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There are a number of measures of degrees of similarity between rooted binary
trees. Many of these ignore sections of the trees which are in complete agreement.
We use computational experiments to investigate the statistical characteristics of
such a measure of tree similarity for ordered, rooted, binary trees. We generate
the trees used in the experiments iteratively, using the Yule process modeled upon
speciation.

1. Introduction

Rooted binary trees arise in a wide range of settings, from biological evolutionary
trees to efficient structures for searching datasets. There are a number of measures
of tree similarity which arise in these settings. Here we investigate a measure which
is relevant for ordered, rooted, binary trees of the same size. Examples of trees
satisfying such conditions include some binary search trees. Our approach is to
consider pairs of such trees of increasing size n, selected via a random process, and
investigate the degree of commonality given by a natural measure of the degree to
which they agree completely on peripheral subtrees. Using experimental evidence,
we find that the degree of commonality appears to grown linearly with tree size,
and we estimate the average behavior.

There are a number of processes for selecting trees randomly. One method
that is commonly studied is the uniform distribution on trees, where each tree is
equally likely to be selected. Some properties of the reduction behavior of trees
selected uniformly at random have been investigated by Cleary, Elder, Rechnitzer
and Taback [Cleary et al. 2010] while studying statistical properties of Thompson’s
group F , showing that a tree pair selected from the uniform distribution on tree pairs
is almost surely unreduced in the sense described below. The common subtrees
investigated here via reduction are a particular case of common edges, where in the
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common edge case the collections of common edges need not be peripheral. That
is, in the more general case they need not include the complete subtree, extending
to the leaves. For common edges of all types, the average number of common edges
with respect to the uniform selection of trees at random case has been examined
experimentally by Chu and Cleary [2013] and asymptotically by Cleary, Rechnitzer
and Wong [Cleary et al. 2013]. Asymptotically, the expected number of reductions
of a tree pair selected uniformly at random is

16− 5π
π

n+
7π − 20
π

+ O
(

log n
n

)
,

for reductions of a more general type, which is about

0.092958n+ 0.633802+ O
(

log n
n

)
.

The experimental results in [Chu and Cleary 2013] show quick convergence to the
dominant linear term of 0.092958n. For the particular subtree peripheral reductions
(that is, subtree reductions) considered here, a similar generating function analysis
gives the asymptotic number of trees as (7− 4

√
3)n, which is about 0.0717968n

when tree pairs are selected uniformly at random. So on average more than three
quarters of the expected common edges lie in expected common peripheral subtrees.

Here, instead of considering trees selected uniformly at random, we study a
process for generating trees at random motivated by biological questions, called
the Yule process [Yule 1925; Harding 1971], also known as uniform speciation. A
tree is grown iteratively from the root. At each step, a leaf is selected uniformly at
random from the leaves present at that stage, and a new sibling pair is attached at
that leaf, and then the process is iterated until we have a tree with the appropriate
number of leaves. Such a distribution of trees also can arise from a variety of
insertion scenarios in tree-structured data.

The distribution of the number of sibling pairs (“cherries”) of unordered trees
was investigated by McKenzie and Steel [2000] for both the uniform and Yule tree
distributions — asymptotically, there are n/3 expected sibling pairs for the Yule
distribution and n/4 for the uniform distribution. Here we find experimentally that
the expected number of subtree reductions is also larger for the Yule distribution
than the uniform distribution, with almost 13% expected subtree reduction compared
to the expected reduction of about 7% in the uniform case.

2. Background and definitions

We consider rooted binary trees on n leaves with a natural left-to-right order on
leaves, numbered from 1 to n. The internal nodes of the trees we refer to as nodes
and the external nodes we refer to as leaves. Two children of the same node which
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are leaves form a sibling pair and their leaf numbers are necessarily of the form i
and i + 1 for some i .

A tree pair (S, T ) is reduced if there are no sibling pairs with leaves numbered i
and i+1 in S which have a corresponding sibling pair i and i+1 as leaves in T . An
elementary reduction for a tree pair (S, T ) with n leaves with a common sibling pair
(i, i+1) is a tree pair (S′, T ′) with n−1 leaves, where the common sibling pair has
been removed in both S and T and the leaves have been appropriately renumbered.
A reduction of a tree pair diagram is a sequence of elementary reductions. There
may be many possible elementary reductions for an unreduced tree pair and thus
many possible reductions, but for a given tree pair (S, T ), there is a unique reduced
tree pair (S′′, T ′′) which is itself a reduction of (S, T ) and which has the property
that any possible sequence of reductions from (S, T ) will terminate in that reduced
tree pair. An example of tree pair reduction is given in Figure 1.

