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We derive an effective quadrature scheme via a partitioned Duffy transformation
for a class of Zienkiewicz-like rational bubble functions proposed by J. Guzman
and M. Neilan. This includes a detailed construction of the new quadrature
scheme, followed by a proof of exponential error convergence. Briefly discussed
is the functions application to the finite element method when used to solve
Stokes flow and elasticity problems. Numerical experiments which support the
theoretical results are also provided.

1. Introduction

The finite element method is one of the most popular and well studied numerical
methods used to approximate solutions of partial different equations (PDEs). Its
formulation is built upon the variational formulation of the PDE, where the infinite-
dimensional problem is restricted to a finite-dimensional setting. What distinguishes
the finite element method from other Galerkin methods is that the finite-dimensional
space contains piecewise polynomials with respect to a partition (usually rectangles
or triangles in two dimensions) of the domain. When performing the finite element
method the need to integrate these piecewise polynomials over the partition arises.
Solving these integrals directly would prove computationally costly and sometimes
extremely difficult. We instead use a variety of numerical integration techniques.
One of the most popular of these techniques is Gaussian quadrature. The method
approximates the value of the integral via a weighted sum of function values at points
within the domain of integration. This is already a mature theory for polynomial
basis functions with highly developed implementation techniques and error analysis
[Brezzi and Fortin 1991].

J. Guzmén and M. Neilan [2014a; 2014b] proposed a new family of finite methods
to approximate two-dimensional Stokes flow and planar elasticity. Varying from
the traditional finite element framework, the authors supplemented the usual finite
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element spaces (i.e., piecewise polynomials) with a class of divergence-free rational
bubble functions. With the inclusion of these rational functions, Guzmén and
Neilan were able to derive finite element methods with several desirable properties
(e.g., exactly divergence-free velocity approximations for Stokes and symmetric and
conforming stresses for elasticity). Assuming that the integrals are computed exactly,
the authors derived several results including stability estimates of the numerical
methods and optimal order error estimates. However in practice, these integrals are
not computed exactly, and it is not clear how numerical integration will effect these
theoretical results. The issue arises from the fact that traditional quadrature rules
utilize interpolating polynomials to approximate the function and Taylor’s formula
to estimate the error [Burden and Faries 2011]. Thus in order to obtain accurate error
estimates, our function must be sufficiently smooth. However, the rational functions
in [Guzman and Neilan 2014a; 2014b] are singular. Therefore the behavior of the
error is unpredictable. We numerically verify this assertion in Section 5.

One of the traditional methods for computing the integrals of singular functions
is the Duffy transformation [1982]. As described in [Lyness and Cools 1994],
a mapping from the original triangular domain to the unit square is constructed.
The singularity is effectively “stretched” out via its mapping to one of the edges
of the square. Since the singularity is no longer present, the square can then be
numerically integrated via a standard quadrature rule. This method will not work
though for the divergence-free rational bubble functions described in this paper due
to the presence of two singularities. While it would effectively eliminate one of
the singularities, the remaining singularity would still render standard quadrature
methods ineffective.

In the paper, we tackle this issue with a modified application of the Dufty
transformation. We subdivide the triangle into four subtriangles and then perform a
Duffy transformation on each of these subtriangles, which can essentially remove
all the problematic singularities. We can then construct a quadrature rule on the
unit square, which can then be mapped back to and used on our original domain.
We do not address the effect of the error estimates obtained from this new scheme
on the finite element methods in [Guzmdn and Neilan 2014a; 2014b] as it is beyond
the scope of this paper.

The remainder of this paper is organized as follows. Section 2 contains some
preliminaries and the function spaces in which the analysis will be performed. Well
known results from vector calculus which are used extensively in the analysis are
also provided. In Section 3, the procedure for the partitioned Duffy transformation
is established. In Section 4, a quadrature scheme derived from the partitioned
Duffy transformation is given. A proof of exponential error convergence for this
quadrature scheme is also provided. In Section 5, we present numerical experiments
on the unit triangle which support our findings.
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2. Preliminaries

In this paper, standard space and norm notations are adopted. If G : R" — R™ is a
mapping with argument x € R”, we denote by DG (x) the Jacobian, that is,

3G;
‘'x) (=12,...m j=12,...n).
0x;

DGij(x) =

For a differentiable function g : R” — R, we denote by Vg : R” — R” the gradient
of g which is given by

g ag
Vg(x) = e (x)eq +---+ T (x)en.
n

where e¢; is the orthogonal unit column vector pointing in the coordinates direction Xx;.
We note that Vg = (Dg)’ is the transpose of Dg. The Hessian matrix of a twice
differentiable function g is denoted by D?g : R” — R™ " and is defined as

D*g(x) = DVg(x), @2-1)

where the operator D in (2-1) is applied row-wise. Namely, the Hessian matrix is
given by
2

0x;0x;j

(D*g)ij(x) = (x) (.j=12,....n).

For an open and bounded set D with Lipschitz continuous boundary dD, we
denote by L?(D) (1 < p < o0) the complete normed linear space

L? (D) := {measurable functions v : [}, [v|[? dx < oo} (1 < p<o0),

L*®°(D):= {measurable functions v : esssupp |v| < oo}.

