

Convergence of the maximum zeros of a class of Fibonacci-type polynomials

Rebecca Grider and Kristi Karber

Convergence of the maximum zeros of a class of Fibonacci-type polynomials

Rebecca Grider and Kristi Karber

(Communicated by Kenneth S. Berenhaut)

Let *a* be a positive integer and let *k* be an arbitrary, fixed positive integer. We define a generalized Fibonacci-type polynomial sequence by $G_{k,0}(x) = -a$, $G_{k,1}(x) = x - a$, and $G_{k,n}(x) = x^k G_{k,n-1}(x) + G_{k,n-2}(x)$ for $n \ge 2$. Let $g_{k,n}$ represent the maximum real zero of $G_{k,n}$. We prove that the sequence $\{g_{k,2n}\}$ is decreasing and converges to a real number β_k . Moreover, we prove that the sequence $\{g_{k,2n+1}\}$ is increasing and converges to β_k as well. We conclude by proving that $\{\beta_k\}$ is decreasing and converges to *a*.

1. Introduction

Let α , β , and k be integers, with $\alpha \neq 0$. Consider a Fibonacci-type polynomial sequence given by the recurrence relation $G_{k,0} = -\alpha$, $G_{k,1} = x - \beta$, and for $n \ge 2$,

$$G_{k,n}(x) = x^k G_{k,n-1}(x) + G_{k,n-2}(x).$$
(1)

We should point out that the classical Fibonacci polynomial sequence F_n is obtained when $\alpha = -1$, $\beta = 0$, and k = 1. Moreover, the Lucas polynomial sequence L_n is obtained when $\alpha = -2$, $\beta = 0$, and k = 1. Hoggatt and Bicknell [1973] give explicit forms for the zeros of F_n and L_n . Even though finding explicit formulas for other Fibonacci-type polynomial sequences has been a challenge, several results about the properties of the zeros of some specific cases are known. For example, G. Moore [1994] and H. Prodinger [1996] studied the asymptotic behavior of the maximal zeros of $G_{1,n}$ when $\alpha = \beta = k = 1$, and Yu, Wang and He [Yu et al. 1996] generalized Moore's result for $\alpha = \beta = a$, where *a* is any positive integer. F. Mátyás [1998] studied the same problem for $\alpha = a$, $a \neq 0$ and $\beta = \pm a$. More recently, Wang and He [2004] generalized their previous result for any two integers α and β with $\alpha \neq 0$. We also mention the works of P. E. Ricci [1995] and Mátyás [1998] for boundedness results of the zeros of $G_{1,n}$. In addition, Molina and Zeleke [2007; 2009] studied the asymptotic behavior of the zeros of $G_{k,n}$ when $\alpha = \beta = 1$ and *k* is an arbitrary integer.

MSC2010: primary 11B39; secondary 11B37, 30C15.

Keywords: Fibonacci polynomial, convergence, zeros, roots.

Moore [1994] proved that when $\alpha = \beta = k = 1$, the maximum zeros of the oddindexed polynomials converge to $\frac{3}{2}$ from below and the maximum roots of the evenindexed polynomials converge to $\frac{3}{2}$ from above. In that article, a remark was made about the possibilities of investigating asymptotic behaviors of maximum zeros of other Fibonacci-type polynomial sequences. In [Miller and Zeleke 2013], the first author and Zeleke studied the maximum real zeros of the Fibonacci-type polynomial sequence where $\alpha = \beta = a, a$ is a positive integer, and k = 2. They provided asymptotic results for the maximum real zeros numerically as well as analytically. We extend those results by allowing k to be an arbitrary, fixed positive integer. The proof techniques expand those used in [Miller and Zeleke 2013] and [Molina and Zeleke 2009].

Before delving into the technical results, we provide a numerical example to motivate our work.

Example. Consider the Fibonacci-type polynomial sequence given by the recurrence relation $G_{k,0} = -2$, $G_{k,1} = x - 2$, and for $n \ge 2$,

$$G_{k,n}(x) = x^k G_{k,n-1}(x) + G_{k,n-2}(x).$$

In the context of the generalized Fibonacci-type polynomial sequences we study in this paper, this example corresponds to the case when a = 2. For a fixed positive integer k and a natural number n, let $g_{k,n}$ represent the maximum real root of the polynomial $G_{k,n}$. The first six terms in the sequences of the maximum real roots for k = 2, k = 3, and k = 4 are shown in the following three columns, respectively.

