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(Communicated by Kenneth S. Berenhaut)

We give an algorithm to find the number Tcvx(n) of convex topologies on a totally
ordered set X with n elements, and present these numbers for n ≤ 10.

1. Introduction

A subset B of poset (X,≤) is increasing if x ∈ B and y ≥ x imply y ∈ B, and is
convex if x, z ∈ B and x ≤ y ≤ z imply y ∈ B. An n-point totally ordered set X may
be labeled X = {1, 2, . . . , n}, where 1< 2< · · ·< n. This set will be denoted [1, n],
and in general, [a, b]will denote {a, a+1, . . . , b}⊂N with the natural order from N.
A topology on (X,≤) is convex if it has a base of convex sets, or equivalently, if
each point has a neighborhood base of convex sets. Because of these equivalent
characterizations, convex topologies are often called locally convex topologies. (See
[Nachbin 1965]). For finite sets, every point j has a minimal neighborhood MN( j),
which is the intersection of all neighborhoods of j . It is convenient to identify a
topology on [1, n] with its base {MN( j) : j ∈ [1, n]} of minimal neighborhoods
of each point. Finite topological spaces are used in computer graphics, where the
Euclidean plane is modeled by a topology on a finite set of pixels. If a < b< c in a
finite poset with a topology, if c is “near” a and there is any compatibility between
the topology and order, we would expect b to also be near a. This is the convexity
condition, which is a natural, weak compatibility condition between a topology
and order assumed in most applications. We will consider the number of convex
topologies on a finite totally ordered set [1, n].

An excellent reference on finding the number T (n) of topologies on an n-element
set is [Erné and Stege 1991]. Currently, T (n) is known for n ≤ 18. A standard
approach to counting topologies on a finite set X is to employ the one-to-one corre-
spondence between a topology τ on X and the associated specialization quasiorder
defined by x ≤ y if and only if x is in the closure of y. This correspondence
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dates back to [Alexandroff 1937]. (See [Richmond 1998] for a survey of this
connection.) One approach to counting the convex topologies would be to find a
(biordered) characterization of convex topologies using some compatibility between
the specialization order and the given total order. Fruitful results in this direction
have not been found.

For j ∈ [1, n], a convex subset N ( j) of [1, n] containing j has the form [a, b],
where 1 ≤ a ≤ j ≤ b ≤ n. There are j choices for a and n− j + 1 choices for b,
and thus j (n+ j − 1) choices for N ( j). Since a base of minimal neighborhoods
for a locally convex topology on [1, n] consists of one convex subset N ( j) for
each j ∈ [1, n], we see that

n∏
j=1

( j)(n+ j − 1)= (n!)2

gives an upper bound on Tcvx(n). Of course, arbitrarily selecting a convex set N ( j)
containing j for each j ∈ [1, n] is unlikely to give a base for a topology, so this
upper bound is not sharp.

2. Nested convex topologies

Stephen [1968] gave a recursive formula for the number of nested topologies
(or equivalently, ordered partitions) on an n-point set X , generating the sequence
1, 3, 13, 75, 541, 4683, 47293, . . . , which is A000670 in The On-Line Encyclopedia
of Integer Sequences (OEIS); see [Sloane 2014]. If X = [1, n] is a totally ordered
set with n elements, let TNest(n) be the number of nested convex topologies on X ,
and let TNest(n, k) be the number of those convex topologies consisting of k nested
nonempty open sets U1,U2, . . . ,Uk , where X =U1 ⊃U2 ⊃ · · · ⊃Uk 6=∅. Since
the indiscrete topology is the only nested topology with one nonempty open set,
TNest(n, 1) = 1. Suppose we have found TNest(m, j) for all m ≤ n and j ≤ k. To
find TNest(n, k+ 1), note that X = U1 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ Uk+1 6=∅ implies that
U2 must contain at least k elements and at most n− 1 elements. If |U2| = j , there
are n− j + 1 ways to choose U2 as a convex subset of X , and TNest( j, k) ways to
complete the nested convex topology {U2, . . . ,Uk+1} on the j -point totally ordered
set U2. Thus, we have

TNest(n, k+ 1)=
n−1∑
j=k

(n− j + 1)TNest( j, k)=
n−k+1∑

m=2

m · TNest(n−m+ 1, k),

where the second equality follows from the substitution m = n− j + 1. In Table 1,
we tabulate the values of TNest(n, k) for n, k ≤ 10.
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k 1 2 3 4 5 6 7 8 9 10

1 1
2 1 2
3 1 5 4
4 1 9 16 8
5 1 14 41 44 16
6 1 20 85 146 112 32
7 1 27 155 377 456 272 64
8 1 35 259 833 1,408 1,312 640 128
9 1 44 406 1,652 3,649 4,712 3,568 1,472 256
10 1 54 606 3,024 8,361 14,002 14,608 9,312 3,328 512

Table 1. TNest(n, k), the number of topologies on a totally ordered
n-point set consisting of k nested convex sets.

