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An iteration digraph G(n) generated by the function f (x) mod n is a digraph
on the set of vertices V = {0, 1, . . . , n − 1} with the directed edge set E =
{(v, f (v)) | v ∈ V }. Focusing specifically on the function f (x)= 10x mod n, we
consider the structure of these graphs as it relates to the factors of n. The cycle
lengths and number of cycles are determined for various sets of integers including
powers of 2 and multiples of 3.

1. Introduction

Using the graph D7, shown in Figure 1, the remainder modulo 7 of any integer N
can be determined based solely on the digits of the N [Wilson 2009]. For example,
consider N = 375. Begin at the vertex labeled 0. First, follow three black edges.
Then follow one red edge and seven black edges, ending on 2. Finally, follow one
red edge and five black edges to end on 4. This indicates that 375≡ 4 mod 7.

Generalizing this algorithm to any N where di is the i-th digit, we start at 0 and
follow d1 black edges. We then continue to follow di black edges for i = 2, 3, . . . , r .
Between each digit, we follow one red edge. The vertex where we end after the
final dr black edges is the remainder when N is divided by 7.

The graph D7 is formed by two specific iteration digraphs, directed graphs each
generated by a function f : Zn → Zn . The graph Gn is formed on the vertex set
V = Zn = {0, 1, 2, . . . , n− 1} with exactly one edge from v to f (v) for all v ∈ V .
Thus, the edge set is E = {(v, f (v)) | v ∈ V }, where (v, f (v)) indicates the edge
directed from vertex v to f (v). The red edges in D7 form the iteration digraph
produced by the function f (x)≡ 10x mod 7. Thus, V (D7)= {0, 1, 2, . . . , 6}, and
E(D7) includes (1, 3), (3, 2), and so on, because 10≡ 3 mod 7 and 30≡ 2 mod 7.
The black edges are generated by the function g(x)≡ x + 1 mod 7.

Using these two functions, divisibility graphs can easily be drawn for any in-
teger n, and the same algorithm will produce remainders modulo n. Given this,
one may naturally question how the graph produced by f (x) mod n changes for
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Figure 1. The graph D7, used to determine divisibility by 7.

different integers n. This work considers the number and length of the cycles in the
graph G(n) generated by the function f (x)= 10x mod n.

2. Relatively prime integers

To begin, we look at the common structures found in a broad subset, the set of all
integers relatively prime to 10. The most basic feature of these graphs is given in
Theorem 1 below.

A vertex v in G(n) is said to be in level i if the longest path ending at v which
does not contain any part of a cycle has length i [Somer and Křížek 2004]. If the
highest level vertex in G(n) is at level i , then G(n) has i + 1 levels. Thus, G(28)
(Figure 7) has 3 levels. Level 0 contains 7 and 9, level 1 contains 6, and level 2
contains 0. Also, the indegree of a vertex v, written indeg(v), is the number of
edges directed towards v. In G(28), indeg(7)= 0 while indeg(6)= 2.

Theorem 1. G(n) has 1 level for all n with gcd(10, n)= 1.

Proof. Because V (G(n)) is the complete reduced residue set of n and gcd(10, n)=1,
the set S = {10v | v ∈ V (G(n))} is also a complete residue set [Rosen 2000]. Thus,
f : V (G(n))→ V (G(n)) is one-to-one and onto, so every vertex has indegree
exactly 1.

Now assume v ∈ V (G(n)) is at level i > 0. Then there must be a path of i edges
leading to v which is not part of a cycle. The first vertex in this noncyclic path must
have an indegree of 0. This is a contradiction, so v must be at level 0 and G(n) has
1 level. �

The above theorem could be restated to say every vertex in G(n) is at level 0.
From this fact, it is clear that every graph G(n) with gcd(10, n)= 1 is simply a set
of isolated cycles. That is, G(n) is a set of cycles without any adjacent noncyclic
vertices. We next consider the lengths of these cycles.
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The length of the cycles in G(n) is dependent on the prime factors of n, but before
considering the total number of cycles, we first look at a subset of the vertices.

A graph H is called a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G),
where the edges in E(H) must connect vertices in V (H). We say H is generated
by V (H) if E(H) contains every edge in G that connects vertices in V (H).