$g_{2,1} = 2$	$g_{3,1} = 2$	$g_{4,1} = 2$
$g_{2,2} \doteq 2.359304086$	$g_{3,2} \doteq 2.190327947$	$g_{4,2} \doteq 2.102374082$
$g_{2,3} \doteq 2.350513611$	$g_{3,3} \doteq 2.188965777$	$g_{4,3} \doteq 2.102149889$
$g_{2,4} \doteq 2.350789278$	$g_{3,4} \doteq 2.188978002$	$g_{4,4} \doteq 2.102150474$
$g_{2,5} \doteq 2.350780807$	$g_{3,5} \doteq 2.188977893$	$g_{4,5} \doteq 2.102150473$
$g_{2,6} \doteq 2.350781067$	$g_{3,6} \doteq 2.188977894$	$g_{4,6} \doteq 2.102150473$

For each sequence, the subsequence created by the odd-indexed (i.e., *n* is odd) maximum real roots is increasing. And, the subsequence created by the even-indexed (i.e., *n* is even) maximum real roots is decreasing. In fact, each of the sequences converge to a real number which is dependent on *k*. We call this real number β_k . We should mention β_k is also dependent on our choice of *a* and for this example, a = 2. For the sequences above, we have

$$\beta_2 \doteq 2.350781059, \quad \beta_3 \doteq 2.188977894, \quad \beta_4 \doteq 2.102150473.$$

It is also the case that $\{\beta_k\}$ converges to 2 and it is not a coincidence that this is the value of *a*.

2. Formulas

At this time, we introduce a few handy formulas that were established in [Molina and Zeleke 2009]. The formulas in the following lemma allow us to write $G_{k,n}(x)$ in terms of smaller indexed functions.

Lemma 2.1. For $n \ge 1$, the following recursive formulas are true:

 $G_{k,2n+2}(x) = (x^{2k}+1)G_{k,2n}(x) + x^{2k}G_{k,2n-2}(x) + \dots + x^{2k}G_{k,2}(x) + x^kG_{k,1}(x),$ $G_{k,2n+1}(x) = (x^{2k}+1)G_{k,2n-1}(x) + x^{2k}G_{k,2n-3}(x) + \dots + x^{2k}G_{k,1}(x) + x^kG_{k,0}(x).$

The formula that we present in the next lemma provides a type of shift from one indexed polynomial evaluated at $g_{k,n}$ to another indexed polynomial evaluated at $g_{k,n}$. The proof can be found in [Molina and Zeleke 2009, Lemma 4].

Lemma 2.2. For $n \ge m$, $G_{k,n+m}(g_{k,n}) = (-1)^{m+1}G_{k,n-m}(g_{k,n})$.

3. Preliminary results

We're now ready to study the maximum real roots, $g_{k,n}$, for the generalized Fibonacci-type polynomial sequence defined by $G_{k,0}(x) = -a$, $G_{k,1}(x) = x - a$, and $G_{k,n}(x) = x^k G_{k,n-1}(x) + G_{k,n-2}(x)$ for $n \ge 2$, where *a* is a positive integer and *k* is an arbitrary, fixed positive integer.

Proposition 3.1. *If* $n \ge 2$, *then* $g_{k,n} \in (a, a + 1)$.

Proof. For $n \ge 2$, we will show $G_{k,n}(a) < 0$ and $G_{k,n}(x) > 0$ for $x \in [a+1, \infty)$; thus, our conclusion will follow. We'll begin by showing $G_{k,n}(a) < 0$ by induction. Since $G_{k,0}(a) = -a$ and $G_{k,1}(a) = a - a = 0$, we have $G_{k,2}(a) = a^k(0) - a = -a < 0$. Now suppose $G_{k,m}(a) < 0$ for all *m* such that $2 \le m \le n$. By (1) and the inductive hypothesis, $G_{k,n+1}(a) = a^k G_{k,n}(a) + G_{k,n-1}(a) < 0$. Hence, $G_{k,n}(a) < 0$ for $n \ge 2$.