This table (sequence A056242 in the OEIS [Mallows 2014]) is also used by
Hwang and Mallow [1995] to count the number of order-consecutive partitions
of X = {1, 2, . . . , n}, which they define as follows: An ordered list S1, S2, . . . , Sm

of subsets of X is an order-consecutive partition of X if {S1, . . . , Sm} is a partition
of X and each of the sets

⋃k
j=1 S j (1 ≤ k ≤ m) is a consecutive set of integers.

If {S1, . . . , Sm} is an order-consecutive partition, clearly {S1, S1 ∪ S2, S1 ∪ S2 ∪

S3, . . . , X} is a nested convex topology on X . Conversely, any nested convex
topology τ = {U1,U2, . . . ,Uk} on X = {1, 2, . . . n} generates the order-consecutive
partition U1, U2 \U1, U3 \U2, . . . ,Uk \Uk−1.

It is easy to confirm from our formula for TNest(n, k) that TNest(n, n)= 2n−1 and
TNest(n, 2)=1n − 1, where 1n is the n-th triangular number.

Now, we note that

TNest(n)=
n∑

k=1

TNest(n, k).

This sequence, whose first few elements are

(TNest(n))10
n=1 = (1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808),

appears as A007052 in the OEIS [Mallows et al. 2014], where it is noted that

TNest(n)= 4 TNest(n− 1)− 2 TNest(n− 2) for n > 2.

Solving this recurrence relation by standard techniques gives

TNest(n)=
(2+
√

2)n + (2−
√

2)n

4
.
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Nested convex topologies have as much inclusion as possible. Not only are they
totally ordered by inclusion, but they maximize “overlap”. The other extreme would
be to have as little inclusion and overlap as possible. This suggests considering
mutually disjoint collections. A collection D of mutually disjoint convex subsets
of X is not a basis for a topology if

⋃
D 6= X , but D∪ {X} is always a basis for

a convex topology on X . The authors have shown that the number of topologies
on an n-element totally ordered set having a base consisting of a mutually disjoint
collection D of convex sets, or such a collection D together with X , is F2n+1− 1,
where Fk is the k-th Fibonacci number [Clark and Richmond 2010].

3. An algorithm for Tcvx(n)

We now present a recursive algorithm to find the number Tcvx(n) of convex topolo-
gies on a totally ordered set [1, n]. It is easy to check that Tcvx(1)= 1= T (1) and
Tcvx(2)= 4= T (2). That is, the only topology on a 1-point set is convex, as are all
four topologies on a 2-point set.

Suppose Tcvx(n) is known. To find Tcvx(n+ 1), note that each convex topology
on [1, n+ 1], when restricted to [1, n], gives a unique convex topology on [1, n].
Thus, we may count Tcvx(n) by looping through each topology τ counted in Tcvx(n),
adding n+1 as the greatest point, adjusting the minimal neighborhoods of j ∈ [1, n],
and defining the minimal neighborhood of n + 1 so that the subspace topology
on [1, n] is still τ . That is, considering how each topology on [1, n] may be
appropriately expanded to [1, n+ 1] gives a complete, unduplicated count of the
convex topologies on [1, n+ 1].

Step 1: Redefining minimal neighborhoods of j ∈ [1, n]. We loop through all
convex topologies τ on [1, n]. The simplest way to extend τ to [1, n+1] so that the
restriction of the extension is still τ would be to keep the minimum neighborhoods
of each j ∈ [1, n] unchanged. However, we may also expand some of the minimal
neighborhoods of points j ∈ [1, n] to include n+ 1. To maintain convexity and to
guarantee a topology on [1, n + 1] whose restriction to [1, n] agrees with τ , the
minimal neighborhood MN( j) of j can be expanded to include n+ 1 if and only
if MN( j) already includes n. If n ∈MN( j)⊆MN(k) and MN( j) is expanded to
include n+ 1, then MN(k) must also be expanded to include n+ 1, for otherwise
MN(k) would be a neighborhood of j not including n+1, contrary to the hypothesis
that the minimal neighborhood of j was to include n+ 1.

As an immediate consequence, if n ∈MN( j)=MN(k), then MN( j) is expanded
to include n + 1 if and only if MN(k) is. That is, a single basis element which
happens to be the minimal neighborhood of distinct points j and k is still treated as
a single entity in the expansion process.
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1 2 3 4 5 6 7 8

Figure 1. A sample topology on [1, 8].

8 98 98 98 9 8 98 98 98 9 8 98 98 98 9 8 98 98 98 9

Figure 2. Possible expansions of minimal neighborhoods contain-
ing previous right endpoint: none, outermost one, outermost two,
outermost three.

