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Laguerre’s theorem regarding the number of nonreal zeros of a polynomial and
its image under certain linear operators is generalized. This generalization is then
used to (1) exhibit a number of previously undiscovered complex zero decreasing
sequences for the Jacobi, ultraspherical, Legendre, Chebyshev, and generalized
Laguerre polynomial bases and (2) simultaneously generate a basis B and a
corresponding complex zero decreasing sequence for the basis B. An extension
to transcendental entire functions in the Laguerre–Pólya class is given, which, in
turn, gives a new and short proof of a previously known result due to Piotrowski.
The paper concludes with several open questions.

1. Introduction

For a function f : C→ C which is not the identically zero function, denote the
number (counted according to multiplicity) of real and nonreal zeros of f by Z R( f )
and ZC( f ), respectively. For the identically zero function, define Z R(0)= 0 and
ZC(0)= 0. Let L : R[x] → R[x] be a linear operator. If L has the property that

ZC(L(p))≤ ZC(p) (1)

for every real polynomial p, then L is called a complex zero decreasing operator,
or a CZDO. Such an operator L is diagonal with respect to a basis B = {bk}

∞

k=0
for R[x] if and only if there are real constants {γk}

∞

k=0 for which

L(bk(x))= γkbk(x) (k = 0, 1, 2, . . . ). (2)
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In this case, the sequence {γk}
∞

k=0 is called a complex zero decreasing sequence for
the basis B, or a B-CZDS.

A theorem of Laguerre demonstrates the existence of CZDSs for the standard
basis. We give two versions of his theorem here, the first of which can be found in
[Obreschkoff 1963, p. 6] and [Craven and Csordas 2004, p. 23].

Theorem 1 (Laguerre’s Theorem). Let p(x) =
∑n

k=0 ak xk be an arbitrary real
polynomial of degree n. If α lies outside the interval (−n, 0), then

ZC

( n∑
k=0

(k+α)ak xk
)
≤ ZC

( n∑
k=0

ak xk
)
.

In particular, if α ≥ 0, the sequence {k+α}∞k=0 is a CZDS for the standard basis.

With notation as in Theorem 1,

xp′(x)+αp(x)=
n∑

k=0

(k+α)ak xk,

and Laguerre’s theorem may be restated accordingly.

Theorem 2 (Laguerre’s Theorem; Differential Operator Version). Let p(x) be an
arbitrary real polynomial of degree n. If α lies outside the interval (−n, 0), then

ZC(xp′(x)+αp(x))≤ ZC(p(x)).

In particular, if α ≥ 0, then the differential operator x D+α I is a CZDO.

Remark 3. The differentiation operator D defined by D(p)= p′ is a CZDO. This
is included in Laguerre’s theorem as the special case α= 0. Indeed, this choice gives

ZC(p′(x))= ZC(xp′(x))≤ ZC(p(x)).

Alternatively, the fact that D is a CZDO can be proved via Rolle’s theorem from
elementary calculus (see, for example, [Obreschkoff 1963, p. 2–3]).

Laguerre’s theorem is easily extended by iteration to sequences of the form
{h(k)}∞k=0, where h is a real polynomial having only real nonpositive zeros. This,
in turn, leads to a further extension via Hurwitz’s theorem to sequences of the form
{ϕ(k)}∞k=0, where ϕ is an entire function which is the uniform limit on compact
subsets of C of polynomials having only real nonpositive zeros (see, for example,
[Craven and Csordas 1995, Theorem 1.4], [Obreschkoff 1963, p. 6], [Pólya 1929]).
We have opted to state Laguerre’s theorem in its simplest form to ease the comparison
of this theorem with some of its generalizations demonstrated below.
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In 2007, Piotrowski gave a generalization of Laguerre’s theorem to obtain a class
of H -CZDSs, where H denotes the set of Hermite polynomials defined by

Hn(x)= (−1)nex2 dn

dxn e−x2
(n = 0, 1, 2, . . . ).

Theorem 4 [Piotrowski 2007, p. 57, Proposition 68]. Suppose p(x) is an arbitrary
real polynomial of degree n. If α, β, c, d are real numbers such that α ≥ 0, β ≥ 0,
and α+ cn ≥ 0, then

ZC
(
−βp′′(x)+ (cx + d)p′(x)+αp(x)

)
≤ ZC(p(x)).

