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In 1939, Sheffer published “Some properties of polynomial sets of type zero”,
which has been regarded as an indispensable paper in the theory of orthogonal
polynomials. Therein, Sheffer basically proved that every polynomial sequence
can be classified as belonging to exactly one type. In addition to various in-
teresting and important relations, Sheffer’s most influential results pertained to
completely characterizing all of the polynomial sequences of the most basic type,
called A-type 0, and subsequently establishing which of these sets were also
orthogonal. However, Sheffer’s elegant analysis relied heavily on several charac-
terization theorems. In this work, we show all of the Sheffer A-type 0 orthogonal
polynomial sequences can be characterized by using only the generating function
that defines this class and a monic three-term recurrence relation.

1. Introduction

In his seminal work, I. M. Sheffer [1939] basically showed that every polynomial
sequence can be classified as belonging to exactly one type. The majority of his
paper was dedicated to developing a wealth of aesthetic results regarding the most
basic type, entitled A-type 0. This included various interesting characterization
theorems. Moreover, one of Sheffer’s most important results was his classification
of the A-type 0 orthogonal sets, which are often simply called the Sheffer sequences.
Sheffer attributed these orthogonal sets to J. Meixner, who originally discovered
them in [Meixner 1934]. The Sheffer sequences (also called Meixner polynomials)
are now known to be the very well-studied and applicable Laguerre, Hermite,
Charlier, Meixner, Meixner–Pollaczek and Krawtchouk polynomials — refer to
[Koekoek and Swarttouw 1996] for details regarding these polynomials and the
references therein for additional theory and applications.
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In this paper, we develop and employ an elementary method for characteriz-
ing all of the aforementioned Sheffer A-type 0 orthogonal polynomials (Meixner
polynomials) that is entirely different than Sheffer’s approach. Furthermore, the
analysis herein comprises the most basic complete characterization of the Sheffer
sequences. We also mention that although a very terse overview of the essence of
our methodology (for obtaining necessary conditions) is essentially addressed in
[Ismail 2009, pp. 524, 525], the rigorous details of applying our approach do not
appear anywhere in the current literature.

Since the publication of [Sheffer 1939], a wealth of papers have been written
related to the Sheffer sequences, many of which are quite recent. One such work
that also develops a basic-type of characterization is [Di Bucchianico and Loeb
1994]. Other papers include [Al-Salam and Verma 1970; Di Bucchianico 1994;
Di Nardo et al. 2011; Dominici 2007; Hofbauer 1981; Popa 1997; 1998; Shukla
and Rapeli 2011]. In addition, a very large amount of work has been completed
pertaining to the theory and applications of specific A-type 0 orthogonal sets, e.g.,
[Akleylek et al. 2010; Chen et al. 2011; Coffey 2011; Coulembier et al. 2011;
Dueñas and Marcellán 2011; Ferreira et al. 2008; Hutník 2011; Khan et al. 2011;
Kuznetsov 2008; Miki et al. 2011; Mouayn 2010; Sheffer 1941; Vignat 2011; Wang
et al. 2011; Wang and Wong 2011; Yalçinbaş et al. 2011]. Indeed, research on the
Sheffer sequences is an active area and important in its own right. Therefore, our
current characterization of such a class is certainly of interest.

In order to sufficiently lay the foreground for our analysis, we first discuss all
of the preliminary definitions and terminologies that are utilized throughout this
paper. Then, we give a concise overview of Sheffer’s method for determining the
A-type 0 orthogonal polynomial sequences. We conclude this section by briefly
summarizing the sections that follow.

1A. Preliminaries. Throughout this work, we make use of each of the following
definitions and terminology.

Definition 1.1. We always assume that a set or sequence of polynomials {Pn(x)}∞n=0
is such that each Pn(x) has degree exactly n.

Definition 1.2. A set of polynomials {pn(x)}∞n=0 is monic if pn(x)−xn is of degree
at most n− 1, or equivalently if the leading coefficient of each pn(x) is unitary.

Definition 1.3. The set of polynomials {Pn(x)}∞n=0 is orthogonal if it satisfies one
of the two following weighted inner product conditions:

Continuous : 〈Pm(x), Pn(x)〉 =
∫
�1

Pm(x)Pn(x)w(x) dx = αnδm,n, (1-1)

Discrete : 〈Pm(x), Pn(x)〉 =
∑
�2

Pm(x)Pn(x)w(x)= βnδm,n, (1-2)
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where δm,n denotes the Kronecker delta

δm,n :=

{
1 if m = n,
0 if m 6= n,

with �1 ⊆ R, �2 ⊆ {0, 1, 2, . . .} and w(x) > 0, called the weight function.

The Laguerre, Hermite and Meixner–Pollaczek polynomials satisfy a continuous
orthogonality relation of the form (1-1). On the other hand, the Charlier, Meixner
and Krawtchouk polynomials satisfy a discrete orthogonality relation of the form
(1-2); see [Koekoek and Swarttouw 1996].

Definition 1.4. We write each of our orthogonal polynomials in the hypergeometric
form (r Fs) as

r Fs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣ z
)
=

∞∑
k=0

(a1, . . . , ar )k

(b1, . . . , bs)k

zk

k!
, (1-3)

where the Pochhammer symbol (a)k is defined as

(a)k := a(a+ 1)(a+ 2) · · · (a+ k− 1), (a)0 := 1,

with
(a1, . . . , a j )k := (a1)k · · · (a j )k .

The sum (1-3) terminates if one of the numerator parameters is a negative integer;
e.g., if one such parameter is −n, then (1-3) is a finite sum over 0≤ k ≤ n.

Definition 1.5. We define a linear generating function for a polynomial sequence
{Pn(x)}∞n=0 by ∑

3

ξn Pn(x)tn
= F(x, t),

where {ξn}
∞

n=0 is a sequence in n, independent of x and t , with 3⊆ {0, 1, 2, . . .}.
Moreover, we say that the function F(x, t) generates the set {Pn(x)}∞n=0.