Theorem 2. In G(n), if V1 is the subset of vertices relatively prime to n, then there
are φ(n)/ordn(10) cycles, each of length ordn(10), in the subgraph generated by V1.

Proof. First, let (a, b) be an edge in G(n). Since gcd(10, n)= 1, if gcd(a, n)= 1,
then 10a ≡ b is also relatively prime to n. Thus, if a cycle contains one vertex
that is relatively prime to n, then all vertices in the cycle must also be relatively
prime to n.

Now, let r = ordn(10), so r is the least integer for which 10r
≡ 1 mod n, or

equivalently 10rv ≡ v mod n for every v ∈ V (G(n)). In the sequence of vertices
{v0, v1, v2, . . . , vr } from G(n), vt ≡ 10tv0. Thus, vr ≡ 10rv0≡ v0 and the sequence
is an r -cycle.

Consider s > r . We can write s = mr + t , where m, t , and s are integers such
that 0≤ t < r . Since 10sv0 ≡ 10tv0 ≡ vt , a path longer than r will repeat through
the cycle. Thus, the longest possible cycle in G(n) has length r .

Now, let v ∈ G(n) such that gcd(v, n) = 1, and assume v is part of an s-cycle
where s < r = ordn(10). Then 10sv ≡ v mod n, but 10s

6≡ 1 mod n, because by
definition r is the smallest positive integer for which 10r

≡ 1 mod n. This means
10s
−1= np+ t for some integers p and 0< t < n. Also, 10sv−v = nm for some

integer m, so

v(10s
− 1)= nm

v(np+ t)= nm

vt = n(m− vp).

Now we have n | (vt), but n - t because 0< t < n. Hence, gcd(n, v) > 1, which is
a contradiction since we assumed gcd(n, v)= 1. Therefore, all cycles on vertices
relatively prime to n have length r = ordn(10). Also, there are φ(n) vertices
relatively prime to n, so there are φ(n)/ordn(10) such cycles. �

As an example of Theorem 2, consider G(11) (Figure 2). There are 10 vertices
relatively prime to 11, V1 = {1, 2, 3 . . . , 10}, and ord11(10) = 2. Thus, G(11)
contains 10/2= 5 cycles all of length 2.

Define Cn to be the number of cycles and Ln to be the set of all cycle lengths
in G(n). Now the above theorem is used to help determine Cn and Ln for any n
relatively prime to 10.
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Figure 2. G11 contains five 2-cycles.

Theorem 3. Let gcd(10, n)= 1. Then

Cn =
∑
d|n

φ(d)
ordd(10)

,

and the set of cycle lengths is Ln = {ordd(10) | d | n}.

Proof. First, define the set Vd = {v ∈ V (G(n)) | gcd(v, n)= d} for all d | n. Every
v in G(n) will be in exactly one set Vd , so these sets form a partition of V (G(n)).
Also, define Gd(n) to be the subgraph of G(n) generated by the vertex set Vd .

Let a ∈ Vd and (a, b) ∈ E(G(n)). Then by reasoning similar to that used in the
previous theorem, b ∈ Vd .

Thus, every cycle in G(n) contains vertices from exactly one set Vd , and we can
determine Cn by adding the number of cycles in Gd(n) for every d | n, or

Cn =
∑
d|n

(number of cycles in Gd(n)). (1)

We now need to find the number of cycles in each subgraph Gd(n). Let (a, b) be
an edge in Gd(n). We already have a = dt , where gcd(n/d, t)= 1, and similarly,
b = ds, where gcd(n/d, s)= 1. Thus, (a, b)= (dt, ds). Now,

10a− b = n(p)

10(dt)− ds = n(p)

10t − s =
n
d
(p),

so (t, s) is an edge in G(n/d). Since t and s are relatively prime to n/d , our problem
is now equivalent to finding the number of cycles on the vertices of G(n/d) relatively
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(a) G1(77) (b) G7 (c) G11 (d) G77

Figure 3. The subgraphs of G(77) generated by V1, V7, V11, and V77.

prime to n/d. In other words, the number of cycles in Gd(n) is the same as the
number of cycles in G1(n/d). From Theorem 2, we know that G1(n/d) contains
φ(n/d)/ordn/d(10) cycles with length ordn/d(10).