For the remainder of the proof, let $x \in [a+1, \infty)$. We again use induction. Notice

$$G_{k,1}(x) = x - a \ge a + 1 - a > 0$$
, and
 $G_{k,2}(x) = x^k (x - a) - a \ge (a + 1)^k (a + 1 - a) - a = (a + 1)^k - a > 0.$

Now suppose $G_{k,m}(x) > 0$ for all *m* such that $2 \le m \le n$. By (1) and the inductive hypothesis, it follows that $G_{k,n+1}(x) = x^k G_{k,n}(x) + G_{k,n-1}(x) > 0$. Hence, $G_{k,n}(x) > 0$ for $x \in [a+1, \infty)$ and $n \ge 2$.

Therefore, $g_{k,n} \in (a, a+1)$ for $n \ge 2$.

Proposition 3.2. Let a be a positive integer and let β_k be a positive real number that satisfies the equation $G_{k,2}(x) = -(a-x)^2/a$; that is, β_k is a zero of $T_k(x) = ax^k - a^2x^{k-1} + x - 2a$. Then

$$G_{k,n}(\beta_k) = \frac{-(a-\beta_k)^n}{a^{n-1}} \quad \text{for all } n \ge 0.$$

Proof. We prove this proposition by induction. The result is true for n = 0 and n = 1 by simple computation. It is true for n = 2 by construction. Now assume $G_{k,n}(\beta_k) = -(a - \beta_k)^n/a^{n-1}$ for all positive integers less than or equal to n. Then

$$\begin{aligned} G_{k,n+1}(\beta_k) &= \beta_k^k G_{k,n}(\beta_k) + G_{k,n-1}(\beta_k) \\ &= \beta_k^k \left(\frac{-(a-\beta_k)^n}{a^{n-1}} \right) + \frac{-(a-\beta_k)^{n-1}}{a^{n-2}} \\ &= \frac{-(a-\beta_k)^{n-1}}{a^{n-2}} \left(\frac{\beta_k^k (a-\beta_k)}{a} + 1 \right) \\ &= \frac{-(a-\beta_k)^{n-1}}{a^{n-2}} \left(\frac{a\beta_k^k (a-\beta_k) + a^2}{a^2} \right) \\ &= \frac{-(a-\beta_k)^{n-1}}{a^n} (a\beta_k^k (a-\beta_k) + a^2) \\ &= \frac{-(a-\beta_k)^{n-1}}{a^n} (-a(\beta_k^k (\beta_k - a) - a)) \\ &= \frac{-(a-\beta_k)^{n-1}}{a^n} (a-\beta_k)^2 \\ &= \frac{-(a-\beta_k)^{n-1}}{a^n}. \end{aligned}$$

Therefore, our result is true for all nonnegative integers.

We remind the reader that whenever β_k is used in this article, it will be dependent on the choice of *a*.

Corollary 3.3. $\lim_{n \to \infty} G_{k,n}(\beta_k) = 0.$

Proof. Before we begin, we kindly remind the reader that $k \ge 1$ and this assumption is continued throughout our work unless stated otherwise. Now the first fact we establish for this proof is that $\beta_k \in (a, a + 1)$. To show this, we will again consider $T_k(x) = ax^k - a^2x^{k-1} + x - 2a$. It is easily verified that $T_k(a) < 0 < T_k(a + 1)$. Moreover, T_k is strictly increasing on the interval $[a, \infty)$, which will be shown by examining the first derivative of T_k . Notice

$$T'_{k}(x) = kax^{k-1} - (k-1)a^{2}x^{k-2} + 1$$

= $ax^{k-2}(kx - ka + a) + 1$
= $ax^{k-2}(k(x-a) + a) + 1$
> 0

for all $x \in [a, \infty)$. Thus, $\beta_k \in (a, a + 1)$. Therefore,

$$\lim_{n \to \infty} G_{k,n}(\beta_k) = \lim_{n \to \infty} \frac{-(a - \beta_k)^n}{a^{n-1}} = 0.$$

4. Analysis of $G'_{k,3}(x)$

In order to prove our main result on the convergence of the maximum zeros, we will need a lower bound on the values $G'_{k,n}(g_{k,n})$. This section will provide a lower bound of $G'_{k,3}(x)$ on the interval $[g_{k,3}, \infty)$. We begin with a couple of lemmas to help us achieve this lower bound.