It is important to mention that a linear generating function need not converge, as
several relationships can be derived when F(x, t) is divergent. For example, by
expanding each of the generating functions used in this paper as a formal power
series in t , the respective polynomial Pk(x) can be determined by evaluating the
coefficient of tk .

It is well-known that a necessary and sufficient condition for a set of polynomials
{Pn(x)}∞n=0 to be orthogonal is that it satisfies a three-term recurrence relation (see
[Rainville 1960]), which can be written in different forms. In particular, we utilize
the following two forms in this work, and adhere to the nomenclature used in
[Al-Salam 1990].
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Definition 1.6 (the three-term recurrence relations). It is a necessary and sufficient
condition that an orthogonal set {Pn(x)}∞n=0 satisfies an unrestricted three-term
recurrence relation of the form
Pn+1(x)= (Anx + Bn)Pn(x)−Cn Pn−1(x), An An−1Cn > 0,

where P−1(x)= 0 and P0(x)= 1. (1-4)

If pn(x) represents the monic form of Pn(x), then it is a necessary and sufficient con-
dition that {pn(x)}∞n=0 satisfies the following monic three-term recurrence relation

pn+1(x)= (x + bn)pn(x)− cn pn−1(x), cn > 0,

where P−1(x)= 0 and P0(x)= 1. (1-5)

1B. A summary of Sheffer’s A type-0 analysis. In order to determine each of the
A-type 0 orthogonal sets previously discussed, Sheffer first developed a characteri-
zation theorem, which gave necessary and sufficient conditions for a polynomial se-
quence to be A-type 0 via a linear generating function. Meixner [1934] essentially de-
termined which orthogonal sets satisfy the A-type 0 generating function using a dif-
ferent approach than Sheffer. Meixner used the A-type 0 generating function as the
definition of the A-type 0 class. In our present work, we follow Meixner’s convention.
The reader can also refer to [Al-Salam 1990] for a concise overview of Meixner’s
analysis. In addition, for rigorous developments of the methods of Sheffer and
Meixner, as well as related results, extensions and applications, see [Galiffa 2013].

Definition 1.7. A polynomial set {Pn(x)}∞n=0 is classified as A-type 0 if there exist
{a j }

∞

j=0 and {h j }
∞

j=1 such that

A(t)ex H(t)
=

∞∑
n=0

Pn(x)tn, (1-6)

with

A(t) :=
∞∑

n=0

antn, a0 = 1 and H(t) :=
∞∑

n=1

hntn, h1 = 1. (1-7)

To determine which orthogonal sets satisfy (1-6), Sheffer utilized a monic three-
term recurrence relation of the form

Pn(x)= (x + λn)Pn−1(x)−µn Pn−2(x), n = 1, 2, . . . . (1-8)

Along with several additional results, Sheffer essentially established the following:

Theorem 1.8. A necessary and sufficient condition for an A-type 0 set {Pn(x)}∞n=0
to satisfy (1-8) is that

λn = α+ bn and µn = (n− 1)(c+ dn),

with c+ dn 6= 0 for n > 1.
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In other words, Sheffer proved that in order for an A-type 0 set {Pn(x)}∞n=0 defined
by (1-6) to be orthogonal, it must be that λn is at most linear in n and µn is at most
quadratic in n.

Since in our present work we make use of a monic three-term recurrence relation
of the form (1-5), i.e., the contemporary form, we scale (1-8) via n 7→ n+ 1, giving

Pn+1(x)= (x + λn+1)Pn(x)−µn+1 Pn−1(x), n = 0, 1, 2, . . . , (1-9)

and the recursion coefficients in Theorem 1.8 therefore take on the form

λn+1 = (α+ b)+ bn, µn+1 = (c+ d)n+ dn2. (1-10)

Theorem 1.8, again along with additional results, eventually led Sheffer to the fol-
lowing characterizing theorem, which yields all of the general A-type 0 orthogonal
sets in terms of their linear generating functions, and which is written below using
the same notation as in [Sheffer 1939].

Theorem 1.9. A polynomial set {Pn(x)}∞n=0 is A-type 0 and orthogonal if and only
if A(t)ex H(t) in (1-6) is of one of the following forms:

A(t)ex H(t)
= µ(1− bt)c exp

{
d + atx
1− bt

}
, abcµ 6= 0, (1-11)

A(t)ex H(t)
= µ exp[t (b+ ax)+ ct2

], acµ 6= 0, (1-12)

A(t)ex H(t)
= µect(1− bt)d+ax , abcµ 6= 0, (1-13)

A(t)ex H(t)
= µ(1− t/c)d1+x/a(1− t/b)d2−x/a, abcµ 6= 0, b 6= c. (1-14)

By judiciously choosing each of the parameters in (1-11)–(1-14) we can achieve
all of the Sheffer A-type 0 orthogonal sets. For emphasis, we write each of these
parameter selections below and then display the corresponding generating function
as it appears in [Koekoek and Swarttouw 1996]. We also call upon each of these
generating relations in Section 4.

The Laguerre polynomials. In (1-11), we select the parameters as µ= 1, a =−1,
b = 1, c =−(α+ 1) and d = 0 to obtain

∞∑
n=0

L(α)n (x)tn
= (1− t)−(α+1) exp

(
xt

t − 1

)
. (1-15)

The Hermite polynomials. With the assignments µ= 1, a = 2, b = 0 and c =−1
in (1-12), we have

∞∑
n=0

1
n!

Hn(x)tn
= exp(2xt − t2). (1-16)



44 DANIEL J. GALIFFA AND TANYA N. RISTON

The Charlier polynomials. If in (1-13) we choose µ= 1, a = 1, b = 1/α, c = 1,
and d = 0, then we obtain

∞∑
n=0

1
n!