In particular, if α, β, and c are all nonnegative, then −βD2
+ (cx + d)D+α I is

a CZDO.

Since the Hermite polynomials satisfy the differential equation

nHn(x)=− 1
2 H ′′n (x)+ x H ′n(x) (n = 0, 1, 2, . . . )

(see, for example, [Rainville 1960, p. 188]), the previous theorem gives, as a special
case, the existence of H -CZDSs which can be interpolated by linear polynomials.

Theorem 5 [Piotrowski 2007, p. 87, Theorem 101]. Let p(x)=
∑n

k=0 ak Hk(x) be
an arbitrary real polynomial of degree n. If α lies outside the interval (−n, 0), then

ZC

( n∑
k=0

(k+α)ak Hk(x)
)
≤ ZC

( n∑
k=0

ak Hk(x)
)
.

In particular, if α ≥ 0, then the sequence {k+α}∞k=0 is an H-CZDS.

While no complete characterization of CZDSs is currently known for any basis,
the characterization of CZDSs which can be interpolated by polynomials has been
achieved for both the standard basis and the Hermite basis.

Theorem 6 [Craven and Csordas 1995, p. 13]. Let h(x) be a real polynomial. Then
{h(k)}∞k=0 is a CZDS for the standard basis if and only if either

(1) h(0) 6= 0 and h(x) has only real negative zeros, or

(2) h(0)= 0 and h(x) is of the form

h(x)= x(x − 1)(x − 2) · · · (x −m+ 1)
p∏

k=1

(x − bk), (3)

where m ≥ 1 and p ≥ 0 are integers and bk < m for k = 1, 2, 3, . . . , p.

The previous theorem remains valid mutatis mutandis if “CZDS for the standard
basis” is replaced by “H -CZDS” (see [Piotrowski 2007, p. 95, Theorem 111]).

The main results of this paper include a generalization of Laguerre’s theorem
(Theorem 8), the demonstration of classes of CZDSs for the Jacobi, ultraspherical,
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Legendre, Chebyshev, and generalized Laguerre polynomial bases (Proposition 10,
Theorem 14, Corollaries 15 and 16, and Theorem 24), a method for simultaneously
generating a basis B and a corresponding B-CZDS (Section 4), and the extension
of these results to transcendental entire functions in the Laguerre–Pólya class
(Section 5.1).

2. A class of complex zero decreasing operators

This section contains two theorems which generalize Laguerre’s theorem.

Theorem 7. Let p and q be real polynomials, each with degree at least one, and
let α ≥ 0. Then

Z R( f (x))≥ Z R(p(x))+ Z R(q(x))− 1,

where
f (x)= q(x)p′(x)+αq ′(x)p(x).

Proof. When α = 0, we have

Z R(q(x)p′(x))= Z R(q(x))+ Z R(p′(x))≥ Z R(p(x))+ Z R(q(x))− 1,

where the last inequality is a consequence of Rolle’s theorem.
We will now suppose α > 0 for the remainder of the proof. Suppose x0 is a zero

of p(x) · q(x) and write

p(x)= (x − x0)
mh1(x) (h1(x0) 6= 0),

q(x)= (x − x0)
wh2(x) (h2(x0) 6= 0).

Then
f (x)= (x − x0)

m+w−1h3(x),

where
h3(x0)= (m+αw)h1(x0)h2(x0) 6= 0.

That is to say, if x0 is a zero of p ·q of multiplicity m+w, then x0 is a zero of f of
multiplicity m+w− 1. We will now complete the proof by demonstrating that f
must vanish between consecutive real zeros of p · q . Define

g(x)=
{
[q(x)]α if q(x)≥ 0,
−[−q(x)]α if q(x) < 0,

so that∣∣q(x)∣∣1−α d
dx
[g(x)p(x)] = q(x)p′(x)+αq ′(x)p(x) (x /∈ {z | q(z)= 0}).

Let x1, x2 be consecutive zeros of p ·q with x1 < x2. Then they are also consecutive
zeros of g · p, which is continuous on [x1, x2] and differentiable on (x1, x2). By
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Rolle’s theorem, (g · p)′, and therefore q(x)p′(x)+αq ′(x)p(x) has a zero in the
interval (x1, x2) and the conclusion of the theorem holds. �

We note that Theorem 7 is best possible in the sense that the conclusion does
not necessarily hold for any α < 0. For example, if α < 0, p(x)= xn(x2

+α), and
q(x)= x , then f (x)= xn

(
(α+ n+ 2)x2

+α(α+ n)
)
. Choosing

n =max{m ∈ Z | m ≥ 0 and α+m < 0}

yields Z R( f )= n < n+ 2= Z R(p)+ Z R(q)− 1.

