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Zero-divisor graphs have given some interesting insights into the behavior of
commutative rings. Redmond introduced a generalization of the zero-divisor
graph called an ideal-divisor graph. This paper expands on Redmond’s findings
in an attempt to find additional information about the structure of commutative
rings from ideal-divisor graphs.

1. Definitions and introduction

Throughout, we assume that R is a finite commutative ring with identity, though
in some instances the proofs given can be extended to more general rings. A zero-
divisor in R is an element x such that there exists a nonzero y ∈ R with xy= 0. The
set of all zero-divisors in R is denoted by Z(R). The set of all nonzero zero-divisors
is denoted by Z(R)∗.

A graph G is defined by a vertex set V (G) and an edge set

E(G)⊆ {{a, b} | a, b ∈ V (G)}.

Two vertices x and y joined by an edge are said to be adjacent, denoted x − y. A
vertex x is said to be looped if x − x . A path between two elements a1, an ∈ V (G)
is an ordered sequence {a1, a2, . . . , an} of distinct vertices of G such that ai−1−ai

for all 1< i ≤ n. If there exists a path between any two distinct vertices, then the
graph is said to be connected. A graph is said to be complete if every vertex is
adjacent to every other vertex, and we denote the complete graph on n vertices
by K n . A graph G is a finite graph if V (G) is a finite set.

If the vertices of a graph G can be partitioned into two sets with vertices adjacent
only if they are in distinct sets, then G is bipartite. If vertices in a bipartite graph
are adjacent if and only if they are in distinct vertex sets, then the graph is called
complete bipartite. We will denote the complete bipartite graph with distinct vertex
sets of cardinalities m and n by K m,n . A star graph is a complete bipartite graph
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such that one of its vertex sets has cardinality one. In general, we say a graph G is
a refinement of a graph H if V (G)= V (H) and E(H)⊆ E(G). We note that any
graph of radius one is a refinement of a star graph.

For any other terms not defined here, see [Chartrand 1985] for a graph theory
reference, and see [Herstein 1990] for a ring theory reference. The figures in this
paper were generated by Mathematica using programs originally written by Brendan
Kelly, Darrin Weber, and Elisabeth Wilson and modified to suit our needs.

Beck [1988] was the first to define the zero-divisor graph of a commutative ring.
However, it was in the seminal paper [Anderson and Livingston 1999] that the
structure was first used extensively to reveal ring-theoretic properties. In this paper,
the zero-divisor graph of R, denoted 0(R), is the simple graph with vertex set
V (0(R))= Z(R)∗ and edge set

E(0(R))= {{a, b} | a, b ∈ V (0(R)), ab = 0 and a 6= b}.

Redmond [2003] introduced ideal-divisor graphs, a generalization of zero-divisor
graphs. For I an ideal of R, an element x ∈ R is an ideal-divisor if there exists some
y ∈ R\ I such that xy ∈ I . The set of ideal-divisors of R with respect to I is denoted
Z I (R). The ideal-divisor graph of a R with respect to an ideal I , denoted 0I (R),
is the simple graph with vertex set V (0I (R))= Z I (R)∗ and edge set

E(0I (R))= {{x, y} | x, y ∈ V (0I (R)), x 6= y and xy ∈ I }.

Redmond [2003] proved that if I is an ideal of R, then 0I (R) is connected
with diam(0I (R)) ≤ 3. He proved further that if 0I (R) contains a cycle, then
g(0I (R))≤ 7, and he developed an algorithm for constructing the graph of 0I (R)
from 0(R/I ).

Redmond, like Anderson and Livingston, did not include looped vertices in his
definition of the ideal-divisor graph. The following definitions have therefore been
modified to include looped vertices. The zero-divisor graph of R (denoted 0(R))
has vertex set V (0(R))= Z(R)∗ and edge set

E(0(R))= {{a, b} | a, b ∈ V (0(R)) and ab = 0}.

The ideal-divisor graph of R with respect to an ideal I , denoted 0I (R), has vertex
set V (0I (R))= Z I (R)∗ and edge set

E(0I (R))= {{x, y} | x, y ∈ V (0I (R)) and xy ∈ I }.