Lemma 4.1. For $k \ge 3$, $G''_{k,3}(x)$ has exactly one zero in the interval $(0, \infty)$.

Proof. Let $k \ge 3$ and recall $G_{k,3}(x) = x^{2k+1} - ax^{2k} - ax^k + x - a$. Thus,

$$\begin{aligned} G_{k,3}''(x) &= (2k+1)(2k)x^{2k-1} - 2ka(2k-1)x^{2k-2} - k(k-1)ax^{k-2} \\ &= kx^{k-2} \big(2(2k+1)x^{k+1} - 2a(2k-1)x^k - a(k-1) \big) \\ &= kx^{k-2} f(x), \end{aligned}$$

where $f(x) = 2(2k+1)x^{k+1} - 2a(2k-1)x^k - a(k-1)$. We can see that 0 is a zero of $G''_{k,3}$. In order to show $G''_{k,3}$ has only one zero in $(0, \infty)$, we will show that f(x) has exactly one zero in $(0, \infty)$. To do so, consider

$$f'(x) = 2(2k+1)(k+1)x^k - 2a(2k-1)kx^{k-1}$$

= $2x^{k-1}((2k+1)(k+1)x - a(2k-1)k).$

The critical numbers of f are

$$c_1 = 0$$
 and $c_2 = \frac{a(2k-1)k}{(2k+1)(k+1)}$

Using this information, it can be verified that f is decreasing on $(0, c_2)$ and increasing on (c_2, ∞) . Pairing this with f(0) = -a(k-1) < 0 and $\lim_{x\to\infty} f(x) = \infty$, we conclude f, and hence $G''_{k,3}$, has exactly one zero in $(0, \infty)$. Therefore, our conclusion holds.

Lemma 4.2. For $k \ge 3$, $G'_{k,3}(x)$ has exactly two zeros in the interval $(0, \infty)$. *Proof.* Let $k \ge 3$ and recall $G_{k,3}(x) = x^{2k+1} - ax^{2k} - ax^k + x - a$. Thus, $G'_{k,3}(x) = (2k+1)x^{2k} - 2kx^{2k-1} - kx^{k-1} + 1$

$$G'_{k,3}(x) = (2k+1)x^{2k} - 2kax^{2k-1} - kax^{k-1} + 1.$$

Using the intermediate value theorem and the inequalities $G'_{k,3}(0) = 1 > 0$, $G'_{k,3}(1) = k(2-3a) + 2 \le -1 < 0$, and $\lim_{x\to\infty} G'_{k,3}(x) = \infty$, we can conclude $G'_{k,3}(x)$ has at least two zeros in $(0, \infty)$. To show there can be no more than two zeros in $(0, \infty)$, we will explore the possibility of $G'_{k,3}(x)$ having at least three zeros in $(0, \infty)$. If

 $G'_{k,3}(x)$ has at least three zeros in $(0, \infty)$, then $G''_{k,3}$ would have at least two zeros in $(0, \infty)$ by Rolle's theorem, but, by Lemma 4.1, we know this cannot be the case. Thus, $G'_{k,3}(x)$ has exactly two zeros in $(0, \infty)$ and since $G'_{k,3}(0) \neq 0$, those two zeros are indeed in $(0, \infty)$.

We are now ready to obtain a lower bound on $G'_{k,3}(x)$ for $x \in [g_{k,3}, \infty)$.

Proposition 4.3. *If* $k \ge 1$ *and* $x \in [g_{k,3}, \infty)$ *, then* $G'_{k,3}(x) > 1$ *.*

Proof. Let $x \in [g_{k,3}, \infty)$. We break our proof into cases.

Case 1: Consider k = 1. We then have

- $G_{1,3}(x) = x^3 ax^2 ax + x a$,
- $G'_{1,3}(x) = 3x^2 2ax a + 1$, and
- $G_{1,3}''(x) = 6x 2a$.