Theorem 8. Let p and q be real polynomials and α ≥ 0. Then

ZC
(
q(x)p′(x)+αq ′(x)p(x)

)
≤ ZC(p(x))+ ZC(q(x)).

In particular, if q has only real zeros, then q(x)D+αq ′(x)I is a CZDO.

Proof. First note that the result is trivial when the function q(x)p′(x)+αq ′(x)p(x)
is identically zero. Furthermore, if either p or q is a nonzero constant function,
then the result follows from Rolle’s theorem as was noted in Remark 3 above. We
may, therefore, assume that p and q each have degree at least one. Suppose

p(x)=
n∑

k=0

ak xk and q(x)=
m∑

k=0

bk xk .

Then the leading term of

f (x)= q(x)p′(x)+αq ′(x)p(x)

is (n+αm)anbm xn+m−1, so f has degree n+m−1. Applying Theorem 7, we have

ZC( f )= n+m− 1− Z R( f )

≤ n+m− 1− (Z R(p)+ Z R(q)− 1)

= n+m− 1− (n− ZC(p)+m− ZC(q)− 1)

= ZC(p)+ ZC(q).

Therefore, ZC
(
q(x)p′(x)+αq ′(x)p(x)

)
≤ ZC(p(x))+ ZC(q(x)). �

Note that part of Laguerre’s theorem (Theorem 2) is obtained when we set
q(x)= x in Theorem 8.

Remark 9. The two theorems in this section can be extended to any finite number
of constants and functions. For example, using the same techniques as above, one
can show that

ZC(pqr ′+αp′qr +βpq ′r)≤ ZC(p)+ ZC(q)+ ZC(r),

where α and β are nonnegative real numbers and p, q , and r are polynomials.
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3. CZDSs for the Jacobi polynomial basis

3.1. The Jacobi polynomials. We now apply the results of the previous section to
demonstrate the existence of CZDSs for the Jacobi polynomial basis. Following
[Rainville 1960, p. 257], we define the Jacobi polynomials with parameters α >−1
and β >−1 by

P (α,β)n (x)=
(−1)n(1− x)−α(1+ x)−β

2nn!
dn

dxn [(1− x)n+α(1+ x)n+β].

For each nonnegative integer n, the Jacobi polynomials satisfy the differential
equation(
(x2
−1)D2

+[(2+α+β)x+α−β]D
)
P (α,β)n (x)= n(n+1+α+β)P (α,β)n (x) (4)

(see [Rainville 1960, p. 258]).

Proposition 10. The sequence {k(k+ 1+α+β)}∞k=0 is a P (α,β)-CZDS.

Proof. Define the linear operator L : R[x] → R[x] by

L(P (α,β)k (x))= k(k+ 1+α+β)P (α,β)k (x) (k = 0, 1, 2, . . . ),

so that, by linearity,

L
( n∑

k=0

ak P (α,β)k (x)
)
=

n∑
k=0

ak L(P (α,β)k (x))=
n∑

k=0

akk(k+ 1+α+β)P (α,β)k (x).

Our goal, then, is to show that L is a CZDO. From the differential equation (4), the
linear operator L is equal to the differential operator

L =
(
(x2
− 1)D+ [(2+α+β)x +α−β]I

)
D.

If, in Remark 9, we take p(x)= x −1, q(x)= x +1, and replace α and β by α+1
and β + 1, respectively, then we see that

(x2
− 1)D+ [(2+α+β)x +α−β]I (α, β >−1)

is a complex zero decreasing operator. Thus, L is the composition of two CZDOs
(recall that D is a CZDO as discussed in Remark 3) and so it is a CZDO itself. �

3.2. Operator identities. In order to extend the preceding result, we will develop a
number of operator identities. We consider two operators L1 and L2 on R[x] to be
equal if L1(p)= L2(p) for every real polynomial p. For example, as a consequence
of the product rule for differentiation, (Dx)p(x) = xp′(x)+ p(x), and thus we
obtain the equality

Dx = x D+ I. (5)
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Proposition 11. Suppose that {gk(x)}mk=0 is a sequence of polynomials satisfying
deg(gk)≤ k for all k. Then

Dn
m∑

k=0

gk(x)Dk
=

( m∑
j=0

m∑
k= j

( n
k− j

)
g(k− j)

k (x)D j
)

Dn.