These modified definitions allow a vertex b in 0(R) or 0I (R) to be adjacent to
itself if and only if b2

= 0 or b2
∈ I for each graph, respectively.

In Sections 2 and 3, we expand upon Redmond’s results by examining the
structure of 0I (R). We also consider the relationships between 0I (R) and 0(R/I ).
In particular, we establish conditions for 0I (R) to be finite, demonstrate several
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relationships between the cut-sets of 0(R/I ) and 0I (R), and prove a result on
the connectivity of 0I (R). In Section 4, we modify and prove a modification of
a proposition presented in [Redmond 2003]. A brief discussion at the end of this
paper examines the structure of 0I (R) when I is a radical, primary, or weakly
prime ideal.

The following results are included for reference. Although these results were
proven for graphs without loops, it is straightforward to check that they still hold
when the graphs are looped.

Theorem 1.1 [Redmond 2003, Theorem 2.5]. Let I be an ideal of R, and let
x, y ∈ R \ I . Then:

(1) If x + I is adjacent to y+ I in 0(R/I ), then x is adjacent to y in 0I (R).

(2) If x is adjacent to y in 0I (R) and x + I 6= y + I , then x + I is adjacent to
y+ I in 0(R/I ).

(3) If x is adjacent to y in 0I (R) and x + I = y+ I , then x2, y2
∈ I .

Corollary 1.2 [Redmond 2003, Corollary 2.6]. If x and y are (distinct) adjacent
vertices in 0I (R), then all (distinct) elements of x + I and y + I are adjacent in
0I (R). If x2

∈ I , then all the distinct elements of x + I are adjacent in 0I (R).

2. Structure of 0I (R)

In this section, we investigate the relationship between 0I (R) and 0(R/I ), and
provide some results about the general structure of 0I (R).

A few definitions are needed for clarification in this section. Elements of the
vertex set of 0I (R) which are elements of the same coset in R/I form a column
in 0I (R) [Redmond 2003, Theorem 2.9]. Corollary 1.2 gives that if a vertex
a + I is looped (i.e., (a + I )2 = 0+ I ) in 0(R/I ), then all the vertices in the
corresponding column of 0I (R) are adjacent to one another. Finally, the ideal
annihilator of an element a ∈ R \ I with respect to some ideal I is the set (I : a)=
{b | ab ∈ I and b ∈ R \ I }.

Proposition 2.1. Let I be an ideal of R. If (a+ I ) and (b+ I ) are distinct vertices
in 0(R/I ) with (a + I )− (b+ I ), then the columns corresponding to a + I and
b+ I , taken as a pair, form a subgraph that is a refinement of a complete bipartite
graph in 0I (R). Moreover, for any a+ i ∈ V (0I (R)), |(I : a+ i)| is equal to k|I |
for some k ∈ N.

Proof. This result follows directly from Theorem 1.1. �

Example 2.2. In Figure 1, each adjacent pair of columns of0(8)(Z24) is a refinement
of a complete bipartite graph.
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Figure 1. 0(8)(Z24).

Theorem 2.3. Let S be a commutative ring. Then 0I (S) is finite if and only if either
S is a finite ring or I is a prime ideal. In particular, if 1≤ |0I (S)|<∞, then S is
a finite ring and I is not a prime ideal.

Proof. (⇒) If I is prime, then 0I (S)=∅. So, assume I is not prime.

(1) If I is infinite, then by [Redmond 2003, Corollary 2.7], 0I (S) is infinite.

(2) If I is finite and S is infinite, then S/I is infinite and not an integral domain, so
0(S/I ) is infinite (see [Ganesan 1964]). By [Redmond 2003, Theorem 2.5], since
0(S/I ) is isomorphic to a subgraph of 0I (S), 0I (S) is also infinite.