The corresponding norms are then given by

1/p
||v||Lp(D):=( / |v|1’dx) . Nollzoogpy = esssup .
D D

The Sobolev spaces WX? (D) are defined as
WkP(D) = {u e LP(D): D*u € LP(D) for all |a| <k},

with norms

1/p
lwnry = X [ itz ax) (1 =p <o

la|<k

and
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lullwr.copy = Z esssgplD“uL

la|<k

In the case p =2 and k > 1, we set H¥ (D)= Wk-2(D) and Il e Dy = I 1w e 2 Dy
We note that H* (D) is a Hilbert space.
We denote the dual space of W*?(D) by W kP (D), where p’ satisfies

LA Y
p P
The associated norm is defined by
lely—iwrpy= s o)/ Ivllprrp) (2-2)

veWwk-»(D)\{0}

We denote by 7, a shape-regular triangulation of the domain Q2 with Ay =
diam(7") for all T € Jj and / := maxreg, hr. Given T € T, we denote by
{e(”)}?:1 the three edges of 7" and by {A(i)}?=1 the three barycentric coordinates
labeled such that A |c» = 0. The vertices of T are denoted by {cl(")}>§’=1 labeled
such that A® (@) = 8i,j. We set by := ADAD)B) € $5(T) to be the cubic
bubble and b@ = AE+D)E+2) ¢ %, (T) (mod 3) to be the quadratic edge bubble
associated with edge e For each triangle 7' € 'y, the three rational edge bubbles
{B(i)}le associated with 7" are then given by

. brb® . . .

@) ._ T . ) i+1) 4 (+2)
BW .= GO D) GO T ) ifo<A® <1, 0<Al0+D <1,
BWD (gt = pO(+2y = otherwise. (2-3)

The graphs of the three rational bubble functions are depicted in Figure 1 on the
reference triangle with vertices (0, 0), (0, 1) and (1, 0). In this case, the barycentric
coordinates reduce to A (D = X1, 1@ = X, and A® =1 X1 — X2. Therefore, the
three rational bubble functions on the reference triangle are given by

(1) _ x1x§(1 — X —xz)z’ @ _ xzxf(l — X1 —xz)z’
(o1 +x2)(1 —x2) (1 +x2)(1 —x1)
2.2
B _ x;x5(1—x1 —x3) (2-4)

(I=x)(1—x2)

In [Guzman and Neilan 2014a] (see also [Ciarlet 1978, pp. 347-348]), the
following lemma pertaining to the rational bubble functions was established.

Lemma 2.1. For each T € Ty, the following hold (i = 1,2, 3):

BDec (T)nw?*(T), BD|yr=0, VBD@)=0(j=1,2,3). (2-5)
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Figure 1. The graphs of the three bubble functions on the reference
triangle with vertices (0, 0) (left), (0, 1) (middle) and (1, 0) (right).

We end this section by stating some well known vector calculus results, which
will be used extensively in the analysis below.

Theorem 2.2 (inverse function theorem [Spivak 1998]). Suppose that G :R" —R" is
continuously differentiable in an open set containing a point a with det(DG(a)) # 0.
Then there is an open set V containing a and an open set W containing G(a) such
that G : V. — W has a continuous inverse G~' : W — V which is differentiable
forall y € W. Moreover, there holds

D(GTH(y) =[DGG I (2-6)

Lemma 2.3 (Bramble—Hilbert lemma [Ciarlet 1978]). Let D be an open subset
of R" (n > 1) with a Lipschitz-continuous boundary. For some k > 0 and some
number p € [0,00), let ¢ be a continuous linear form on the space Wk+1:P(D)
with the property that

@(p)=0 forall p € Pr(D),

where Py (D) is the set of all polynomials up to order k on D. Then there exists a
positive constant C > 0 depending on D such that for all v € wk+L.p (D),

0 = Clg -1 o 0 wics1.0,
where || - || yr—r—1.p’ (D) IS defined by (2-2).

Theorem 2.4 (Sard’s theorem [Spivak 1998]). Let G : R* — R? be a continuously
differentiable mapping. Let X be the set of points x in R? at which the Jacobian
matrix DG(x) has rank less than 2. Then G(X) has Lebesgue measure 0 in R,

Corollary 2.5. Let V,U C R? be two open and bounded sets, and let G : V — U be
a continuously differentiable mapping that is surjective onto U; that is, G(V) = U.
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Define the set X = {x € V : DG(x) does not have full rank}. Then for any contin-
uous function f € C°(U),

| rmar= [ F()dy.
U GIN\G(X)
Proof. Since U = G(V'), we have

/ F)dy = / F)dy = / £ dy + / £ dy.
U G(V) GV\G(X) G(X)

From Sard’s lemma, G (x) has Lebesgue measure 0. Therefore |, G(X) f(»)dy =0,

and so
f £ dy = f FO)dy = / £ dy. O
U G(V) G(V\G(X)

3. A partitioned Duffy transform

In this section, we describe a partitioned Duffy transform which essentially removes
the singularities of the rational bubble functions defined by (2-3). Basically the
strategy is to subdivide each triangle into four subtriangles by a red refinement
and then apply the Duffy transform to each subtriangle that shares a vertex with
the parent triangle. To describe this procedure in further detail, we require some
notation.

Denote by T the unit triangle with vertices a® .= (1 0), @® := (0,1) and
a®:=(0,0), and let {K g (@) }4 be the four subtriangles of T obtained by connecting
the three midpoints of each edge of T (see Flgure 2), where 4@ is a vertex of
KD =1,2, 3). We denote the three vertices of K g () by {b}’)};zl oriented in a
counterclockwise fashion and labeled such that

a® =pD (i1=1,2,3),

The vertices {b( ) }3 can be labeled arbitrarily. Define Fi: T — K® (o be the
affine mapping such that F; @®y = h@ (i =1,2,3); that is,

Fi(») = (01 +1),1m), (-1)
F() = (A0 —=y1—p), 1n + 1), (3-2)
B0 =y~ 11 +32-1). (3-3)

In the case i = 4, F, ; can be any one of the possible affine mappings that takes T
onto K. Denote by Q := (0, 1)? the unit square and define the Duffy transform
S:0—>Tas

S@) = (51, 5(1=5)". (3-4)



NUMERICAL INTEGRATION OF RATIONAL BUBBLE FUNCTIONS 239

Figure 2. A pictorial description of the notation used.

