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We prove that the map assigning to a given vector field the Lebesgue measure
of the union of the basins of its attractors is lower semicontinuous in a residual
subset of vector fields. Moreover, we prove that the Lebesgue measure of the
union of the basins of attractors of a generic sectional axiom A vector field is total.
For this, we also improve a result of Morales about sectional-hyperbolic sets.
We also remark that homoclinic classes are topologically ergodic and that for a
generic tame diffeomorphism, the union of the stable manifolds of the hyperbolic
periodic orbits is dense in the manifold.

1. Introduction

One of the key notions in the theory of dynamical systems is that of attractors. By
definition, an attractor captures the asymptotic information of a large set of orbits,
called its basin, which always contains an open set. As an example, if an attractor
is hyperbolic, then the asymptotic behavior of an orbit in its basin is governed by
the dynamics of one orbit inside it (a shadowing property).

Moreover, that essentially every orbit is attracted by one attractor and that the
set of attractors is finite (and possibly hyperbolic) implies that the dynamics of the
system are nicely described by the attractors. For instance, this led Palis [2005] to
conjecture that “there is a dense set D of dynamical systems such that any element
of D has finitely many attractors whose union of basins of attraction has total
probability”.

Mathematicians have made many efforts to understand attractors and their basins,
not only for finite-dimensional dynamics, but also for PDEs (infinite-dimensional
dynamical systems). See, for instance, [Constantin et al. 1985] or [Hale 2000].

On the other hand, to understand properties of the entire set of dynamical systems
is a difficult task, and it is more reasonable to try to understand a large part of the set
of dynamical systems. This reasoning leads to the theory of generic dynamics. Since
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the Cr -topology turns the space of diffeomorphisms (or vector fields) into a Baire
space, it is natural to show that some properties holds for a residual subset of the
space of dynamical systems, i.e., a countable intersection of open and dense subsets,
since this will show the presence of this property for a dense subset and this property
could be used to show another property in another residual subset. Indeed, the inter-
section of two residual subsets is also a residual subset. Usually, we say that a prop-
erty holds for a generic system if it holds in a residual subset of dynamical systems.

The purpose of this article is to give some remarks about attractors, and their
basins, of certain classes of dynamical systems, both diffeomorphisms and vector
fields. These remarks are the results obtained by Obata [2010], guided by Arbieto,
in his undergraduate monograph. We will state the results and refer the reader to
the next section for the precise definitions of the more technical objects used in
the statements.

Let M be a Riemannian closed manifold. We denote by Diff1(M) the space
of diffeomorphisms and by X1(M) the space of vector fields, both endowed with
the C1-topology. We denote by m the Lebesgue measure and by d the geodesic
distance, both induced by the Riemannian metric. If X ∈ X1(M), we denote by X t

the flow generated by X .

Results for flows. An attractor is an invariant compact subset 3 of M such that
there exists a neighborhood U of 3 with

X t(U )⊂U for t > 0 and
⋂
t≥0

X t(U )=3.

The set U is called the local basin of 3 and B(3) :=
⋃

t≤0 X t(U ) is the basin of 3.
We also define a set R to be a repeller if R is an attractor for −X .

Let X be a vector field, and denote by m(B(X)) the Lebesgue measure of the
union of the basins of the attractors of X . This generates a map 8 : X1(M)→
[0,+∞], defined as 8(X) := m(B(X)) if there exists an attractor and 8(X) := 0
if not.

Theorem 1. There exists a residual subset R such that8|R is lower semicontinuous.

The analogous statement holds for diffeomorphisms using the same proof.
Metzger and Morales [2008] extended the notion of axiom A vector fields for

flows with singularities, called sectional axiom A vector fields. As an intermediate
step to studying sectional axiom A vector fields, we have the following result:

Theorem 2. There exists a residual subset R such that if X is in R and 0 =
31 ∪ · · · ∪ 3k , with 0 ⊂ �(X), is a disjoint union of homogeneous sectional-
hyperbolic sets for X or −X , and 0 is a proper subset of M , then m(0)= 0.
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We remark that it is well known that if M is a closed manifold which is a sectional-
hyperbolic set for X , then X has no singularities and X is Anosov [Bautista and
Morales 2011].

