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We study the growth of finitely presented two-generator monomial algebras. In
particular, we seek to improve an upper bound found by the last author. Our search
lead us to a connection to de Bruijn graphs and a drastically improved bound.

The growth of algebras has been long studied by algebraists; it goes hand-in-hand
with the Gelfand–Kirillov dimension of algebras. An excellent source is [Krause
and Lenagan 2000]. Throughout this paper F denotes a field and 0 ∈ N. We focus
our work on the growth of algebras of the form F〈x, y〉/I , where I is an ideal of
the free algebra F〈x, y〉 generated by finitely many monomials. Such an algebra is
called a finitely presented two-generator monomial algebra. It is customary to refer
to monomials as words. Let A be one of these algebras. We consider the set B of all
words in x and y that do not have any of the words in the generators for I as factors
or subwords. It is standard to show that the image of B is a basis for A. Instead of
referring to images of words, we will view the multiplication on A as follows. For
any words u and v in B, uv is simply uv if uv has no generator of I as a subword,
and uv = 0 otherwise. We define the length of a word to be the number of letters in
it, counting repetitions. Now we can define a function g :N→N by setting g(n) to
be the number of words in B of length at most n. This function g is called a growth
function for A and the growth of A is essentially the type of function g is, such as a
polynomial of some degree or an exponential. Let’s consider a couple of examples.

Example 1 (Determine a growth function for A = F〈x, y〉, the free algebra in two
variables). Then the set B consists of all of the words in x and y, such as 1 (the
word of length zero), x , y, x2, xy, yx , and y2. Now, given an n ∈ N, we see that
there are two choices for each of the n letters in a word of length n, and so there
are 2n words of length n in B. Thus g(n)=

∑n
i=0 2i

= 2n+1
− 1. In this case the

growth of A is exponential.
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Example 2 (Determine a growth function for A = F〈x, y〉/(xy)). Now B consists
of all of the words in x and y that do not have xy as a subword. A few of them are
1, x , y, x2, yx , and y2. Since xy is a subword of x2 y, x2 y 6∈B. Let n ∈ N. Since
no word having xy as a subword is in B, the words of length n in B are of the form
yk xn−k for k = 0, 1, . . . , n. We see that there are n+ 1 of these and thus

g(n)=
n∑

i=0

(i + 1)=
n2
+ 3n+ 2

2
.

The growth function is a quadratic polynomial, so we say that A has quadratic
growth.

These two examples were fairly straightforward as there were very few generators
for the ideals. We can only imagine how complicated the counting could get when
there are several generators. It could easily become a combinatorial nightmare.
However we were fortunate that Ufnarovskiı̆ [1982] came up a very nice way to
overcome this. He considered the cycle structure of a particular directed graph,
which is constructed as follows. Consider one of our algebras, with d + 1 being
the maximum length of the words that generate the ideal, where d ≥ 2. The set of
vertices of the directed graph is the set of all words in x and y of length d in B.
We draw an arrow from a vertex u to a vertex v provided ua = bv ∈ B, where
a, b ∈ {x, y}. This graph is called the overlap graph for A and will be denoted 0A.

Example 3 (Construct 0A for A = F〈x, y〉/I where I = (yx2, y2x, xyx, yxy)).
Since the maximum length of generators for I is 3, d = 2. Since all of the generators
for I have length 3, the vertices for 0A are the words in B of length 2: x2, y2, xy, yx .
Notice that the words in B of length 3 are x3, y3, x2 y, and xy2. Here is 0A:

xy

""
x2

<<

66 y2
hh

yx

We have an arrow from x2 to x2 because x3
∈B and x3

= (x2)x = x(x2). Also we
have an arrow from x2 to xy as x2 y ∈B and x2 y = (x2)y = x(xy). Even though
(y2)x = y(yx), there is no arrow from y2 to yx , as y2x 6∈B.

The following theorem yields the connection between the overlap graph and the
growth of the algebra.

Theorem 4 [Ufnarovskiı̆ 1982]. Let A= F〈x, y〉/I , where I is generated by finitely
many monomials of maximum length d+1 for some d ≥ 2, and let 0A be the overlap
graph for A. Then:
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(1) There is a one-to-one correspondence between words in B of length d + j and
paths in 0A of length j for each j ∈ N. (We define the length of a path to be
the number of arrows in it, counting repetitions).

(2) If 0A has two intersecting cycles, then the growth of A is exponential.

(3) If 0A has no intersecting cycles, then the growth of A is polynomial of degree
s, where s is the maximal number of distinct cycles on a path in 0A.

Referring to Example 3 above, we see that 0A has no intersecting cycles, but
does have two distinct cycles on a path. So its growth is degree two, or quadratic,
as we have already seen. Given d ≥ 2 in Theorem 4, we wish to determine the
highest-possible-degree polynomial that bounds the growth for A. In [Ellingsen Jr.
1993] it was shown that 2d

− d + 1 is an upper bound for this degree.
Now we come to the connection to de Bruijn graphs. We are very grateful to

Dr. Jo Ellis-Monaghan of St. Michael’s College in Vermont for making us aware
of them. It turns out that the overlap graphs for our algebras can be considered as
subgraphs of de Bruijn graphs, with the only difference being that de Bruijn used
0 and 1 instead of x and y. For a given d ≥ 2, the vertices of the de Bruijn graph
Bd are all of the binary d-tuples, and there is an arrow from the binary d-tuple
u = u1u2 · · · ud to the binary d-tuple v = v1v2 · · · vd if and only if u2u3 · · · ud =

v1v2 · · · vd−1, that is, u1u2 · · · udvd = u1v1v2 · · · vd . Replacing 0 and 1 with x and
y yields the overlap graph using all the words in x and y of length d with all possible
arrows. After some online searching, the student authors found that much work
has been done on de Bruijn graphs, the most remarkable of which is the following
theorem proven by Mykkeltveit [1972], but originally conjectured by Golomb.

Theorem 5. For any d ≥ 2, the maximum number of simultaneous disjoint cycles
in Bd is Z(d)= (1/d)

∑
k|d φ(k)2

d/k , where φ is Euler’s phi function.

Our main theorem follows.

Theorem 6. Let d ≥ 2 and let I be an ideal of F〈x, y〉 generated by finitely many
words of maximum length d+1. If the growth function for A= F〈x, y〉/I is not expo-
nential, then the maximum possible polynomial degree for the growth of A is Z(d).

Proof. Let d ≥ 2, let I be an ideal of F〈x, y〉 generated by finitely many words of
maximum length d+ 1 and let A = F〈x, y〉/I . Assume that the growth of A is not
exponential. Let 0 be the overlap graph for the words of length d with all possible
arrows and 0A the overlap graph for A. By the previous theorem we know that there
are at most Z(d) disjoint cycles in Bd , which is identical to 0. Thus there can be
at most Z(d) distinct cycles on any path in 0. Since 0A is a subgraph of 0, Z(d) is
also the maximum possible number of distinct cycles in 0A. Hence by Ufnarovskiı̆’s
theorem the maximum possible polynomial degree for the growth of A is Z(d). �

The following table illustrates the drastic improvement of the new upper bound:
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d 2d
− d + 1 Z(d)

2 3 3
3 6 4
4 13 6
5 28 8
6 59 14
7 122 20
8 249 36
9 504 60

We have found explicitly that this bound is sharp for d ∈{2, 3, 4, 5, 6, 7} [Flores et al.
2009; Hunt 2002], and are working on the conjecture that is it sharp for all d ≥ 2.
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