Since $G''_{1,3}(x) > 0$ for $x \in (a/3, \infty)$, we know $G'_{1,3}$ is increasing on $(a/3, \infty)$. Thus, $1 \le G'_{1,3}(a) < G'_{1,3}(x)$ when $x \in [g_{1,3}, \infty)$ as $g_{1,3} > a$ by Proposition 3.1.

Case 2: Consider k = 2. We then have

- $G_{2,3}(x) = x^5 ax^4 ax^2 + x a$,
- $G'_{2,3}(x) = 5x^4 4ax^3 2ax + 1$, and

•
$$G_{2,3}''(x) = 2(10x^3 - 6ax^2 - a).$$

Since $G_{2,3}''(x) > 0$ for $x \in (a, \infty)$, we know $G_{2,3}'$ is increasing on (a, ∞) . Again notice $g_{2,3} > a$ by Proposition 3.1. Applying the mean value theorem, we know there exists $c \in (a, g_{2,3})$ such that

$$G'_{2,3}(c) = \frac{G_{2,3}(g_{2,3}) - G_{2,3}(a)}{g_{2,3} - a}$$

It follows that when $x \in [g_{2,3}, \infty)$,

$$G'_{2,3}(x) > G'_{2,3}(c) = \frac{G_{2,3}(g_{2,3}) - G_{2,3}(a)}{g_{2,3} - a} = \frac{0 - G_{2,3}(a)}{g_{2,3} - a} = \frac{a^3}{g_{2,3} - a} > 1.$$

Case 3: Consider $k \ge 3$. By Lemma 4.1, we know $G''_{k,3}(x)$ has one positive root, call it *r*, and, by Lemma 4.2, we know $G'_{k,3}(x)$ has two positive roots, call them *s* and *t*, where s < t. Moreover, by Rolle's theorem, s < r < t. Notice that

- $G'_{k,3}(0) = 1 > 0$,
- $G'_{k,3}(1) = k(2-3a) + 2 \le -1 < 0$,

•
$$\lim_{x\to\infty} G'_{k,3}(x) = \infty$$
, and

• $G_{k,3}''$ is positive on (r, ∞) .

Thus, s < 1 < t. Moreover, $G'_{k,3}$ is negative on (s, t) and $G'_{k,3}$ is positive and increasing on (t, ∞) , and, by the mean value theorem, there exists $c \in [1, g_{k,3}]$ such that

$$G_{k,3}'(c) = \frac{G_{k,3}(g_{k,3}) - G_{k,3}(1)}{g_{k,3} - 1} = \frac{0 - (2 - 3a)}{g_{k,3} - 1} = \frac{3a - 2}{g_{k,3} - 1} \ge 1.$$

Hence, c > t, and thus $g_{k,3} > t$. Therefore, if $x \in [g_{k,3}, \infty)$, then

$$G'_{k,3}(x) > G'_{k,3}(c) \ge 1.$$

Therefore, our conclusion holds for all cases.

We're now ready to prove that all of the first derivatives of the polynomials are bounded below by 1 as well as explore the characteristics of the maximum zeros. We break this up into two sections, one with the odd-indexed polynomials and the other with the even-indexed polynomials.

5. Odd-indexed polynomials

We will use the following two propositions to help establish our results. The proofs are left to the reader as they are similar to those found in [Molina and Zeleke 2009, Lemmas 6 and 7].

Proposition 5.1. *The maximum zeros of the odd-indexed polynomials* $G_{k,2n+1}$ *form a strictly increasing sequence.*

Proposition 5.2. If $n \ge 0$, then the derivative of $G_{k,2n+1}(x)$ is bounded below by 1 for $x \in [g_{k,2n+1}, \infty)$.

Proposition 5.3. If $n \ge 0$, then $g_{k,2n+1} < \beta_k$ for each $k \ge 1$.