Finally for a function f : T — R, we set

fi®) = f(EE@®) (=1.23) and  fs()) = [(Fa(P).  G-5)
We note that f, : Q — R (i =1,2,3), whereas ﬁ; T >R
Lemma 3.1. Fori = 1,2, 3, define G,- = F;o S: Q — KO Then there holds

(Vz.)i(®) = (D5Gi(8)) ™' V5 fi3),

for any function f satisfying f, eC! (Q) Here, V3 and Vi denotes the gradient
with respect to X and §, respectively D; = (V;)!, and (D;G;(5))™" denote the
inverse matrix of the transpose of D;G;(5).

Proof. For ease of notation, we omit the subscrlpt i in the arguments below.
By (3-5) and the definition of G, we have f(s) f(G(5)). Now let x = G(5)

so that f (8) = f(%) and § = G~1(X). We then have
n _ R 0k
Sk =(G7Hk(X) and % “Hr(®).
X;j 8
Letting D3 G~ ! (%) be the Jacobian of G™!, we have
= (DG (). (3-6)
Xj

Therefore by the chain rule and (3-6), we have

a a5
(Le6)ir=2 Lol =5 U smaon
J k=1 k=1

2
= 3 (D67 ) 52 o] )= (D67 D5 G

k=1
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It then follows that
(Vi f 0 G)(3) = (DG~ () V3. ($). (3-7)
Now by the implicit function theorem (see Theorem 2.2), we have
D;G™H(X) =[DGGT G =[DGE)]™
Therefore by (3-7) and (3-5), we have
Ve (§) = (Vi f 0 G)S) = (D;GG) Vi f(5). 0
Lemma 3.2. Let @i = ﬁi 0S: Q — KD, Then,
(D2 1)i(8) = Ds((DsGi(5)) ™ Vs £33)) DsGir(5) ™.

Proof. Again, we omit the subscript i in the proof for ease of notation.
From Lemma 3.1 we have

0X;

2 A
(EOG)(S) Z D;G®)) af&.
= 93k

Set

)7
rik(8) = (Dﬁ(&));,@%(@) 50 that Z rik(5).

Then by the chain rule, (3-6), and the inverse function theorem, we have

3 f 2 ar; Iy asm ”
(8)?]-8)(1 ) g g ; 8x1 Z Z j
2
Z Z

=m—

ml(s)

Now since

)7
rjk(8) = (DgG(§))j_k’%(§),
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we have
> f NRNRCN TP i
(3595, °6)6) = PIPI - ((D§G> jk(s>@(s))((D§G>m,<s>)

2
J ~
= 2 55 (D) )3/ @) (D561 5)
m=1

2

(Dg((DﬁG)_t(§)V3f(§)))jm((DgG);,ll(ﬁ))
=1

(D5((D5G) ™" () Vs [ GN)(D:0) ' 6)))

Il
~—~ 3

jt
It then follows that
(D2 £)i(§) = (D} f °G)($) = Ds((D;Gi(8) V3 i) D;Gi(H) ™. O
We are now ready to state the main result of this section.

Lemma 3.3. Let BY) be the rational edge bubble (2-3) defined on the reference
triangle T with vertices (1,0), (0, 1), and (0,0). Then (i =1,2,3),

BD); e C®(0), (VzBD) e[C®(D)F, (D2BD),; [CX(O)P"2,

and
B, eC®(T), (VzBD), e[C¥(D)P,  (DIBUI), e[CX(T)P2.

Here, V; denotes the gradient with respect to X and D)% denotes the Hessian with
respect to X.

Remark 3.4. Essentially, Lemma 3.3 states that if we map the rational bubble
functions’ derivatives to the unit square via the partitioned Duffy transform, then
the resulting function is C°°.

Proof. Due to the symmetry of the rational edge bubbles, it suffices to prove the
result for the function

R2R2(1—-%; - %
B()%)Z 1 2( 1 2)

(I=X)(1—x2)
(see (2-4)). Since B(x) has singularities only at the vertices (1, 0) and (0, 1), we
have B|g, € C°°(K4). Itis then trivial to see that

e CHT)NWE(T) (3-8)

—_—

By e C®(T), (ViB)4c[C®(D)?, (D2B)4e[C®(T)P2.



242 MICHAEL SCHNEIER

Next, a direct calculation shows that

Bi(8) = B(F1(S®) = B(3G1 + 1), (521 -51))) (3-9a)
_HG-DE DG+ oA
B 8(2— 52 + 8251) <T@,

By(5) = B(F2(S()) = B(L(1 =51 —$2(1=51)), 11 + 1)) (3-9b)
_1(51—1)52(51+1)2(S2—1)(1—S1—52+S251) N
-8 8(1 + 51 + 52 —5251) S

B3(3) = B(F3(S(5))) = B(352(1=51), =161 +5:(1=51) + 1) (3-90)

G =D =58 =5 + 52821 +5) cC%(0)
8(2 =582 +5281)(1 + 81 + 52 — §281) '

Then from Lemma 3.1, we have
(V2 B)i(§) = (D;Gi(8) " V5 B(), (3-10)

where V; denotes the gradient with respect to §, D; = (V;)!, and (D;G;(5))™"
denotes the inverse matrix of the transpose of D;G;(5). Using the identity DF; =
2|K;| = 1/2 and the chain rule, we have

DG;i(8) = D(F;(S(3))) = DF;(S($))DS($) = 3 DS(3).