To prove this theorem, we extend a result of [Morales 2007]; see Theorem 13.
As a corollary, we obtain the following result, which improves Corollary D of

[Alves et al. 2007] in two ways. We do not require that the vector field be C1+ε or
that the dimension of the manifold be 3. Indeed, in [Alves et al. 2007] it is proved
that if a sectional axiom A vector field X over M3 is C1+ε, then the Lebesgue
measure of the union of the basins of its hyperbolic or sectional-hyperbolic attractors
is total. We remark also that the union of the sets of C1+ε vector fields, over any
ε > 0, is a meager subset of vector fields.

Theorem 3. Let X be a generic sectional axiom A vector field. Then either X is
Anosov, or the Lebesgue measure of the nonwandering set of X is zero and the
Lebesgue measure of the union of the basins of its attractors is total.

A difficulty in proving this theorem is that it is not known whether the set of
sectional axiom A vector fields (without cycles) is open. This is an interesting
question. Even so, there are open sets of vector fields formed by sectional axiom A
sets [Bautista and Morales 2011]. Moreover, [Morales and Pacifico 2003] shows
that in dimension 3, generically, either a vector field has infinitely many sinks or
sources or it is sectional axiom A. So, we obtain the following corollary:

Corollary 4. If dim(M)=3, a generic vector field either has infinitely many sinks or
sources, or the Lebesgue measure of the union of the basins of its attractors is total.

Results for diffeomorphisms. Abdenur [2003] proved that attractors for generic dif-
feomorphisms are homoclinic classes. These classes are always transitive. However
it can be proved that they have another property called topological ergodicity.1

Proposition 5. Any homoclinic class of a periodic point p, with period k, of a
diffeomorphism f is topologically ergodic. Moreover, for any two open sets U
and V , the density of N (U, V )= {i ≥ 1 : f i (U )∩V 6=∅} is bounded by below 1/k.

Finally, the techniques used in the proof of the results above can be used to prove
a folklore result. Since, as far as the authors know, it was never written, we include
here a proof of this result:

Proposition 6. If f is a C1-generic tame diffeomorphism, then the union of the
stable manifolds of the hyperbolic periodic orbits is dense in M.

We observe that this result was proved in a more general setting (partially
hyperbolic diffeomorphisms with one-dimensional central bundle) by Bonatti, Gan
and Wen [Bonatti et al. 2007]. In particular, they obtain this corollary using stronger

1Recently Abdenur and Crovisier [2012] investigated the mixing property for isolated sets.
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methods. However, the short proof given here only uses the connecting lemma.
This is a particular case of Bonatti’s conjecture; see [Bonatti et al. 2007].

Conjecture 7. There exists a residual subset R⊂Diff1(M) such that for any f ∈R,
the union of the stable manifolds of the hyperbolic periodic orbits is dense in M.

This paper is organized as follows. In Section 2, we give precise definitions of
terms used in the introduction. In Section 3, we prove Theorem 1. In Section 4, we
prove Theorems 2 and 3 and also prove an extension of a theorem by Morales. In
Section 5, we give a proof of Proposition 5. Finally, in Section 6, we give a proof
of Proposition 6.

2. Preliminaries

In this section, we give precise definitions of terms used in the introduction and
collect some useful results.

2.1. Topology. As remarked before, both Diff1(M) and X1(M) are Baire spaces.
We will say that a property P is generic if it holds for a residual subset of these
spaces. If the residual subset is fixed, we also say that an element of it is generic.

Let F(M) denote the space of compact subsets of M ; it is a metric space under
the Hausdorff metric, given by

dH (A, B)=max{dA(B), dB(A)} for all A, B ∈ F(M),

where dA(B)=maxb∈B{mina∈A(d(a, b))}.
Let (N , d) be a metric space. A map ϕ : N → F(M) is lower semicontinuous at

y ∈ N if yn→ y implies dH (ϕ(yn), ϕ(y))→ 0. Analogously, a map ϕ : N → R is
lower semicontinuous at x0 ∈ X if

lim inf
x→x0

f (x)≥ f (x0).