Proof. By Proposition 3.2 and for $n \ge 1$,

$$G_{k,2n+1}(\beta_k) = \frac{-(a-\beta_k)^{2n+1}}{a^{2n}} > 0$$

as $\beta_k \in (a, a + 1)$. Our goal is to show that

$$G'_{k,2n+1}(x) > G'_{k,2n-1}(x) > \dots > G'_{k,3}(x) > G'_{k,1}(x) = 1$$

for $x \in [\beta_k, \infty)$ as it will then follow that $g_{k,2n+1} < \beta_k$. Now, since $G_{k,3}(x) \le 0$ on $[a, g_{k,3}]$, it must be the case that $\beta_k > g_{k,3}$. Proposition 5.2 gives

$$G'_{k,3}(x) > G'_{k,1}(x) = 1$$

on $[g_{k,3}, \infty)$. Thus,

$$G'_{k,3}(x) > G'_{k,1}(x) = 1$$

on $[\beta_k, \infty)$ as $[\beta_k, \infty) \subseteq [g_{k,3}, \infty)$. We note that the rest of the proof follows a similar format to the induction argument used in Proposition 5.2 with $[\beta_k, \infty)$ replacing $[g_{k,2n+1}, \infty)$.

6. Even-indexed polynomials

Proposition 6.1. If $n \ge 1$, then the derivative of $G_{k,2n}(x)$ is bounded below by 1 for $x \in [g_{k,2n-1}, \infty)$.

Proof. We will make use of induction to obtain our result. Let $x \in [g_{k,2n-1}, \infty)$. For n = 1, we have

$$G'_{k,2}(x) = (k+1)x^k - akx^{k-1} = x^{k-1}((k+1)x - ak) > 1.$$

By (1), we have

$$G_{k,2n}(x) = x^{k}G_{k,2n-1}(x) + G_{k,2n-2}(x), \text{ and}$$

$$G'_{k,2n}(x) = x^{k}G'_{k,2n-1}(x) + kx^{k-1}G_{k,2n-1}(x) + G'_{k,2n-2}(x).$$

From Proposition 5.1, we know $kx^{k-1}G_{k,2n-1}(x) \ge 0$ as $x \in [g_{k,2n-1}, \infty)$. So,

$$G'_{k,2n}(x) \ge x^k G'_{k,2n-1}(x) + G'_{k,2n-2}(x).$$

Now suppose $G'_{k,2n-2}(x) \ge 1$. Then

$$G'_{k,2n}(x) \ge x^k G'_{k,2n-1}(x) + G'_{k,2n-2}(x)$$

> $G'_{k,2n-2}(x)$ (as $x^k G'_{k,2n-1}(x) > 1$ by Proposition 5.2)
> 1 (by the induction hypothesis).

Therefore, the derivative of the even-indexed polynomials are bounded below by 1 for $x \in [g_{k,2n-1}, \infty)$.

Referring back to Proposition 5.3, we should note that the result in Proposition 6.1 also holds for $x \in [\beta_k, \infty)$ as $[\beta_k, \infty) \subseteq [g_{k,2n-1}, \infty)$.

Proposition 6.2. The maximum zeros of the even-indexed polynomials form a decreasing sequence that is bounded below by β_k .

Proof. Let $n \ge 1$. By Proposition 3.2,

$$G_{k,2n}(\beta_k) = \frac{-(a-\beta_k)^{2n}}{a^{2n-1}} < 0.$$

Thus, $\beta_k < g_{k,2n}$. We proceed by induction to show the maximum zeros of the even-indexed polynomials form a decreasing sequence. Notice that

$$G_{k,4}(x) = x^k G_{k,3}(x) + G_{k,2}(x)$$

implies

$$G_{k,4}(g_{k,2}) = g_{k,2}^k G_{k,3}(g_{k,2}) + G_{k,2}(g_{k,2}) = g_{k,2}^k G_{k,3}(g_{k,2}) > 0$$

by utilizing Proposition 5.3. Since $G_{k,4}$ is increasing on $[\beta_k, \infty)$ as well, we conclude that $g_{k,2} > g_{k,4}$. Now assume $g_{k,2} > g_{k,4} > \cdots > g_{k,2n}$. By Lemma 2.2, $G_{k,2n-2}(g_{k,2n}) = -G_{k,2n+2}(g_{k,2n})$. Since $g_{k,2n-2} > g_{k,2n}$ (induction hypothesis), $G_{k,2n-2}$ is increasing on $[\beta_k, \infty)$, and $G_{k,2n-2}(g_{k,2n-2}) = 0$, it follows that

$$G_{k,2n-2}(g_{k,2n}) < 0$$
 and $G_{k,2n+2}(g_{k,2n}) > 0$,

and, since $G_{k,2n+2}(x)$ is increasing on $[\beta_k, \infty)$, we have $g_{k,2n} > g_{k,2n+2}$. Therefore, $g_{k,2} > g_{k,4} > \cdots > \beta_k$.