(⇐) Clear. �

3. Cut-sets and connectivity

In a connected graph, a cut-vertex is a vertex that, when it and any edges incident
to it are removed, separates the graph into two or more connected components.
Cut-vertices were introduced into the analysis of zero-divisor graphs in [Axtell
et al. 2009] and were further studied in [Axtell et al. 2011]. In [Redmond 2003,
Theorem 3.2], Redmond proved that 0I (R) contains no cut-vertices whenever I
is a nonzero proper ideal of R. Cut-sets, a generalization of the cut-vertex, were
also introduced into the analysis of zero-divisor graphs in [Coté et al. 2011]. For a
connected graph G, a subset A ⊂ V (G) is a cut-set if there exist c, d ∈ V (G) \ A
such that every path from c to d contains at least one vertex from A, and no proper
subset of A satisfies the same condition. It is easy to show that for a given nonempty
set of vertices A, the existence of such c and d is equivalent to the existence of two
subgraphs X and Y of G whose (vertexwise and edgewise) union equals G, and
whose vertex sets satisfy V (X)∩ V (Y ) = A, V (X) \ A 6= ∅, and V (Y ) \ A 6= ∅.
When this happens we say that A separates X and Y .
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Figure 2. 0(Z12), using Anderson and Livingston’s definition.

Figure 3. 0(12)(Z24).

Theorem 3.1. Let I be an ideal of R. If A is a cut-set in 0I (R), then A is a column
or a union of columns.

Proof. Assume A is a cut-set of 0I (R). Let x, y ∈ V (0I (R))\ A. Let x−· · ·−a+
i − · · ·− y be a path from x to y, where a+ i ∈ A. Since x − · · ·− a+ i − · · ·− y
is also a path from x to y for all i ∈ I , we must have a+ I ⊆ A. �

As an example, let R = Z24 and let I = (12). Since R/I ∼= Z12, we can identify
0(R/I ) with Figure 2. We notice that the vertices 4 and 8 form a cut-set. Likewise,
looking at Figure 3, in 0(12)(Z24) the set {4, 8, 16, 20} is a cut-set. We note that in
this figure 4 and 16 form the column associated with 4+ (12), while 8 and 20 form
the column associated with 8+ (12).

Theorem 3.2. If A is a cut-set in 0(R/I ), then B = {a+ i | a+ I ∈ A, i ∈ I } is a
cut-set in 0I (R).

Proof. Let X and Y be subgraphs of 0(R/I ) separated by the cut-set A. Let
x, y ∈ V (0I (R)) such that x + I and y+ I are vertices of X and Y , respectively.
Let x + I − · · · − y+ I be a path from x + I to y+ I . Then since A is a cut-set,
this path must contain at least one element from A.

Suppose there exists a path x−z1−· · ·−zn− y from x to y that does not contain
at least one element from B. From Corollary 1.2, it can be assumed without loss of
generality that each z j is in a distinct column of 0I (R), where 1≤ j ≤ n. Thus, by
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Figure 4. 0((Z2×Z2×Z2)/({0}× {0}×Z2)).

Theorem 1.1, (x+ I )−(z1+ I )−· · ·−(zn+ I )−(y+ I ) is a path in 0(R/I ). This
path does not contain at least one element from A, contradicting the fact that A is a
cut-set. Therefore, every path between x and y contains at least one element of B.

Suppose B is not the minimal such set. Then there exists some b ∈ B such that
every path from x to y contains at least one vertex from B \ {b}. Then b+ I ∈ A,
and every path from x to y contains at least one element from A \ {b+ I }. This
contradicts that A is a cut-set of 0(R/I ). �

The converse is not always true. Consider the graph of

0((Z2×Z2×Z2)/({0}× {0}×Z2)),

shown in Figure 4, which is isomorphic to K 2.
There are no cut-vertices or cut-sets in the above graph. However, the sets
{(0,1,0), (0,1,1)} and {(1,0,0), (1,0,1)} are cut-sets in0({0}×{0}×Z2)(Z2×Z2×Z2).

Lemma 3.3. If x, y ∈ 0I (R) are distinct and every path connecting x to y contains
a vertex z ∈ A ⊆ V (0I (R)), then every path connecting x + I to y+ I in 0(R/I )
contains an element of B = {a+ I | a ∈ A}.