Cn(x;α)tn
= et

(
1−

t
α

)x

. (1-17)

The Meixner polynomials. In (1-14), we select µ = 1, a = 1, b = 1, c arbitrary,
d1 = 0 and d2 =−β leading to

∞∑
n=0

(β)n

n!
M(x;β, c)tn

=

(
1−

t
c

)x

(1− t)−(x+β). (1-18)

The Meixner–Pollaczek polynomials. Taking µ = 1, a = −i , b = eiφ , c = e−iφ

and d1 = d2 =−λ in (1-14) leads to
∞∑

n=0

P (λ)n (x;φ)tn
= (1− eiφt)−λ+i x(1− e−iφt)−λ−i x . (1-19)

The Krawtchouk polynomials. Lastly, selecting µ = 1, a = 1, b = −1, c =
p/(1− p), d1 = 0 and d2 = N in (1-14) yields

N∑
n=0

C(N , n)Kn(x; p, N )tn
=

(
1−

1− p
p

t
)x

(1+ t)N−x , (1-20)

for x = 0, 1, 2, . . . , N , where C(N , n) denotes the binomial coefficient.
Interestingly enough, Sheffer only stated (1-15) and (1-16) by their names, i.e.,

the Laguerre and Hermite polynomials respectively. Moreover, at the time when
[Sheffer 1939] was published, the remaining orthogonal polynomials were not yet
commonly referred to by the names above; the exception to this being the Charlier
polynomials, which were called the Poisson–Charlier polynomials by Meixner
[1934] and others.

1C. An overview of our present A-type 0 analysis. Our current work amounts to
determining which A-type 0 polynomial sequences are also orthogonal by utilizing
only the generating function (1-6) and the monic three-term recurrence relation
(1-9), without calling upon any additional relationships. It is in this regard that our
approach is elementary. The remainder of this paper is organized as follows.

In Section 2, we derive necessary conditions for the Sheffer A-type 0 recursion
coefficients λn+1 and µn+1 as in (1-10), which in fact comprise only the terms a1,
a2, h2 and h3 in (1-7). In Section 3, we prove that the A-type 0 orthogonal sets are
necessarily the monic forms of the Laguerre, Hermite, Charlier, Meixner, Meixner–
Pollaczek and Krawtchouk polynomials by appropriately selecting the parameters
a1, a2, h2 and h3. As a supplement to this analysis, in Section 4 we first derive
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linear generating functions for each of the monic forms of the A-type 0 orthogonal
sets using (1-15)–(1-20). From these relations, we obtain the same parameter values
as those in Section 3. We conclude this paper in Section 5 by showing that the
conditions on the recursion coefficients λn+1 and µn+1 from Section 2 are also
sufficient. This provides six additional basic characterizations of our orthogonal sets.

2. Deriving the Sheffer A-type 0 recursion coefficients

In this section, we derive necessary conditions for the recursion coefficients λn+1

and µn+1 to be as in (1-10). In order to do this, we first determine the coefficients
of xn , xn−1 and xn−2 of the arbitrary Sheffer A-type 0 polynomial Pn(x) in (1-6),
which we label as cn,0, cn,1 and cn,2, respectively. To obtain these values, we
compare the coefficients of xk tn for k = n, n−1, n−2 on both sides of (1-6). After
these leading coefficients are discovered, we substitute our polynomial Pn(x) =
cn,0xn

+cn,1xn−1
+cn,2xn−2

+O(xn−3) into the three-term recurrence relation (1-4)
and derive a system of simultaneous linear equations, the solution of which yields
the recursion coefficients An , Bn and Cn as in (1-4). We then transform the resulting
unrestricted recurrence relation into monic form, which gives λn+1 and µn+1.

We begin by expanding the left side of (1-6) and accounting for h1 = 1 via (1-7):
∞∑

n=0

antn
· exp(x(t + h2t2

+ h3t3
+ · · · ))

=

∞∑
n=0

antn
· exp(xt) · exp(h2xt2) · exp(h3xt3) · · ·

=

∞∑
k0=0

ak0 tk0 ·

∞∑
k1=0

(xt)k1

k1!
·

∞∑
k2=0

(h2xt2)k2

k2!
·

∞∑
k3=0

(h3xt3)k3

k3!
· · · .

We next express the general term in each of the products above as

ak0 tk0 ·
xk1 tk1

k1!
·

hk2
2 xk2 t2k2

k2!
·

hk3
3 xk3 t3k3

k3!
· · · . (2-1)

Thus, discovering the coefficient of xr t s is equivalent to determining all of the
nonnegative integer solutions {k0, k1, k2, . . .} to the linear Diophantine equations

k1+ k2+ k3+ · · · = r, (2-2)

k0+ k1+ 2k2+ 3k3+ · · · = s, (2-3)

where (2-2) represents the x-exponents and (2-3) the t-exponents. We can now
discover the coefficients xntn , xn−1tn and xn−2tn , which we partition into the three
parts below.
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The coefficient of xn tn. For this case, we subtract (2-2) from (2-3) with r = n and
s = n, yielding

k0+ k2+ 2k3+ · · · = 0.

It is then readily seen that k1 is a free variable and k0 = k2 = k3 = · · · = 0. Thus,
from substituting these values into (2-3) with s = n, we see that k1 = n, and after
comparing with (2-1) we observe that the coefficient of xntn is 1/n!.

The coefficient of xn−1 tn. Here, we subtract (2-2) from (2-3) with r = n− 1 and
s = n, which gives

k0+ k2+ 2k3+ · · · = 1,

yielding two cases:

Case 1. k0 = 1 and k2 = k3 = · · · = 0. Substituting these values into (2-3) gives
k1 = n− 1, and via (2-1) we achieve

a1

(n− 1)!
.

Case 2. k2 = 1 and k0 = k3 = · · · = 0. Now, (2-3) becomes k1 = n− 2, and from
(2-1) we have

h2

(n− 2)!
.