Thus, there are also φ(n/d)/ordn/d(10) cycles in Gd(n) with length ordn/d(10).
Therefore,

Cn =
∑
d|n

φ(n/d)
ordn/d(10)

.

Every divisor d1 can be written as d1 = n/d2 for some other divisor d2. Hence, as
we sum over every divisor d , we are also summing over n/d for every d , so we can
rewrite Cn as

Cn =
∑
d|n

φ(d)
ordd(10)

. (2)

This concludes the proof. �

One example of the previous theorem is G(77) (Figure 3). To make it easier to
see the various cycles of G(77), Figure 3 shows the subgraphs of G(77) generated
by Vd for d = 1, 7, 11, 77. Looking at G11(77) in Figure 3(c), the vertices all
have gcd(v, 77) = 11. If we compare this subgraph to G(7) in Figure 1, we
see that G11(77) is isomorphic to G1(7) by the isomorphism h(v) = 11v. This
isomorphism illustrates the relation of edges in G(n) and in G(mn). Similarly,
G7(77) is isomorphic to G1(11). Finally, G77(77) in Figure 3(d) is simply the
isolated fixed point isomorphic to G(1) that appears in every G(n)where (10, n)=1.

The isomorphisms seen in G(77) can be generalized to other G(n). For d | n,
the subgraph Gd(n) is isomorphic to the subgraph G1(n/d). Thus, much of G(n)
is built from the graphs of G(d). The subgraph G1(n) on the vertices that are
relatively prime to n is the only portion of the total graph G(n) that can not be built
directly from a graph G(d) for some d | n.
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Figure 4. Every vertex in G(3) is an isolated fixed point.

We now have the basic structure of the graph for any n relatively prime to 10,
and can consider which integers produce a more specific structure. The next section
explores how multiples of 3 affect the structure of a graph to produce a set of
isomorphic subgraphs.

3. Multiples of 3

Because 10 ≡ 1 mod 3, for every vertex v in G(3), (v, v) is an edge for all v ∈
{0, 1, 2} (Figure 4). This property of G(3) leads to a highly predictable structure
for G(3n) when gcd(3, n)= 1.

We first need to establish some notation for the vertices of G(n) and G(3n).
Define V to be the vertex set of G(n), so V = V (G(n))={0, 1, 2, . . . , n−1}. Also,
define

Vt = {3v+ tn mod 3n | v ∈ V } for t = 0, 1, 2.

If v ∈ V , then vt = 3v+ tn mod 3n ∈ Vt . For n = 2, we have G(2) with V = {0, 1}
and G(3n)= G(6) with V0 = {0, 3}, V1 = {2, 5}, and V2 = {1, 4}, as in Figure 5.

The following theorem uses these vertex sets to relate the edge sets of G(n) and
G(3n) for gcd(3, n)= 1.

Theorem 4. If 3 - n and E(G(n))= {(a, b) | b = f (a), a ∈ V }, then E(G(3n))=
{(at , bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}.

Proof. Let (a, b) be an edge in G(n). Thus 10a ≡ b mod n and 3a ≡ 3b mod 3n.
Considering at ,

10(3a+ tn)≡ 30a+ 10tn mod 3n

≡ 3b+ tn+ 3n(3t) mod 3n

≡ 3b+ tn mod 3n.

Therefore, (at , bt) is also an edge in G(3n). We now have that

S = {(at , bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}

is a subset of E(G(3n)). By definition of an iteration digraph, we know that G(3n)
has 3n distinct edges. The set S has 3n edges, which we now need to show are
distinct.
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(a) G(2) (b) G(6)

Figure 5. The components of G(6) are all isomorphic to G(2).

For any v,w ∈ V , if v 6≡ w mod n, then vt 6≡ wt mod 3n. Hence, V0, V1, and
V2 each contain n incongruent integers.