Proof. Let (x+ I )−(w1+ I )−· · ·−(wk+ I )−(y+ I ) be a path from x+ I to y+ I
in 0(R/I ). If wn /∈ A for all 1≤ n≤ k, then there exists a path x−w1−· · ·−wk− y
in 0I (R) that does not contain an element of A, a contradiction. �

Theorem 3.4. If a cut-set A in 0I (R) is a union of n columns and |Z(R/I )∗|−n≥2,
then B = {a+ I | a ∈ A} is a cut-set in 0(R/I ).

Proof. Suppose A is a cut-set in 0I (R). Since |Z(R/I )∗| − n ≥ 2, there are
b, c ∈0I (R)\ A such that b and c are in different columns, and any path connecting
b and c contains an element a ∈ A. To see this, note that if two vertices are in the
same column and are separated by A, then these vertices must be isolated when
A is removed, because vertices in the same column are adjacent to the same set
of vertices by Corollary 1.2. Since there are at least two columns left after the
removal of A, we can now choose b and c in different columns that meet the desired
conditions.

By Lemma 3.3, any path from b+ I to c+ I in 0(R/I ) must contain a+ I for
some a ∈ A. The set of all such points is B; thus, B is a cut-set or contains a cut-set.

Suppose B is not minimal. Then there exists some ai + I ∈ B such that C ⊆
B \ {ai + I } = {a+ I | a ∈ A \ {ai }} is a cut-set in 0(R/I ). Then by Theorem 3.2,
D = {a+ i | a+ I ∈ C, i ∈ I } ⊂ A is a cut-set in 0I (R), a contradiction. �
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Figure 5. 0(Z27/(9)).

If |Z(R/I )∗|−n< 2, then B would certainly not be a cut-set in 0(R/I ). If there
was only one column remaining after the removal of A from 0I (R), then there would
only be one coset representative remaining after the removal of B from 0(R/I ).

It is proved in [Coté et al. 2011] that if R is not local and if B is a cut-set of
0(R), then B ∪{0} is an ideal. A similar theorem for cut-sets in 0I (R) is provided.

Theorem 3.5. Let I be an ideal of R such that R/I is nonlocal, let A be a cut-set
in 0(R/I ), and let B = {a+ i | a+ I ∈ A, i ∈ I }. Then B ∪ I is an ideal of R.

Proof. Let A be a cut-set in 0(R/I ). Then A∪ {0+ I } is an ideal of R/I by [Coté
et al. 2011]. Then B ∪ I = φ−1(A∪ {0+ I }), where φ : R→ R/I is the canonical
homomorphism, is an ideal of R. �

The connectivity of a connected graph G, denoted κ(G), is the minimum number
of vertices that must be removed from G to produce a disconnected graph. It is
customary to define the connectivity of the complete graph K n to be κ(K n)= n−1.
In other words, κ(G) is the order of the smallest cut-set of G, when G is not
isomorphic to K n . The following result on the connectivity of 0I (R) is Theorem 3.3
of [Redmond 2003].

Theorem 3.6. Let I be a nonzero proper ideal of R.

(1) If 0(R/I ) is the graph on one vertex, then κ(0I (R))= |I | − 1.

(2) If 0(R/I ) has at least two vertices, then 2≤ κ(0I (R))≤ |I | · κ(0(R/I )).

(3) |I | − 1≤ κ(0I (R)).

In light of this theorem, consider 0(Z27/(9)), shown in Figure 5. The connec-
tivity of κ(0(Z27/(9))) is 1. So, by the above theorem, κ(0(9)(Z27)) should be 2
or 3. However, since 0(9)(Z27) (shown in Figure 6) is complete, κ(0(9)(Z27)) =

|0(9)(Z27)| − 1 = 5. A reading of the proof of this theorem in [Coté et al. 2011]
shows this problem arises only when 0(R/I ) is complete. We provide the following
modification of this theorem to take into account complete graphs.

Theorem 3.7. Let I be a nonzero proper ideal of R.

(1) If 0(R/I ) is complete on more than two vertices, then

κ(0I (R))= |I | · |V (0(R/I ))| − 1.
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Figure 6. 0(9)(Z27).

(2) If 0(R/I ) is the graph on two vertices, then

κ(0I (R))= |I | or |I | · |V (0(R/I ))| − 1.