Therefore, we know that the coefficient of xn−1tn is

a1

(n− 1)!
+

h2

(n− 2)!
.

The coefficient of xn−2 tn. Lastly, we subtract (2-2) from (2-3) with r = n− 2 and
s = n, and obtain

k0+ k2+ 2k3 = 2,

which has four solutions, yielding four cases. In the same way as in the previous
cases, we see that the coefficient of xn−2tn is

a2

(n− 2)!
+

a1h2+ h3

(n− 3)!
+

h2
2

2!(n− 4)!
;

the details have been omitted for brevity. Thus, we have established the following:

Lemma 2.1. For the Sheffer A-type 0 polynomial Pn(x) = cn,0xn
+ cn,1xn−1

+

cn,2xn−2
+O(xn−3) as in (1-6), we have

cn,0 =
1
n!
, cn,1 =

a1

(n− 1)!
+

h2

(n− 2)!
,

cn,2 =
a2

(n− 2)!
+

a1h2+ h3

(n− 3)!
+

h2
2

2!(n− 4)!
.

(2-4)
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Proof. See the above analysis. �

We now have the following result:

Theorem 2.2. The Sheffer A-type 0 recursion coefficients An , Bn and Cn satisfying
(1-4) are given by

An =
1

n+ 1
, Bn =

a1+ 2h2n
n+ 1

,

Cn =
a2

1 − 2a2+ 2a1h2− 4h2
2+ 3h3+ (4h2

2− 3h3)n
n+ 1

.

(2-5)

Proof. We see that upon substituting Pn(x)=cn,0xn
+cn,1xn−1

+cn,2xn−2
+O(xn−3)

into the three-term recurrence relation (1-4), we obtain

cn+1,0xn+1
+ cn+1,1xn

+ cn+1,2xn−1
+O(xn−2)

= Ancn,0xn+1
+ Ancn,1xn

+ Ancn,2xn−1
+O(xn−2)

+ Bncn,0xn
+ Bncn,1xn−1

+ Bncn,2xn−2
+O(xn−3)

−Cncn−1,0xn−1
−Cncn−1,1xn−2

−Cncn−1,2xn−3
+O(xn−4).

Thus, comparing the coefficients of xn+1, xn and xn−1 above results in the lower-
triangular simultaneous system of linear equationscn,0 0 0

cn,1 cn,0 0
cn,2 cn,1 −cn−1,0

An

Bn

Cn

=
cn+1,0

cn+1,1

cn+1,2

 .
Since the diagonal terms cn,0 and cn−1,0 are nonzero by Definition 1.1, the solution
to the above system is unique and determined via Gauss–Jordan Elimination to be

An =
cn+1,0

cn,0
, Bn =

cn+1,1cn,0− cn+1,0cn,1

c2
n,0

,

Cn =
cn+1,0(cn,0cn,2− c2

n,1)+ cn,0(cn+1,1cn,1− cn+1,2cn,0)

cn−1,0c2
n,0

.

Substituting (2-4) accordingly yields our desired result. �

We now determine λn+1 and µn+1. To accomplish this, we must derive a monic
three-term recurrence relation of the form (1-9) from the recursion coefficients
(2-5). Thus, we replace Pn(x) with dn Qn(x) in (1-4), resulting in

Qn+1(x)=
dn

dn+1
Anx Qn(x)+

dn

dn+1
Bn Qn(x)−

dn−1

dn+1
Cn Qn−1(x).

Therefore, we require
dn

dn+1
An = 1,
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which is a first-order linear difference equation readily solved via iterations to be

dn =
1
n!
.

Then, we have

λn+1 =
dn

dn+1
Bn = a1+ 2h2n, (2-6)

µn+1 =
dn−1

dn+1
Cn = (a2

1 − 2a2+ 2a1h2− 4h2
2+ 3h3)n+ (4h2

2− 3h3)n2. (2-7)

Thus, we have shown that λn+1 is at most linear in n and that µn+1 is at most
quadratic in n. Hence, we have the following statement:

Theorem 2.3. For a polynomial sequence {Pn(x)}∞n=0 to be A-type 0 and orthogo-
nal, the recursion coefficients λn+1 and µn+1 in

Pn+1(x)= (x + λn+1)Pn(x)−µn+1 Pn−1(x), n = 0, 1, 2, . . .

must necessarily be of the form

λn+1 = c1+ c2n and µn+1 = c3n+ c4n2, c1, . . . , c4 ∈ R,

with µn+1 > 0.

Interestingly enough, the parameters c1, . . . , c4 above are only in terms of the first
two nonunitary coefficients of t in A(t) and H(t) of (1-7), i.e., a1, a2, h2 and h3.
Furthermore, in regard to Sheffer’s analysis, we can readily write λn+1 and µn+1 in
Theorem 2.3 as in (1-10) and uniquely determine the parameters α, b, c and d .

Corollary 2.4. The parameters α, b, c and d in the Sheffer A-type 0 monic recursion
coefficients λn+1 and µn+1 of (1-10) are

α=a1−2h2, b=2h2, c=a2
1−2a2+2a1h2−8h2

2+6h3 and d=4h2
2−3h3.