Proof. We first note that we are following the convention that
(n

k

)
=0 whenever k>n.

Using the fact that the derivative operator is linear, applying Leibniz’s formula
for the n-th derivative of a product, and noting our assumption on the degree of the
polynomials gk , we have

Dngk(x)Dk
=

k∑
i=0

(n
i

)
g(i)k (x)D

k+n−i
=

( k∑
i=0

(n
i

)
g(i)k (x)D

k−i
)

Dn.

Making the substitution j = k− i and then switching the order of summation gives

Dn
m∑

k=0

gk(x)Dk
=

( m∑
k=0

k∑
j=0

( n
k− j

)
g(k− j)

k (x)D j
)

Dn

=

( m∑
j=0

m∑
k= j

( n
k− j

)
g(k− j)

k (x)D j
)

Dn. �

In what follows, we will make frequent use of Proposition 11 with m = 2, which
asserts that if

L = Dn(g2(x)D2
+ g1(x)D+ g0(x)I

)
, (6)

then

L =
(

g2(x)D2
+ (ng′2(x)+ g1(x))D+

((n
2

)
g′′2 (x)+ng′1(x)+ g0(x)

)
I
)

Dn, (7)

provided deg(gk)≤ k for all k.

3.3. Ultraspherical polynomials. We now focus on the Jacobi polynomials for
which α = λ = β, which are called the ultraspherical polynomials (see, e.g.,
[Rainville 1960, p. 143]). To ease notation, we define

P (λ)n (x)= P (λ,λ)n (x) (λ >−1; n = 0, 1, 2, . . . ).

With this choice, the differential equation (4) takes on the form

[(x2
− 1)D2

+ (1+ λ)2x D]P (λ)n (x)= n(n+ 1+ 2λ)P (λ)n (x). (8)

Due to the frequent use of the operator involved in the previous equation we define,
for any a ∈ R,

8a = (x2
− 1)D+ (1+ a)2x I. (9)
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Lemma 12. Suppose λ >−1. Then, for all nonnegative integers n,

Dn(8λD− n(n+ 1+ 2λ)I
)
= (8λ+n)Dn+1,

where 8a is defined in (9).

Proof. This is an immediate application of (6) and (7). �

We now use a product notation for composition of operators. Since differential
operators need not commute, care is required in using this notation. For a collection
of operators L1, L2, . . . , Ln on R[x], we define( n∏

k=1

Lk

)
p = (L1L2 · · · Ln)p = L1(L2(· · · (Ln(p)))) (p ∈ R[x]).

Proposition 13. Let w be a positive integer and {mk}
w−1
k=0 ⊂ N. Then

w−1∏
k=0

(
8λD− k(k+ 1+ 2λ)I

)mk
=

(w−1∏
k=0

[(8λ+k D)mk−18λ+k]

)
Dw,

where 8a is defined by (9).

Proof. We will argue by mathematical induction. The case w = 1 is clear. Now
suppose that the result is true for some integer w ≥ 1 and fix natural numbers
m0,m1, . . . ,mw. Then

w∏
k=0

(
8λD− k(k+ 1+ 2λ)I

)mk
=2Dw

(
8λD−w(w+ 1+ 2λ)I

)mw
, (10)

where

2=

w−1∏
k=0

[(8λ+k D)mk−1(8λ+k)]. (11)

Applying Lemma 12 a total of mw times, we see that

Dw
(
8λD−w(w+ 1+ 2λ)I

)mw
= (8λ+wD)mw Dw. (12)

Together, (10), (11), and (12) show that

w∏
k=0

(
8λD− k(k+ 1+ 2λ)I

)mk
=

( w∏
k=0

(
(8λ+k D)mk−1(8λ+k)

))
Dw+1. �

We are now in a position to demonstrate the existence of several P (λ)-CZDSs
for any fixed λ >−1.
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Theorem 14. If λ > −1, w is a positive integer, and {mk}
w−1
k=0 ⊂ N, then the

sequence {w−1∏
k=0

(
n(n+ 1+ 2λ)− k(k+ 1+ 2λ)

)mk

}∞
n=0

(13)

is a P (λ)-CZDS, where P (λ) is the set of ultraspherical polynomials.