(3) If 0(R/I ) is not complete and has at least three vertices, then

2≤ κ(0I (R))≤ |I | · κ(0(R/I )).

(4) |I | − 1≤ κ(0I (R)).

Proof. Parts 3 and 4 are proved in [Coté et al. 2011].

(1) Suppose 0(R/I ) is complete. Then for all a + I, b+ I ∈ 0(R/I ), we have
(a+ I )−(b+ I ). By [Anderson and Livingston 1999, Theorem 2.8], Z(R/I )2={0}.
Thus, by Theorem 1.1, 0I (R) is complete. Hence κ(0I (R)) = |0I (R)| − 1 =
|I | · |0(R/I )| − 1. (See [Coté et al. 2011, Remark 28].)

(2) Suppose 0(R/I ) is the graph on two vertices, x+I and y+I . Then by [Anderson
and Livingston 1999, Theorem 2.8], either R/I ∼=Z2×Z2 or Z(R/I )2= {0}. Thus,
there are two cases:

(a) Suppose x2
+ I = 0+ I = y2

+ I . Then 0I (R) is complete. Thus, κ(0I (R))=
|I | · |0(R/I )| − 1.

(b) Suppose x2
+ I 6= 0+ I 6= y2

+ I . Then 0I (R) is isomorphic to K|I |,|I |. Without
loss of generality, let x ∈ x+ I ⊂ V (0I (R)). Then x is adjacent to every vertex
in y + I . Thus, to create a disconnected graph from 0I (R), every vertex in
y+ I is removed, i.e., we remove |I | vertices. �

4. Classifying ideals via ideal-divisor graphs

Let I be an ideal of R. The radical of I is the set
√

I ={r ∈ R |rn
∈ I for some n∈N}.

For any ideal I ,
√

I is an ideal of R, and if
√

I = I , then I is called a radical ideal.
Note that for a radical ideal I of R, if |I | ≥ 2, then there are no connected columns.
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Lemma 4.1. Let I be an ideal of R and let a ∈ Z I (R)∗. If no vertex of 0I (R) is
looped, then an /∈ I for all n ∈ N.

Proof. Suppose an
∈ I for some least n ∈N. Then, an−1

∈ Z I (R)∗ and (an−1)2 ∈ I .
Thus, an−1 is looped, a contradiction. �

Theorem 4.2. Let I be an ideal of R. Then I is a radical ideal if and only if no
vertex in 0I (R) is looped (equivalently, 0I (R) has no connected columns).

Proof. (⇒) Consider a ∈ V (0I (R)). Since a /∈ I , an /∈ I for all n ∈N. Thus, a2 /∈ I .

(⇐) Let a ∈ V (0I (R)). By Lemma 4.1 and the definition of an ideal divisor, an /∈ I
for all n ∈ N. Hence, if bn

∈ I for some n ∈ N, we must have b ∈ I . Thus, I is a
radical ideal. �

We now move to a classification of primary and weakly prime ideals. Let Q
be an ideal of R. We say Q is a primary ideal if whenever ab ∈ Q, either a ∈ Q
or bn

∈ Q for n ∈ N. Let P be a proper ideal of R. Then, P is weakly prime if
0 6= ab ∈ P implies a ∈ P or b ∈ P (see [Anderson and Smith 2003]).

Lemma 4.3. Let I be an ideal of R. Let K = {k1, k2, . . . , kn} ⊆ R \ I such that for
each ki ∈ K , there exists a minimal mi ∈ N such that kmi

i ∈ I . Then there exists
a ∈ R \ I such that aki ∈ I for all ki ∈ K .

Proof. There exists a minimal m1 ≥ 2 such that km1
1 ∈ I . Let a1 = km1−1

1 . Clearly,
a1k1 ∈ I and a1 /∈ I . Now, there exists a minimal n2 with 1 ≤ n2 ≤ m2 such that
a1kn2

2 ∈ I . Now let a2 = a1kn2−1
2 . Again, a2k2 ∈ I and a2 /∈ I . Continuing in this

fashion, there exists an n j − 1 (possibly zero, in which case a j = a j−1) such that
a j = a j−1kn j−1

j /∈ I but a j k j ∈ I . Let a = an . By construction, a is connected to
every ki ∈ K . �

Theorem 4.4. Let I be a nonzero ideal of R that is not prime. Then I is a primary
ideal if and only if 0I (R) is a refinement of a star graph.