3. The Sheffer A-type 0 orthogonal polynomials

In this section, we prove the following theorem, which relies on the analysis
conducted in Section 2:

Theorem 3.1. The following orthogonal polynomial sequences all necessarily
belong to the Sheffer A-type 0 class:

{(−1)nn!L(α)n (x)}, {2−n Hn(x)}, {(−a)nCn(x; a)},
{

cn(β)n

(c− 1)n
Mn(x;β, c)

}
,

{(2 sinφ)−nn!P (λ)n (x;φ)}, {(−N )n pn Kn(x; p, N )};

these are respectively the monic forms of the Laguerre, Hermite, Charlier, Meixner,
Meixner–Pollaczek and Krawtchouk polynomials, as defined in (1-15)–(1-20).
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Proof. We first substitute λn+1 and µn+1 as in (2-6) and (2-7), respectively, into
(1-9). We therefore see that every A-type 0 orthogonal set must necessarily satisfy
a monic three-term recurrence of the form

Pn+1(x)= [x + a1+ 2h2n]Pn(x)

−
[
(a2

1 − 2a2+ 2a1h2− 4h2
2+ 3h3)n+ (4h2

2− 3h3)n2]Pn−1(x). (3-1)

We now separately consider each of the monic three-term recurrence relations for
the Laguerre, Hermite, Charlier, Meixner, Meixner–Pollaczek and Krawtchouk
polynomials, and then uniquely determine the values that the parameters a1, a2, h2

and h3 must take in each case.

The Laguerre polynomials. The Laguerre polynomials satisfy a monic three-term
recurrence relation of the form

L
(α)
n+1(x)= (x − (α+ 1)− 2n)L (α)

n (x)− (αn+ n2)L
(α)
n−1(x), (3-2)

where

L (α)
n (x) := (−1)nn!L(α)n (x) (3-3)

with

L(α)n (x) :=
(α+ 1)n

n! 1 F1

(
−n
α+ 1

∣∣∣ x
)
.

Therefore, comparing (3-2) with (3-1), we see that

a1 =−(α+ 1), a2 =
1
2(α+ 1)(α+ 2), h2 =−1, h3 = 1. (3-4)

Thus,
{
(−1)nn!L(α)n (x)

}∞
n=0 is a Sheffer A-type 0 orthogonal set.

The Hermite polynomials. The monic recurrence relation for the Hermite polyno-
mials is

Hn+1(x)= xHn(x)− 1
2 nHn−1(x), (3-5)

where

Hn(x) := 2−n Hn(x) (3-6)

with

Hn(x) := 2nxn
2 F0

(
−n/2, (1− n)/2

−

∣∣∣− 1
x2

)
.

From comparing (3-5) with (3-1), we obtain

a1 = 0, a2 =−1/4, h2 = 0, h3 = 0. (3-7)

Thus, {2−n Hn(x)}∞n=0 is a Sheffer A-type 0 orthogonal set.
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The Charlier polynomials. The Charier polynomials satisfy a monic three-term
recurrence relation of the form

Cn+1(x)= (x − a− n)Cn(x)− anCn−1(x) (3-8)

where
Cn(x) := (−1)nanCn(x; a) (3-9)

with

Cn(x; a) := 2 F0

(
−n,−x
−

∣∣∣−1
a

)
.

Therefore, weighing (3-8) against (3-1), we see that

a1 =−a, a2 =
a2

2!
, h2 =−1/2, h3 = 1/3, (3-10)

and we conclude that {(−1)nanCn(x; a)}∞n=0 is a Sheffer A-type 0 orthogonal set.

The Meixner polynomials. The monic three-term recurrence relation for the Meix-
ner polynomials is

Mn+1(x)

=

(
x+

cβ
c−1
+

c+1
c−1

n
)

Mn(x)−
(
β−1
(c−1)2

cn+
c

(c−1)2
n2
)

Mn−1(x), (3-11)

where

Mn(x) := (β)n

(
c

c− 1

)nM

n
(x;β, c), (3-12)

with

Mn(x;β, c) := 2 F1

(
−n,−x
β

∣∣∣ 1−
1
c

)
.

Then, from comparing (3-11) with (3-1) we arrive at

a1 =
cβ

c− 1
, a2 =

c2β(β + 1)
2(c− 1)2

, h2 =
c+ 1

2(c− 1)
, h3 =

1+ c+ c2

3(c− 1)2
. (3-13)

Hence, we have shown that {cn(β)n/(c− 1)n Mn(x;β, c)}∞n=0 is a Sheffer A-type 0
orthogonal set.

The Meixner–Pollaczek polynomials. The Meixner–Pollaczek polynomials have
the monic three-term recurrence relation

Pn+1(x)=
(

x+
λ

tanφ
+

n
tanφ

)
Pn(x)−

(
2λ− 1

4 sin2 φ
n+

n2

4 sin2 φ

)
Pn−1(x), (3-14)

where

Pn(x) :=
n!

(2 sinφ)n
P (λ)n (x;φ), (3-15)



SHEFFER A-TYPE 0 ORTHOGONAL POLYNOMIAL SEQUENCES 51

with

P (λ)n (x;φ) :=
(2λ)n

n!
einφ

2 F1

(
−n, λ+ i x

2λ

∣∣∣1−e−2iφ
)
, λ>0 and φ ∈ (0, π).

After comparing (3-14) with (3-1), we obtain

a1 = λ cotφ, a2 =
4 cos2 φλ(λ+ 1)− 2λ

8 sin2 φ
,

h2 =
1
2

cotφ, h3 =
1
4

cot2 φ−
1
12
. (3-16)

Thus,
{
(2 sinφ)−nn!P (λ)n (x;φ)

}∞
n=0 is a Sheffer A-type 0 orthogonal set.

The Krawtchouk polynomials. The Krawtchouk polynomials have

Kn+1(x)= [x − pN + (2p− 1)n]Kn(x)

−[p(1− p)(N + 1)n− p(1− p)n2
]Kn−1(x) (3-17)

as a monic recurrence relation, where

Kn(x) := (−N )n pn Kn(x; p, N ) (3-18)

with

Kn(x; p, N ) := 2 F1

(
−n,−x
−N

∣∣∣ 1
p

)
, n = 0, 1, 2, . . . , N .