It is well known that if (N , d) is a Baire space, then the set of continuity points of
a lower semicontinuous map, in either definition above, is a residual subset of its
domain; see [Kelley 1955].

2.2. Flows. Let X ∈X1(M). The orbit of a point p is the set {X t(p)}t∈R. A periodic
orbit of X is an orbit {X t(p) : t ∈ R} of a point p ∈ M satisfying XT (p) = p for
some minimal T > 0. A singularity σ is a zero of X . By a closed orbit we mean
a periodic orbit or a singularity. The nonwandering set of X is the set �(X) of
points x such that for every neighborhood U of x and N > 0, there exists some
T > N such that XT (U )∩U 6=∅.

A subset 3⊂ M is invariant if X t(3)=3 for all t ∈R; transitive if there exists
p ∈3 such that its orbit is dense in 3; isolated if there exists a neighborhood U
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of 3 such that
⋂

t∈R X t(U )=3; and �-isolated if there exists a neighborhood V
of 3 such that �(X)∩ V =3. We remark that any attractor is �-isolated.

We say that a subset 3⊂ M is sectional-hyperbolic if every singularity in 3 is
hyperbolic and it has a nontrivial partially hyperbolic splitting T3M = E ⊕ F such
that E is uniformly contracting and F is sectionally expanding; i.e.,

dim(Ec
x)≥ 2 and | det(DX t(x)/L x)| ≥ K−1eλt

for all x ∈3, t ≥ 0, and L x a two-dimensional subspace of Ec
x .

We say that 3 is hyperbolic if there is a continuous invariant tangent bundle
decomposition

T3M = Ê s
3⊕ Ê X

3 ⊕ Êu
3,

and positive constants K , λ, where Ê X
3 is the subbundle generated by X and

‖DX t(x)/Ê s
x‖ ≤ K e−λt and ‖DX−t(x)/Êu

X t (x)‖ ≤ K e−λt

for all x ∈3 and t ≥ 0.
A closed orbit is hyperbolic if it is a hyperbolic compact invariant set. A hy-

perbolic set is a basic set if it is isolated and transitive. Similar notions hold for
diffeomorphisms.

Given an invariant splitting T3M = E3 ⊕ F3 over an invariant set 3 of a
vector field X , we say that the subbundle E3 dominates F3 if there are positive
constants K , λ such that

‖DX t(x)/Ex‖‖DX−t(x)/FX t (x)‖ ≤ K e−λt for all x ∈3 and t ≥ 0.

In such a case we say that T3M = E3⊕ F3 is a dominated splitting.
We say that 3 is partially hyperbolic if it has a dominated splitting T3M =

E s
3⊕ Ec

3 whose dominating subbundle E s
3 is contracting, that is,

‖DX t(x)/E s
x‖ ≤ K e−λt for all x ∈3 and t ≥ 0.

Moreover, we call the central subbundle Ec
3 sectionally expanding if

dim(Ec
x)≥ 2 and | det(DX t(x)/L x)| ≥ K−1eλt

for all x ∈3, t ≥ 0, and L x a two-dimensional subspace of Ec
x .

Definition 8. We say that a compact and invariant set3 of X is sectional-hyperbolic
if every singularity contained in 3 is hyperbolic and it has a nontrivial partially
hyperbolic set with a sectionally expanding central subbundle.

Now, we recall the notion of sectional axiom A vector field, given in [Metzger
and Morales 2008]; see also [Morales et al. 1999].
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Definition 9. A vector field X is sectional axiom A if there is a finite disjoint
decomposition

�(X)=31 ∪ · · · ∪3k,

where each 3i is a hyperbolic basic set or a sectional-hyperbolic attractor up to
time reversion.

2.3. Diffeomorphisms. If p is a hyperbolic periodic point, of period k, of a diffeo-
morphism f , then its stable manifold is the set

W s(p)= {y ∈ M : d( f kn(y), p)→ 0 as n→∞}.

This set is in fact an immersed manifold. The stable manifold of the orbit of p is
the union of the stable manifolds of f i (p) for i = 0, . . . , k−1, and it is denoted by
W s(O(p)). Analogously, we define the unstable manifold of p and the orbit of p.