Proof. Let the linear operator L : R[x] → R[x] be defined by

L(P (λ)n (x))=
(w−1∏

k=0

(
n(n+ 1+ 2λ)− k(k+ 1+ 2λ)

)mk

)
P (λ)n (x).

From the differential equation (8), we have

L =
w−1∏
k=0

(
(x2
− 1)D2

+ (1+ λ)2x D− k(k+ 1+ 2λ)I
)mk
,

or, using the notation in (9) and applying Proposition 13,

L =
w−1∏
k=0

(
8λD− k(k+ 1+ 2λ)I

)mk
=

(w−1∏
k=0

(
(8λ+k D)mk−18λ+k

))
Dw.

The operator L is, therefore, a composition of individual operators, each of which
is a CZDO. This can be seen by appealing to Theorem 8, which shows that 8a is a
CZDO whenever a >−1. �

3.4. CZDSs for Legendre basis. The polynomials

Pn(x)= P (0)n (x)= P (0,0)n (x) (n = 0, 1, 2, . . . )

are known as the Legendre polynomials (see [Rainville 1960, p. 254]).
In [Blakeman et al. 2012], Open Question (4) conjectures that a certain type

of falling factorial sequence is a multiplier sequence for the Legendre basis, or a
P-MS. Since every P-CZDS is a P-MS, we can apply the results of the previous
section to settle a variation of this question.

Corollary 15. If w is a positive integer and {mk}
w−1
k=0 ⊂ N, then the sequence{w−1∏

k=0

(
n(n+ 1)− k(k+ 1)

)mk

}∞
n=0
=

{w−1∏
k=0

(
(n+ k+ 1)(n− k)

)mk

}∞
n=0

(14)

is a CZDS for the Legendre basis.

Proof. Apply Theorem 14 with λ= 0. �
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Corollary 15 strengthens and extends some of the results obtained in [Blakeman
et al. 2012] by showing that {k2

+ k}∞k=0 is a P-CZDS and by demonstrating the
existence of P-CZDSs (and hence P-multiplier sequences) which are not products
of quadratic P-multiplier sequences.

3.5. CZDS for the Chebyshev basis. The Chebyshev polynomials T = {Tn(x)}
and U= {Un(x)} of the first and second kind, respectively, can be defined by

Tn(x) :=
n!( 1
2

)
n

P (−1/2)
n (x) (n = 0, 1, 2, . . . ),

Un(x) :=
(n+ 1)!( 3

2

)
n

P (1/2)n (x) (n = 0, 1, 2, . . . ),

where (a)n := a(a+ 1) · · · (a+ n− 1) is the rising factorial (see [Rainville 1960,
p. 301]). In [Piotrowski 2007, Lemma 156] it is shown that a sequence {γk}

∞

k=0 is
a CZDS for a simple set Q = {qk(x)}∞k=0 if and only if it is a Q̂-CZDS, where Q̂
consists of the polynomials

q̂n(x)= cnqn(αx +β) (β ∈ R;α, cn ∈ R \ {0}).

Combining this with Theorem 14, we arrive at the following corollary.

Corollary 16. If w is a positive integer and {mk}
w−1
k=0 ⊂ N, then

(1) the sequence
{∏w−1

k=0 (n
2
− k2)mk

}∞
n=0 is a T-CZDS, and

(2) the sequence
{∏w−1

k=0
(
n(n+ 2)− k(k+ 2)

)mk
}∞

n=0 is a U-CZDS.

Proof. Apply Theorem 14 with λ=−1/2 and again with λ= 1/2. �

4. Simultaneous generation of a basis B and a class of B-CZDSs

Given a basis B and a sequence {γk}
∞

k=0, a typical strategy in showing that {γk}
∞

k=0 is
a B-CZDS is to find a differential operator representation for the diagonal operator
which is a CZDO. In this section, we begin with a known CZDO and use it to
demonstrate the existence of a basis B and a corresponding B-CZDS. Our results
focus on bases which are simple sets, i.e., those for which deg(bk)= k for all k. In
the product notation that follows, we adopt the convention that

n∏
k=0

ak = 1

whenever n < 0.