After equating the recursion coefficients in (3-17) with those in (3-1) it follows that

a1 =−N p, a2 =
1
2(N − 1)N p2, h2 = p− 1

2 , h3 = p2
− p+ 1

3 (3-19)

and therefore {(−N )n pn Kn(x; p, N )}∞n=0 is a Sheffer A-type 0 orthogonal set.
Hence, we have now established the theorem. �

4. Verification of parameters via generating function expansion

Here, we supplement the analysis of the previous two sections by implementing a
procedure for discovering the a1, a2, h2 and h3 parameters for each of the Sheffer
A-type 0 orthogonal polynomials obtained in Section 3 by using their corresponding
generating functions. This analysis yields explicit power series expansions for A(t)
and H(t) in (1-7) for each of the A-type 0 orthogonal sets.

The method used throughout this section is as follows. Momentarily, let us
assume that Pn(x) is a Sheffer A-type 0 orthogonal polynomial and pn(x) is its
corresponding monic form. Then notice via the proof of Theorem 3.1 that these
polynomials must be related in the following way

pn(x)= anbn Pn(x), (4-1)
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where b is a polynomial parameter, a function of a polynomial parameter, or a
constant and an is a sequence in n. Furthermore, let us assume that {Pn(x)}∞n=0 has
a linear generating function of the form∑

3

cn Pn(x)tn
= F(x, t).

Then, we uniquely determine dn such that andn = cn , multiply (4-1) by dntn and
sum over 3 to obtain∑

3

dn pn(x)tn
=

∑
3

cn Pn(x)(bt)n = F(x, bt). (4-2)

The relation (4-2) is a generating function for {pn(x)}∞n=0. Simply stated, we see
that it was achieved via the transformation t 7→ bt of the generating function for
{Pn(x)}∞n=0. After deriving a relation of the form (4-2), we then can determine
A(t) and H(t) and construct their Maclaurin series expansions, from which we can
deduce a1, a2, h2 and h3 and compare them accordingly with those of Section 3.

The Laguerre polynomials. Multiplying relation (3-3) by tn/n! and summing for
n = 0, 1, 2, . . . gives

∞∑
n=0

1
n!

L (α)
n (x)tn

=

∞∑
n=0

L(α)n (x)(−t)n = (1+ t)−(α+1) exp
(

xt
1+ t

)
via (1-15). This yields the following relations for A(t) and H(t):

A(t)= (1+ t)−(α+1)
=

∞∑
n=0

(−1)n(α+ 1)n
n!

tn

= 1− (α+ 1)t + 1
2(α+ 1)(α+ 2)t2

+ · · · ,

and

H(t)=
t

1+ t
=

∞∑
n=1

(−1)n+1tn
= t − t2

+ t3
+ · · · .

Thus, we see that a1, a2, h2 and h3 above correspond exactly with those in (3-4).

The Hermite polynomials. We multiply the relation (3-6) by tn/n!, sum for n =
0, 1, 2, . . . and then utilize (1-16) to obtain

∞∑
n=0

1
n!

Hn(x)tn
=

∞∑
n=0

1
n!

Hn(x)
( 1

2 t
)n
= exp

(
xt − 1

4 t2).
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Upon writing this relation in the form A(t)ex H(t), we see that
∞∑

n=0

1
n!

Hn(x)tn
= exp

(
−

1
4 t2) exp(xt),

which gives the following expressions for A(t) and H(t):

A(t)= exp
(
−

1
4 t2)
=

∞∑
n=0

(−1)nt2n

22nn!
= 1− 1

4 t2
+ · · · , H(t)= t.

Hence, we realize that a1, a2, h2 and h3 are exactly the same as those in (3-7).

The Charlier polynomials. By multiplying the relation (3-9) by tn/n!, summing
for n = 0, 1, 2, . . . and then using (1-17), we have

∞∑
n=0

1
n!

Cn(x; a)tn
=

∞∑
n=0

1
n!

Cn(x; a)(−at)n = e−at(1+ t)x .

We then put this result in the form A(t)ex H(t):
∞∑

n=0

1
n!

Cn(x; a)tn
= e−at ex ln(1+t),

which leads to the relations for A(t) and H(t)

A(t)= e−at
=

∞∑
n=0

(−a)ntn

n!
= 1− at +

a2

2!
t2
+ · · · ,

H(t)= ln(1+ t)=
∞∑

n=1

(−1)n+1tn

n
= t − 1

2 t2
+

1
3 t3
+ · · · ,

and we observe that a1, a2, h2 and h3 above are indiscernible from those in (3-10).

The Meixner polynomials. We multiply (3-12) by tn/n!, sum for n = 0, 1, 2, . . .
and then use (1-18), which gives

∞∑
n=0

1
n!

M (x;β, c)tn
=

∞∑
n=0

(β)n

n!
M(x;β, c)

(
ct

c− 1

)n

=

(
1−

t
c− 1

)x(
1−

ct
c− 1

)−(x+β)
.

Rewriting this result in the form A(t)ex H(t), we see that
∞∑

n=0

1
n!

M (x;β, c)tn
=
(
1− ct/(c− 1)

)−β exp
(

x ln
(

c− 1− t
c− 1− ct

))
,
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which in turn gives the following relations for A(t) and H(t):

A(t)=
(
1− ct/(c− 1)

)−β
=

∞∑
n=0

(β)ncn

n!(c− 1)n
tn
= 1+

cβ
c− 1

t +
c2β(β + 1)
2(c− 1)2

t2
+ · · · ,

H(t)= ln(c− 1− t)− ln(c− 1− ct)

=

∞∑
n=1

cn
− 1

n(c− 1)n
tn
= t +

c+ 1
2(c− 1)

t2
+

1+ c+ c2

3(c− 1)2
t3
+ · · · ,

and hence a1, a2, h2 and h3 are identical to those in (3-13).

The Meixner–Pollaczek polynomials. We multiply the relation (3-15) by tn/n!
and sum for n = 0, 1, 2, . . . We then use (1-19), and obtain

∞∑
n=0

1
n!