Definition 10. The homoclinic class of p is the set

H(p, f )=W s(O(p)) tW u(O(p).

A diffeomorphism is tame if its nonwandering set decomposes as a finite number
of homoclinic classes and finitely many sinks or sources. Analogous definitions
hold for vector fields.

Given two nonempty open sets U and V , we define the set of times that the orbit
of U visits V as

N (U, V )= {i ≥ 1 : f i (U )∩ V 6=∅}.

The following definition can be found in [Abdenur and Crovisier 2012]:

Definition 11. An invariant and compact subset 3 of f is topologically ergodic if
for every two nonempty open sets U, V ⊂3, we have

lim sup
n→∞

#N (U, V )∩ {1, . . . , n}
n

> 0.

3. Proof of Theorem 1

First we observe that since attractors are isolated, there are at most countably many
of them. Let 31,32, . . . be the attractors of a generic vector field X . Denote by
B(31), B(32), . . . its basins.

We select 31, . . . , 3r such that

r∑
i=1

m(B(3i ))≥ m(B(X))− ε.
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There exist compact sets K1, . . . , Kr such that3i ⊂ Ki ⊂ B(3i ) for i = 1, . . . , r
and such that

m(B(3i )− Ki ) <
ε

r
.

Now, we recall a result of Abdenur. Actually, he works with diffeomorphisms,
but his proof holds for vector fields with the necessary adaptations. Also, he states
his theorem for �-isolated transitive sets, but we will only state it in the case of
attractors, which is the context here.

Theorem 12 [Abdenur 2003]. There exists a residual subset R⊂ X1(M) such that
if X ∈R and 3 is an attractor of X with local basin U which does not reduce to a
singularity, then there exists a neighborhood U of X such that for any Y ∈U∩R,
3(Y )=

⋂
t≥0 Yt(U ) is an attractor. Moreover, there exists a periodic orbit O(p)

such that 3(Y )= H(O(p), Y ).

Thus, there are local basins Ui of 3i such that these local basins persist in a
C1-generic neighborhood of X . Since B(3i )=

⋃
t≥0 X−t(Ui ) and Ki ⊂ B(3i ) is

a compact set, there is T > 0 such that

Ki ⊂
⋃

t∈[0,T ]

X−t(Ui ).

The set on the right is open. So, if Y is C1-close to X , we obtain that

Ki ⊂
⋃

t∈[0,T ]

Y−t(Ui ).

Thus, if Y is generic and C1-close to X , we have m(B(3i (Y )))≥ m(Ki ).
Hence,

m(B(Y ))≥
r∑

i=1

m(Ki )≥ m(B(X))− ε.

This proves lower semicontinuity.

4. Proof of Theorems 2 and 3

Let 3 be a sectional-hyperbolic set for X . We recall that its strong stable manifold
is the set

W ss(x)=
{

y ∈ M : lim
t→∞

d(X t(x), X t(y))= 0
}
.

Its local strong stable manifold is an ε-ball W ss
ε (x) in W ss(x) centered at x for some

ε > 0.
Given A⊂ M , we define α(A) as the set of points y = limn→∞ X tn (zn) for some

sequences tn→−∞ and zn ∈ A. We say that a sectional-hyperbolic set is homoge-
neous if the splitting E s

⊕Ec given by the definition is such that dim E s is constant.
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The following result improves the main theorem in [Morales 2007] since we do
not require transitivity.

Theorem 13. Let 3 ⊂ �(X) be a homogeneous sectional-hyperbolic set for X.
Denote by R the union of the hyperbolic repellers contained in 3. Then 3− R does
not contain any local strong stable manifold.