It then follows that (D G;(85))™" = 2(DS(5))~; that is,

(3-11)

(DG~ = (2 25,/(1 —51)) |

0 2/(0=51)

By (3-9), we see that the derivatives 81§,~/8§2 (i =1,2,3) all have a factor (1—5;)2.
In particular, we may write

(1) .
~ SS)(1—=s
Vs B; = (g(’z) O A‘)z) (3-12)
g 1 =51)
for some gfl), gl@ € COO(Q). Combining (3-12) with (3-10) and (3-11) we see
that (Vz B); € [C*(Q))*.
Continuing, we use Lemma 3.2 and the inverse function theorem to obtain

(D2B)i(3) = Ds((D3Gi(3)) ™ Vi B®) Ds Gi($)~". (3-13)
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~i.

Figure 3. The location of the nodes £/) with L = 16 and M = 6.

By (3-12) and (3-11), we have

(1,1) A (1.2) ;ave1 2
Dﬁ((DﬁGi(ﬁ))—fv§§(§)):< ¢ g"?@a sl))’

@D Gy g@P@)(1-5)

for some g/ (§) e C °°(Q). It then follows from the definition of D;G;(5)™!
(see (3-11)) and (3-13) that

(D2B); () € [C= (D)2, 0

4. A quadrature rule based upon the partitioned Duffy transform

We now build quadrature schemes for the integral fT f(X)dx based upon the
partitioned Duffy transform described above. To this end, we let {S(J N1 )}L
be a tensor product Gaussian quadrature rule on the unit square Q and we let
Ay )}M be a quadrature rule on the unit trlangle T. We then map the
quadrature points and welghts on Q to the subtriangles K g (@) @ =1,2,3) by the
formulas £(—DL+)) = F(§(5())) and

SU=DLD — 1§D gD (j=1,2,...,L).

We map the quadrature points and weights { /), U )}j]‘i , to K@ by

. . 1 ..
R3L+) — F4(f/(f)) and OGL+) — 5@(1) (j=12,....M).

The new quadrature scheme on T is then given by (0, o0 )}]31; TM (see Figure 3).

Remark 4.1. By Figure 3, we see that the quadrature points are clustered near
the vertices of the (macro) triangle T. On the other hand, the weights defined by
a)((i DL+7) = 1 (13 J))G(]) are small near the vertices since the line §; = 1 on
Q is mapped to each of the vertices of 7.
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Note by a change of variables and Sard’s theorem, we have
4 4 . o
[f fRyds=7) /K( fRyds=7) [T SFO@)IDFO ()| dF
i=1 i=1
4 A, ~
= Y 2RO) [ f(Ein s
i=1 r
1 . = 1 2
-1 ;/T FEG) T+ [ A
| o N - 1 [ &
=32 [ A ESE)DSOIs +5 [ ras
i=1
I [ 7 L[ -
—1y [Aea-snas+ [ Awds.
2 ;/Q ! 2 /7

We also have

3L+M
Z @(j)f'(ﬁ(i))
Jj=1

M
Cz)(i—l)L—l-jf(.)AC((l'—l)L-i-j)) + Z@(3L+j)f()%(3L+j))

3 L
=22
i=1j=1 j=1
3 L M
3D =3 LFSED) + 5 3 e D (Ba(5P)
i=1j=1 Jj=1
L
2
j=1

N =

w

@(j)ﬁ;(f/(j)).

Mz

1

1 oA (i Ne 1
=22 2096 =5) + 3
i=1 j

It then follows from these two identities that the error can be written as

3L+ M
(4-1)

Ez(f) = /ff(fc)dfc— Z oW £z

Jj=1

3 L
Z(/A ﬁ(§)(1 —81)ds— Z Q(j)f:.(g(j))(l _§§j)))
i=1 o i

1 M
PN s A() o A()
+§(/ff4(y)dy jEZlgf Ja(Y )).

| =
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Theorem 4.2. Ler BY) be any of the three rational edge bubbles defined on the
reference triangle. Then for any multi-index oo = (o1, o) with 0 < |a| < 2, there
exists Cy > 0 and 84 > 0 such that

olel p(i)
Ei: (BXT) = Ca (exp(—SaM) + CXP(—(SO,L)).
Proof. This result follows from (4-1), Lemma 3.3, and standard estimates of
Gaussian quadrature [Sauter and Schwab 2011, pp. 324-325]. O

We now discuss the quadrature rule on an arbitrary triangle T' € . This is done
in a natural way. Namely, letting Fr : : T — T denote the affine transformation, we
define the quadrature scheme {x(Tj), wgf)}3L+M by x(]) Fr(x4)) and a)(j)
2|T|®Y). The error of the scheme is then given by

3L+M

Er(f)i= [ rwdav= 3 o 1),

j=1
Using the Bramble—Hilbert lemma, we can obtain the following result.
Theorem 4.3. Suppose that the quadrature schemes
{g(j)’ é\(j)};lzl and {f/(j), é(j)}l\il
are exact for polynomials of degree at most m on Q and T, respectively. For a

given triangle T € T, let f be a continuous function on T and f, e gm+! (Q)
and f4 € H"(T), where

fi®) = f(Fr(Fi(SG))) and  fa(9) = f(Fr(Fa(3))).
Then,
3
ET(f) = Ch%"(z |fi|Hm+l(Q) + |f4|Hm+l(f))'
i=1
Proof. Let f € CO(T) be defined as f(x) = f(Fr (X)) so that f,(s) = f(F (S(S))
and f4 )= f (F4 (»)). Then by a change of variables and (4-1), we have
Er(f) = 2|T|ET<f)