Pn(x;φ)tn

=

∞∑
n=0

Pn(x;φ)
(

t
2 sinφ

)n

=

(
1−

eiφt
2 sinφ

)−λ+i x(
1−

e−iφt
2 sinφ

)−λ−i x

.

Rewriting this result in the form A(t)ex H(t), we have

∞∑
n=0

1
n!

Pn(x; a)tn

=

[(
1−

eiφt
2 sinφ

)(
1−

e−iφt
2 sinφ

)]−λ
exp

[
x ln

((
1− eiφt/(2 sinφ)

1− e−iφt/(2 sinφ)

)i)]
,

which leads to A(t) and H(t) below:

A(t)=
[(

1−
eiφt

2 sinφ

)(
1−

e−iφt
2 sinφ

)]−λ
=

∞∑
n=0

[ n∑
k=0

(λ)k(λ)n−kei(n−2k)φ

2nk!(n− k)! sinn φ

]
tn

= 1+ λ cotφt +
(

4 cos2 φλ(λ+ 1)− 2λ

8 sin2 φ

)
t2
+ · · · ,

H(t)= i
[

ln(1− eiφt/(2 sinφ))− ln(1− e−iφt/(2 sinφ))
]

=

∞∑
n=1

sin(nφ)
2n−1n sinn φ

tn
= t + 1

2 cotφt2
+
( 1

4 cot2 φ− 1
12

)
t3
+ · · · ,

and the a1, a2, h2 and h3 above are the same as those in (3-16).
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The Krawtchouk polynomials. Finally, we multiply (3-18) by tn/n!, sum for n =
0, 1, 2, . . . , use the fact that

(−N )n
n!
=

(−1)n N !
n!(N − n)!

= (−1)nC(N , n),

and (1-20) in order to obtain
∞∑

n=0

1
n!

Kn(x; p, N )tn
=

∞∑
n=0

(−N )n pn

n!
Kn(x; p, N )tn

=

∞∑
n=0

C(N , n)Kn(x; p, N )(−pt)n

= (1+ (1− p)t)x(1− pt)N−x .

We write this result in the form A(t)ex H(t):
∞∑

n=0

1
n!

Kn(x; p, N )tn
= (1− pt)N exp

(
x ln

(
1+ (1− p)t

1− pt

))
.

Then, A(t) and H(t) are

A(t)= (1− pt)N
=

∞∑
n=0

(−N )n pn

n!
tn
= 1+−N pt +

1
2
(N − 1)N p2t2

+ · · · ,

H(t)= ln(1+ (1− p)t)− ln(1− pt)=
∞∑

n=1

(−1)n+1(1− p)n + pn

n
tn

= t +
(

p− 1
2

)
t2
+
(

p2
− p+ 1

3

)
t3
+ · · ·

and our a1, a2, h2 and h3 above correspond exactly to those in (3-19).

5. A proof for sufficiency: the “inverse method”

We have thus far established necessary conditions for the A-type 0 recursion co-
efficients (2-6) and (2-7). We next show that these conditions are also sufficient
and thus achieve a complete characterization of all of the A-type 0 orthogonal sets.
Namely, we prove that given (3-1), (1-6) must follow. We call our approach the
“inverse method”, which is a procedure for obtaining a linear generating function
from a three-term recurrence relation and therefore reverses the analysis conducted
in Sections 2 and 3. The method is as follows.

Assume {Pn(x)}∞n=0 is a polynomial set that satisfies a three-term recurrence
relation of the form (1-4). We first multiply this relation by cntn , where cn is a
certain function in n that is independent of x and t , and sum for n = 0, 1, 2, . . . .
Then, from the assignment F(t; x) :=

∑
∞

n=0 cn Pn(x)tn , we obtain a first-order
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differential equation in t , with x regarded as a parameter. The initial condition
for this equation is F(0; x)= 1, via the initial condition P0(x)= 1 in (1-4). The
existence and uniqueness of the solution to this differential equation are guaranteed,
and the solution will be a generating function for the set {Pn(x)}∞n=0.

We now apply the inverse method to each of the unrestricted three-term recurrence
relations of our A-type 0 orthogonal sets — as a byproduct, additional fundamental
characterizations (differential equations) are obtained for our generating functions
(1-15)–(1-20). To derive each of these relations, we first substitute (1-10) into (1-9),
which leads to

Pn+1(x)= x Pn(x)+ (α+ b+ bn)Pn(x)− ((c+ d)n+ dn2)Pn−1(x).

Here, we use (1-10) as opposed to (2-6) and (2-7) for ease of notation. Now define
Pn(x) := en Qn(x), and note that our relation directly above becomes

en+1 Qn+1(x)= xen Qn(x)+ (α+ b+ bn)en Qn(x)− ((c+ d)n+ dn2)en−1 Qn−1.

Taking en := n! and dividing both sides by n!, we have

(n+ 1)Qn+1(x)= x Qn(x)+ (α+ b+ bn)Qn(x)− (c+ d + dn)Qn−1(x), (5-1)

which is the unrestricted three-term recurrence relation for the Sheffer A-type 0
orthogonal polynomials. We apply Corollary 2.4 accordingly to determine the
recurrence coefficients for each case.

We begin by writing out the rigorous details for the Laguerre case. For the
subsequent cases, we outline only the salient details. In these cases, we first display
the unrestricted three-term recurrence relation, which we henceforth call UTTRR.
Then, we display the cn and the corresponding definition of F . Finally, we write
the resulting differential equation (labeled DE) and its unique solution, which will
be the corresponding Sheffer A-type 0 generating function.

The Laguerre polynomials. Using (3-4), Corollary 2.4 and (5-1), we obtain

(n+ 1)L(α)n+1(x)− (2n+α+ 1− x)L(α)n (x)+ (n+α)L(α)n−1(x)= 0.