Theorem 17. Let α ≥ 0 and let

q(x)= c0+ c1x + · · ·+ cr xr (r ≥ 1, cr 6= 0)
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be a real polynomial with only real zeros. Then there is a simple set of polynomials
B = {bn(x)}∞n=0 which satisfy the differential equation

q(x)b(r)n (x)+αq ′(x)b(r−1)
n (x)= γnbn(x) (n = 0, 1, 2, . . .), (15)

where

γn = cr
(
n+ (α− 1)r + 1

) r−2∏
k=0

(n− k) (n = 0, 1, 2, . . .).

Consequently, the sequence {γn}
∞

n=0 is a B-CZDS.

Remark 18. We note that, for the case where r = 1 and α 6= 0, the explicit form
of the sequence and the existence of the basis B follow from results contained in
the beginning of Section 2 of [Azad et al. 2011] and the beginning of Section II
of [Krall and Sheffer 1964]. The proof of the general case is similar, yet different
enough to warrant its inclusion here.

Proof of Theorem 17. Consider the differential operator

L = q(x)Dr
+αq ′(x)Dr−1.

With this notation, the differential equation (15) becomes L(bn(x)) = γnbn(x)
and our goal is to find the eigenvalues γn of L and show there is a simple set of
polynomials consisting of eigenfunctions bn of L . The matrix representation of L
with respect to the standard basis is upper triangular, with eigenvalues on the main
diagonal given by the coefficient of xn in L(xn). Since

L(xn)=

(
cr

r−1∏
k=0

(n− k)+αrcr

r−2∏
k=0

(n− k)
)

xn
+ h(x),

where h is a polynomial of degree less than or equal to n − 1, the eigenvalue
sequence is given by γn = p(n) for all n, where

p(x)= cr
(
x + (α− 1)r + 1

) r−2∏
k=0

(x − k).

Since p has only real zeros, each of which lies in the interval (−∞, r − 1], we
either have

0= γ0 = γ1 = · · · = γm−1 < γm < γm+1 < · · ·

or
0= γ0 = γ1 = · · · = γm−1 > γm > γm+1 > · · · ,

where

m =
{

r − 1 if α 6= 0,
r if α = 0.
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In either case, all the nonzero eigenvalues must be distinct. Furthermore,

L(xn)≡ 0 (n = 0, 1, . . . ,m− 1),

so L has the form

L =
[

0m×m A
0∞×m T

]
,

where T is an upper triangular matrix with distinct nonzero eigenvalues on the
main diagonal.

We now show that there is a simple set B consisting of eigenfunctions of the
operator L . Indeed, let Ln denote the n × n truncation of the matrix L . Since
Lm = 0m×m , we have complete freedom in choosing our first m eigenfunctions, say

bn(x)= xn (n = 0, 1, 2, . . .m− 1).

For Lm+1, there is an eigenfunction corresponding to the (nonzero) eigenvalue γm .
This eigenfunction is linearly independent from those corresponding to the eigen-
value 0, thus it must be of degree m. Continuing in this fashion, we can construct a
simple set B consisting of eigenfunctions of L as desired.

To show that {γn}
∞

n=0 is a B-CZDS, suppose

g(x)=
j∑

k=0

dkbk(x) (d j 6= 0)

is a real polynomial. Then

ZC(g(x))≥ ZC(g(r−1)(x))≥ ZC
(
q(x)g(r)(x)+αq ′(x)g(r−1)(x)

)
,

where we have made use of Remark 3 and Theorem 8. Since

q(x)g(r)(x)+αq ′(x)g(r−1)(x)=
j∑

k=0

dk
(
q(x)b(r)k (x)+αq ′(x)b(r−1)

k (x)
)

=

j∑
k=0

γkdkbk(x),

the desired result is obtained. �

As an example, if we choose q(x)= (x + 1)3 and α = 1, then the corresponding
sequence would be γn = (n+ 1)n(n− 1), and we would need to find a simple set
B = {bn(x)}∞n=0 which solves the differential equation

(n+1)n(n−1)bn(x)= (x+1)3b′′′n (x)+3(x+1)2b′′n(x) (n= 0, 1, 2, . . . ). (16)
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With some effort, one finds that sets B which solve (16) have the form

b0(x)= r,

b1(x)= sx + t,

bn(x)= cn(x + 1)n (n = 2, 3, 4, . . . ),

where t ∈ R and r, s, c2, c3, . . . are any (fixed) nonzero real numbers. Thus, the
sequence

{(n+ 1)n(n− 1)}∞n=0

is a B-CZDS for any such basis B.