7. Main results

Theorem 7.1. The sequence of odd-indexed zeros is increasing and converges to β_k , and the sequence of even-indexed zeros is decreasing and converges to β_k as well.

Proof. By Proposition 5.1 and Proposition 5.3, we have shown the maximum zeros of the odd-indexed polynomials form an increasing sequence bounded above by β_k , and, by Proposition 6.2, we know the maximum zeros of the even-indexed polynomials form a decreasing sequence bounded below by β_k . In order to show both of the sequences converge to β_k , we will show that $\lim_{n\to\infty} g_{k,n} = \beta_k$. The mean value theorem tells us there exists a real number *c* between $g_{k,n}$ and β_k such that

$$|G'_{k,n}(c)| = \left|\frac{G_{k,n}(\beta_k) - G_{k,n}(g_{k,n})}{\beta_k - g_{k,n}}\right| = \left|\frac{G_{k,n}(\beta_k)}{\beta_k - g_{k,n}}\right|.$$

Since $G'_{k,n}(c) \ge 1$, $|\beta_k - g_{k,n}| \le |G_{k,n}(\beta_k)|$. By utilizing Corollary 3.3, which states $\lim_{n\to\infty} G_{k,n}(\beta_k) = 0$, we can say $\lim_{n\to\infty} g_{k,n} = \beta_k$. Therefore, the sequence of odd-indexed zeros and the sequence of even-indexed zeros converge to β_k .

Theorem 7.2. The sequence $\{\beta_k\}$ is decreasing and converges to a.

Proof. We begin by referring the reader back to $T_k(x)$ as defined in Proposition 3.2. Recall that T_k is increasing on $[a, \infty)$ and $\beta_k \in (a, a + 1)$ is a zero of T_k . Using the fact that β_k is a zero of T_k , we have $a\beta_k^k - a^2\beta_k^{k-1} = 2a - \beta_k$. Then

$$T_{k+1}(\beta_k) = a\beta_k^{k+1} - a^2\beta_k^k + \beta_k - 2a = \beta_k(a\beta_k^k - a^2\beta_k^{k-1}) + \beta_k - 2a$$

= $\beta_k(2a - \beta_k) + \beta_k - 2a = (\beta_k - 1)(2a - \beta_k)$
> 0.

Thus, $\beta_{k+1} < \beta_k$, which verifies that $\{\beta_k\}$ is decreasing. Now let $\varepsilon > 0$. Then

$$\lim_{k \to \infty} T_k(a+\varepsilon) = \lim_{k \to \infty} [a(a+\varepsilon)^k - a^2(a+\varepsilon)^{k-1} + (a+\varepsilon) - 2a]$$
$$= \lim_{k \to \infty} [a(a+\varepsilon)^{k-1}(a+\varepsilon-a) + a+\varepsilon - 2a]$$
$$= \lim_{k \to \infty} [\varepsilon a(a+\varepsilon)^{k-1} + \varepsilon - a]$$
$$= \infty.$$

We then know that there exists $j \in \mathbb{Z}$ such that $T_j(a+\varepsilon) > 0$ and so $\beta_j \in (a, a+\varepsilon)$. Therefore, $\lim_{k\to\infty} \beta_k = a$.

Acknowledgements

The authors would like to thank and acknowledge A. Zeleke for his introduction to this research topic via an REU program at Michigan State University.