~i71 (% (/ FO =50 d5— 30D G- A<J>))

i=1 j=1

+ [ A - 5 é(’)ﬁ(ﬁ(f)))-

j=1
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It then follows from the Bramble—Hilbert lemma that

3
Er(1) =TI (L1050 F iy + il )

i=1

3
SCh%‘(ZlﬁlH"1+1(Q)+|f4|Hm+1(f)) D

i=1

Corollary 4.4. Let B be any of the three rational edge bubbles defined on an
arbitrary triangle T € T},. Then for any multi-index o = (o1, ) with 0 < |a| <2,
there exists Cy > 0 and 64 > 0 such that

olel g(J) )
or(T5h )| = Caterot-ta) +expt-b L)

Proof. This follows directly from Theorem 4.2 and Theorem 4.3. O

S. Numerical experiments on a single triangle

In this section, we implement the quadrature scheme discussed in the previous
section on the reference triangle 7" and validate the results of Theorem 4.2. In all
of the numerical experiments, we approximate the integral of the third function in
(2-4), that is,
2.2
xix5(1—x1 —x7)

B(x):= B (x) = ~1-2 :
(I=x1)(I—x2)
For comparison, we first implement some standard Gauss—Legendre quadrature
schemes for the rational function and its first and second derivatives. Using the
mathematical software package Maple, we find the exact value of the integrals to be

/A B(%)d% = —¢m + 322 ~ 0.0022881548227867501,
T

OB 9*B
/A ~ d),(\f:O, /:\ ~2 d)%:—%
70Xy T 0%]

The numerical results are depicted in Table 1. As can be seen from the tables, the
errors behave sporadically. At best, the errors converge algebraically, but certainly
not exponentially. Moreover, even for high order quadrature rules, we are only able
to recover four digits of accuracy. This also proves true for Gaussian quadrature
applied to the function’s first and second derivatives (see Table 1). We can attribute
these poor results to the two singularities at the vertices (1,0) and (0, 1).

Next, we implement the quadrature scheme using the Duffy transform described
in Section 4. Of particular interest are the integrals on the subtriangles containing
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L degree approx. integral absolute error relative error rate
1 1 4.62-1073 2341073 1.023
3 2 —9.74-1072 9.96-1072 4.35 341
6 4 2361073 7.83:107° 3.42-1072 10.31
@ 7 5 2.29-1073 3.51-107° 1.53-1073 20.15
16 8 2.28-1073 1.71-107¢ 7.51-107* 0.86
19 9 2.28-1073 2.81-1077 1.22-107* 10.54
28 11 2.28-1073 1.21-1077 5.29:107° 2.17
37 13 2.30-1073 2.08-107° 9.11-1073 18.48
1 1 —2.08-1072 2.08-1072
<f 3 2 8.78-107! 8.78-107! 5.39
; 6 4 -2.02-1073 2.02-1073 8.76
= 7 5 —1.27-1073 1.27-1073 2.08
% 16 8 1.05-107* 1.05-107* 5.29
C 19 9 1.02-107* 1.02-107* 0.24
<28 11 8.88-107° 8.88-107° 12.18
37 13 4.12-107* 4.12-107* 22.97
w ] 5.80-1072  2.18-107! —1.31
“ 3 2 -7.13 6.97 —41.83 4.99
o 6 4 —1.39-107! 2.69-1072 —1.61-107! 8.01
‘§ 7 5 —1.45-107! 2.09-1072 —1.25 1.12
5 16 8 —1.62-107! 4.06-1073 —2.43.1072 3.49
g 19 9 —1.62-107! 3.70-1073 —2.22-1072 0.78
& 28 11 —1.65-107! 8.41-107* —-5.05-1073 7.37
37 13 —1.75-107! 8.60-1073 —-5.16-1072 13.91

Table 1. Gaussian quadrature results for the function B of (3-8)
and its first two derivatives. Rates of convergence are with respect
to the relative error and the number of points L.

the singularities. For the sake of brevity we omit B and its derivatives over the
subtriangle K4 = {(0, 5, 0), (0.5, 0.5), (0.5, 0)}; that is, we approximate the integrals

/A B(®)dx=—-2mn2+ 2 — L%+ 11n* 2~ 6.266309395 x 104,
K,

0B
/ dx =32+ 11n2 ~ —3.7955381933 x 1072,

3’B )
/ dx = -2 4+ 1nd4 ~—7.20389722 x 1072,
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L degree approx. integral absolute error relative error — rate
4 2 6.66-1074 3.90-107° 6.22-1072

9 3 6.27-107% 4.00-1077 6.38-107% 5.65
16 4 6.27-107* 9.40-10° 1.50-1073 6.52
@ 25 5 6.27-107% 2.23-1071°  357.1077 8.38
36 6 6.27-107* 54810712 8.74.107° 10.17
49 7 6.27-107* 1.38-10713  2.20-1071%  11.95
64 8 6.27-107* 9.10-1017 1.45-10713  27.42