Proof. By hypothesis, the map x ∈ 3 7→ W ss
ε (x) is continuous if ε > 0 is small,

but fixed. Assume that 3− R contains some W ss
ε (x). Let δ < ε and take H =

α(W ss
δ (x)) ⊂ 3− R, which is compact and invariant. Observe also that the set

3− R is compact and invariant, since 3⊂�(X).
If H has a singularity σ then, by definition, σ = lim X tn (zn) for some sequences

tn→−∞ and zn ∈W ss
δ (x). Moreover, W ss

δ (X tn (zn))⊂3 for any natural number n.
Taking the limit as n→∞, we obtain that W ss

δ (σ )⊂3.
However, by [Bautista and Morales 2011], since 3 is sectional-hyperbolic, we

have that 3∩W ss(σ )= {σ }, and this is a contradiction.
If H does not have a singularity, then by the hyperbolic lemma [Bautista and

Morales 2011], H is a hyperbolic set. Now, let y be a cluster point of X tn (x), with
tn→−∞. We will show that W ss(y)⊂ H . Indeed, let z ∈W ss(y) and let ε > 0 be
small enough. There exists T > 0 such that

d(XT (z), XT (y)) < ε.

Also, there exists n0 such that for any n ≥ n0, we have

d(X t(y), X tn+T (x)) < ε.

Finally, for any n large, there exists zn ∈W ss
δ (x) such that

d(X tn+T (x), X tn+T (zn)) < ε.

This implies that if n is large enough then

d(XT (z), X tn+T (zn)) < ε.

In particular, we can assume that tn + T → −∞. Thus, XT (z) ∈ H , and by
invariance, z ∈ H . Thus H is a repeller inside 3− R, a contradiction. �

Remark 14. We could remove the homogeneity assumption. Indeed, the sets
{x ∈3 : dim(E s(x))= i} for 1≤ i ≤ d − 1 are compact. Hence, we could use the
argument restricting ourselves to each of these sets.

Now, we observe that X1 is a partially hyperbolic diffeomorphism over 3 since
the dominated splitting T3M = E s

⊕ Ec has a contracting subbundle E s . A strong
stable disk of X1 is a disk which is tangent to the subbundle E s over 3. Obviously,
a strong stable disk of X1 is a local strong stable manifold for some point x ∈3.
However, the following result was proved in [Alves et al. 2007, Theorem 2.2]:
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Theorem 15. Let f : M → M be a C2 diffeomorphism and 3 ⊂ M a partially
hyperbolic set with positive volume. Then 3 contains a strong stable disk.

Together with Theorem 13, we obtain the following:

Corollary 16. Let 3 be a proper subset of M. If 3 is a homogeneous sectional-
hyperbolic set of a C2 vector field X and 3⊂�(X), then m(3)= 0.

Proof. First we remark that there are only countably many repellers in 3, since they
are isolated. Moreover, by [Bowen 1975], the measure of any hyperbolic repeller
(or attractor) is zero if X is C2.

On the other hand, if R denotes the union of the hyperbolic repellers of 3 and
m(3− R) > 0, then by Theorem 15, there exists a strong stable disk on 3− R,
and this contradicts Theorem 13. �

For any open set U , let 3Y (U )=
⋂

t∈R Yt(U ). These sets have an upper semi-
continuity property: lim sup3Xn (U ) ⊂ 3X (U ). Indeed, let x ∈ lim sup3Xn (U ).
So, there exists xn ∈3Xn (U ) such that xn→ x . Fix t ∈R. We have (Xn)t(xn) ∈U .
Thus, X t(x) ∈U . Since this holds for every t ∈ R, this implies that x ∈3X (U ).

Now, let {Uk} be a countable basis of the topology and {Ok} the set of finite
unions of the Uk . For every n, k ∈N, we define Un,k as the set of vector fields Y
such that m(3Y (Ok)) < 1/n.

Lemma 17. Un,k is an open set.

Proof. Let Y ∈Un,k , and suppose that m(3Y (Ok))= 1/n− ε. There exists T large
enough that

m
( T⋂

t=−T

Yt(Ok)

)
< m(3Y (Ok))+

ε

2
.

Let W be a neighborhood of
⋂T

t=−T Yt(Ok) such that

m(W ) < m
( T⋂

t=−T

Yt(Ok)

)
+
ε

2
.

If Z is close enough to Y , we have that
⋂T

t=−T Z t(Ok)⊂W . Thus

m(3Z (Ok))≤ m
( T⋂

t=−T

Z t(Ok)

)
< m

( T⋂
t=−T

Yt(Ok)

)
+
ε

2

≤ m(3Y (Ok))+ ε =
1
n
. �

Now, we prove Theorem 2.
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Proof of Theorem 2. By the previous lemma, Un,k is an open set. Now, we define
Nn,k = X1(M)−Un,k . Consider the residual subset

R=
⋂

n

⋂
k

(Un,k ∪Nn,k).