References

- [Hoggatt and Bicknell 1973] V. E. Hoggatt, Jr. and M. Bicknell, "Roots of Fibonacci polynomials", *Fibonacci Quart.* **11**:3 (1973), 271–274. MR 48 #2056
- [Mátyás 1998] F. Mátyás, "Bounds for the zeros of Fibonacci-like polynomials", *Acta Acad. Paedagog. Agriensis Sect. Mat.* (*N.S.*) **25** (1998), 15–20. MR 2000h:11015
- [Miller and Zeleke 2013] R. Miller (R. Grider) and A. Zeleke, "On the zeros of Fibonacci type polynomials with varying initial conditions", *Congr. Numer.* **216** (2013), 109–117.
- [Molina and Zeleke 2007] R. Molina and A. Zeleke, "On the convergence of the maximum roots of a Fibonacci-type polynomial sequence", *Congr. Numer.* **184** (2007), 121–128. MR 2009a:11032
- [Molina and Zeleke 2009] R. Molina and A. Zeleke, "Generalizing results on the convergence of the maximum roots of Fibonacci type polynomials", *Congr. Numer.* **195** (2009), 95–104. MR 2584288
- [Moore 1994] G. A. Moore, "The limit of the golden numbers is 3/2", *Fibonacci Quart.* **32**:3 (1994), 211–217. MR 95f:11008
- [Prodinger 1996] H. Prodinger, "The asymptotic behavior of the golden numbers", *Fibonacci Quart*. **34**:3 (1996), 224–225. MR 97d:11032
- [Ricci 1995] P. E. Ricci, "Generalized Lucas polynomials and Fibonacci polynomials", *Riv. Mat. Univ. Parma* (5) 4 (1995), 137–146. MR 97b:11018
- [Wang and He 2004] Y. Wang and M. He, "Zeros of a class of Fibonacci-type polynomials", *Fibonacci Quart.* **42**:4 (2004), 341–347. MR 2005h:11035
- [Yu et al. 1996] H. Yu, Y. Wang, and M. He, "On the limit of generalized golden numbers", *Fibonacci Quart.* **34**:4 (1996), 320–322. MR 97b:11020

Received: 2012-10-07	Revised: 2013-06-16 Accepted: 2013-10-19
Rebecca.Miller-1@ou.edu	Department of Mathematics, University of Oklahoma, 601 Elm Avenue, Room 423, Norman, OK 73019, United States
kkarber1@uco.edu	Department of Mathematics and Statistics, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS						
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu			
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu			
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu			
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu			
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz			
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu			
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com			
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu			
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir			
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu			
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu			
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu			
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu			
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com			
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch			
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu			
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu			
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu			
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu			
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu			
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu			
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu			
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu			
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu			
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu			
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com			
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu			
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu			
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it			
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com			
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu			
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu			

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US \$140/year for the electronic version, and \$190/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2015 Mathematical Sciences Publishers

2015 vol. 8 no. 2

Enhancing multiple testing: two applications of the probability of correct selection				
statistic				
ERIN IRWIN AND JASON WILSON	105			
On attractors and their basins	195			
ALEXANDER ARBIETO AND DAVI OBATA				
Convergence of the maximum zeros of a class of Fibonacci-type polynomials REBECCA GRIDER AND KRISTI KARBER	211			
Iteration digraphs of a linear function	221			
HANNAH ROBERTS				
Numerical integration of rational bubble functions with multiple singularities MICHAEL SCHNEIER	233			
Finite groups with some weakly <i>s</i> -permutably embedded and weakly <i>s</i> -supplemented subgroups	253			
Guo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and Jianxing Jin				
Ordering graphs in a normalized singular value measure	263			
CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO AND SEAN MEEHAN				
More explicit formulas for Bernoulli and Euler numbers				
FRANCESCA ROMANO				
Crossings of complex line segments	285			
Samuli Leppänen				
On the ε -ascent chromatic index of complete graphs	295			
JEAN A. BREYTENBACH AND C. M. (KIEKA) MYNHARDT				
Bisection envelopes				
NOAH FECHTOR-PRADINES				
Degree 14 2-adic fields	329			
CHAD AWTREY, NICOLE MILES, JONATHAN MILSTEAD, CHRISTOPHER				
SHILL AND ERIN STROSNIDER				
Counting set classes with Burnside's lemma	337			
Joshua Case, Lori Koban and Jordan LeGrand				
Border rank of ternary trilinear forms and the <i>j</i> -invariant				
DEREK ALLUMS AND JOSEPH M. LANDSBERG				
On the least prime congruent to 1 modulo <i>n</i>	357			
JACKSON S. MORROW				