4 2 —3.58-1073 2.12:107*%  —5.60-1072
<f 9 3 —-3.79-1073 3.76-107%  —9.92.107* 4.97
; 16 4 —-3.79-1073 7.95-1078 -2.09-107° 6.70
g5 25 5 —-3.79-1073 1.82-107°  —4.81-1077 8.45
% 36 6 -3.79-1073 4.41-107"" —1.16-107%  10.21
T 49 7 -3.79-1073 1.10-10712 —2.90-1071% 11.97
< 64 8 —-3.79-1073 2.81-1071%  —7.40-10712 13.73

o 42 —7.07-1072 1.24-107%  —1.72-1072
= 9 3 —7.20-1072 2341073 —3.24-1074 4.89
o 16 4 ~7.20-1072 5.10-1077  —7.08-107 6.64
§25 5 —7.20-1072  291-107'® —1.65-1077 8.4l
5 36 6 —~7.20-1072 7.34-10712  —4.04-107° 10.18
2 49 7 —~7.20-1072 1.88-1071%  —1.01-1071% 11.94
S 64 8 —~7.20-1072 499-1071%  —2.62-107'2 13.70

Table 2. Quadrature results using the Duffy transform for the
function B of (3-8) and its first two derivatives. The domain of
integration is the triangle K 1 (the next two tables deal with K > and
K 3). Rates of convergence are with respect to the relative error
and the number of points L.

/A B(®)dx=-2m2+ 88 — Lz?+ 11n?2~ 6266309395 x 107*,
K>

9*B
/A I8 v =o,
K, 0X1

9’ B
/A — dx = —{5 ~ —0.0833333333,
K> axl

/A B(%) dx ~ 8.096731144 x 1073,
K3

B
/ —dx = 11n2— 31 ~9.411967600 x 10~*,
Ry 0X1
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L degree approx. integral absolute error relative error — rate

4 2 6.66-1074 3.89:107° 6.22-1072
9 3 6.27-107% 3.99-1077 6.38-107% 5.64
16 4 6.26-107* 9.40-10° 1.50-1073 6.51
@ 25 5 6.26-107* 223-10711 357.1077 8.36
36 6 6.26-107* 54710712 874.107°  10.17
49 7 6.26-107* 1.37-1071%  220-1071°  11.94
64 8 6.26-107* 3.52-10713 1.45-10713 1371

4 2 8.61-107* 8.61-107%

<f 9 3 4.25-1076 4.25-1076 6.54
s 16 4 1.19-1077 1.19-1077 6.20
'% 25 5 3.43-107° 3.43-107° 7.96
% 36 6 9.89-107!! 9.89-10~ ! 9.72
T 49 7 2.86-10713 2.86-1073 11.48
< 64 8 8.33.10715 8.33.10715 13.24

- 4 2 —8.21-1072 1.00-1073  —1.44.1072
= 9 3 —8.32:1072 4551075 —5.46-107*  4.03
o 16 4 —8.33:1072 1.63-107¢  —1.95-1075 578
§ 25 5 —8.33:1072 5641078 —6.77-1077  7.53
53 6 —8.33-1072 1.90-107°  —2.29-107%  9.28
2 49 7 —8.33:1072 6.34-10711  —7.61-1071° 11.04
S 64 8 —8.33:1072 20810713 —2.49.107'" 12.79

Table 3. Quadrature results over the domain of integration K 2.
See caption of Table 2 for details.

0*B 5 8 -3

_ 5 dx=35—5In2~8.869172836 x 10
Ky 0X]

by the quadrature scheme ZjLzl ®W B(%4)). The numerical results and the errors

are listed in the tables below. Our error now converges in an exponential manner

for our initial function as well as its first and second derivative. These results are in

agreement with Theorem 4.2.

6. Conclusion

In this paper, we have created an effective Gaussian quadrature scheme for a
specific class of divergence free rational functions. We also managed to derive
error estimates as well as show exponential error convergence, with numerical
experiments confirming our results. While the findings of this paper appear to
support the finite element method proposed in [Guzmdan and Neilan 2014a], there
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L degree approx. integral absolute error relative error — rate
4 2 6.35-1073 1.73-1073 2.14-107!
9 3 8.08-107° 1.35-1077 1.67-1073 5.98
16 4 8.09.107° 3.60-107° 4.45-1073 6.30
(q 25 5 8.09.107° 1.12-1071%  1.38-.107 7.77
36 6 8.09.107° 3.06-10712  3.78-1078 9.88
49 7 8.09.107° 4.43-1071%  547.10719 13.73
64 8 8.09.107° 3.56-1071*  4.39.1071° .82
4 2 9.47-107% 6.04-1076 6.42-1073
<f 9 3 9.42-107* 1.04-107¢ 1.10-1073 4.16
; 16 4 9.41-107* 1.00-1078 1.07-1073 8.06
= 25 5 9.41-107* 1.09-1071°  1.16-1077 10.12
% 36 6 9.41-107* 9.74-107'2  1.03-1078 6.64
T 49 7 9.41-107* 3.97-1071  422.1071° 1037
— 64 8 9.41-107* 1.38-1071%  1.46-107'" 1258
- 4 2 9.00-1073 1.34-107* 1.51-1072
“ 9 3 8.87-1073 2.95.1076 3.33.107* 4.70
o 16 4 8.86-1073 6.96-1078 7.85-107¢ 6.51
§25 5 8.86-1073 6.21-107°  7.00-1077 5.41
= 36 6 8.86-1073 2.85-10711  3.22.1078 8.44
2 49 7 8.86-1073 1.11-10712  1.25-107° 10.53
S 64 8 8.86-1073 4.01-1071%  4.53.1071" 1242

Table 4. Quadrature results over the domain of integration K 2.
See caption of Table 2 for details.

are still a number of conditions such as ¥V}, [Ciarlet 1978, p. 174], ellipticity and
determining global error estimates which must be worked out. This will be the
subject of ongoing research.