Let X ∈R and let 0=31∪· · ·∪3k , as in the statement of Theorem 2. Suppose
that3i is a homogeneous sectional-hyperbolic set for X . Since3i is invariant, there
exists k(i) such that 3i ⊂3X (Ok(i)) and 3X (Ok(i)) is a homogeneous sectional-
hyperbolic set. A similar argument holds when 3i is a homogeneous sectional-
hyperbolic set for −X .

Now, suppose that m(3X (Ok(i))) > 0 for some i . Thus, there exists n such that
m(3X (Ok(i))) ≥ 1/n. So, X ∈ Nn,k(i). Since Nn,k(i) is an open set, there exists a
neighborhood V of X such that m(3Y (Ok(i)))≥ 1/n for every Y ∈ V.

Using the semicontinuity property, mentioned above, and the sectional hyperbol-
icity of 3X (Ok(i)), we can assume, shrinking V if necessary, that 3Y (Ok(i)) is a
homogeneous sectional-hyperbolic set for every Y ∈ V.

Now, we can choose a C2 vector field Y ∈ V and by Corollary 16, we have that
m(3Y (Ok))= 0, a contradiction. �

Proof of Theorem 3. The arguments given above show that there exists a residual
subset S such that if X ∈ S and 3 is a proper saddle-type isolated transitive
sectional-hyperbolic set, then m(3)= 0.

Indeed, let U be an open set, and define U(U ) as the (open) set formed by
vector fields Y such that 3Y (U ) is hyperbolic of saddle type. Let Un(U ) =
{Y ∈ U(U ) : m(B(3Y (U ))) < 1/n}. Using the same argument as in the proof
of Lemma 17, we obtain that Un(U ) is an open set.

Moreover, if Y ∈ U(U ) is C2, we have that m(B(3Y (U ))) = 0 [Bowen 1975,
p. 68]. So, Un(U ) is dense in U(U ).

Defining Ok as above, we set S =
⋂

k,n Un(Ok).
Let X ∈ R∩S be a sectional axiom A vector field. By definition, we have a

spectral decomposition �(X) = 31 ∪ · · · ∪3k , formed by sectional-hyperbolic
attractors, repellers and basic saddle-type hyperbolic sets. Moreover, since these
sets have a dense orbit, they are homogeneous.

If m(�(X))> 0, then there exists 1≤ i ≤ k such that m(3i )> 0. By the previous
argument and Theorem 2, we have that 3i = M . If 3i is a saddle-type hyperbolic
set, then X is Anosov. If 3i is a sectional-hyperbolic attractor then it cannot have
any singularity. Indeed, if σ is a singularity, we must have W ss(σ ) ∩3i = {σ },
but if 3i = M this cannot be true. Hence, by the hyperbolic lemma, M would be
hyperbolic again and X would be Anosov. If 3i is a sectional-hyperbolic attractor
for −X , the same holds.
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So, assuming that X is not Anosov, m(�(X))= 0. Using Lemma 2.2 of [Shub
1978], we have that

M =W s(31)∪ · · · ∪W s(3k).

Since X ∈R, if 3i is a repeller then W s(3i )=3i and m(3i )= 0. Since X ∈ S,
if 3i is a hyperbolic basic set then m(W s(3i ))= 0. Thus, the measure of the union
of the basins of the attractors is total. �

5. Proof of Proposition 5

In the following, we will work with the topology relative to the homoclinic class.
First, we will show that any homoclinic class is topologically ergodic.2

Let H(p, f ) be a homoclinic class. Denote by k the period of p. We recall that
the local stable manifold of p is the set W s

ε (p)= {y ∈ M : d( f n(y), f n(p))≤ ε}.
Fix two nonempty open subsets U and V of H(p, f ). Since the stable manifold

of its orbit is dense, there exist ε > 0 and N > 0 such that

f −N (W s
ε (p))∩U 6=∅.