We next multiply both sides of this relation by tn (cn≡1) and sum for n=0, 1, 2, . . . ,
which yields

∞∑
n=0

(n+ 1)L(α)n+1(x)t
n
− 2

∞∑
n=1

nL(α)n (x)tn
− (α+ 1− x)

∞∑
n=0

L(α)n (x)tn

+

∞∑
n=1

nL(α)n−1(x)t
n
+α

∞∑
n=0

L(α)n−1(x)t
n
= 0. (5-2)
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We next assign F := F(t; x) :=
∑
∞

n=0 L(α)n (x)tn , accounting for the fact that
Ḟ(t; x)=

∑
∞

n=1 nL(α)n (x)tn−1 by Ḟ := (∂/∂t)F(t; x). Recalling that L(α)
−1(x)= 0

from (1-4), we see that (5-2) becomes

Ḟ − 2t Ḟ − (α+ 1− x)F +
∞∑

n=2

nL(α)n−1(x)t
n
+αt F = 0 (5-3)

and also observe that

∞∑
n=1

nL(α)n−1(x)t
n
=

∞∑
n=2

(n− 1)L(α)n−1(x)t
n
+

∞∑
n=1

L(α)n−1(x)t
n
= t2 Ḟ + t F.

Then, we can put (5-3) in standard form:

Ḟ +
[

x + (α+ 1)(t − 1)
1− 2t + t2

]
F = 0; F(0; x)= 1. (5-4)

The integrating factor in (5-4) turns out to be

µ= exp
[∫

x + (α+ 1)(t − 1)
1− 2t + t2 dt

]
and, through partial fraction decomposition, we attain the general solution

F(t; x)= c(x, α)(t − 1)−(α+1) exp
(

x
t − 1

)
.

Therefore, using our initial condition in (5-4) to determine c(x, α), we establish
the solution

F(t; x)=
∞∑

n=0

L(α)n (x)tn
= (t − 1)−(α+1) exp

(
xt

t − 1

)
, (5-5)

which is the Sheffer A-type 0 generating function for the Laguerre polynomials.

The Hermite polynomials.

UTTRR: Hn+1(x)= 2x Hn(x)− 2nHn−1(x)
cn: 1/n!
F : F(t; x) :=

∑
∞

n=0 (1/n!)Hn(x)tn

DE: Ḟ − 2(x − t)F = 0; F(0; x)= 1
Solution: F(t; x)=

∑
∞

n=0 (1/n!)Hn(x)tn
= exp(2xt − t2)
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The Charlier polynomials.

UTTRR: −xCn(x; a)= aCn+1(x; a)− (n+ a)Cn(x; a)+ nCn−1(x; a)
cn: 1/n!
F : F(t; x, a) :=

∑
∞

n=0 (1/n!)Cn(x; a)tn

DE: Ḟ − (1+ x/(t − a))F = 0; F(0; x, a)= 1
Solution: F(t; x, a)=

∑
∞

n=0 (1/n!)Cn(x; a)tn
= et(1− t/a)x

The Meixner polynomials.

UTTRR: (c−1)x Mn(x;β, c)=
c(β+n)Mn+1(x;β, c)−[n+c(β+n)]Mn(x;β, c)+nMn−1(x;β, c)

cn: (β)n1/n!

F : F(t; x, β, c) :=
∑
∞

n=0(β)n/(n!)Mn(x, β, c)tn

DE: Ḟ +
(
(c−1)x+(c−t)β
(1+c−t)t−c

)
F = 0; F(0; x, β, c)= 1

Solution: F(t; x, β, c)= (1− t/c)x(1− t)−(x+β)

Remark 5.1. For establishing this differential equation, we made use of the identity
(β)n = (β)n−1(β + n− 1).

The Meixner–Pollaczek polynomials.

UTTRR: (n+ 1)P (λ)n+1(x;φ)− 2[x sinφ+ (n+ λ) cosφ]P (λ)n (x;φ)
+ (n+ 2λ− 1)P (λ)n−1(x;φ)= 0

cn: 1

F : F(t; x, λ, φ) :=
∑
∞

n=0 P (λ)n (x;φ)tn

DE: Ḟ + 2
(
λ(t−cosφ)−x sinφ

1−2 cosφt+t2

)
F = 0; F(0; x, λ, φ)= 1

Solution: F(t; x, λ, φ)=
∑
∞

n=0 P (λ)n (x;φ)tn
= (1−eiφt)−λ+i x(1−e−iφt)−λ−i x

The Krawtchouk polynomials.

UTTRR: −x Kn(x; P, N )= p(N − n)Kn+1(x; P, N )
− [p(N − n)+ n(1− p)]Kn(x; P, N )+ n(1− p)Kn−1(x; P, N )

cn:
(N

n

)
F : F(t; x, p, N ) :=

∑N
n=0

(N
n

)
Kn(x, p, N )tn

DE: Ḟ +
( x/(p+tp−t)−N

1+t

)
F = 0; F(0; x, p, N )= 1

Solution: F(t; x, p, N )=
∑N

n=0
(N

n

)
Kn(x, p, N )tn

= (1− ((1− p)/p)t)x(1+ t)N−x

We now have the following statement:
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Theorem 5.2. Given the monic recursion coefficients corresponding to each of
the A-type 0 orthogonal sets of Laguerre, Hermite, Charlier, Meixner, Meixner–
Pollaczek and Krawtchouk, there exists a generating function of the form (1-6).

Hence, Theorem 2.3 in conjunction with Theorem 5.2 establishes the following
culminating statement:

Theorem 5.3. A necessary and sufficient condition for {Pn(x)}∞n=0 to be a Sheffer
A-type 0 orthogonal set is that the monic recursion coefficients λn+1 and µn+1, as
respectively in (2-6) and (2-7), have the form

λn+1 = c1+ c2n and µn+1 = c3n+ c4n2, c1, . . . , c4 ∈ R,

with µn+1 > 0.

Finally, we mention that this paper solves Problem 1 in Section 3.9 of [Galiffa
2013].
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