5. An extension to certain transcendental entire functions

5.1. The Laguerre–Pólya class. A real entire function ϕ is said to belong to the
Laguerre–Pólya class, denoted ϕ ∈ L–P, if it can be written in the form

ϕ(x)= cxme−ax2
+bx

ω∏
k=1

(
1+

x
xk

)
e−x/xk , (17)

where b, c, xk ∈R, m is a nonnegative integer, a≥0, 0≤ω≤∞, and
∑ω

k=1 x−2
k <∞.

An alternate characterization of this class is as follows: ϕ ∈ L–P if and only
if ϕ is the uniform limit on compact subsets of C of real polynomials having only
real zeros (see, for example, [Levin 1964, Chapter VIII ] or [Obreschkoff 1963,
Satz 9.2]). This point of view, together with Hurwitz’s theorem (see [Marden 1949,
p. 4]), allows us to obtain some useful extensions of results in Section 2.

Theorem 19. Suppose ϕ belongs to the class L–P, p and q are real polynomials,
and α ≥ 0. Then

ZC
(
ϕqp′+α(ϕq)′ p

)
≤ ZC(p)+ ZC(q).

Proof. Suppose { fk}
∞

k=0 is a sequence of real polynomials with only real zeros
which converge uniformly on compact subsets of C to ϕ. By Theorem 8,

ZC
(

fkqp′+α( fkq)′ p
)
≤ ZC(p)+ ZC(q) (k = 0, 1, 2, . . . ).

Taking into account that fkqp′+α( fkq)′ p converges uniformly on compact subsets
of C to α(ϕq)′ p+ϕqp′, Hurwitz’s theorem gives the desired result. �

In order to prove an extension of Laguerre’s theorem related to H -CZDSs
(Theorem 4), Piotrowski first proved a special case as a lemma. We now show how
to obtain a new proof of this lemma using Theorem 19.
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Corollary 20 [Piotrowski 2007, p. 55, Lemma 67]. Suppose that p(x) is a real
polynomial of degree n. If c, d, β are real numbers such that c ≥ 0 and β ≥ 0, then

ZC
(
(cx + d)p(x)−βp′(x)

)
≤ ZC(p(x)).

Proof. If β = 0, the result clearly holds. If β > 0, we may appeal to Theorem 19
with α = β−1, q(x)= 1, and

ϕ(x)=− exp
(
−

c
2

x2
− dx

)
(c ≥ 0, d ∈ R)

to obtain the desired result. �

5.2. CZDSs for the generalized Laguerre polynomial basis. In this section, we
combine the results of the previous section with the methods of Section 3.3 to
obtain a class of CZDSs for the generalized Laguerre polynomial basis, defined by

L(α)n (x)=
n∑

k=0

(n+α
n−k

)(−x)k

k!
(α >−1; n = 0, 1, 2, . . . ).

The generalized Laguerre polynomials satisfy the differential equation

−x
d2

dx2 L(α)n (x)+ (x − (α+ 1))
d

dx
L(α)n (x)= nL(α)n (x) (18)

(see, e.g., [Rainville 1960, p. 204]). Just as with the Jacobi basis, we will develop a
number of operator identities in order to arrive at a collection of L(α)-CZDSs. We
begin by defining, for any a ∈ R,

9a =−x D+ (x − (a+ 1))I. (19)

Lemma 21. Suppose α ∈ R. Then, for all nonnegative integers n,

Dn(9αD− nI )=9α+n Dn+1.

Proof. This is an immediate application of (6) and (7). �

Proposition 22. Let w be a positive integer and {mk}
w−1
k=0 ⊂ N. Then

w−1∏
k=0

(9αD− k I )mk =

(w−1∏
k=0

[(9α+k D)mk−19α+k]

)
Dw,

where 9a is defined in (19).