In particular, there exists a disk D ⊂ f N (U ) transversal to W s
ε (p). Moreover,

since W u(O(p)) is dense, there exists K > 0 such that f K (W u
ε (p)) ∩ V 6= ∅.

Using the λ-lemma [Palis and de Melo 1982], there exist m0 and 0 ≤ i < k such
that for every m ≥ m0, we have that f km+i (D) ∩ V 6= ∅. Let l ∈ N such that
A = lk + (N + i) is the largest integer less than or equal to n; in particular,
n < A+ k. By the previous remark, #N (U, V )∩ {1, . . . , n} ≥ l −m0. So,

lim sup
n→∞

#N (U, V )∩ {1, . . . , n}
n

≥ lim sup
l→∞

l −m0

(l + 1)k+ N + i
=

1
k
.

This shows that the homoclinic class is topologically ergodic.

6. Proof of Proposition 6

We recall that an invariant and compact subset A ⊂ M is called Lyapunov stable if
given U , an open neighborhood of A, there exists another neighborhood V of A
such that f n(V )⊂U for every n ∈ N.

Lemma 18 [Carballo et al. 2003, Lemma 3.4]. If f is a C1-generic diffeomorphism,
then W u(O(p)) is Lyapunov stable for f .

Another source of Lyapunov stable sets is the following, which is [Morales and
Pacifico 2002, Theorem A]:

Theorem 19. There exists a residual subset R∗ ⊂ Diff1(M) such that if g ∈ R∗,
then the set S = {x ∈ M : ω(x) is Lyapunov stable} is a residual subset of M.

2We want to thank Professor Abdenur for pointing out this short argument to us.
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We also recall Hayashi’s connecting lemma [1997], one of the most useful
techniques in the C1-generic theory of dynamical systems. The formulation that
we give here is taken from [Wen and Xia 2000].

Theorem 20 (connecting lemma). Let f ∈ Diff1(M), and let z be a nonperiodic
point of f . Given a neighborhood U of f , there exist ρ > 1, L ∈ N and δ0 > 0 with
the following property. Let 0< δ < δ0 and

p, q /∈1(δ) :=
L⋃

n=1

(
f −n(B(z, δ))

)
.

If there exist a > L such that f a(p) ∈ B(z, δ/ρ) and b ≥ 0 such that f −b(q) ∈
B(z, δ/ρ), then there exists g ∈U such that q is a future g-iterate of p and g ≡ f
outside 1(δ).

We remark that the method used in the proof of Theorem 1 could be used to
prove the topological semicontinuity of the basins of generic attractors. However,
in the C1-topology a stronger property can be obtained, which, together with the
continuity given by the stable manifold theorem, quickly implies this semicontinuity
in this topology.

Proposition 21. C1-generically, if a diffeomorphism has an attractor, then there
exists a periodic point inside the attractor such that its stable manifold is dense in
the basin of the attractor.

Proof. Let U be an open set. We define the set

U(U,m)={
f ∈ Diff1(M) : ∃p ∈

⋂
n≥0

f n(U )∩Perh( f ) with W s(p, f ) 1/m-dense in U
}
.

If f ∈ U(U,m), then it has a hyperbolic periodic point in U such that its stable
manifold is 1/m-dense in U . Since this point is hyperbolic, there exists V , a C1-
neighborhood of f such that if g∈V then p(g)∈U . Take y∈U and B= B(y, 1/m),
so for f , we have that W s(p, f )∩ B 6= ∅. By the stable manifold theorem, we
have that W s(p(g))∩ B 6=∅, so W s(p(g)) is 1/m-dense in U and g ∈U(U,m).
This proves that the set U(U,m) is open.

Let {Uk} be a countable basis of open sets of M , and let {On} be the set of all
possible unions of the elements Uk . Define

A(On,m)=U(On,m)∪U(On,m)c.