Next, if a ∈ V , we have a0 ≡ 0 mod 3, a1 ≡ n mod 3, and a2 ≡ 2n mod 3.
Hence, for any b, c, d ∈ V , not necessarily distinct, b0, c1, and d2 are incon-
gruent modulo 3. Now, assume br ≡ ct mod 3n, so br − ct = 3n(p) for some
integer p. Then br − ct = 3(np) and br ≡ ct mod 3. This is a contradiction
since br and ct are incongruent mod 3. Hence, br 6≡ ct mod 3n. Thus, b0, c1,
and d2 are all incongruent modulo 3n. Furthermore, at 6≡ br mod 3n whenever
either a 6≡ b mod n or r 6= t . Therefore, the 3n edges in S are distinct, so
E(G(3n))= S = {(at , bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}. �

An example of Theorem 4 is the graphs for n = 6 shown in Figure 5(b). The
graph G(6) has three components on the sets of vertices {0, 3}, {1, 4}, and {2, 5}.
Comparing these to G(2), each component is isomorphic to G(2). Thus, the relation
from Theorem 4 between any G(n) and G(3n) can also be expressed in terms of
isomorphisms between the graphs.

Corollary 1. G(3n) is the union of three subgraphs, each of which is isomorphic
to G(n).

A theorem similar to Theorem 4 can be proved for G(9n) when gcd(3, n)= 1.
This indicates that perhaps this type of edge relation will exist for higher powers of
3 as well. However, for 3 and 9, the proofs are contingent on the fact that 10≡ 1
modulo both 3 and 9. Theorem 4 cannot be generalized for G(3kn) where k ≥ 3.

Based on Theorem 4, it is also clear that G(3n) contains exactly 3 times as many
cycles as G(n) with all the same cycle lengths. Thus, while Theorem 3 holds for
multiples of 3, we can now say C3n = 3Cn and L3n = Ln when gcd(3, n) = 1.
Similarly, C9n = 9Cn and L9n = Ln .



228 HANNAH ROBERTS

0

4

2 6

1 5 3 7

Figure 6. G(8).

4. Powers of 2

Another class of integers for which G(n) has a distinctive and predictable digraph
is the powers of 2. When n = 2k for some integer k > 0, G(2k) takes the form of
a binary tree with all edges heading towards the root. This unique form follows
from the fact that 2 is a factor of 10. In this section, congruences should all be
considered modulo 2k unless otherwise specified.

Given this tree structure, which will be proved in Theorem 5, each vertex will
be referenced by its level and its position within that level. Number the vertices in
level i < k left to right from 0 to 2s

−1, where s = k− i −1. Then vi,t is the vertex
in level 0 ≤ i ≤ k at position 0 ≤ t ≤ 2s

− 1. In Figure 6, for example, v0,0 = 1,
v0,1 = 5, and v1,0 = 2. Additionally, for each pair of vertices vi,t and vi,t+1 where
both are adjacent to the same vertex at level i + 1, we will draw the graph such that
vi,t < vi,t+1.

We can now develop the basic structure of the 2k iteration digraph.

Theorem 5. If G(n) is the iteration digraph of f (x)≡ 10x mod 2k , where n = 2k

for k = 1, 2, 3, . . . , then:

(i) G(n) has k+ 1 levels.

(ii) The nonzero vertices form a complete binary tree with height k.

(iii) Exactly 2 vertices at level i < k− 1 are adjacent to each vertex at level i + 1.

(iv) For each vertex vi,t at level i < k, 2i
‖ vi,t .

Proof. For part (i), we know for any vertex v that 10kv = 2k(5kv) ≡ 0 mod 2k .
Thus, the longest possible path from v to 0 has length k. Now suppose the longest
path that exists is only k− 1 edges long. Then 10k−1v = 2k−1(5k−1v)≡ 0 for all v.
This means that

2k−1(5k−1v)= 2k p

5k−1v = 2p,
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and v must be divisible by 2. This is a contradiction for all odd vertices, so there
must exist a path from v to 0 with length k. Thus, G(2k) has k+ 1 levels.

Considering part (iv), at level k − 1, we have 2k−1
‖ 2k−1. Now, for induction

down the levels, assume that 2i
‖ vi,t for all vertices at some level i ≤ k− 1 and let

vi−1,r be adjacent to vi,t = 2i c, where c is an odd integer. Hence, vi−1,r is at level
i − 1 and

10vi−1,r − vi,t = 2kb

10vi−1,r = 2i (2k−i b+ c).

Thus, 2i divides 10vi−1,r , so 2i−1 divides vi−1,r .
We now need to show that 2i−1

‖ vi−1,r . Assume that 2i
| vi−1,r . Then 10vi−1,r ≡

vi,t is divisible by 2i+1. This is a contradiction to the initial assumption that 2i
‖ vi,t .