Proof. We will argue by mathematical induction. The case w = 1 is clear. Now
suppose that the result is true for some integer w ≥ 1 and fix natural numbers
m0,m1, . . . ,mw. Then

w∏
k=0

(9αD− k I )mk =

w−1∏
k=0

[(9α+k D)mk−19α+k]Dw(9αD−w I )mw . (20)
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Applying Lemma 21 a total of mw times, we see that

Dw(9αD−w I )mw = (9α+wD)mw Dw
= (9α+wD)mw−19α+wDw+1. (21)

Together, (20) and (21) give the desired result. �

In order to use the operator identities above to find a collection of L(α)-CZDSs
for any α >−1, we will use the result of Section 5.1.

Lemma 23. For any a >−1, the operator

9a =−x D+ (x − (a+ 1))I

is a CZDO.

Proof. Suppose a>−1 and set c=a+1. By Theorem 19, for any real polynomial p,

ZC

(
c

d
dx

(−x exp(−x/c)) p(x)+ (−x exp(−x/c))p(x)
)
≤ ZC(p(x)).

The smaller quantity above simplifies to

ZC
(
(−xp′(x)+ (x − c)p(x)) exp(−x/c)

)
.

Since the exponential function never vanishes, we have shown that

ZC(9a p(x))= ZC
(
−xp′(x)+ (x − c)p(x)

)
≤ ZC(p(x)). �

We now arrive at the main theorem of this section.

Theorem 24. Fix α > −1. If w is a positive integer and {mk}
w−1
k=0 ⊂ N, then the

sequence {w−1∏
k=0

(n− k)mk

}∞
n=0

(22)

is an L(α)-CZDS.

Proof. Let the linear operator 2 : R[x] → R[x] be defined by

2(L(α)n (x))=
(w−1∏

k=0

(n− k)mk

)
L(α)n (x).

Combining the differential equation (18), the notation in (19), and Proposition 22,
we have

2=

w−1∏
k=0

(9αD− k I )mk =

(w−1∏
k=0

[(9α+k D)mk−19α+b]

)
Dw.

The operator 2 is, therefore, a composition of individual operators, each of which
is a CZDO. This can be seen by appealing to Lemma 23. �
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Theorem 24 is a significant generalization and extension of a theorem due to
Forgács and Piotrowski [2013, Theorem 4.4] and a stronger result on a narrower
class of sequences than those characterized by Brändén and Ottergren [2014].

6. Open questions

Any sequence of the form

{k(k− 1) · · · (k− (m− 1))}∞k=0

(the “falling-factorial sequence”) is a CZDS for the standard basis. By Corollary 16,
any sequence of the form

{k2(k2
− 1) · · · (k2

− (m− 1)2)}∞k=0

is a T -CZDS. The similarity of these results leads us to wonder if an analog of
Theorem 6 could be obtained for the Chebyshev basis.

Problem 25. Find a complete characterization of polynomials h for which {h(k)}∞k=0
is a T -CZDS, where T denotes the Chebyshev basis.

We note that the characterization will be different from that of the standard basis
since the sequence {k}∞k=0 is not a T -CZDS.

The results on ultraspherical and Laguerre CZDSs also have a falling factorial
nature which leads us to consider the more general problem.

Problem 26. For any basis B, find a complete characterization of polynomials h
for which {h(k)}∞k=0 is a B-CZDS.

Recall that this problem has been solved when the basis is taken to be either
the standard basis or the Hermite basis. The result [Piotrowski 2007, Lemma 157]
solves the problem for any affine transformation of the standard basis or the Hermite
basis. To date, Problem 26 remains unsolved for any other choice of the basis B.

As it was mentioned earlier, no complete characterization of CZDSs for the
standard basis is known. In particular, it is not known whether or not every rapidly
decreasing sequence (such as {exp(−k3)}∞k=0) is a CZDS for the standard basis (see
[Craven and Csordas 2004, Problem 4.8] for more details). A theorem of Piotrowski
gives a connection between these and CZDSs for other bases.

Theorem 27 [Piotrowski 2007, Theorem 159]. Let B = {qk(x)}∞k=0 be a simple set
of polynomials. If the sequence {γk}

∞

k=0 is a B-CZDS, then the sequence {γk}
∞

k=0 is
a CZDS for the standard basis.

This prompts us to state a weaker version of Problem 4.8(a) of [Craven and
Csordas 2004], which may be easier to settle.

Problem 28. Is there a simple set B for which {exp(−k3)}∞k=0 is a B-CZDS?
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We mention that our methods of simultaneously generating a basis and a CZDS
may apply. However, the original operator will have to be modified as all of our
methods generated sequences which can be interpolated by polynomials.
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