Now, by the previous remark, and by construction, this set is open and dense in
Diff1(M). So R1 =

⋂
n,m A(On,m) is a residual subset. Let R2 be the residual

subset given in [Abdenur 2003].
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Let R= R1∩R2. If f ∈ R and3 is an attractor of f , then there exists p∈Perh( f )
such that 3= H(p, f ). Fix n,m such that On is a local basin of 3. Now, we must
prove that f ∈ U(On,m). Suppose that f ∈ U(On,m)c. Since this set is open,
there is W ⊂U(On,m)c, a small open C1-neighborhood of f . The next step is to
prove that we can find g ∈W such that g ∈U(On,m), which will be a contradiction.
To prove this we will use the C1-connecting lemma, and we will also need the
following lemmas. From now on we will fix f and W as above.

Lemma 22. The function8(g)=W s(p(g), g) for g∈W is continuous in a residual
subset of W .

Proof. The map 8 is lower semicontinuous in W by the stable manifold theorem.
Then, it is continuous in a residual subset W ∗ ⊂W . �

Thus we have that the map8 is continuous in W ∗∩R. Now, since f ∈U(On,m)c,
there exists an x ∈ On such that B(x, 1/m)∩8( f )=∅.

This, together with Theorem 19, implies the following corollary:

Corollary 23. There exists a residual subset RW ⊂ W such that if g ∈ RW , then
there exists a residual subset P ⊂ Om such that if x ∈ P then ω(x)=3(g).

Proof. Let R∗ and S be given by Theorem 19. Define RW := R ∩ R∗ ∩W and
P = On ∩ S. Hence, if x ∈ P , then x ∈ On and ω(x)⊂3. However, since x ∈ S
as well, we know that ω(x) is Lyapunov stable. By the previous remark, since 3 is
transitive, we have that 3⊂ ω(x). Thus ω(x)=3. �

Now, we study the consequences of the continuity of 8.

Lemma 24. If 8 is continuous in g ∈ RW and S is the set given by Theorem 19,
then On ∩ S ⊂8(g).

Proof. If the lemma does not hold, then there exists x ∈ (On∩S)−8(g). Let U be a
neighborhood of8(g) such that x /∈U . By continuity there exists a neighborhood V

of g such that if h ∈ V then 8(h)⊂U .
Since x ∈ On ∩ S, we have ω(x)=3(g). Thus, there exists a sequence (ln)⊂N

such that gln (x)→ p(g). By the Hartman–Grobman theorem [Palis and de Melo
1982], there exists another sequence (tn)⊂ N such that

gtn (x)→ q ∈W s
ε (p(g), g)−{p(g)}.

Let ρ > 1, L ∈N and δ0 > 0, as given by the C1-connecting lemma applied to q
and U. Choose δ with 0< δ < δ0, and let V be a neighborhood of the orbit of p(g)
such that

p(g), x /∈1(δ)=
L⋃

n=1

(
g−n(B(q, δ))

)
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and
L⋃

n=1

(
g−n(B(q, δ))

)
∩ V =∅.

Pick y ∈ B(q, δ/ρ)∩W s(p(g), g) such that, defining z = gk(y), we have z ∈(
W s(p(g), g)−{p(g)}

)
∩ V . By definition, we have that g−k(z)= y ∈ B(q, δ/ρ).

Using that gtn (x)→ q , we obtain some n0 > L such that

gtn0 (x) ∈ B(q, δ/ρ).

Applying the C1-connecting lemma, we obtain h ∈ V such that h = g out-
side of 1(δ) and x belongs to the h-negative orbit of z. However, since z ∈(
W s

g (p(g))−{p(g)}
)
∩ V , we obtain that the h-positive orbit of z belongs to V .

Thus
z ∈W s

h (p(h)) and thus x ∈W s
h (p(h)).

This leads to a contradiction, since h ∈ V and x /∈U . �

By the previous lemma, since f ∈W , there is g ∈ RW such that 8 is continuous
in g. So On∩ S⊂8(g), and there exists y ∈ B(x, 1/m)∩ S. Then y ∈8(g), which
is a contradiction since f ∈W ⊂U(On,m)c. Then f ∈U(On,m), which proves
the proposition. �

Now, to prove Proposition 6, it is enough to combine Proposition 21 with:

Theorem 25 [Carballo and Morales 2003]. If f is a C1-generic tame diffeomor-
phism then the union of the basins of its attractors is an open and dense subset of M.
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