Thus, if B= {MN(1),MN(2), . . . ,MN(n)} has m distinct sets containing n, we
expand the outermost k of these to include n+ 1, looping as k goes from 1 to m.

For example, consider the convex topology τ on [1, 8] having a base of minimal
neighborhoods B= {{1}, [2, 8], [3, 4], {5}, [5, 8], {8}}, as shown in Figure 1.

We may add 9 to this topology without changing any of the minimal neighbor-
hoods of j for j ∈ [1, 8], or since MN(2),MN(6) =MN(7), and MN(8) include
the right endpoint 8, they may be extended to include the added point 9. Since
8 ∈ MN(8) ⊂ MN(7) = MN(6) ⊂ MN(2), we note that MN(6) is expanded if
and only if MN(7) is expanded, so we do not need to treat MN(6) and MN(7)
as distinct basis elements and we may effectively ignore the duplicate MN(7).
Also, if MN(6) is expanded, then MN(6) ⊂ MN(2) implies that MN(2) would
also have to be expanded. Repeating this idea, we may expand nothing except the
outermost (i.e., longest) minimal neighborhood containing 8, namely MN(2), the
outermost two minimal neighborhoods containing 8, namely MN(2) and MN(6),
or the outermost three, MN(2),MN(6), and MN(8). See Figure 2.

Step 2: Defining the minimal neighborhood of the added point. Having deter-
mined the expansion of minimal neighborhoods of j ∈ [1, n], it remains to define the
minimal neighborhood MN(n+1) of n+1. Clearly we must have n+1∈MN(n+1).
The convexity condition and our need to retain the original topology τ on [1, n] as
a subspace imply that MN(n+1) must be of form {n+1}∪ I , where I is increasing
and open in τ . The final condition is the minimality of the neighborhood MN(n+1).
In Step 1, we may have expanded some neighborhoods of n to contain n+1 and, if
so, the minimal neighborhood of n+1 must be contained in each of these previously
defined neighborhoods of n+ 1. Thus, MN(n+ 1) must be of the form {n+ 1} ∪ I ,
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1 2 3 4 5 6 7 8 9

Figure 3. Possible choices for MN(9) if no minimal neighbor-
hoods MN( j) are expanded for j ∈ [1, 8].

1 2 3 4 5 6 7 8 9

Figure 4. Possible choices for MN(9) if MN(2) and MN(6) are
expanded to include 9.

where I is increasing and τ -open, and I is contained in the innermost (shortest)
neighborhood MN( j) which was expanded in Step 1.

Continuing the example presented above, we may expand none of the original
minimal neighborhoods of j ∈[1, 8] to include 9, and then the minimal neighborhood
MN(9) of 9 may be defined as {9} ∪ I , where I is an increasing τ -open set in any
of the six ways suggested in Figure 3.

Figure 4 shows the three possible choices for the minimal neighborhood MN(9)
if the outermost two minimal neighborhoods containing 8, namely MN(2) and
MN(6), have been expanded to include 9.

A computer implementation of this algorithm yields the values for Tcvx(n) shown
in Table 2 below. With the Tcvx(2) = 4 convex topologies on [1, 2] as input,
the computer implementation loops through all the topologies τ on [1, n], adds
n+ 1, determines the number m of distinct minimal neighborhoods of j ∈ [1, n]
containing n, expands the outermost k of these to contain n+ 1 (as k goes from 0
to m), determines the increasing τ -open sets, defines the minimal neighborhood
MN(n+ 1) of n+ 1 as {n+ 1} ∪ I , where I is one of the increasing τ -open sets
contained in the smallest MN( j) previously expanded to include n+1, and, at each
selection of an option above, increments the Tcvx(n+ 1) counter and records the
data for this new topology on [1, n+ 1] required for the next iteration.

The efficiency of this algorithm can be improved by eliminating duplication
of computations. For example, if p is the largest integer with MN(p) = X for
two topologies s and t which agree to the right of p, then the computation for s
duplicates that for t , as noted by a helpful referee.
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n TNest(n) Tcvx(n) T (n)

1 1 1 1
2 3 4 4
3 10 21 29
4 34 129 355
5 116 876 6,942
6 396 6,376 209,527
7 1,352 48,829 9,535,241
8 4,616 388,771 642,779,354
9 15,760 3,191,849 63,260,289,423

10 53,808 26,864,936 8,977,053,873,043

Table 2. The numbers TNest(n) and Tcvx(n) of nested convex
topologies and convex topologies on an n-point totally ordered
set, and the number T (n) of topologies on an n-point set.

The numbers Tcvx(n) in Table 2 were also verified for n≤ 8 without the algorithm
using an exhaustive generation scheme. For comparison, we also include the number
TNest(n) of nested convex topologies and the number T (n) of topologies on n points
in the table.
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