Therefore, 2i does not divide vi−1,r , so 2i−1
‖ vi−1,r , and for every vertex vi,t at a

level i < k, 2i
‖ vi,t

For part (iii), let a and b be vertices such that f (a)= b and b is at level i , where
0< i ≤ k− 1. Then consider a+ 2k−1.

10(a+ 2k−1)≡ b+ 5 · 2k
≡ b+ 0 mod 2k . (3)

Since 2k−1 < 2k , a 6≡ a + 2k−1 mod 2k . Thus, at least two distinct vertices are
adjacent to b. From part (iv), there are 2k−i−1 vertices at level i and 2k−i at level
i + 1, so there are exactly twice as many vertices at level i as at level i + 1. Thus,
exactly two vertices are adjacent to each vertex at level 0< i < k.

Part (ii) also follows directly from parts (iii) and (i) and the definition of a tree,
so the nonzero vertices form a complete binary tree with height k and with 2k−1 as
the root. �

From the above theorem, G(2k) can be drawn for any k ≥ 1 and we have some
idea of the label placement within that graph. It is also clear that G(2k) always
contains exactly one 1-cycle.

Since G(2k) is really just G(2kn) with n = 1, we now consider the more general
G(2kn) with gcd(10, n)= 1. First, we find that G(2kn) is semiregular; that is, each
vertex in G(2kn) has an indegree of either 0 or d , for some positive integer d .

Theorem 6. If n is not divisible by 2 or 5, then G(2kn) is semiregular with d = 2
and indeg(v)= 2 if and only if 2 | v.

Proof. Let (a, b) be an edge in G(2kn). Then 10a ≡ b mod 2kn, and also

10(a+ 2k−1n)≡ 10a+ 5 · 2kn mod 2kn

10(a+ 2k−1n)≡ b+ 0 mod 2kn. (4)

Since 2k−1n < 2kn, a 6≡ a+ 2k−1n and (a+ 2k−1n, b) is also an edge in G(2kn).
Thus, if indeg(v)≥ 1 for any v ∈ V (G(2kn)), then indeg(v)≥ 2.
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Now, assume there exists a third vertex c which is also adjacent to b and is
incongruent to both a and a+ 2k−1n. Then

10c− b = 2kns and 10a− b = 2knp, (5)

where s and p are integers such that s 6= p.
From (5) we get

10(c− a)= 2kn(s− p)

5(c− a)= 2k−1n(s− p).

Then 5 divides (s− p), so (s− p)= 5t for some nonzero integer t and

5(c− a)= 2k−1n(5t)

c = a+ 2k−1nt. (6)

If t is even, then t=2r and c≡a+2knr ≡a mod 2kn. If t is odd, then t=2r+1 and

c ≡ a+ 2k−1n(2r + 1)≡ a+ 2k−1n mod 2k .

Thus, c is congruent to either a or a + 2k−1n, so the indegree of b is exactly 2
and the indegree of any vertex of G(2kn) is either 0 or 2. Therefore, G(2kn) is
semiregular with d = 2.

Now, assume (a, b) is an edge where 2 - b. Then 10a ≡ b mod 2kn, so

10a− b = 2knp

10a− 2knp = b

2(5a− 2k−1np)= b.

Thus, 2 | b, which is a contradiction, so when 2 - v, indeg(v)= 0. There are 2k−1n
vertices that are divisible by 2 and, hence, can have an indegree of 2. Since there
are exactly twice as many edges as there are vertices divisible by 2, indeg(v)= 2
whenever 2 | v. Therefore, indeg(v)= 2 if and only if 2 | v. �

The graph G(28) is seen to be semiregular with d= 2 in Figure 7. It also includes
several subgraphs with a binary tree structure. These subgraphs are isomorphic to
G(22). In the following theorem, these subgraphs isomorphic to G(2k) are shown
to be present in G(2kn) for any k ≥ 1 and n relatively prime to 10.

Theorem 7. If n is not divisible by 2 or 5 and k > 0, then G(2kn) contains n gen-
erated subgraphs that are isomorphic to the subgraph of G(2k) excluding the loop
(0, 0). The root of each isomorphic subgraph is a vertex v∈V (G(2kn)), where 2k

|v.