Proof. (⇒) Let a, b ∈ V (0I (R)) with ab ∈ I . By definition of V (0I (R)) and
the fact that I is primary, we have ar , bs

∈ I for some r, s ≥ 2. Therefore, we
have V (0I (R))⊆ R \ I , and for each x ∈ V (0I (R)) there is some n ∈N such that
xn
∈ I . By Lemma 4.3, we have at least one y ∈ V (0I (R)) with xy ∈ I for all

x ∈ V (0I (R)). That is, the vertex y connects to every other vertex in 0I (R). Thus,
0I (R) is a refinement of a star graph.

(⇐) If 0I (R) is a refinement of a star graph, then the diameter of 0I (R) is 2. Ac-
cording to Corollary 2.7 in [Redmond 2003], since I is an ideal of R, 0I (R) contains
a subgraph that is isomorphic to 0(R/I ). Using Theorem 1.1 and Corollary 1.2,
there exists an element x + I that is connected to every other element, including
itself, in 0(R/I ). Then, applying Lemma 3.1 in [Axtell et al. 2009] gives us that
Z(R/I ) is an ideal. If the zero-divisors of a finite ring form an ideal, then that ideal
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Figure 7. 0(8)(Z64).

is the maximal ideal of the ring, and the ring is local. It is well known that if a
ring is local and finite, every zero-divisor is nilpotent. Every zero-divisor in R/I is
nilpotent, so I is a primary ideal. �

Example 4.5. Let R = Z64 and I = (8). We see I is a primary ideal of R, and in
the figure below, we see that we have a refinement of a star graph. Note that any of
{4, 12, 20, 28, 36, 44, 52, 60} could work as our central vertex (see Figure 7).

Note that the condition that I is a nonzero ideal of R in Theorem 4.4 is necessary
for the “if” portion on the proof, for if R = Z2 × F , where F is a field, and
I = {(0, 0)}, then 0(R/I ) is a star graph, but I is not a primary ideal. The issue
that arises in this case is that (1, 0) is connected to every other vertex in 0(R/I ),
but it is not looped.

Lemma 4.6. Let I be a weakly prime ideal and let a ∈ R \ I . If ak
∈ I for some

k ∈ N, then ak
= 0.

Proof. Let a ∈ R\I and assume ak
∈ I ∗. Then 0 6= a · ak−1

∈ I . Since a /∈ I , we
have ak−1

∈ I because I is weakly prime. Continuing, we obtain 0 6= a · a ∈ I , but
a /∈ I , a contradiction. �

Theorem 4.7. Let I be a nonzero ideal of R that is not prime. Then I is weakly
prime if and only if 0I (R) is the induced subgraph of 0(R) on Z(R) \ I .

Proof. (⇒) According to Theorem 7 in [Anderson and Smith 2003], R is not
decomposable, so R is either local or a field. Supposing R is local, it is well known
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that every zero-divisor is nilpotent. Let a ∈ Z(R) \ I . Since a is nilpotent, there
exists a minimal n ∈ N such that an

= 0 ∈ I . So, by Lemma 4.6, a · an−1
∈ I and

an−1 /∈ I . Hence, a ∈ V (0I (R)). Now let a, b ∈ V (0I (R)) with ab ∈ I . Since I
is weakly prime, ab = 0. Hence, Z(R) \ I = V (0I (R)), and a− b ∈ 0I (R) if and
only if ab = 0. Thus, 0I (R) is the induced subgraph of 0(R) on Z(R) \ I .

(⇐) Assume the ideal-divisor graph is the induced subgraph of 0(R) on Z(R) \ I .
Let a, b /∈ I and ab ∈ I . Since 0I (R) is the induced subgraph of 0(R) on Z(R)\ I ,
ab = 0. Thus, I is a weakly prime ideal. �
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