The subtrees that are eliminated during the reduction process for a tree pair
(S, T ) are portions of the tree in which S and T agree completely. There are a
number of metrics on spaces of trees of interest, coming from biological questions,
database efficiency questions and more abstract approaches. For all of the standard
metrics on spaces of trees with an order on the leaves, the parts of the trees which
are in complete agreement do not contribute to the distance. That is, if a tree pair
(S, T ) reduces to a tree pair (S′, T ′), the distance of interest between S and T
is the same as the distance between S′ and T ′. The fact that the trees S′ and T ′

may be considerably smaller is of good use, particularly for distances which are

Figure 1. An unreduced tree pair and its reduction to a reduced tree
pair. The top unreduced tree pair has a common subtree containing
the sibling pair of nodes 1 and 3 in both trees, shown in red, which
is then removed and the nodes renumbered, resulting in the lower
tree pair which is reduced.
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difficult to compute. Given that the best known algorithm for rotation distance
is of exponential running time, and that many tree metrics of biological interest
are proven to be of class NP, even a marginal reduction in the sizes of trees under
consideration is worthwhile. This analysis is an effort to understand the degree to
which such reductions typically reduce the size of tree pairs.

We generate trees using the Yule or speciation method as follows. We begin with
a single node with two leaves, and then randomly select from the leaves and replace
that leaf with a node with its own two leaves, renumbering the leaves as needed.
We then choose randomly from the three current leaves, replacing that chosen leaf
with a node and two leaves, and continue enlarging the tree in this process until it
is the desired size.

As shown in Figure 2, there may be more than one way to generate a given tree
using the Yule process. The process is generally more likely to generate balanced
trees than stringy ones, so the distribution on trees is different than that for the
uniform random selection of trees, as described in [Harding 1971]. This is also
related to the difference in expected number of sibling pairs described in [McKenzie
and Steel 2000].

Figure 2. Some trees can be generated in several ways via the
Yule process, such as this balanced tree with four leaves which can
be generated in two ways. Every other tree with four leaves can be
generated in just one way, resulting in a nonuniform distribution
of random tree selection.
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3. Experiments and conclusions

We constructed programs in C to create tree pairs of a specified size and count
the reductions, iterating to obtain average values. Tree pairs with trees ranging
from size 100 to 29,000 were generated and the total size of common subtrees was
calculated and recorded for each pair generated, with the results summarized in
Table 1. Generally, there were around 1000 tree pairs of each size generated and
analyzed, sufficient to give small error bars in the analysis. The average reductions
grew linearly, with about 12.8% average reduction in size, significantly more than
the corresponding value of about 7.1% in the corresponding case for trees generated
uniformly at random. As indicated in Figures 3 and 4, the relationship appears to be

Tree size range Average total subtree reduction σ subtree reduction

100– 2000 0.12846 0.013829
2001– 8000 0.12781 0.006034
8001–15000 0.12775 0.003462

15001–29000 0.12773 0.002402

Table 1. Average total size of common subtrees and corresponding
sample standard deviations.
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Figure 3. The average number of reductions grows linearly with
tree size, with tight error bars from the sample sizes used over this
range. The slope of the line of best fit is about 0.127. Error bars
indicate 3 standard deviations from the sample averages.
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Figure 4. The average fraction of the tree pairs which are elim-
inated in the reduction process is close to 0.127, over the range
shown. Error bars indicate 3 standard deviations from the sample
averages.

linear, and a linear regression to the data gives an excellent fit with r2 value of within
one-millionth of 1. The line of best fit for the experimental data is 0.1277n+0.268.

What we find is that the fraction of the trees which reduce appears larger for the
Yule distribution than for the uniform distribution.
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119An Erdős–Ko–Rado theorem for subset partitions
ADAM DYCK AND KAREN MEAGHER

129Nonreal zero decreasing operators related to orthogonal polynomials
ANDRE BUNTON, NICOLE JACOBS, SAMANTHA JENKINS, CHARLES
MCKENRY JR., ANDRZEJ PIOTROWSKI AND LOUIS SCOTT

147Path cover number, maximum nullity, and zero forcing number of oriented graphs
and other simple digraphs

ADAM BERLINER, CORA BROWN, JOSHUA CARLSON, NATHANAEL COX,
LESLIE HOGBEN, JASON HU, KATRINA JACOBS, KATHRYN MANTERNACH,
TRAVIS PETERS, NATHAN WARNBERG AND MICHAEL YOUNG

169Braid computations for the crossing number of Klein links
MICHAEL BUSH, DANIELLE SHEPHERD, JOSEPH SMITH, SARAH
SMITH-POLDERMAN, JENNIFER BOWEN AND JOHN RAMSAY

involve
2015

vol.8,
no.1

http://dx.doi.org/10.2140/involve.2015.8.1
http://dx.doi.org/10.2140/involve.2015.8.25
http://dx.doi.org/10.2140/involve.2015.8.33
http://dx.doi.org/10.2140/involve.2015.8.39
http://dx.doi.org/10.2140/involve.2015.8.39
http://dx.doi.org/10.2140/involve.2015.8.71
http://dx.doi.org/10.2140/involve.2015.8.75
http://dx.doi.org/10.2140/involve.2015.8.87
http://dx.doi.org/10.2140/involve.2015.8.99
http://dx.doi.org/10.2140/involve.2015.8.119
http://dx.doi.org/10.2140/involve.2015.8.129
http://dx.doi.org/10.2140/involve.2015.8.147
http://dx.doi.org/10.2140/involve.2015.8.147
http://dx.doi.org/10.2140/involve.2015.8.169

	1. Introduction
	2. Background and definitions
	3. Experiments and conclusions
	References
	
	