Proof. If (a, b) ∈ E(G(n)) then (2ka, 2kb) is an edge in G(2kn), so we know that
S = {(2ka, 2kb) | (a, b) ∈ E(G(n))} is a subset of E(G(2kn)). The edges in S form
a set of cycles which are isomorphic to G(n). Hence, for all 2kv ∈ V (G(2kn)), 2kv
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Figure 7. G(28).

is part of a cycle, so indeg(2kv) ≥ 1. Then by Theorem 6, indeg(2kv)= 2. Thus,
G(2kn) contains a tree whose root vertex is 2kv for every v ∈ V (G(n)).

We now need to show that each of these trees is isomorphic to G(2k) without
the loop (0, 0). Define Tv(2kn) to be the tree whose root is r = 2kv. Adapted from
Theorem 5, each tree needs to satisfy the following three properties:

(i) Tv(2kn) has k+ 1 levels.

(ii) Tv(2kn) is a binary tree with exactly one vertex adjacent to r and indeg(v)=
0 or 2 for all v 6= r .

(iii) For any vertex v at level 0, the shortest path from v to r has length k.

First, Equation (4), we know that if a is the cyclical vertex adjacent to the root
r = 2km, then s = a + 2k−1n is also adjacent to r and 2k−1

‖ s. Thus, we have
two vertices adjacent to r , and by Theorem 6, s is the only vertex in Tm(2kn) that
is adjacent to r . Thus, exactly one vertex in the tree is adjacent to r . The rest of
part (ii) follows by definition from Theorem 6, so Tm(2kn) is a binary tree and
indeg(v)= 0 or 2 for all v 6= r .

Now, for part (i), for any v ∈ V (Tm(2kn)) such that v 6= r , there exists an integer
j ≥ 0 such that 10 jv ≡ s = 2k−1q mod 2kn for some integer q such that 2 - q.
Suppose j > k− 1, so:

10 jv− 2k−1q = 2knp

2 j−k+15 jv− q = 2np.

This says that 2 divides 2 j−k+15 jv − q. However, q is odd, so 2 j−k+15 jv − q
cannot be divisible by 2. Thus, j ≤ k− 1.
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Now assume j < k− 1 for all v ∈ V (Tm(2kn)). Then,

10 jv− 2k−1q = 2knp
2 j 5 jv = 2knp+ 2k−1q

5 jv = 2k−1− j (2np+ q). (7)

This means that 2 | v for all v ∈ V (Tm(2kn)). From Theorem 6, all vertices in the
tree now have an indegree of 2, which cannot be true as this would mean there are
no vertex with an indegree of 0 and would make the graph an infinite tree. Thus,
there exist vertices in Tm(2kn) such that 10k−1v ≡ s, or such that the path from
v to s is k − 1 edges long, and hence the path from v to r is k edges long. Thus,
Tm(2kn) has k+ 1 levels.

Finally, from (7), we know that if the shortest path from v to s has length less
than k−1, then v must be even. Since all vertices at level 0 are odd, the shortest path
from v at level 0 to s is k− 1, and the shortest path from level 0 to r has length k.

Therefore, Tv(2kn) is isomorphic to the subgraph of G(2k)without the loop (0, 0).
The root of each tree is 2kv, where v ∈ V (G(n)), so there are n of these trees. �

Theorem 7 is illustrated in G(28) (Figure 7) which contains 7 subgraphs isomor-
phic to G(4). From this theorem, we also know that C2kn = Cn and L2kn = Ln .

Theorems 5 and 7 depended on the fact that 2 is a factor of 10. Thus, we can
prove similar theorems for G(5k) and G(5kn) as well. From these, we can likewise
determine that C5kn = Cn and L5kn = Ln .

5. Conclusion

The function f (x) = 10x mod n generates iteration digraphs whose cycles are
greatly determined by the divisibility properties of n. With isomorphisms between
G(n) and G(d), Cn is determined for any n relatively prime to 10. Then, 2 and 3 have
specific relations to 10 which allow for simpler calculations for C2kn and C3n . Thus,
we can now calculate the number and lengths of cycles in G(n) for most integers n.
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