Acknowledgements

The author would like to thank his advisor, Dr. Michael Neilan, for suggesting this
problem and for thoughtful discussions.

References

[Brezzi and Fortin 1991] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer
Series in Computational Mathematics 15, Springer, New York, 1991. MR 92d:65187 Zbl 0788.73002

[Burden and Faries 2011] R. Burden and J. Faries, Numerical analysis, 9th ed., Brooks/Cole, Cengage
Learning, Pacific Grove, CA, 2011.


http://dx.doi.org/10.1007/978-1-4612-3172-1
http://msp.org/idx/mr/92d:65187
http://msp.org/idx/zbl/0788.73002
http://www.as.ysu.edu/~faires/Numerical-Analysis/NA9SSM12.pdf

NUMERICAL INTEGRATION OF RATIONAL BUBBLE FUNCTIONS 251

[Ciarlet 1978] P. G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics
and its Applications 4, North-Holland Publishing Co., Amsterdam, 1978. MR 58 #25001

[Duffy 1982] M. G. Duffy, “Quadrature over a pyramid or cube of integrands with a singularity at a
vertex”, SIAM J. Numer. Anal. 19:6 (1982), 1260-1262. MR 83k:65020

[Guzman and Neilan 2014a] J. Guzman and M. Neilan, “Conforming and divergence-free Stokes
elements on general triangular meshes”, Math. Comp. 83:285 (2014), 15-36. MR 3120580
Zbl 06227546

[Guzman and Neilan 2014b] J. Guzman and M. Neilan, “Symmetric and conforming mixed finite
elements for plane elasticity using rational bubble functions”, Numer. Math. 126:1 (2014), 153-171.
MR 3149075 Zbl 06261585

[Lyness and Cools 1994] J. N. Lyness and R. Cools, “A survey of numerical cubature over triangles”,
pp. 127-150 in Mathematics of Computation 1943—1993: a half-century of computational mathe-
matics (Vancouver, BC, 1993), edited by W. Gautschi, Proc. Sympos. Appl. Math. 48, Amer. Math.
Soc., Providence, RI, 1994. MR 95;:65021

[Sauter and Schwab 2011] S. A. Sauter and C. Schwab, Boundary element methods, Springer Series
in Computational Mathematics 39, Springer, Berlin, 2011. MR 2011i:65003

[Spivak 1998] M. Spivak, Calculus on Manifolds, Perseus, Cambridge, MA, 1998. Reprint of the
1965 original.

Received: 2012-11-24 Revised: 2013-07-17 Accepted: 2013-07-29

mschneier89@gmail.com

mathematical sciences publishers :'msp


http://msp.org/idx/mr/58:25001
http://dx.doi.org/10.1137/0719090
http://dx.doi.org/10.1137/0719090
http://msp.org/idx/mr/83k:65020
http://dx.doi.org/10.1090/S0025-5718-2013-02753-6
http://dx.doi.org/10.1090/S0025-5718-2013-02753-6
http://msp.org/idx/mr/3120580
http://msp.org/idx/zbl/06227546
http://dx.doi.org/10.1007/s00211-013-0557-1
http://dx.doi.org/10.1007/s00211-013-0557-1
http://msp.org/idx/mr/3149075
http://msp.org/idx/zbl/06261585
http://msp.org/idx/mr/95j:65021
http://dx.doi.org/10.1007/978-3-540-68093-2
http://msp.org/idx/mr/2011i:65003
mailto:mschneier89@gmail.com
http://msp.org




Colin Adams

John V. Baxley
Arthur T. Benjamin
Martin Bohner
Nigel Boston
Amarjit S. Budhiraja
Pietro Cerone
Scott Chapman
Joshua N. Cooper
Jem N. Corcoran
Toka Diagana
Michael Dorff
Sever S. Dragomir
Behrouz Emamizadeh
Joel Foisy

Errin W. Fulp
Joseph Gallian
Stephan R. Garcia
Anant Godbole
Ron Gould
Andrew Granville
Jerrold Griggs

Sat Gupta

Jim Haglund
Johnny Henderson
Jim Hoste

Natalia Hritonenko
Glenn H. Hurlbert
Charles R. Johnson
K. B. Kulasekera

Gerry Ladas

involve

msp.org/involve

EDITORS
MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

Williams College, USA
colin.c.adams @williams.edu

‘Wake Forest University, NC, USA
baxley @wfu.edu

Harvey Mudd College, USA
benjamin@hmc.edu

Missouri U of Science and Technology, USA
bohner@mst.edu

University of Wisconsin, USA
boston @math.wisc.edu

U of North Carolina, Chapel Hill, USA
budhiraj@email.unc.edu

La Trobe University, Australia
P.Cerone@latrobe.edu.au

Sam Houston State University, USA
scott.chapman @shsu.edu
University of South Carolina, USA
cooper@math.sc.edu

University of Colorado, USA
corcoran@colorado.edu

Howard University, USA
tdiagana@howard.edu

Brigham Young University, USA
mdorff@math.byu.edu

Victoria University, Australia
sever@matilda.vu.edu.au

The Petroleum Institute, UAE
bemamizadeh @pi.ac.ae

SUNY Potsdam

foisyjs @potsdam.edu

Wake Forest University, USA
fulp@wfu.edu

University of Minnesota Duluth, USA
jgallian@d.umn.edu

Pomona College, USA
stephan.garcia@pomona.edu

East Tennessee State University, USA
godbole @etsu.edu

Emory University, USA
rg@mathcs.emory.edu

Université Montréal, Canada
andrew @dms.umontreal.ca
University of South Carolina, USA
griggs @math.sc.edu

