and {γk}
∞

k=0 is a Legendre sequence, the operator correspond-
ing to the sequence {γk}

∞

k=0 is an infinite order differential operator which is not
monotone.

5.3. Using the symbol of the operator. Our approach used in Section 3 could be
extended to treat sequences interpolated by higher order polynomials. Piotrowski
[2007] and Forgács and Piotrowski [2013a] give explicit representations of the
coefficient polynomials Tk(x) of classical, and Hermite diagonal operators respec-
tively. In both cases the Tk(x)s are given in terms of the reverses of the Jensen
polynomials associated to the sequence {γk}

∞

k=0. If a sequence {γk}
∞

k=0 is interpolated
by a polynomial, then only finitely many of these reverse Jensen polynomials are
nonzero. This means that an analog of Theorem 13 would need the identification of
only finitely many sequences, one for each reverse Jensen polynomial involved in the
Tk(x)s, in order to explicitly determine the sequence {Tk(0)}∞k=0. With this sequence
in hand, one could carry out steps analogous to those in Section 3 to establish the
nonexistence of Legendre multiplier sequences interpolated by polynomials of
degree greater than three.
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