U of North Carolina, Greensboro, USA
sngupta@uncg.edu

University of Pennsylvania, USA
jhaglund @math.upenn.edu

Baylor University, USA
johnny_henderson@baylor.edu
Pitzer College

jhoste @pitzer.edu

Prairie View A&M University, USA
nahritonenko @pvamu.edu

Arizona State University,USA
hurlbert@asu.edu

College of William and Mary, USA
crjohnso@math.wm.edu

Clemson University, USA
kk@ces.clemson.edu

University of Rhode Island, USA
gladas @math.uri.edu

David Larson
Suzanne Lenhart
Chi-Kwong Li
Robert B. Lund
Gaven J. Martin
Mary Meyer

Emil Minchev
Frank Morgan
Mohammad Sal Moslehian
Zuhair Nashed

Ken Ono

Timothy E. O’Brien
Joseph O’Rourke
Yuval Peres

Y.-E. S. Pétermann
Robert J. Plemmons
Carl B. Pomerance
Vadim Ponomarenko
Bjorn Poonen
James Propp
Jozeph H. Przytycki
Richard Rebarber
Robert W. Robinson
Filip Saidak

James A. Sellers
Andrew J. Sterge
Ann Trenk

Ravi Vakil

Antonia Vecchio
Ram U. Verma
John C. Wierman

Michael E. Zieve

PRODUCTION
Silvio Levy, Scientific Editor

Texas A&M University, USA
larson @math.tamu.edu

University of Tennessee, USA
lenhart@math.utk.edu

College of William and Mary, USA
ckli@math.wm.edu

Clemson University, USA
lund@clemson.edu

Massey University, New Zealand
g.j.martin@massey.ac.nz
Colorado State University, USA
meyer @stat.colostate.edu

Ruse, Bulgaria

eminchev @hotmail.com

Williams College, USA
frank.morgan @williams.edu
Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir
University of Central Florida, USA
znashed @mail.ucf.edu

Emory University, USA
ono@mathcs.emory.edu

Loyola University Chicago, USA
tobriel @luc.edu

Smith College, USA

orourke @cs.smith.edu

Microsoft Research, USA

peres @microsoft.com

Université de Geneéve, Switzerland
petermann @math.unige.ch

Wake Forest University, USA
plemmons @wfu.edu

Dartmouth College, USA
carl.pomerance @dartmouth.edu
San Diego State University, USA
vadim@sciences.sdsu.edu

UC Berkeley, USA
poonen@math.berkeley.edu

U Mass Lowell, USA
jpropp@cs.uml.edu

George Washington University, USA
przytyck@gwu.edu

University of Nebraska, USA
rrebarbe @math.unl.edu
University of Georgia, USA
rwr@cs.uga.edu

U of North Carolina, Greensboro, USA
f_saidak @uncg.edu

Penn State University, USA
sellersj @math.psu.edu

Honorary Editor

andy @ajsterge.com

Wellesley College, USA

atrenk @wellesley.edu

Stanford University, USA
vakil@math.stanford.edu
Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

University of Toledo, USA
verma99 @msn.com

Johns Hopkins University, USA
wierman @jhu.edu

University of Michigan, USA
zieve @umich.edu

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $140/year for the electronic version, and
$190/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY
:- mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers


http://msp.org/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:P.Cerone@latrobe.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.org/involve
http://msp.org/
http://msp.org/

mvolve

2015 vol. 8 no.

Enhancing multiple testing: two applications of the probability of correct selection
statistic
ERIN IRWIN AND JASON WILSON
On attractors and their basins
ALEXANDER ARBIETO AND DAVI OBATA
Convergence of the maximum zeros of a class of Fibonacci-type polynomials
REBECCA GRIDER AND KRISTI KARBER
Iteration digraphs of a linear function
HANNAH ROBERTS
Numerical integration of rational bubble functions with multiple singularities
MICHAEL SCHNEIER
Finite groups with some weakly s-permutably embedded and weakly
s-supplemented subgroups
GUO ZHONG, XUANLONG MA, SHIXUN LIN, JIAYI XIA AND JTIANXING
JIN
Ordering graphs in a normalized singular value measure
CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO AND SEAN MEEHAN
More explicit formulas for Bernoulli and Euler numbers
FRANCESCA ROMANO
Crossings of complex line segments
SAMULI LEPPANEN
On the ¢-ascent chromatic index of complete graphs
JEAN A. BREYTENBACH AND C. M. (KIEKA) MYNHARDT
Bisection envelopes
NOAH FECHTOR-PRADINES
Degree 14 2-adic fields
CHAD AWTREY, NICOLE MILES, JONATHAN MILSTEAD, CHRISTOPHER
SHILL AND ERIN STROSNIDER
Counting set classes with Burnside’s lemma
JOSHUA CASE, LORI KOBAN AND JORDAN LEGRAND
Border rank of ternary trilinear forms and the j-invariant
DEREK ALLUMS AND JOSEPH M. LANDSBERG
On the least prime congruent to 1 modulo 7

JACKSON S. MORROW
1-5

1944-4176(2015)8:2;

181

195
211
221
233

253

263
275
285
295
307

329

337
345

357



	1. Introduction
	2. Preliminaries
	3. A partitioned Duffy transform
	4. A quadrature rule based upon the partitioned Duffy transform
	5. Numerical experiments on a single triangle
	6. Conclusion
	Acknowledgements
	References
	
	

